Coastal Restoration Trust of New Zealand

Coastal Dune Ecosystem Reference Database

Holocene coastal evolution and uplift mechanisms of the northeastern Ruakumara Peninsula, North Island, New Zealand Technical Report

Author
Wilson, K.; Berryman, K.; Cochran, U.; Little, T.
Year
2007
Journal / Source
Quaternary Science REviews
Volume
26
Pages
1106-1128
Summary
The coastal geomorphology of the northeastern Raukumara Peninsula, New Zealand, is examined with the aim of determining the mechanisms of Holocene coastal uplift. Elevation and coverbed stratigraphic data from previously interpreted coseismic marine terraces at Horoera and Waipapa indicate that, despite the surface morphology, there is no evidence that these terraces are of marine or coseismic origin. Early Holocene transgressive marine deposits at Hicks Bay indicate significant differences between the thickness of preserved intertidal infill sediments and the amount of space created by eustatic sea level rise, therefore uplift did occur during early Holocene evolution of the estuary. The palaeoecology and stratigraphy of the sequence shows no evidence of sudden land elevation changes. Beach ridge sequences at Te Araroa slope gradually toward the present day coast with no evidence of coseismic steps. The evolution of the beach ridges was probably controlled by sediment supply in the context of a background continuous uplift rate. No individual dataset uniquely resolves the uplift mechanism. However, from the integration of all evidence we conclude that Holocene coastal uplift of this region has been driven by a gradual, aseismic mechanism. An important implication of this is that tectonic uplift mechanisms do vary along the East Coast of the North Island. This contrasts with conclusions of previous studies, which have inferred Holocene coastal uplift along the length of the margin was achieved by coseismic events. This is the first global example of aseismic processes accommodating uplift at rates of >1 mm yr−1 adjacent to a subduction zone and it provides a valuable comparison to subduction zones dominated by great earthquakes.