The application of ensemble wave forcing to quantify uncertainty of shoreline change predictions.
- Author
- Vitousek, S., Cagigal, L., Montaño, J., Rueda, A., Mendez, F., Coco, G., & Barnard, P. L
- Year
- 2021
- Journal / Source
- Journal of Geophysical Research: Earth Surface,
- Volume
- 126
- Number
- https://doi.org/10.1029/2019JF005506
- Pages
- 43 pp
- Keywords
- Tairua
- Summary
- Reliable predictions and accompanying uncertainty estimates of coastal evolution on decadal to centennial time scales are increasingly sought. So far, most coastal change projections rely on a single, deterministic realization of the unknown future wave climate, often derived from a global climate model. Yet, deterministic projections do not account for the stochastic nature of future wave conditions across a variety of temporal scales (e.g., daily, weekly, seasonally, and interannually). Here, we present an ensemble Kalman filter shoreline change model to predict coastal erosion and uncertainty due to waves at a variety of time scales. We compare shoreline change projections, simulated with and without ensemble wave forcing conditions by applying ensemble wave time series produced by a computationally efficient statistical downscaling method. We demonstrate a sizable (site-dependent) increase in model uncertainty compared with the unrealistic case of model projections based on a single, deterministic realization (e.g., a single time series) of the wave forcing. We support model-derived uncertainty estimates with a novel mathematical analysis of ensembles of idealized process models. Here, the developed ensemble modeling approach is applied to a well-monitored beach in Tairua, New Zealand. However, the model and uncertainty quantification techniques derived here are generally applicable to a variety of coastal settings around the world.