

Waimea Inlet

Historical Sediment Coring 2011

Prepared for

Tasman District Council

June 2011

Cover Photo: Preparing to collect the historic sediment core from the eastern arm of Waimea Inlet (Site 1).

Dragging the core across the extensive fine soft muds near the Research Orchard Road site, January 2011.

Waimea Inlet

Historical Sediment Coring 2011

Prepared for Tasman District Council

By

Leigh Stevens and Barry Robertson

Wriggle Limited, PO Box 1622, Nelson 7040, NZ. Ph 03 545 6315, 021 417 936, or 03 545 1550, 0275 417 935, www.wriggle.co.nz

Contents

1. Introduction	•	•••	•		•	•••	•	•	•	•	•	•••	•	•	•••	•	•	•	•	•		•	•	•	•	•	. 1
2. Methods	•	•••	•		•	•••	•	•	••	•	•		•	•	•••	•	•	•	•	•			•	•	•	•	. 2
3. Results and Discussion	•		•	•••	•	•••	•	•	••	•	•	•••	•	•		•	•	•	•	•			•		•	•	. 4
4. Summary and Recommendations	•		•	•••	•		•	•	•••	•	•		•	•		•	•	•	•	•			•		•	•	10
5. References	•		•	•••	•		•	•	•••	•	•		•	•		•	•	•	•	•			•		•	•	11
Appendix 1 - Sediment Condition Rating	•	•••		•		•		•		•	•		•	•		•	•	•		•	•	•		•	•	•	11
Appendix 2. Lead Dating of Historical Co	ore	s.	•	•••	•		•	•	•••	•	•		•	•		•	•	•	•	•			•	•	•	•	12
Appendix 3. Particle Grain Size Results.			•		•		•	•	•••	•							•	•	•	•			•		•	•	13

List of Figures

igure 1. Location of historical sediment core sites within Waimea Inlet	3
igure 2. Sediment particle grain size results, Waimea Inlet, January 2011	6
igure 3. Summary of the key features of the Site 1 sediment core	8
igure 4. Summary of the key features of the Site 2 sediment core	9

List of Tables

Table 1. Results of caesium radio-isotope analyses in the two Waimea Inlet cores, January 2011	•••	•••	•	4
Table 2. Results of lead radio-isotope analyses in the two Waimea Inlet cores, January 2011	•••	•••	•	5
Table 3. Particle Grain Size Classification. .			•	5

EXECUTIVE SUMMARY

This report summarises the sampling and analysis of two historic sediment cores collected in Jan. 2011 from representative intertidal settling areas within Waimea Inlet. Site 1 was located on intertidal flats in the eastern arm between Headingly Lane and Saxton Island, and Site 2 in the Research Orchard Road embayment. Analysis used established caesium (¹³⁷Cs) and lead (²¹⁰Pb) radio-isotope dating techniques to estimate the rate of sediment inputs to the estuary over time. The purpose was to help clarify the relationship between past land-use activities and sediment inputs to the estuary, and to guide estuary and catchment monitoring and management priorities in an estuary where sedimentation has been identified as a major issue (e.g. Robertson and Stevens 2009, Stevens and Robertson 2010).

RESULTS

- Grain size analyses showed the estuary was historically dominated by sand and shell/gravel (71-73%), with little mud and a plentiful population of large shellfish.
- Over time, sediments have become much muddier (from ~30% to 40-60% at Site 1, from ~30% to 60-80% at Site 2).
- Muds have a high colloid and clay content which have a strong adverse influence on water clarity, sediment oxygenation, and contribute to lowered biodiversity and lowered aesthetic and human use values in the estuary.
- Cores indicated large increases in mud coincided at times with a notable decrease in shellfish.
- Caesium analyses indicated sediment deposition since 1964 met a condition rating of "moderate" (see below), but identified significant inputs at Site 2 between 1953-1964 (rating "very high").
- Lead analyses were unable to distinguish differences between surface and deeper samples, therefore more detailed ageing of cores sections was not possible.

Period	Site 1	Site 2	Comment
1964-present	MODERATE 1.5mm/yr	MODERATE 1.3mm/yr	Based on 46 years since the maximum year of atmos- pheric ¹³⁷ Cs deposition recorded in NZ
1953-present	MODERATE 1.6mm/yr	HIGH 3.5mm/yr	Based on 57 years since the start of atmospheric test deposition in NZ
1953-1964	MODERATE 1.8mm/yr	VERY HIGH 12.7mm/yr	Consistent with anecdotal reports of sediment inputs dur- ing development of orchard land in the 1950's and 1960's

CONDITION RATINGS

RECOMMENDED MONITORING

Because the results of this study, and previous monitoring (e.g. Robertson and Stevens 2009), reinforce the need to manage fine sediment inputs to the estuary:

- Establish additional sediment plates to more accurately assess overall estuary sedimentation and provide a means of checking that management targets are being met.
- Annually monitor sedimentation rate at the 9 existing buried plate sites established by TDC since 2008/09.
- **Continue fine scale estuary monitoring** (including sedimentation rate, RPD depth and grain size at the 4 established intertidal sites at 5 yearly intervals (scheduled for Jan-Feb 2011 but deferred until 2013).
- **Continue broad scale habitat mapping** (including area of soft mud) at 5 yearly intervals (next scheduled for summer 2015/16).
- Measure catchment sediment budget by monitoring major sediment inputs to the estuary for one year (including high and low flow periods) to determine annual sediment inputs, validate catchment models, and identify areas of high sediment release.

RECOMMENDED MANAGEMENT

- Set Catchment Load Guidelines for Suspended Sediment. Limit catchment suspended sediment inputs to levels that will not cause excessive estuary infilling i.e. limit sedimentation rates to an estuary average of 1mm/yr.
- Identify Hot Spots and Implement BMPs Identify and implement catchment Best Management Practices (BMPs) to prevent avoidable sediment runoff from catchment "hotspots" or land disturbance activities.
- **Maintain Vegetated Margins** Encourage the retention and restoration of saltmarsh habitat and vegetated margins around the estuary and catchment waterways.

1. INTRODUCTION

Estuaries are a sink for sediments, and the natural cycle of estuaries is to slowly infill with fine muds and clays. However, over the last 150 years the rate of infilling in New Zealand's estuaries has accelerated as a result of extensive catchment clearance, wetland drainage, and land development for agriculture and settlements. Estuaries were commonly dominated by sandy sediments and had low sedimentation rates prior to European settlement (e.g. <0.5mm/year e.g. Swales et al. 2002, Mead and Moore 2004, Robertson and Stevens 2007, 2007a). Currently average sedimentation rates in NZ estuaries with developed catchments are now typically 10 times or more higher than before humans arrived.

A recent Vulnerability Assessment of Waimea Inlet (Stevens and Robertson 2010) identified sedimentation as a major issue in Waimea Inlet based on the presence of a very high and increasing cover of intertidal soft mud (55%) based on broad scale habitat mapping, along with increasing mud fractions in the surface sediments at fine scale monitoring sites (see Robertson and Stevens 2009). The high mud content in the estuary, sourced from glacial deposits from the Moutere Hills glacial outwash gravels, has had significant detrimental impacts on human uses and ecological values, and has contributed directly to decreased water clarity, reduced cover of high value seagrass, and a shift in the macro-invertebrate community to one more tolerant of fine sediment (e.g. pipi, cockles) are also likely to have been displaced from large parts of the estuary by the increase in mud over time (e.g. Lundquist et al. 2003).

Because understanding the rate of sediment increase in the estuary is vital in managing it appropriately, Tasman District Council (TDC) recently (2008/09) established buried sediment plates as part of a long-term monitoring programme to measure the rate of sedimentation throughout the estuary from now into the future. While it will take several years for these plates to confirm current trends in sedimentation rates, preliminary results suggest average deposition in intertidal settling areas throughout the estuary is currently between 0-1mm/yr, with some sites in the east showing slight sediment erosion.

However, past sedimentation rates are likely to have been much higher. To estimate possible rates of sediment input for the Vulnerability Assessment (Stevens and Robertson 2010), cores were dug in two representative intertidal settling basins in the estuary. They showed coarse sand and shells were buried ~1m beneath finer muds. Based on an assumption that sediment deposition prior to intensive human development was likely to be low, and that most catchment development has occurred over the past 150 years, a potential average annual deposition rate across the entire intertidal area of the estuary was calculated at 6-8mm/yr.

Because the assumptions on which these estimates were based are currently unverified, TDC sought to clarify sediment deposition in the estuary by collecting and ageing sediment cores from two representative intertidal settling basins within the estuary using established lead and caesium radio-isotope dating techniques (e.g. Robertson and Stevens 2007, Stevens and Robertson 2007, Swales et al. 2002, 2005).

Wriggle Coastal Management were contracted to undertake this work with the primary aim to estimate the rate of sediment inputs to the estuary over time. The results will enable the effectiveness of current (and recent) land management practices to be better assessed, and help clarify the relationship between past land-use activities (e.g. forest clearance, preparation of orchard blocks) and sedimentation within the estuary to guide management priorities for the estuary and surrounding catchment.

This report describes the methods and results of the sampling and analysis undertaken early in January 2011, and provides recommendations on sedimentation monitoring and management in Waimea Inlet.

2. METHODS

Two intertidal sites were selected within Waimea Inlet (Figure 1) based on the following rationale:

Site 1 - Saxton: Located on intertidal flats in the eastern arm between Headingly Lane and Saxton Island, next to the estuary fine scale site monitoring Site A (see Robertson et al. 2002), and buried sediment plates. The site is relatively exposed with high rates of re-suspension due to wave fetch, but despite this, fine scale monitoring has shown this part of the estuary to be getting muddier (Robertson and Stevens 2009). It has fine muds on the surface, transitioning to coarse sands and shell at around 1m deep. It is expected to provide a good picture of net sediment accrual in the east arm of the estuary which is fed predominantly by the Waimea River, the major source of sediment to the estuary, and also urbanisation around Richmond.

Site 2 - Research Orchard Road: Located in an embayment in the western arm adjacent to areas of intensive past orchard development and with few stream inputs. The surface muds are soft and deep, and overlie gravel and sand substrate in places. Buried sediment plates are located in this location and it is representative of the more sheltered parts of the estuary where sediment is expected to settle and accumulate.

Following site selection, sediment cores were collected at low tide from each location in January 2011 by slowly pushing a 10cm diameter PVC pipe into the estuary muds (see sidebar photos). While insertion through the upper layers of soft mud was relatively easy, at Site 1 the core needed to be hammered through the deeper sandy sediments to reach the target depth of 1m.

After the core was inserted in the sediment, the top cap was removed and any sediment compression in the inserted core recorded. The cap was then replaced and an area adjacent to the core dug out so that a garden hoe could be inserted beside the corer, the blade pushed beneath the bottom edge, and the intact corer lifted vertically from the sediment. Once removed, the corer was carefully laid horizontally and transported from the estuary on a sled for subsequent processing.

Core processing involved splitting open and removing half of the PVC corer (the corer is precut and duct taped together for sample collection). This enabled the intact sediment core to be photographed, and any distinctive visual changes in the core noted. The core was then carefully cut into 1cm sections, with the dominant grain size noted, the size and species of any shellfish present in each section described, before each section was placed into labelled zip lock bags.

Representative sections were then selected and sent to the University of Waikato, Department of Earth & Ocean Sciences, for particle grain size analysis using a combination of wet sieving to determine the sediment shell/gravel (>2mm) fraction, and a Malvern laser particle analyser for sand and mud fractions (<2mm). Laser particle size analysis was used to get a detailed breakdown of the sand and mud components to see whether there was any significant changes in sediment composition over time. To this end, particle grain size analyses were evenly spaced at 10cm intervals throughout the cores, with one exception in the lower section of the Research Orchard Road core where a visually evident shift to silt was targeted at 85cm.

A second subset of samples (split from the above) were sent to the GNS National Isotope Centre in Lower Hutt for radio-isotope analysis using caesium and lead isotopes. All sample preparation for isotope analysis was undertaken by GNS, with samples washed to remove shell and gravel, and retained sediments decanted, dried and crushed before being placed on a high resolution low background germanium gamma detector for analysis. The basis for the use of caesium and lead isotopes is very well described in Swales et al. (2005) and is summarised as follows:

Caesium (¹³⁷Cs) is an isotope with a half life of 30 years. ¹³⁷Cs activity, introduced following atmospheric nuclear weapons tests, provides a marker for recent sediment deposition beginning in 1953 when ¹³⁷Cs deposition was first detected in NZ.

2. Methods (Continued)

Figure 1. Location of historical sediment core sites within Waimea Inlet.

In addition, the peak atmospheric fallout of ¹³⁷Cs in NZ (derived from rainfall measurements) occurred in 1964, with elevated levels occurring from 1959-1964 (Cambray et al. 1979; Loughran et al. 1988), thus providing a secondary marker of 1964. As such, ¹³⁷Cs provides a very good tool for dating gross sediment inputs over the past 46 and 57 years.

Lead (²¹⁰Pb) is a natural isotope (half life of 22 years) useful in dating sediments up to 100-150 years old. Because the lead derived from atmospheric fallout decays at a different rate when it is buried, it is possible to determine how long it has been buried by comparing decay rates. This is done by using the ²¹⁰Pb concentration at the surface (supported lead) and the unsupported lead in the underlying sediment (indicated by radium ²²⁶Ra). This enables ages to be ascribed to sediments at different depths, with ¹³⁷Cs being used to provide a fixed time reference for ²¹⁰Pb values (see Appendix 2 for further details).

There are two main analytical methods for ²¹⁰Pb dating, gamma or alpha spectrometry. Both have been successfully used to age sediments in NZ estuaries, although gamma spectrometry has less sensitivity because it is subject to higher background interference. Because of the much higher cost of alpha spectrometry, gamma spectrometry was selected as the analytical method for the Waimea Inlet sampling.

The selection of core sections for radio-isotope analysis was based on the expectation that most of the sediments with a ¹³⁷Cs signal would be in the upper 25cm of the core (based on the TDC sediment plate data since 2008 (0-1mm/yr), and the estimated worst case sedimentation rate in Waimea Inlet of 6-8mm/year). Sections from depths extending to 1m were retained for ²¹⁰Pb dating, or additional ¹³⁷Cs dating if needed. Samples were selected for ²¹⁰Pb dating on the expert advice of GNS scientists, in conjunction with the initial ¹³⁷Cs results.

For both ²¹⁰Pb and ¹³⁷Cs, dating accuracy is influenced by sediment mixing, primarily a result of wave action and bioturbation - the mixing of sediment by estuarine animals. Past estuary coring work has indicated up to 5cm deep mixing is relatively common (e.g. Robertson and Stevens 2007, Swales et al. 2002), and this mixing needs to be accounted for when ageing sediments.

3. RESULTS AND DISCUSSION

The sediment cores results are presented and discussed in the following section. Table 1 presents the results of caesium dating for each core, lead dating results are in Table 2, and particle grain size results summarised in Figure 2 with full details in Appendix 3. Grain size classifications are summarised in Table 3. Figures 3 and 4 show photos of the extracted cores, annotated with the estimated age of the sediments (derived from caesium results), field notes on the core appearance - including the presence of shell material, and particle grain sizes.

CAESIUM

Results in Table 1 show ¹³⁷Cs was present in both cores, extending to a depth of 9cm in the Site 1 (Saxton) core, and to 20cm in the Site 2 (Research Orchard Road) core. Although ¹³⁷Cs was still detectable below these depths (to 25cm in both cores), values less than 0.25Bq.kg-¹ were considered to represent the mixing of more recent surface sediment with older underlying material and were therefore excluded from ageing estimates. No core compaction was observed during sampling. Two estimates of sediment ageing were calculated as follows:

- 1. The age derived by ascribing the highest ¹³⁷Cs concentration in the sediments to 1964, the year corresponding to the greatest level of atmospheric deposition recorded in NZ. This gave average sedimentation rates over the past 46 years of 1.5mm/yr at Site 1, and 1.3mm/yr at Site 2.
- 2. The age based on the maximum depth of ¹³⁷Cs values >0.25Bq.kg-¹, corresponding to the start of atmospheric test deposition in NZ in 1953. This gave average annual sedimentation rates over the past 57 years of 1.6mm/yr at Site 1, and 3.5mm/yr at Site 2.

Sedimentation rates fall within Condition Ratings (see Appendix 1) of MODERATE at Site 1, and MODERATE-HIGH at Site 2. They are ~3-7 times higher than the 0.5mm/ yr predicted for an estuary with an undeveloped forest catchment, and as such are likely to be contributing to an ongoing increase in muddiness of the estuary.

To further explore when sediment may have entered the estuary, deposition between the two ¹³⁷Cs marker dates (1953 and 1964) was calculated. This indicated sedimentation rates of 1.8mm/yr at Site 1, and 12.7mm/yr at Site 2. The very high value at Site 2 is consistent with the development of orchard land in the catchment the 1950's and 1960's, and evidence of significant sediment inputs to the estuary during this period (sidebar photos).

Table 1. Results of caesium radio-isotope analyses used for dating sediment deposition since 1953 in the two Waimea Inlet cores, January 2011.

Caesium	Site	e 1 - Saxton			Site 2 - Research Orchard Road						
Depth cm	¹³⁷ Cs (Bq.kg- ¹ +/- 2 std dev)	Ascribed date	Sedii rate n	ment nm/yr	¹³⁷ Cs (Bq.kg- ¹ +/- 2 std dev)	Ascribed date	Sedi rate n	ment nm/yr			
2-3	0.47 (0.32)				1.30 (0.74)		1.2				
5-6	0.36 (0.31)		1.5		1.40 (0.63)	1964	1.3				
6-7	0.50 (0.34)	1964		1.6	-						
7-8	0.48 (0.32)		10		-			25			
8-9	0.37 (0.31)	1953	1.0		-		12.7	5.5			
9-10	0.22 (0.28)				1.37 (0.57)		12.7				
14-15	0.22 (0.39)	1			0.95 (0.49)						
19-20	0.17 (0.29)	Background			0.79 (0.61)	1953					
24-25	0.04 (0.26)			0.23 (0.49)	Back						

¹³⁷Cs values below 0.25 Bq.kg-¹ were considered to represent background levels, their trace presence attributed to sediment mixing. Note: Sediment rates are the cumulative mean annual rate from the ascribed date.

Examples of soil erosion in Moutere orchards following intense storms in 1964 (source: Leighs 1977).

LEAD

Lead results were intended to allow a more detailed interpretation of inputs over time by ascribing dates to sections throughout the cores. However, initial analyses undertaken using gamma spectrometry were unable to distinguish differences between surface and deeper samples (Table 2). Because these initial results showed the collected cores could not be dated using ²¹⁰Pb, no further ²¹⁰Pb analysis was undertaken.

Two possible reasons why ²¹⁰Pb analyses were ineffective are suggested:

- 1. High sedimentation rates can significantly dilute atmospheric unsupported ²¹⁰Pb so that the normal curve of concentration (greater at surface, declines at depth) is replaced with a constant supported concentration (Goff et al. 1998; Swales et al. 2005).
- 2. Fresh inputs of older material, e.g. eroded bedload deposited from rivers and streams, can mask the decay signal. This is supported by the reduced ¹³⁷Cs signal in the upper part of the core at Site 1 relative to Site 2. Site 1, located in the eastern arm of the estuary, also receives discharges from the Waimea River as well as many smaller streams (Figure 1).

Table 2. Results of lead radio-isotope analyses used for dating sediment deposition in the two Waimea Inlet cores, January 2011.

Lead	Site 1 -	Saxton	Site 2 - Research Orchard Road									
Depth cm	Total ²¹⁰ Pb (+/- 2 std dev)	²²⁶ Ra (+/- 2 std dev)	Total ²¹⁰ Pb (+/- 2 std dev)	²²⁶ Ra (+/- 2 std dev)								
2-3	17 (5)	26 (6)	21 (9)	25 (11)								
24-25	8 (6)	13 (8)	20 (8)	24(10)								

²¹⁰Pb activities can not be distinguished from those of ²²⁶Ra (=Supported ²¹⁰Pb) and its decay products, i.e., excess ²¹⁰Pb cannot be measured in these samples by gamma spectrometry, therefore dating is not possible.

Table 3. Particle Grain Size Classification.

Size Range	Wentworth Classification							
>256 mm		Boulder						
64–256 mm		Cobble						
32-64 mm		Very coarse gravel						
16-32 mm		Coarse gravel						
8–16 mm	Gravel	Medium gravel						
4–8 mm		Fine gravel						
2–4 mm		Very fine gravel						
1–2 mm		Very coarse sand						
½–1 mm		Coarse sand						
¼−½ mm	Sand	Medium sand						
125–250 µm		Fine sand						
62.5–125 μm		Very fine sand						
3.9–62.5 µm		Silt						
< 3.9 µm	Mud	Clay						
< 1 µm		Colloid						

SEDIMENT GRAIN SIZE

The results of sediment grain size analyses are presented for the two cores in Figure 2 and Appendix 3. Figure 2 shows that the deeper parts of the Waimea sediment cores (A100 and B85) were dominated by sand (67% and 50% respectively) and shell/gravel (4 and 23%), with relatively little mud (<30%). In addition, each core had evidence of a plentiful population of large shellfish (Figures 3 and 4). This likely to reflect the composition of the estuary before extensive catchment development when inputs of sediment (particularly mud), were low.

In the 10cm overlying these predominately sandy sediments, a significant increase in the mud content is evident (increasing at Site 1 from 29% to 46%, and at Site 2 from 27% to 60%). Although caution needs to be exercised in extrapolating from only two cores, the pattern evident in Waimea Inlet is consistent with other estuaries in NZ (e.g. Robertson and Stevens 2007, 2007a, Swales et al. 2002, 2005) and the increased mud is likely to have come primarily from a combination of catchment inputs following deforestation, wetland drainage and land development.

The general trend at Site 1 is for increasing mud over time, but this is less consistent than for Site 2. Although there is an initial increase over a 40cm section of core (between 60 and 90cm), the mud content then reduces slightly between 20 and 50cm. This may reflect a period of reduced sediment input combined with flushing of fine sediment from the estuary. The upper 20cm shows a trend of increasing mud, ¹³⁷Cs showing the upper 9cm was deposited since 1953 (Figure 3).

In contrast, Site 2 shows a relatively steady trend of increasing mud content between 10 and 80cm, the increase between 10 and 20cm coinciding with the high rate of deposition from 1953-1964 identified with the ¹³⁷Cs markers and which most

Wriggle coastalmanagement

SEA LEVEL RISE

Estuary infilling is expected to be partly offset by sea-level rise associated with climatic warming, which will deepen estuaries by about 2 mm/yr, and by the sea flooding low-lying margins which will evolve to saltmarsh and then tidal flats. The predicted accelerated increase in sea-level rise as oceans expand over the next 50-100 years due to global warming is expected to exacerbate the landward migration or segmentation of barrier islands and dunes, saltmarsh disintegration/displacement, and increase coastal margin erosion. All of these may contribute to increased estuary infilling and will fundamentally change the state of the coast. A coastal vulnerability assessment of the Tasman coastal region is currently being prepared to address issues such as this in more detail.

likely relates to high erosion inputs from orchard land at this time, and earlier (see text box below).

Another key feature of the grain size analyses is the relatively high colloid and clay content of the sediments (Figure 2). These very fine fractions are readily mobilised, easily suspended, and settle slowly in estuary waters. They contribute to poor clarity within the estuary which in turn directly impacts key aquatic vegetation such as seagrass which is restricted to the parts of the estuary where it receives sufficient light to grow - predominantly shallow parts of the well flushed lower estuary. The fine muds also fill the spaces between coarser sediments in the estuary, limiting water exchange and sediment oxygenation. This is a key reason the area of oxygenated sediment (the sediment RPD depth) is relatively shallow throughout the estuary (e.g. Stevens and Robertson 2010). Because most sediment dwelling species live in the oxygenated sediments, a narrow oxygenated area limits their preferred habitat.

Apart from the ¹³⁷Cs results, the current study was unable to specifically date sediment deposition in the estuary and relate this to discrete catchment land use activities. However, episodic sediment inputs to estuaries are well documented (e.g. Swales et al. 2002), and indications of pulsed sediment inputs to Waimea Inlet are evident from the shell material present in the cores. At Site 1 the increase in mud between 50 and 90cm coincides with an absence of shellfish from 60-80cm. A similar trend is evident at Site 2 a with a sharp increase in mud from 60-80cm coinciding with a notable decrease in the presence of shellfish (see Figures 3 and 4). This is consistent with a large pulse of sediment smothering or displacing shellfish, particularly those intolerant of high mud concentrations (e.g. cockles). The subsequent reappearance of a few predominantly small cockle shells from 50-60cm at Site 1, but a general absence of larger shells, is consistent with reduced sediment inputs, but less favourable (increased mud) conditions for larger shellfish. This is evidence that past inputs of fine muds have had a detrimental impact on shellfish in the estuary.

Examples of soil erosion in Moutere orchards following intense storms in 1964. A regime of clear cultivation and the ground being kept tilled from mid spring to mid autumn resulted in even light rains producing widespread sheet and rill erosion (source: Leighs 1977).

Erosion of Sediment from Moutere Hills Orchard Land (quoted from Leighs 1977)

From 1910 to 1920 approximately 3600 ha at the seaward end of the Moutere gravels formation were planted in apple and pear orchards. The soils of the Moutere gravels are of low natural fertility, with thin poorly structures topsoil over a hard clay subsoil on weathered gravels. Rainfall infiltration is low and lateral movement of water in the soil is minimal. The topography is undulating to strongly rolling. Orchards were planted on the Moutere Hills using straight rows that was traditional on the flat fruit-growing areas of Britain. Lack of available moisture for the young trees, and reversion to weeds brought the introduction of a regime of clear cultivation; the ground being kept tilled from mid spring to mid autumn. Excessive working created a cultivation pan on the already hard subsoil, and weakened the poorly structured topsoil. As a result even light rains produced widespread sheet and rill erosion. Heavy rainstorms moved large quantities of soil from upper slopes to lower ground and valley floors. Succeeding cultivations tilled the upper subsoil, which in turn was eroded downhill. It was common for the roots of fruit trees on the spurs and upper slopes top be left standing on pedestals of earth, the soils between these trees having been washed down to build up as much as one metre around the lower trees forming swamp on the flats. Completely buried fences have been found. Only pears which were less profitable, could survive the swampy conditions created on the flats.

Figure 3. Summary of the key features of the Site 1 sediment core.

•	Site 2 - Research Or	chard Road	Isotope	analyses	Field description of core overlying	%Mud	6Sand	6Shell	Extent and	l type of shells present in core
0 =		542757 IN	2-3cm	2-3cm	Very fine soft mud	68.3	24.8	6.9	Common	Austrovenus (12-15mm)
10		1964	5-6cm 9-10cm	++	Very fine soft mud	81.2	17.7	1.1	Common	Austrovenus (1-12mm)
	1.9		14-15cm	+	Very fine soft mud				Common	Amphibola, Mudflat whelk Cominella glandiformis. Live polycheate worms
20		1953	24-25cm	+ 24-25cm	Very fine soft mud	74.1	23.0	2.9	Rare	Amphibola, Austrovenus
30			+	+	Very fine soft mud	77.4	21.8	0.9	Rare	Austrovenus?
40	1-3	14	+	+		77.9	21.4	0.7		
50	at se	-	+	+	Very fine soft mud	73.4	23.9	2.7	Abundant	Amphibola, Austrovenus, Macomona
60	E. S.	E.F.	+	+	Very fine soft mud/some sand	59.3	39.4	1.3	Abundant	Amphibola, Austrovenus (25mm), Macomona, Zeacumantus lutulentus
		- AL			Very fine soft mud/sand				Rare	Crab exoskeletons
/0	the second	A. C.	+	+	Very fine soft mud/sand	65.8	33.3	0.9	Rare	Mactra (37mm)
80	10.17		+	+	Coarse sand/shell	59.5	38.4	2.1	Abundant	Macomona (12mm), Mactra
90	Post glacial de underlying est	posits uary	+	+	Silt/sand	27.3	49.8	22.9	None	No shell below 87.5cm
100	137-	10-4	+	+		83.8	16.1	0.1		
			+ ind	icates sele	cted for analysis, values indicate where ar	nalysis ur	ndertak	en.		
	6 .1									

Figure 4. Summary of the key features of the Site 2 sediment core.

4. SUMMARY AND RECOMMENDATIONS

SUMMARY	The analysis of two historical sediment cores from intertidal settling basins in Waimea Inlet showed recent sedimentation rates in the MODERATE category for NZ estuaries with developed catchments, with VERY HIGH deposition at Site 2 in the 1950's to 60's. Recent deposition rates were significantly higher than the VERY LOW category attributed to estu- aries with undeveloped or very small catchments. In addition, cores showed the histori- cally sandy estuary is now characterised by excessively muddy sediments at the sites sam- pled. These muds were found to contain very fine fractions (i.e. colloids and clays) which are known to have a strong adverse influence on water clarity, sediment oxygenation, and contribute to lowered biodiversity, aesthetic and human use values in the estuary. These findings, combined with previous fine and broad scale estuary monitoring results (summarised in Robertson and Stevens 2009, and Stevens and Robertson 2010) reinforce the need to manage fine sediment inputs to the estuary.
RECOMMENDED MONITORING	It is recommended that monitoring be initiated or continued as outlined below: Establish Additional Sediment Plates. Establish additional sediment plates in representative habitats in the estuary (3-5 extra sites) to provide a more accurate assessment of overall estuary sedimentation and provide a means of checking that management targets are being met. Annual Sediment Monitoring. To address problems associated with increasing muddiness, monitor sedimentation rate annually at the 9 existing buried plate sites established by TDC since 2008/09. Fine Scale Estuary Monitoring. Continue fine scale monitoring (including sedimentation rate, RPD depth and grain size at the 4 established intertidal sites at 5 yearly intervals (scheduled for Jan-Feb 2011 but deferred until 2013). Broad Scale Estuary Habitat Mapping. Continue broad scale habitat mapping at 5 yearly intervals (next scheduled for summer 2015/16). Measure Catchment Sediment Budget. Monitor the major sediment inputs to the estuary for one year, including during high and low flow periods, in sufficient detail to determine the annual sediment budget and provide validation for catchment load model predictions.
RECOMMENDED MANAGEMENT	 predictions once BMPs are in place. The following specific management actions are recommended: Set Catchment Load Guidelines for Suspended Sediment. Limit catchment suspended sediment inputs to levels that will not cause excessive estuary infilling i.e. limit sedimentation rates to an estuary average of 1mm/yr which equates to a SS Input Load of 32kt/yr. It is expected that there will be areas of very high and very low sedimentation throughout the estuary, which together will average 1mm/yr. It is noted that this rate is lower than the 2mm/yr recommended in Stevens and Robertson (2010) following confirmation of a high clay and colloid content in estuary sediments. Identify Hot Spots and Implement BMPs. Identify and implement catchment Best Management Practices (BMPs) to prevent avoidable sediment runoff from catchment "hotspots" or land disturbance activities. This should incorporate the use of existing catchment models such as CLUES to identify current SS loads, highlight "hotspot" areas and assess the potential for load reductions with BMPs in place. In addition, to ensure an adequate policy framework is in place for such BMPs, a review of existing sediment controls and rules for different activities in the catchment is required. Maintain Vegetated Margins. Encourage the retention and restoration of estuarine saltmarsh habitat and vegetated margins around the estuary and catchment waterways. Historical clearance of bush around the terrestrial fringe of the estuary means it is now dominated by grazed pasture, greatly reducing the buffering function provided previously by the bush-covered margin. Additionally, there have been significant areas of saltmarsh and wetland drained for pastoral, agricultural and horticultural use in the past and this has almost certainly contributed to reduced biodiversity and increased sedimentation in the estuary.

5. REFERENCES

	 Appleby, P.G. and Oldfield, F. 1992. Applications of ³¹⁰Pb to sedimentation studies. In Ivanovich, M. and Harmon, R.S., editors, Uranium-series Disequilibrium. Applications to Earth, Marine and Environmental Sciences. Oxford: Oxford University Press, 731-778. Cambray, R.S., Fisher, E.M.R., Playford, K., Eakins, J.D. and Peirson, D.H. 1979. Radioactive fallout in air and rain. Results to the end of 1978. Atomic Energy Research Establishment Report R9441. London: H.M.S.O. Goff, J.R., Whitehead, N.E., and Ditchburn, R.G. 1998. ²¹⁰Pb chronology from Wellington Harbour, New Zealand. New Zealand Journal of Marine and Freshwater Research, 32: 181-186. Leighs, M.J. 1977. A review of soil and water conservation works in Nelson orchards. November, 1977. Nelson Catchment and Regional Water Board. Lundquist, C.J., Vopel, K., Thrush, S.F., Swales, A. 2003. Evidence for the physical effects of catchment sediment runoff preserved in estuarine sediments: Phase III macrofaunal communities. Prepared for Auckland Regional Council. NIWA Client Report: HAM2003-051 June 2003. NIWA Project: ARC03202. Loughran, R.J., Campbell, B.L., and Elliott, G.L. 1988. Determination of Erosion and Accretion Rates using Caesium-137. In, Warner, R.F., Editor, Fluvial Geomorphology of Australia. Sydney: Academic Press. Mead, S. and Moores, A. 2004. Estuary Sedimentation: a Review of Estuarine Sedimentation in the Waikato Region. Prepared by ASR Ltd for Environment Waikato: Environment Woukato: Environment Southland. 34p. Robertson, B.M., and Stevens, L.M. 2007. New River Estuary 2007 Broad Scale Habitat Mapping and Sedimentation Rate. Report prepared by Wriggle Coastal Management for Environment Southland. 34p. Robertson, B.M., and Stevens, L.M. 2007a. Waikawa Estuary 2007 Fine Scale Monitoring and Historical Sediment Coring. Report prepared by Wriggle Coastal Management for Environment Southland. 34p. Robertson, B.M.,
	,
ACKNOWEDGE- MENTS	Many thanks to Trevor James (TDC) for his support and feedback, Bob Ditchburn and Mike Sim (GNS) for facilitating the isotope analyses and their feedback on results, and Chris McKinnon (University of Waikato) for input on the particle grain size analyses. Thanks also to the landowners who granted estuary access through their properties.

APPENDIX 1 - SEDIMENT CONDITION RATING

CONDITION RATINGS		Interim fine scale e ings developed for review of estuary r in combination wit input) when evalua condition ratings i rating has a recom is to further assess Evaluation and Res	stuary "condition ratings" have been pr Southland's estuaries - e.g. Robertson & nonitoring data, guideline criteria, and e ch each other, and with other fine and be ating overall estuary condition and deci- nclude an "early warning trigger" to hig mended monitoring and management an issue and consider what response ac sponse Plan - ERP).	oposed for Waimea Inlet (based on the rat- & Stevens 2006). The ratings are based on a expert opinion. They are designed to be used road scale indicators (usually involving expert ding on appropriate management. The hlight rapid or unexpected change, and each response. In most cases initial management tions may be appropriate (e.g. develop an
Sedimentation Rate	E V	levated sedimentation ery difficult to reverse,	rates are likely to lead to major and detrimenta and indicate where changes in land use manag	l ecological changes within estuary areas that could be ement may be needed.
		RATING		RECOMMENDED RESPONSE
		Vand		
		very Low	0-0.5mm/yr (typical pre-European rate)	Monitor at 5 year intervals after baseline established
		Low	0.5-1mm/yr	Monitor at 1-5 year intervals after baseline established
		Moderate	1-2mm/yr	Monitor yearly. Initiate ERP
	Moderate High		2-5mm/yr	Monitor yearly. Initiate ERP
Very High			>5mm/yr	Monitor yearly. Manage source
		Early Warning Trigger	Rate increasing	Initiate Evaluation and Response Plan

APPENDIX 2. LEAD DATING OF HISTORICAL CORES

Lead Dating (detailed methods in Appleby and Oldfield 1992)

²¹⁰Pb is used to determine sedimentation rates over the last 100-150 years (from present until the start of the Industrial time) as the ²¹⁰Pb radionuclide has a relatively short half life of about 22 years. The "total ²¹⁰Pb" content of estuary sediments is derived from two sources;

- from within the sediments, and
- from the atmosphere.

Both sources begin within the earth's crust where the decay of ²²⁶Ra (half-life 1622 years) occurs. Within the estuary sediments this decays to ²²²Rn (half-life 3.83 days), which then decays to ²¹⁰Pb (called the "supported ²¹⁰Pb" content). Within the atmosphere, the decay products are the same and the resulting ²¹⁰Pb quickly precipitates out of the atmosphere and is deposited at the estuary surface (called the "unsupported ²¹⁰Pb" content). The total ²¹⁰Pb content is the sum of the two and is what is measured when the sediments are analysed. However, to "date" the sediments, the concentration profile of the ²¹⁰Pb from the atmosphere (i.e. the unsupported lead) is used. Assuming a constant supply rate from the atmosphere (and constant initial concentration), and the rate of decay of ²¹⁰Pb, it is relatively straightforward to then date a sediment layer based on the difference in concentration of unsupported ²¹⁰Pb between the surface and the chosen layer.

If a rate of sedimentation is constant, the decay process results in an exponential decrease in ²¹⁰Pb activity with depth that can be used to estimate sedimentation rates and therefore sediment age back about 100–150 years. The activity of ²¹⁰Pb samples where the curve becomes asymptotic with respect to ²¹⁰Pb activity is assumed to be the supported ²¹⁰Pb level; that is, the amount of ²¹⁰Pb produced from the decay of ²²²Rn within the sediment column and not deposited from the atmosphere. Alternatively, one can use the ²²⁶Ra activity to equal the supported ²¹⁰Pb activity as, in the absence of atmospheric ²¹⁰Pb fallout, ²¹⁰Pb will be in radioactive equilibrium with ²²⁶Ra in the sediment. These supported ²¹⁰Pb values are subtracted from the total ²¹⁰Pb values obtained in the analysis, resulting in an unsupported ²¹⁰Pb profile (from atmospheric deposition).

The age in years since the sediment layer at depth x was deposited (t) can then be calculated by using the relationship:

$t = 1/k.logN(C_0/C_x)$

where:

 $C_{o} =$ the unsupported activity of ²¹⁰Pb in the modern surface sediments, $C_{x} =$ the unsupported activity of ²¹⁰Pb at (uncompressed) depth x, and k = the ²¹⁰Pb decay constant (0.03114 yr⁻¹).

APPENDIX 3. PARTICLE GRAIN SIZE RESULTS

Summary of particle grain size results (as a percentage of total core composition) for historic cores collected from 2 sites within Waimea Inlet, January 2011.

CORE +depth cm	MUD- COLLOID	MUD-CLAY	MUD-SILT	VERY FINE Sand	FINE SAND	MEDIUM SAND	COARSE SAND	V. COARSE SAND	GRAVEL
A0	1.3	1.9	41.3	26.8	26.1	2.4	0.0	0.0	0.1
A10	1.3	1.9	40.3	23.0	20.3	2.1	0.0	0.0	11.1
A20	1.0	1.5	31.7	31.6	27.0	3.1	2.7	1.1	0.3
A30	1.2	1.8	34.2	28.4	26.1	3.5	2.8	1.3	0.7
A40	1.2	1.8	31.7	25.2	30.7	5.1	2.1	1.0	1.2
A50	1.3	1.9	34.3	20.2	25.4	9.7	5.2	1.0	1.0
A60	2.2	3.4	55.4	16.4	13.2	4.7	3.5	0.6	0.4
A70	1.6	2.3	46.2	21.7	17.8	6.4	3.3	0.5	0.2
A80	1.6	2.4	42.9	17.5	14.9	10.0	9.0	1.7	0.0
A90	1.4	2.1	42.9	18.7	16.6	7.1	4.9	1.4	4.8
A100	0.9	1.3	26.9	27.0	29.7	6.4	2.7	0.9	4.3
BO	1.8	2.5	64.0	12.2	6.3	5.0	1.3	0.0	6.9
B10	2.5	3.6	75.2	11.8	3.7	1.8	0.5	0.0	1.1
B20	2.1	2.8	69.2	15.6	4.8	2.0	0.6	0.0	2.9
B30	2.1	2.9	72.4	14.7	4.4	1.9	0.7	0.0	0.9
B40	2.2	3.0	72.6	11.8	6.5	2.8	0.3	0.0	0.7
B50	2.1	2.9	68.4	11.9	8.8	3.1	0.1	0.0	2.7
B60	2.1	3.1	54.1	9.8	15.5	8.6	3.8	1.8	1.3
B70	2.2	3.1	60.5	8.2	12.5	9.4	2.8	0.5	0.9
B80	1.9	2.8	54.8	7.8	15.0	12.2	3.1	0.3	2.1
B85	1.0	1.5	24.8	5.4	14.3	19.1	9.8	1.3	22.9
B100	3.5	5.2	75.1	12.2	2.3	0.8	0.8	0.0	0.1

Detailed analytical output provided by the University of Waikato is presented on the following pages.

Result Analysis Report

Sample B100 Sample Factory Sample 201101	e Nam Sour bulk 5/12	ne: rce & typ lot ref:	e:		SOP Nan Marine Se Measuree mckinnon Result Se Measurer	ne: ed Bryna d by: n purce: ment			Measu Friday, Analys Friday,	red: 21 Januar ed: 21 Janua	y 2011 1:5 ry 2011 1:{	7:04 p.m. 57:05 p.n	٦.	
Particle Marine S Particle 1.500 Dispers Water	e Nam Sed B e RI: sant N	le: Bryna Iame:			Accesso Hydro 200 Absorptio 1 Dispersa 1.330	ry Name: DOG (A) on: nt RI:			Analys Genera Size ra 0.020 Weight 0.215	is model: I purpose nge: to 2 red Reside %	000.000 ual:	S E Um 1 R C	ensitivity: nhanced bbscuratio 2.75 % esult Emo	n: ulation:
Concer 0.0092	ntratio	on:		9	Span : 5 042				Unifori	mity:		R	esult unit	s:
Specific 1.11	c Sur ת	face Are	a:		Surface \ 5.395	Weighted um	l Mean D[3	3,2]:	Vol. W 37.392	eighted M um	lean D[4,3	s]:		
d(0.1)	: 2	2.261	um			d(0	.5): 15.9	09 um	ı			d(0.9):	82.471	um
	d(0.1): 2.261 um 4 3.5 3 0 2.5 0 0.01 0.01							Distribution 10	n 	00	1000) 3000		
	P100 Eriday 01 Januar					0.4	Particle S	size (μm)						
	B1	I UO, ⊢rid 2ze (µm) Vol U 0.050 0.060 0.120 0.240 0.490 0.700	ay, 21	January 20 Size (µm) Vol 0.980 2.000 3.900 7.800 15.600 31.000	011 1:57: Under % 3.46 8.68 17.87 32.63 49.53 65.72	04 p.m. Size (μm) 37.000 44.000 53.000 63.000 74.000 88.000	Vol Under % 70.13 74.60 79.49 83.91 87.71 91.25	Size (µm) V 105.000 125.000 149.000 177.000 210.000 250.000	ol Under % 94.09 96.08 97.32 97.97 98.26 98.40	Size (μm) 300.000 350.000 420.000 500.000 590.000 710.000	Vol Under % 98.51 98.66 98.91 99.20 99.48 99.75	Size (μm) 840.000 1000.000 2000.000	Vol Under % 99.93 100.00 100.00]

Result Analysis Report

Sample B85	e Nam	ne:			SOP Nar Marine Se	ne: ed Bryna			Measur Friday, 2	r ed: 21 January	2011 2:0	6:02 p.ı	m.	
Sample Factory	Sou	rce & ty	pe:		Measure mckinnor	d by:			Analyse Friday	ed: 21 January	2011 2.0)6·03 n	m	
Sample	bulk	lot ref:			Result Se	ource:			i nday,	2 r oandary	2011 2.0	, o.oo p		
201101	5/13				Measure	ment								
Particle Marine S	Nam Sed B	i e: Bryna			Accesso Hydro 200	ry Name: 00G (A)			Analysi General	i s model: I purpose			Sensitivity: Enhanced	
Particle	RI:				Absorpti	on:			Size rai	nge:		um	Obscuration	n:
Dispers	sant N	lame:			Dispersa	int RI:			Weight	ed Residua	al:	um	Result Emu	lation:
water					1.330				1.010	%			Off	
Concer 0.0557	ntratio %	on: SVol			Span : 3.266				Uniforn 1.08	nity:			Result units Volume	S:
Specifi 0.45	c Sur m	f ace Ar 1²/g	ea:		Surface 13.338	Weighted Me um	an D[3	,2]:	Vol. We 241.078	eighted Me 3 um	ean D[4,3]:		
d(0.1)): 5	5.769	um			d(0.5):	178.7	787 um				d(0.9):	589.632	um
		. [Particle	Size D	Distribution]
		6								\wedge				
		5												
	(%)	4												
	ame	3												
	Voli	2												
		_							\sim					
		1												
		0 0.0)1	0.1		1		10	10)0	1000) 300	00	
						Parti	cle Siz	ze (µm)						
	—B8	35, Frid	ay, 21 Ja	anuary 20	11 2:06:0)2 p.m.								
	Siz	ze (μm) Vo 0.050	Under % 0.00	Size (μm) V 0.980	ol Under % 1.27	Size (μm) Vol Un 37.000	der % 30.92	Size (µm) Vol 105.000	Under % 39.98	Size (µm) Vo 300.000	67.69	Size (µ 840.0	m) Vol Under % 00 96.48	
		0.060 0.120	0.00	2.000 3.900	3.19 6.69	44.000 53.000	32.44 33.98	125.000 149.000	42.36 45.58	350.000 420.000	73.53 80.07	1000.0 2000.0	00 98.30 00 100.00	
		0.240	0.00	7.800 15.600	13.27 21.89	63.000 74.000	35.37 36.65	177.000	49.73 54.82	500.000 590.000	85.61 90.02			
		0.700	0.74	31.000	29.28	88.000	38.14	250.000	60.86	710.000	93.89			

Result Analysis Report

Sample B80	e Nar	ne:		SOP Nar Marine Se	ne: ed Bryna			Measur Friday, 2	ed: 21 Janua	ry 2011 2:1	4:57 p.r	n.	
Sample Factory	Sou	rce & type	e:	Measure mckinnor	d by:			Analyse Friday, 2	e d: 21 Janua	rv 2011 2:	14:58 p	.m.	
Sample	e bulk	lot ref:		Result S	ource:			·			p		
201101	5/14			Measure	ment								
Particle Marine	e Nan Sed E	ne: Bryna		Accesso Hydro 20	ry Name: 00G (A)			Analysi General	s model: purpose	1		Sensitivity: Enhanced	
Particle	RI:			Absorpti	on:			Size ran	ige:			Obscuratio	n:
1.500 Dispers	sant I	Name:		1 Dispersa	Int RI:			0.020 Weighte	to 2 ed Resid	ual:	um	Result Emu	lation:
Water				1.330				0.405	%			Off	
Concer 0.0314	ntrati %	i on: %Vol		Span : 10.128				Uniform 3.22	nity:			Result unit	s:
Specifi 0.714	c Su r	rface Area n²/g	a:	Surface 8.405	Weighted Mea um	an D[3,2	2]:	Vol. We 112.591	ighted N um	/lean D[4,3	B]:		
d(0.1)):	3.795	um		d(0.5):	31.449) um				d(0.9):	322.301	um
					Particle	Size Dis	stribution]
		4							\wedge				
		3.5					\sim						
	()	3				/							
	e (%	2.5											
	lum	2											
	>	1.5								_			
		1											
		0.5											
		0	01	0.1	1		10	1(10	100	300	0	
		0.	01	0.1	Part	icle Siz	e (um)		50	100	0 000		
	B	80, Frida	y, 21 Ja	anuary 2011 2:14:5	57 p.m.		VE/						1
	S	ize (µm) Vol L	Jnder %	Size (µm) Vol Under %	Size (µm) Vol Uno	der %	Size (µm) Vol	Under %	Size (µm)	Vol Under %	Size (µ	m) Vol Under %	_
		0.060	0.00	2.000 4.83	44.000	55.80	125.000	68.77	350.000	91.62	1000.0	00 99.35 00 99.74	
		0.120 0.240	0.00	3.900 10.31 7.800 21.21	53.000 63.000	60.77	149.000 177.000	71.83 75.53	420.000 500.000	94.55 96.54	2000.0	100.00	
		0.490 0.700	0.58	15.600 35.98 31.000 49.73	74.000 88.000	62.57 64.38	210.000 250.000	79.70 84.12	590.000 710.000	97.84 98.79			

Result Analysis Report

Sample B70 Sample Factory Sample 201101	e Name Sourc bulk l 5/15	e: ce & type ot ref:):		SOP Nan Marine Se Measuree mckinnon Result So Measurer	ne: ed Bryna d by: burce: ment			Measu Friday, Analys Friday,	red: 21 Janua ed: 21 Janua	ry 2011 2:24 ry 2011 2:2	4:31 p.m 24:33 p.r	n.	
Particle Marine S Particle 1.500 Dispers Water	Name Sed Bry RI: sant Na	yna ame:			Accessor Hydro 200 Absorptie 1 Dispersa 1.330	ry Name: DOG (A) on: nt RI:			Analys Genera Size ra 0.020 Weight 0.293	iis model: al purpose inge: to 2 ted Resid %	000.000 ເ u al:	9 E Jum 2 F C	Sensitivity: Enhanced Obscuration 26.46 % Result Emu Off	n: lation:
Concer 0.0298	ntratio %\	n: /ol			Span : 11.498				Unifor 3.56	mity:		F	Result unit /olume	6:
Specifi 0.777	c Surfa m²	a ce Area /g	a:		Surface 7.719	Weightee um	d Mean D[3	3,2]:	Vol. W 98.741	eighted N um	lean D[4,3]]:		
d(0.1)	: 3.	513	um			d(0	.5): 24.9	39 um			C	d(0.9):	290.255	um
	Volume (%)	4 3.5 3 2.5 2 1.5 1 0.5 0.	01	0.				10		100	1000) 300()	
) Fridav	/ 21 Ja	nuary 20)11 2.24.3	1 n m	Particle S	Size (µm)						
Ì	Size	(µm) Vol U 0.050 0.060 0.120 0.240 0.490 0.700	0.00 0.00 0.00 0.00 0.00 0.65 1.32	Size (µm) \ 0.980 2.000 3.900 7.800 15.600 31.000	/ol Under % 2.20 5.37 11.18 22.54 38.99 54.60	Size (μm) 37.000 44.000 53.000 63.000 74.000 88.000	Vol Under % 58.04 61.11 64.03 66.38 68.32 70.27	Size (μm) Vo 105.000 125.000 149.000 177.000 210.000 250.000	72.31 74.61 77.35 80.46 83.82 87.26	Size (μm) 300.000 350.000 420.000 500.000 590.000 710.000	Vol Under % 90.56 92.95 95.17 96.72 97.77 98.60	Size (µm) 840.000 1000.000 2000.000	Vol Under % 99.14 99.55 100.00]

Sample B60 Sample Factory Sample 201101	Name: Source & ty bulk lot ref: 5/16	pe:	SOP Nan Marine Se Measured mckinnon Result So Measurer	ne: ed Bryna d by: n purce: ment		Measured: Friday, 21 Jar Analysed: Friday, 21 Ja	nuary 2011 2:34 nuary 2011 2:3	4:28 p.m. 34:29 p.m.		
Particle Marine S Particle 1.500 Dispers Water	Name: Sed Bryna RI: cant Name:		Accessor Hydro 200 Absorptio 1 Dispersa 1.330	ry Name: DOG (A) on: nt RI:		Analysis mo General purp Size range: 0.020 to Weighted Re 0.418 %	del: ose o 2000.000 ւ e sidual:	Sen Enh Obs um 23.1 Res Off	sitivity: anced curation 2 % sult Emula	: ation:
Concer 0.0263	ntration: %Vol		Span : 10.709			Uniformity: 3.94		Res Volu	ult units ume	:
Specifi 0.752	c Surface Ar m²/g	ea:	Surface V 7.980	Weighted Mean D um	[3,2]:	Vol. Weighte 127.868 un	ed Mean D[4,3] m]:		
d(0.1)	: 3.520	um		d(0.5): 29.	767 um		c	d(0.9): 32	2.306	um
	2 3.5 2.5 2.5 1.5 0.5 0.5		0.1	1 Particle Size	10 Size (um)	100	1000) 3000		
	B60, Frid	ay, 21 Ja	anuary 2011 2:34:2	.8 p.m.	- (-)					
	Size (μm) Vo 0.050 0.060 0.120 0.240 0.490 0.700	0.00 0.00 0.00 0.00 0.00 0.61 1.25	Size (μm) Vol Under % 0.980 2.10 2.000 5.25 3.900 11.19 7.800 22.56 15.600 37.68 31.000 50.66	Size (µm) Vol Under % 37.000 53.37 44.000 55.76 53.000 58.07 63.000 60.06 74.000 61.91 88.000 64.10	Size (μm) Vol 105.000 1 125.000 1 149.000 1 210.000 2 250.000 1	Under % Size (66.76 300. 69.95 350. 73.71 420. 77.75 500. 81.79 590. 85.59 710.	μm) Vol Under % 000 88.91 000 91.10 000 93.01 000 94.35 000 95.36 000 96.39	Size (μm) Vo 840.000 1000.000 2000.000 2000.000	I Under % 97.28 98.16 100.00	

Sample B50	Nam	e:			SOP Nar Marine So	ne: ed Bryna			Measu Friday,	red: 21 Januai	ry 2011 2:43	3:23 p.n	۱.	
Sample Factory	Sour	ce & typ	e:		Measure mckinnor	d by։ Դ			Analys Friday,	ed: 21 Janua	ry 2011 2:4	3:24 p.	m.	
Sample	bulk	lot ref:			Result S	ource:			, ,,		,	- 1-		
201101	5/17				Measure	ment								
Particle Marine S	Name Sed Bi	e: ryna			Accesso Hydro 20	ry Name: 00G (A)			Analys Genera	is model: Il purpose		:	Sensitivity: Enhanced	
Particle	RI:				Absorpti	on:			Size ra	nge:			Obscuratio	า:
Dispers	ant N	ame:			I Dispersa	nt RI:			0.020 Weight	to 2 ted Resid	000.000 ι μ al:	um	Result Emu	lation:
Water					1.330				0.212	%			Off	
Concer 0.0202	ntratic %	on: Vol			Span : 6.047				Unifori 1.81	mity:			Result unit s Volume	6:
Specifi 0.777	c Surl m	f ace Are ²/g	a:		Surface 7.720	Weighted um	l Mean D[3	,2]:	Vol. W 52.467	eighted N um	lean D[4,3]:		
d(0.1)	: 3	.648	um			d(0	.5): 23.54	41 um			C	d(0.9):	145.996	um
		4.5				Par	ticle Size D	Distribution	1]
		4							-					
		т 2 5												
	<u> </u>	0.0												
	%)	25												
	nme	2.5												
	Volt	4 5												
		1.5												
		1												
		0.5												
		0.	.01	0.	1	1		10	1	100	1000	300	0	
							Particle S	ize (µm)						
	—B5	0, Frida	y, 21 Ja	anuary 20	11 2:43:2	23 p.m.								
	Siz	e (µm) Vol I 0.050	Under % 0.00	Size (µm) V 0.980	/ol Under % 2.14	Size (µm) 37.000	Vol Under % 62.30	Size (µm) Vo 105.000	I Under % 84.96	Size (µm) 300.000	Vol Under % 98.19	Size (µm	 Vol Under % 100.00 	
		0.060	0.00	2.000	5.16	44.000	66.88	125.000	87.68	350.000	99.04	1000.00	0 100.00	
		0.120	0.00	7.800	22.07	63.000	71.53	177.000	90.30 92.71	420.000 500.000	99.64 99.91	2000.00	100.00	
		0.490 0.700	0.62	15.600 31.000	38.99 57,50	74.000 88.000	78.79 81.99	210.000 250.000	94.87 96.72	590.000 710.000	100.00			

Sample B40 Sample Factory Sample 2011015	Source bulk lot 5/18	& type t ref:):		SOP Nan Marine Se Measure mckinnor Result Se Measure	ne: ed Bryna d by: า ource: ment			Meası Friday Analy Friday	u red: , 21 Januai sed: , 21 Janua	ry 2011 2:5 ry 2011 2:	52:15 p.r 52:16 p	n. .m.	
Particle Marine S Particle 1.500 Dispers Water	Name: Sed Bryr RI: ant Nan	ne:			Accessor Hydro 200 Absorptio 1 Dispersa 1.330	ry Name 00G (A) on: ont RI:	:		Analys Genera Size ra 0.020 Weigh 0.204	sis model: al purpose ange: to 2 ted Reside %	000.000 ual:	um	Sensitivity: Enhanced Obscuratio 21.09 % Result Emu Off	n: Iation:
Concen 0.0229	Concentration: 0.0229 %Vol Specific Surface Area: 0.781 m²/g								Unifo 1.62	mity:			Result unit Volume	s:
Specific 0.781	c Surfac m²/g	e Area	a:		Surface 7.685	Weighte um	d Mean D	[3,2]:	Vol. W 49.167	/eighted N 7 um	lean D[4,:	3]:		
d(0.1)	: 3.68	30	um			d(().5): 24	.025 u	m			d(0.9):	121.512	um
	d(0.1): 3.680 um						Particle	10 Size (μm)		100	100		0	
	B40, Friday, 21 January				11 2:52:1	5 p.m.		(F- /]
	Size (µm) Vol Under % Size 0.050 0.00 0.00 0.120 0.00 0.00 0.240 0.00 0.00 0.490 0.66 1 0.700 1.35 3			Size (μm) V 0.980 2.000 3.900 7.800 15.600 31.000	0l Under % 2.23 5.26 10.61 21.23 37.79 57.73	Size (μm) 37.000 44.000 53.000 63.000 74.000 88.000	Vol Under % 63.21 68.51 73.90 78.42 82.07 85.36	Size (μm) 105.000 125.000 149.000 177.000 210.000 250.000	Vol Under % 88.10 90.34 92.29 94.00 95.55 96.93	Size (μm) 300.000 420.000 500.000 590.000 710.000	Vol Under % 98.09 98.82 99.41 99.74 99.91 100.00	Size (µr 840.00 1000.00 2000.00	n) Vol Under % 100 100.00 100.00 100.00 100.00	

Result Analysis Report

Sample B30 Sample Factory Sample 201101	Name: Source & bulk lot re 5/19	type: ef:		SOP Nan Marine Se Measuree mckinnon Result Se Measurer	ne: ed Bryna d by: burce: nent			Me Fri Ar Fri	easured: day, 21 Januar nalysed: iday, 21 Janua	y 2011 3:0 ry 2011 3:0	1:27 p.r 01:28 p	n. .m.	
Particle Marine S Particle 1.500 Dispers Water	Name: Sed Bryna RI: sant Name	:		Accessor Hydro 200 Absorptio 1 Dispersa 1.330	ry Name: DOG (A) on: nt RI:			Ar Ge Siz 0.0 We 0.1	aalysis model: eneral purpose ze range: 020 to 20 eighted Residu 178 %	000.000 ial:	um	Sensitivity: Enhanced Obscuration 15.35 % Result Emu Off	n: lation:
Concer 0.0168	ntration: %Vol			Span : 3.809				Ur 1.4	n iformity: 17			Result unit Volume	s:
Specifi 0.751	c Surface m²/g	Area:		Surface 7.991	Weighted um	Mean D	[3,2]:	Vc 49	ol. Weighted N .098 um	lean D[4,3	s]:		
d(0.1)	: 3.836	um			d(0.	5): 25.	999	um			d(0.9):	102.868	um
	Volume (%)	5.5 5 4 3.5 2.5 2 1.5 1 0.55 0.01							100	1000) 300	00	
		riday, 21	January 20)11 3:01:2	7 p.m.	article	Size (µn	1)					-
	B30, Friday, 21 January Size (µm) Vol Under % 0.050 0.00 0.060 0.00 0.120 0.00 0.240 0.00 0.240 0.00 0.490 0.62 15.60 0.700 1.28 31.00				Size (μm) V 37.000 44.000 53.000 63.000 74.000 88.000	ol Under % 60.74 66.42 72.57 78.05 82.68 86.93	Size (µm 105.000 125.000 149.000 177.000 210.000 250.000	Vol Unde 0 90 0 92 0 92 0 92 0 92 0 92 0 92 0 92 0 92 0 94 0 95 0 96 0 97	Size (μm) N 300.000 300.000 2.84 350.000 1.59 420.000 5.77 500.000 5.61 590.000 2.9 710.000	/ol Under % 97.89 98.35 98.84 99.25 99.56 99.82	Size (μr 840.00 1000.00 2000.00	n) Vol Under % 0 99.95 10 100.00 10 100.00	

Result Analysis Report

Sample Name: B20SOP Name: Marine Sed BrynaMeasured: Friday, 21 January 2011 3:10:29 p.rSample Source & type:Measured by:Analysed:	n.
FactorymckinnonFriday, 21 January 2011 3:10:30 p	.m.
Sample bulk lot ref:Result Source:2011015/20Measurement	
Particle Name:Accessory Name:Analysis model:Marine Sed BrynaHydro 2000G (A)General purpose	Sensitivity: Enhanced
Particle RI: Absorption: Size range:	Obscuration:
Dispersant Name:Dispersant RI:Weighted Residual:Water1.3300.197	Result Emulation:
Concentration: Span : Uniformity: 0.0259 %Vol 3.588 1.36	Result units: Volume
Specific Surface Area:Surface Weighted Mean D[3,2]:Vol. Weighted Mean D[4,3]:0.743m²/g8.076um50.730um	
d(0.1): 3.859 um d(0.5): 28.687 um d(0.9):	106.779 um
Particle Size Distribution	
5.5	
8 3.5 · · · · · · · · · · · · · · · · · · ·	
킁 2.5	
	00
Particle Size (μm)	
Size (µm) Vol Under % Size (µ	n) Vol Under %
0.060 0.00 2.000 5.08 44.000 63.91 125.000 92.38 350.000 98.50 1000.00	55.55
0.120 0.00 3.900 10.10 53.000 70.45 149.000 94.27 420.000 99.00 2000.00	0 100.00

0.700

1.33

31.000

52.34

88.000

85.99

250.000

97.29

710.000

99.84

Sample B10	e Na	me:			SOP Nan Marine Se	ne: ed Bryna			Measu Friday,	red: 21 Janua	ry 2011 3:4	0:45 p.m	I.	
Sample Factory	So	urce & typ	e:		Measure mckinnor	d by։ ۱			Analys Friday,	ed: 21 Janua	ry 2011 3:4	40:46 p.r	n.	
Sample 201101	bul 5/21	k lot ref:			Result So Measurer	ource: ment								
Particle Marine S	e Na i Sed	me: Bryna			Accesso Hydro 200	ry Name: 00G (A)			Analys Genera	is model: I purpose		S	Sensitivity: Enhanced	
Particle 1.500 Dispers Water	Particle RI: 1.500 Dispersant Name: Water Concentration: 0.0174 %Vol Specific Surface Area: 0.868 m²/g				Absorption 1 Dispersa 1.330	on: int RI:			Size ra 0.020 Weight 0.190	nge: to 2 red Resid %	000.000 ual:	um 1 F	Dbscuratio 18.17 % Result Emu Off	n: Ilation:
Concer 0.0174	ntrat	i on: %Vol			Span : 4.058				Unifori 1.54	mity:		F	Result unit /olume	s:
Specifi 0.868	c Sı	Irface Are m²/g	a:		Surface \ 6.915	Weighted um	Mean D[3	3,2]:	Vol. W 42.516	eighted N um	lean D[4,3	i]:		
d(0.1)	:	3.150	um			d(0.	5): 21.6	88 ur	n			d(0.9):	91.162	um
		_				Part	icle Size	Distributio	<u>n</u>					
		5												
		4.5												
		4												
	(%	3.5												
	e e	3												
	m	2.5					/							
	Vol	2												
		1.5												
		1												
		0.5												
		8	01	0 1		1		10	1	00	100	3000	า	
		0.		0.1	1		Particlo S	ize (um)		00	1000	0000	5	
	_P	10. Frida	v. 21 Ja	nuarv 20 ⁻	11 3:40.4	י ا 5 p.m.								4
l		Size (um) I Vol I	Inder %	Size (um)		Size (um) LV	ol Under %	Size (um)	/ol Linder %	Size (um)	Vol Under %	Size (um	Vol Under %	1
	Size (μm) Vol Under % Size (0.050 0.00 0.00				2.53	37.000	<u>66.13</u>	105.000	92.07	300.000	98.35	840.000	100.00	
		0.060	0.00	2.000	6.11 12.45	44.000 53.000	71.59	125.000 149.000	93.97 95.34	350.000	98.78 99.21	1000.000	100.00	
	0.120 0.00 0.240 0.00				24.15	63.000	82.08	177.000	96.32	500.000	99.53	2000.000	100.00	
	0.120 0.00 0.240 0.00 0.490 0.73 0.700 1.51				40.97	74.000 88.000	85.97 89.40	210.000 250.000	97.09 97.75	590.000 710.000	99.76 99.93			

Sample B0	e Name:		SOP Nan Marine Se	ne: ed Bryna		Measured: Friday, 21 January 20)11 4:03:12 p	.m.	
Sample Factory	Source & typ	be:	Measured	d by:		Analysed: Friday 21 January 2	011 4.03.13	o m	
Sample	bulk lot ref		Besult Sc	' Jurce:		Thoay, 21 bandary 2	011 4.00.10	0.111.	
201101	5/22		Measurer	nent					
Particle Marine S	Name: Sed Bryna		Accessor Hydro 200	r y Name: D0G (A)		Analysis model: General purpose		Sensitivity: Enhanced	
Particle	e RI:		Absorptio	on:		Size range:		Obscuration	ı:
1.500	ant Nama.		1 Diamaraa			0.020 to 2000	.000 um	14.67 %	ation.
Water	sant Name:		1.330	nt KI:		0.223 %		Off	ation:
Concer 0.0173	ntration: %Vol		Span : 5.793			Uniformity: 1.83		Result units Volume	: :
Specifi 0.693	c Surface Are m²/g	ea:	Surface \ 8.664	Weighted Mean um	D[3,2]:	Vol. Weighted Mea 67.012 um	n D[4,3]:		
d(0.1)	: 4.123	um		d(0.5):	30.039 um		d(0.9)	178.138	um
	5.5			Particle Si	ze Distribution			1	
	5.0								
	4.5								
	4								
	😞 3.5								
	<u>ຍ</u> 3								
	<u>5</u> 2.5								
	[°] > 2								
	1.5								
	1								
	0.5								
).01	0.1	1	10	100	1000 30	00	
				Particl	e Size (um)				
	B0, Friday	/, 21 Ja	nuary 2011 4:03:12	2 p.m.	(p)				
l	Size (µm) Vol	Under %	Size (µm) Vol Under %	Size (µm) Vol Under	% Size (µm) Vol	Under % Size (µm) Vol U	nder % Size (um) Vol Under %	I
	0.050	0.00	0.980 1.90	37.000 56.4 44.000 62.0	105.000 125.000	84.26 300.000 86.47 350.000	95.03 840. 96.37 1000	000 99.92 000 100.00	
	0.120	0.00	3.900 9.43	53.000 68.1	149.000	88.30 420.000	97.70 2000.	000 100.00	
	0.240	0.00	7.800 19.14 15.600 33.41	63.000 73.3 74.000 77.5	34 177.000 58 210.000	89.94 500.000 91.58 590.000	98.66 99.28		
	0.700	1.15	31.000 50.93	88.000 81.3	250.000	93.29 710.000	99.72		

Sample A100 Sample Factory Sample 201101	Sou = Sou = P = bul 5/1	me: urce & aris k lot re	type: ef:		SOP Na Marine Measur mckinn Result Measur	ame: Sed Bryna red by: on Source: ement			Measu Friday, Analys Friday,	red: 21 Januar ed: 21 Janua	y 2011 11: ry 2011 1	48:30 a 1:48:32	.m. a.m.	
Particle Marine S Particle 1.500 Dispers Water	e Nai Sed e RI: sant	me: Bryna Name:			Access Hydro 2 Absorp 1 Dispers 1.330	ory Name: 000G (A) tion: sant RI:			Analys Genera Size ra 0.020 Weight 0.589	is model: al purpose nge: to 20 ted Reside %)00.000 ເ u al:	S E um 1 F C	Gensitivity Enhanced Obscuratic 7.17 % Result Emp Off	n: ulation:
Concer 0.0409	ntrat	i on: %Vol			Span : 2.306				Unifor 0.875	mity:		F V	Result uni Volume	ts:
Specifi 0.35	c Sເ ເ	urface m²/g	Area:		Surfac 17.153	e Weighted um	d Mean D	[3,2]:	Vol. W 140.35	eighted N 0 um	lean D[4,:	3]:		
d(0.1)	:	8.678	um			d(0.	5): 106.	807 un	n		C	d(0.9):	254.951	um
[Part	ticle Size I	Distributio	<u>n</u>	, <u>, , , , , , , , , , , , , , , , , , </u>				7
	9 8 7 6 9 8 7 6 9 8 7 6 9 8 7 6 9 8 7 6 9 8 7 6 9 9 8 7 9 9 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9							10	1		1000	3000)	
		100 -				P	article Siz	ze (µm)						4
ł	<u> </u>	100, F	riday, 21	January	2011 11:	48:30 a.m.								
	Size (µm) Vol Under % Size (µm) 0.050 0.00 0.980 0.060 0.00 2.000 0.120 0.00 3.900 0.240 0.00 7.800 0.490 0.26 15.600 0.700 0.55 31.000				Vol Under % 0 0.92 2.31 0 4.90 0 9.19 0 15.24 0 22.07	Size (μm) V 37.000 44.000 53.000 63.000 74.000 88.000	Vol Under % 23.60 25.17 27.35 30.39 34.57 40.86	Size (µm) V 105.000 125.000 149.000 177.000 210.000 250.000	fol Under % 49.12 58.56 68.37 77.20 84.33 89.54	Size (µm) 1 300.000 350.000 420.000 500.000 590.000 710.000	fol Under % 92.91 94.52 95.57 96.24 96.87 97.66	Size (μm) 840.000 1000.000 2000.000	Vol Under % 98.38 99.04 100.00	

Result Analysis Report

Sample A90 Sample Factory Sample 201101	e Nam Sour bulk 5/2	e: ce & typ lot ref:	e:		SOP Nar Marine S Measure mckinnor Result S Edited	ne: ed Bryna d by: า ource:			Measu Friday, Analys Friday,	red: 21 January ed: 21 Januar	y 2011 12:(y 2011 12:	06:32 p.r :06:33 p.	n. .m.	
Particle Marine S Particle 1.500 Dispers Water	e Name Sed Bi e RI: sant N	e: ryna ame:			Accesso Hydro 20 Absorpti 1 Dispersa 1.330	ry Name: 00G (A) on: unt RI:			Analys Genera Size ra 0.020 Weight 0.433	is model: Il purpose nge: to 20 ted Residu %)00.000 ເ i al:	S E Jum 1 F C	Gensitivity: Enhanced Obscuration 9.98 % Result Emu Off	n: lation:
Concer 0.0310	ntratio %	on: Vol			Span : 5.140				Unifor 1.77	mity:		F V	lesult unit olume	S:
Specifi 0.542	c Suri m	f ace Are ²/g	a:		Surface 11.061	Weighted um	Mean D[3,2]:	Vol. W 139.26	eighted M 7 um	ean D[4,3]]:		
d(0.1)	: 5	.091	um			d(0.5	5): 66.4	32 ur	n		c	d(0.9):	346.534	um
						Part	icle Size	Distributio	n]
	Volume (%)	5 4.5 3.5 2.5 2 1.5 1 0.5 0	.01	0.			Particle S	10 Size (um)			1000	3000)	
	_A9	0, Frida	y, 21 J	anuarv 20	11 12:06	:32 p.m.		μπ)						1
I	Siz	te (μm) Vol I 0.050 0.060 0.120 0.240 0.490 0.700	Under % 0.00 0.00 0.00 0.00 0.00 0.46 0.92	Size (µm) V 0.980 2.000 3.900 7.800 15.600 31.000	/ol Under % 1.51 3.72 7.71 14.71 24.95 36.24	Size (µm) V 37.000 44.000 53.000 63.000 74.000 88.000	0 Under % 39.07 41.92 45.25 48.80 52.64 57.40	Size (µm) V 105.000 125.000 149.000 177.000 210.000 250.000	/ol Under % 62.81 68.41 73.89 78.71 82.70 85.88	Size (µm) V 300.000 420.000 500.000 590.000 710.000	fol Under % 88.41 90.10 91.83 93.38 94.80 96.30	Size (μm) 840.000 1000.000 2000.000	Vol Under % 97.50 98.51 100.00	J

Sample A80	Name:				S M	OP Na larine S	me: Sed Bry	na				Meası Friday,		nuary 2	2011 12	2:20:22	p.m.		
Sample Factory	Source	& type):		M m	leasure Ickinno	ed by: n					Analys Friday	sed: , 21 Ja	inuary	2011 1	2:20:23	8 p.m.		
Sample 201101	bulk lot 5/3	ref:			R M	esult S leasure	ource: ment												
Particle Marine	• Name: Sed Bryna	a			А Н	ccesso ydro 20	ory Nar 000G (<i>A</i>	ne:				Analys Genera	sis mo al purp	del: ose			Sens Enha	itivity: inced	
Particle 1.500	RI:				A 1	bsorpt	ion:					Size ra 0.020	ange: to	o 200	0.000	um	Obso 19.70	curation	ו:
Dispers Water	ant Nam	e:			D 1	ispers a .330	ant RI:					Weigh 0.545	ted Re	esidual %	l:		Resu Off	ılt Emu	lation:
Concer 0.0292	ncentration: 292 %Vol ecific Surface Area: 36 m²/g					pan : .116						Unifor 2.04	mity:				Resu Volur	ult unit s me	s:
Specifi 0.566	c Surface m²/g	1:		S 10	urface 0.609	Weigh um	ited Me	an D[3	8,2]:		Vol. W 170.33	/eight e 88 u	e d Mea m	an D[4,	3]:				
d(0.1)	: 4.69	4	um					d(0.5):	72.7	60	um					d(0.9)	: 522	2.462	um
		4 5						Particle	Size I	Distribu	ition						1]
		4.5																	
		4											/						
		3.5										/							
	(%)	3																	
	ue U	2.5									_			\mathbb{N}	~				
	olun	2								/									
	Š	1.5																	
		1													\				
		0.5																	
		0.0																	
		Ŏ.(01		0.1			1		10			100		100	00 30	00		
								Part	icle S	ize (μr	n)								-
	—A80, I	Friday	/, 21 Ja	inuary	2011	12:20):22 p.	m.											
	Size (µn	n) VolU	nder %	Size (µr	n) Voll 30	Inder %	Size (µ 37.0	וm) Vol Un 000	der % 38.37	Size (µn 105.00	n) Vol	Under % 59.51	Size (μm) Vol	Under % 81.93	Size (µm) Vol I 000	Under % 96.65	
	0.06	60	0.00	2.00	00	4.03	44.0	000	40.77	125.00	00	64.35	350	.000	84.08	1000.	000	98.28	
	0.12	20 10	0.00	3.90	00	8.34 15.78	53.0 63.0	000	43.69 46.89	149.00	0	68.97 72.99	420 500	.000	89.32	2000.	000	100.00	
	0.49	90 00	0.48 0.97	15.60 31.00	00	26.07 36.02	74.0 88.0	000	50.39 54.71	210.00 250.00	00 00	76.38 79.28	590 710	.000	91.87 94.56				

Sample Name: A70	SOP Name: Marine Sed Bryna	Measured: Friday, 21 January 2011 12:31:10	p.m.
Sample Source & type:	Measured by:	Analysed: Friday, 21 January 2011 12:31:12	2 n m
Sample bulk lot ref:	Result Source:	110ay, 21 January 2011 12.01.12	. p.m.
2011015/4	Measurement		
Particle Name:	Accessory Name:	Analysis model:	Sensitivity:
Particle RI:	Absorption:	Size range:	Obscuration:
1.500	1	0.020 to 2000.000 um	14.92 %
Dispersant Name:	Dispersant RI:	Weighted Residual:	Result Emulation:
Water	1.330	0.404 %	Off
Concentration:	Span :	Uniformity:	Result units:
0.0217 %00	3.984	1.46	volume
Specific Surface Area: 0.562 m²/g	Surface Weighted Mean D[3,2]: 10.673 um	Vol. Weighted Mean D[4,3]: 111.617 um	
d(0.1): 4.900 um	d(0.5): 62.442 um	d(0.9):	253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um Particle Size Distributior	d(0.9):	253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um Particle Size Distribution	n d(0.9):	253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um Particle Size Distribution	n d(0.9):	253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um Particle Size Distribution	n d(0.9):	253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um Particle Size Distribution	n d(0.9):	: 253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um Particle Size Distribution	n d(0.9):	253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um Particle Size Distribution	n d(0.9):	253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um Particle Size Distribution	n d(0.9):	253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um	d(0.9):	253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um	d(0.9):	253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um	n d(0.9):	253.690 um
d(0.1): 4.900 um	d(0.5): 62.442 um	d(0.9):	253.690 um
d(0.1): 4.900 um 5.5 4.5 4.5 4.5 4.5 3.5 3.5 2 1.5 1 0.5 0.01 0	d(0.5): 62.442 um Particle Size Distribution	d(0.9):	253.690 um

Size (µm)	Vol Under %	Size (µm)	Vol Under %	1	Size (µm)	Vol Under %						
0.050	0.00	0.980	1.57		37.000	40.01	105.000	65.84	300.000	92.11	840.000	98.95
0.060	0.00	2.000	3.88		44.000	42.86	125.000	71.93	350.000	93.58	1000.000	99.50
0.120	0.00	3.900	8.00		53.000	46.35	149.000	77.74	420.000	95.00	2000.000	100.00
0.240	0.00	7.800	15.30		63.000	50.22	177.000	82.72	500.000	96.18		
0.490	0.47	15.600	26.07		74.000	54.50	210.000	86.71	590.000	97.20		
0.700	0.95	31.000	37.26		88.000	59.83	250.000	89.78	710.000	98.21		

Result Analysis Report

Sample A60 Sample Factory Sample 201101	e Nar e Sou e bull 5/5	ne: Irce & type k lot ref:) :		SOP Nar Marine So Measure mckinnor Result So Measure	ne: ed Bry d by: n ource ment	ma :				Measur Friday, 2 Analyse Friday, 2	ed: 21 Janua ed: 21 Janua	ry 2011 1: ary 2011 1	2:40: 2:40	:33 p.r):34 p	n. .m.	
Particle Marine S Particle 1.500 Dispers Water	Particle Name: Marine Sed Bryna Particle RI: 1.500 Dispersant Name: Water Concentration: 0.0148 %Vol Specific Surface Area: 0.776 m²/g					ry Na 00G (/ on: unt RI:	me: A)				Analysi General Size rar 0.020 Weighte 0.344	s model: purpose nge: to 2 ed Resid %	: 2000.000 ual:	um	9 1 1 1 1 0	Sensitivity: Enhanced Obscuration 4.13 % Result Emu Off	n: lation:
Concer 0.0148	ntrati	ion: %Vol		Span : 6.941						Uniforn 2.67	nity:			F \	Result unit /olume	s:	
Specifi 0.776	c Su	rface Area m²/g		Surface 7.733	Weig l um	hted Me	an D[3	,2] :		Vol. We 97.076	eighted N um	lean D[4	,3]:				
d(0.1)	:	3.288	um				d(0.5):	32.2	81 u	m				d(0).9):	227.360	um
							Particle	e Size I	<u>Distributi</u>	on]
	Volume (%)	4 3.5 3 2.5 2 1.5 1 0.5 0	01	0.	1		1		10		1	00	10	00	3000)	
		00 F.d.		11 10:40	.00	Par	ticle S	ize (µm)								-	
		60, Friday	/, 21 Ja	anuary 20	11 12:40	:33 p.	m.]
	S	Size (µm) Vol U 0.050 0.060 0.120 0.240	nder % 0.00 0.00 0.00 0.00	Size (μm) V 0.980 2.000 3.900 7.800	ol Under % 2.22 5.68 11.95 22.70	Size (37. 44. 53. 63.	μm) Vol Ui .000 .000 .000 .000	1der % 52.21 55.00 58.13 61.34	Size (µm) 105.000 125.000 149.000 177.000	Vol L	Jnder % 73.28 77.84 82.19 85.92	Size (µm) 300.000 350.000 420.000 500.000	Vol Under % 92.80 93.85 94.90 95.87		Size (μm) 840.000 1000.000 2000.000	Vol Under % 98.69 99.35 100.00	

0.490

0.700

0.63

1.31

15.600

31.000

36.57

49.33

74.000

88.000

64.71

68.77

210.000

250.000

88.88

91.13

590.000

710.000

96.82

97.86

Result Analysis Report

Sample A50	e Nan	ne:			SOP Nar Marine S	me: ed Bryna			Measur Friday, 2	ed: 1 Januar	y 2011 1:02	2:02 p.r	n.	
Sample Factory	e Sou	rce & ty	ype:		Measure mckinnor	d by: n			Analyse Friday, 2	e d: 21 Januai	ry 2011 1:0)2:03 p	.m.	
Sample 201101	bulk 5/6	lot ref	:		Result S Measure	ource: ment								
Particle Marine	Nan Sed E	ne: Bryna			Accesso Hydro 20	ory Name: 00G (A)			Analysi General	s model: purpose			Sensitivity: Enhanced	
Particle 1.500	e RI:	Namo.			Absorpti 1 Disperse	on:			Size ran 0.020 Weighte	to 20	ນ 000.000 ເ	um	Obscuratio	n: lation:
Water	Santi	vanie.			1.330	int ni.			0.577	%	<i>ia</i> i.		Off	lation.
Concer 0.0379	ntrati %	on: %Vol			Span : 3.409				Uniform	nity:			Result unit Volume	s:
Specifi 0.467	c Su i n	r face A n²/g	rea:		Surface 12.842	Weighted Me um	an D[3	,2]:	Vol. We 152.719	ighted M um	lean D[4,3]:		
d(0.1)): :	5.749	um			d(0.5):	101.	578 um			(d(0.9):	352.071	um
		7				Particle	<u>Size</u> E	Distribution						
		1								\wedge				
		6												
	(%)	5							/					
) e (4							/					
	olun	3							/					
	>	2												
		1												
		0												
		б.	01	0.1		1		10	10	0	1000	300	00	
						Parti	cle Siz	ze (µm)						-
		o∪, ⊢ric	uay, 21 J	anuary 20	11 1:02:0	J≥ p.m.	1 01		11 1					
	Si	0.050	0.00	Size (μm) \ 0.980	1.29	Size (μm) Vol Ur 37.000	32.60	Size (µm) Vol 105.000	51.23	Size (μm) 300.000	87.66	Size (µr 840.00	m) Vol Under % 00 98.06	
		0.060 0.120	0.00	2.000 3.900	3.26 6.82	44.000 53.000	34.09 35.80	125.000 149.000	58.31 65.92	350.000 420.000	89.92 92.02	1000.00 2000.00	00 99.00 00 100.00	
		0.240 0.490	0.00 0.34	7.800	13.14 22.05	63.000 74.000	37.93 40.82	177.000 210.000	73.04 79.12	500.000 590.000	93.75 95.28			
		0.700	0.75	31.000	30.89	88.000	45.24	250.000	83.98	710.000	96.86			

Sample A40	e Name):)			SOP Nar Marine S	ne: ed Bryna			Measu Friday, 1	red: 21 January	2011 1:1	1:08 p.n	n.	
Sample Factory	Sourc	e & t	уре:		Measure mckinnor	d by:			Analys Friday,	ed: 21 Januarv	2011 1:1	11:09 p.	m.	
Sample	bulk l	ot ref			Result S	ource:								
201101	5/7				Measure	ment								
Particle Marine S	Name Sed Br	: yna			Accesso Hydro 20	ry Name: 00G (A)			Analys i Genera	is model: I purpose			Sensitivity: Enhanced	
Particle	RI:				Absorpti	on:			Size ra	nge:			Obscuratio	n:
1.500 Dispers	ant Na	me:			1 Dispersa	ant RI:			0.020 Weiaht	to 200 ed Residua	00.000 i al:	um	15.18 % Result Emu	lation:
Water					1.330				0.626	%			Off	
Concer 0.0275	ntratio %\	n: /ol			Span : 2.232				Uniforr 0.901	nity:			Result unit Volume	S:
Specifi 0.453	c Surf a m²	a ce A /g	rea:		Surface 13.234	Weighted N um	/lean D[3	9 ,2] :	Vol. We 128.304	eighted Me 1 um	an D[4,3]:		
d(0.1)	: 5.	835	um			d(0.5)): 101.	903 um			(d(0.9):	233.321	um
		0				Parti	cle Size I	Distribution						
		9								\wedge				
		0												
	()	, 6												
	%) e	5												
	nm	4												
	Vol	т 2												
		2												
		1												
		0												
		ď	.01	0.1		1		10	1(00	1000) 300	0	
	ΔΛ) Fri	dav 01	lanuary 0	011 1.11.0	Pa	rticle Siz	ze (µm)						
	-A4	, i II	lunder %	Size (um)	Vol Under %	Size (um) I Vol	Under %	Size (um) Vo	Under %	Size (um) Vo	Under %	Size (un	n) Vol Under %	J
	0120	0.050	0.00	0.980	1.20	37.000	31.12	105.000	51.44	300.000 350.000	94.81	840.00	0 98.35	
		0.120	0.00	3.900	6.60	53.000	33.20	149.000	70.49	420.000	96.62	2000.00	0 100.00	
		0.240 0.490	0.00 0.31	7.800 15.600	13.09 22.05	63.000 74.000	35.17 38.37	177.000 210.000	79.44 86.64	500.000 590.000	96.88 97.20			
		0.700	0.70	31.000	29.95	88.000	43.77	250.000	91.75	710.000	97.75			

Sample A30	e Na	me:			SOP Nar Marine S	me: ed Bryna			Measur Friday, 2	r ed: 21 Januar	y 2011 1:20):25 p.m	1.	
Sample Factory	Sou	urce & t	ype:		Measure mckinnor	ed by: n			Analys Friday,	e d: 21 Januai	ry 2011 1:2	20:26 p.ı	n.	
Sample 201101	bul 5/8	k lot re	f:		Result S Measure	ource: ment								
Particle Marine	Na ı Sed	me: Bryna			Accesso Hydro 20	ory Name: 00G (A)			Analysi General	s model: I purpose		s I	Sensitivity: Enhanced	
Particle 1.500 Dispers Water	e RI: sant	Name:			Absorpti 1 Dispersa 1.330	ion: ant RI:			Size ran 0.020 Weight 0.555	nge: to 20 ed Residu %	000.000 u Jal:	um 1 I (Dbscuratio 15.18 % Result Emu Off	n: Ilation:
Concer 0.0286	ntrat	i on: %Vol			Span : 2.377				Uniform 1.02	nity:		ľ	Result unit /olume	s:
Specifi 0.437	c Su	ırface ∦ m²/g	Area:		Surface 13.745	Weighted um	Mean D[3	3,2]:	Vol. We 127.046	eighted M 6 um	lean D[4,3]:		
d(0.1)):	6.316	um			d(0.5	i): 90.8	40 um				d(0.9):	222.275	um
		8								\wedge				
		7 6												
	ne (%	5												
	Volun	4 3												
		2							J					
		1												
		Č	.01	0.1		1 Pa	article Si	10 ze (μm)	1(00	1000	3000	0	
	—A	30, Fr	day, 21 .	lanuary 20)11 1:20:2	25 p.m.								1
	ŝ	Size (µm)	Vol Under %	Size (µm)	/ol Under %	Size (µm) Vo	ol Under %	Size (µm) Vo	Under %	Size (µm)	/ol Under %	Size (µm) Vol Under %	
		0.050	0.00	2.000	2.94	44.000	29.88 31.58	125.000	66.04	350.000	94.52 95.30	1000.000	97.95	
		0.120 0.240	0.00	3.900 7.800	6.24 12.05	53.000 63.000	34.02 37.42	149.000 177.000	75.04 82.71	420.000 500.000	95.67 95.95	2000.000	0 100.00	
		0.490 0.700	0.31 0.69	15.600 31.000	20.32 28.27	74.000 88.000	41.99 48.60	210.000 250.000	88.52 92.38	590.000 710.000	96.40 97.16			

Result Analysis Report

Sample A20	e Nan	ne:			SOP N a Marine	ame: Sed Bryna				Measu Friday,	ired: 21 Januar	y 2011 1:2	29:44 p.r	n.	
Sample Factorv	Sou	rce & i	type:		Measu mckinn	r ed by: on				Analys Friday.	ed: 21 Janua	rv 2011 1:	29:45 p	.m.	
Sample 201101	bulk 5/9	lot re	f:		Result Measur	Source: rement						,	·		
Particle Marine :	Nam Sed E	ie: Bryna			Access Hydro 2	ory Name 2000G (A)	:			Analys Genera	sis model: al purpose			Sensitivity: Enhanced	
Particle 1.500 Dispers Water	e RI: sant N	lame:			Absorp 1 Dispers 1.330	otion: sant RI:				Size ra 0.020 Weigh 0.517	to 20 to 20 ted Residu %	000.000 J al:	um	Obscuratio 18.07 % Result Emo Off	n: ılation:
Concer 0.0399	ntratio %	on: 6Vol			Span : 2.219					Unifor 0.93	mity:			Result uni t Volume	s:
Specifi 0.38	c Sur n	f ace / n²/g	Area:		Surfac 15.805	e Weighte um	ed Mean	D[3	,2]:	Vol. W 126.87	eighted N 5 um	lean D[4,	3]:		
d(0.1)): 7	7.797	um			d(0.5):	93.57	77 um				d(0.9):	215.398	um
		0				<u> </u>	article S	<u>ize D</u>	istribution						
		9 8									\wedge				
		7													
	()	, 6													
	e (%	5													
	l m	4													
	>	3													
		2													
		1													
		Q													
		C	0.01	0.1		1	Deutielu	- C:-	10	1	00	100	0 300	00	
		20 Fr	idav 21.I	anuary 20)11 1.29	·44 n m	Particle	9 SIZ	e (µm)						-
	Si	ze (µm)	Vol Under %	Size (µm)	Vol Under %	Size (µm)	Vol Under	%	Size (µm) Vol	Under %	Size (µm)	Vol Under %	Size (µ	m) Vol Under %	4
		0.050	0.00	0.980	0.99 2.47	37.000	25.	98 74	105.000	56.15 66.00	300.000	95.02	840.0	0 98.12 0 98.86	
		0.120	0.00	3.900	5.22	53.000	30.4	44	149.000	75.54	420.000	95.91	2000.0	100.00	
		0.240 0.490	0.00 0.28	7.800 15.600	10.00 17.18	63.000 74.000	34. 39.	31 51	177.000 210.000	83.48 89.32	500.000 590.000	96.15 96.59			
		0.700	0.60	31.000	24.43	88.000	46.	95	250.000	93.07	710.000	97.34			

Sample A10 Sample	e Na e So	me: urce &	type:		SOP Nan Marine Se Measure	ne: ed Bryna d by:			Measur Friday, 2 Analyse	r ed: 21 January ed:	2011 1:38	3:55 p.m		
Factory	bu	lk lot re	f.		mckinnor) Durce:			Friday,	21 January	/ 2011 1:3	8:56 p.n	n.	
201101	5/10)			Measurer	ment								
Particle Marine	e Na Sed	me: Bryna			Accesso Hydro 200	ry Name: 00G (A)			Analysi General	s model: purpose		S	Sensitivity: Inhanced	
Particle	RI:				Absorptie	on:			Size rai	nge: to 20		C ۱۳۰۱	bscuratio	n:
Dispers Water	sant	Name:			Dispersa	nt RI:			Weight 0.404	ed Residu %	al:	F	Result Emu Off	lation:
Concer 0.0284	ntra	tion: %Vol			Span : 2.676				Uniforn 0.889	nity:		F V	lesult unit Volume	s:
Specifi 0.545	c Sı	u rface / m²/g	Area:		Surface 11.017	Weighted um	Mean D[3	9 ,2] :	Vol. We 79.551	eighted Me um	ean D[4,3]]:		
d(0.1)):	5.185	um			d(0.	5): 65.5	18 um	l		C	d(0.9):	180.543	um
						Par	ticle Size I	Distribution	1]
		7								\wedge				
		6												
		. r												
	%)	с ́												
	nme	4												
	0 >	3												
		2												
		1												
		٥												
		ť	0.01	0.1		1		10	1(00	1000	3000)	
						P	article Siz	ze (µm)						
	<u> </u>	10, Fr	iday, 21 J	anuary 20	11 1:38:5	5 p.m.								
	-	Size (µm) 0.050	Vol Under % 0.00	Size (µm) Vo 0.980	ol Under %	Size (µm) \ 37.000	/ol Under % 39.54	Size (µm) Vo 105.000	66.89	Size (µm) Vo 300.000	99.41	Size (µm) 840.000	Vol Under % 100.00	
		0.060	0.00	2.000	3.62	44.000	42.15	125.000	74.84	350.000	99.94	1000.000	100.00	
		0.120	0.00	7.800	14.66	63.000	49.01	177.000	89.33	500.000	100.00	2000.000	100.00	
		0.490 0.700	0.46	15.600 31.000	25.39 36.90	74.000 88.000	53.46 59.51	210.000 250.000	94.36 97.67	590.000 710.000	100.00			

Result Analysis Report

Sample A0 Sample Factory Sample 201101	Sour Sour bulk 5/11	e: ce & ty lot ref:	/pe:		SOP Nar Marine So Measure mckinnor Result So Measure	ne: ed Bryna d by: າ ource: ment			Measur Friday, 2 Analyse Friday, 2	ed: 21 January ed: 21 Januar	/ 2011 1:4 y 2011 1:4	8:05 p.r 18:06 p.	n. .m.	
Particle Marine S Particle 1.500 Dispers Water	e Name Sed B e RI: sant N	e: ryna ame:			Accesso Hydro 200 Absorpti 1 Dispersa 1.330	ry Name: 00G (A) on: unt RI:			Analysi General Size rar 0.020 Weighte 0.525	s model: purpose nge: to 20 ed Residu %	000.000 al:	um	Sensitivity: Enhanced Obscuratior 20.27 % Result Emu Off	n: lation:
Concer 0.0341	ntratic %	n: Vol			Span : 2.364				Uniforn 0.783	nity:			Result units Volume	8:
Specifi 0.503	c Sur l m	f ace A r ²/g	rea:		Surface 11.923	Weighted Me um	an D[3	,2]:	Vol. We 85.521	e ighted M um	ean D[4,3]:		
d(0.1)	: 5	.598	um			d(0.5):	76.77	74 um				d(0.9):	187.129	um
						Particle	Size D	Istribution						
	Volume (%)	8 7 6 5 4 3 2 1 00.	01	0.1		1 Parti	cle Siz	10 20 20 20 20 20 20 20 20 20 20 20 20 20	10		1000) 300	0	
	۵0	Frida	av 21 la	nuary 201	1 1.18.05	i aiu								
ľ	Size (μm) Vol Under % Size (μπ) 0.050 0.00 0.98 0.060 0.00 2.00 0.120 0.00 3.90 0.240 0.00 7.80 0.490 0.42 15.60 0.700 0.83 31.00				/ol Under % 1.35 3.25 6.88 13.72 23.78 34.14	Size (μm) Vol Un 37.000 44.000 53.000 63.000 74.000 88.000	der % 36.39 38.58 41.28 44.60 48.84 54.94	Size (μm) Vol 105.000 125.000 149.000 177.000 210.000 250.000	Under % 62.72 71.41 80.23 87.88 93.72 97.56	Size (μm) V 300.000 350.000 420.000 500.000 590.000 710.000	'ol Under % 99.54 99.96 100.00 100.00 100.00 100.00 100.00	Size (µr 840.00 1000.00 2000.00	m) Vol Under % 10 100.00 10 100.00 100.00 100.00]