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Abstract

A broad-scale, small-fish survey was carried out in northern New Zealand inshore waters using beach seines. The survey covered
30 estuaries spanning ca 1000 km of coastline and three degrees of latitude. Correspondence analysis and cluster analysis were used
to identify assemblages, and Generalized Additive Models (GAMs) were used to model the abundance and occurrence of individual

species. We aimed to assess the utility of these models for making predictions. The results were mixed. Descriptive models of fish
abundance performed well for four out of 12 species; for most other species, and species richness, the models described the data well
but performed poorly to moderately under cross validation. Predictive models of fish abundance usually performed worse than

descriptive models, but appeared reasonable for four species. Presenceeabsence models performed better overall than abundance
models: descriptive models showed good performance for all 12 species, and predictive models performed well for eight species. For
an independent data set, the models successfully predicted occurrence for five species. Water clarity, salinity and the amount of
freshwater inflow were important predictor variables. Despite the limitations of our GAMs, they should be useful for planning

intensive process-based research, and for guiding the management of human activities that impinge on coastal marine environments.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Estuaries and shallow, sheltered coastal embayments
play a central role as nursery grounds for many inshore
fish species (Gillanders, 1997; Kneib, 1997; Beck et al.,
2001; Morrison et al., 2002; Heck et al., 2003).
Numerous studies have been conducted at varying
spatial and temporal scales to determine what species
occur in such habitats, and in what quantity (Laegds-
gaard and Johnson, 1995; Ronnback et al., 1999;
Lazzari et al., 2003; Hindell and Jenkins, 2004). These
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studies have provided a basis for designing and
executing intensive process-based studies, including
experimental manipulations, and the testing of predic-
tions. Despite this large body of work, the spatial scale
of most studies has been relatively limited, and there are
large gaps in our understanding of the spatial structur-
ing of fish nurseries over a scale of 10s to 1000s of
kilometres, including latitudinal effects (but see Vieira
and Musick, 1993; Edgar et al., 1999). Reasons for this
include the complex field logistics and high costs of such
work, divisions across state and legislative boundaries in
and among some countries (with associated geographic
funding constraints), and a strong individual researcher
focus on fine scale process-orientated studies. While the
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ultimate goal of ecological science is to understand what
processes produce the observed species and assemblage
patterns, without an appropriate description of distri-
butional patterns, our ability to conduct such studies is
severely hampered (Underwood et al., 2000).

Broad-scale ecological surveys are fundamental for
the development of large-scale descriptive and predictive
models of fish presence and abundance. Within such
a quantitative framework, a wide range of management
activities can be more effectively executed, including the
placement of Marine Protected Area networks (Conover
et al., 2000), spatial zoning of different permitted fishing
activities (Rice and Cooper, 2003), controls on land-
based activities to reduce sediment run-off and pollutant
contamination (Delvalls et al., 1998), and regulating
recreational use of the coastal environment (Coleman
et al., 2004). More intensive, process-based research can
then be targeted at those elements considered essential
(or representative, unique, rare), and the findings of
such work scaled up to the overall framework (Zacha-
rias et al., 1998; McCormick et al., 2000).

With the wide adoption of Geographic Information
Systems (GIS), the intensive use of spatial data is now
tractable. In both terrestrial (e.g., Kulakowski et al.,
2004) and freshwater (Toepfer et al., 2000; Wyatt, 2003)
ecosystems, GIS are now important tools for research
and management. The use of these tools in estuarine and
coastal ecosystems is less advanced but is expanding
rapidly (Eastwood et al., 2001, 2003; Jones et al., 2002).

In this study, we carried out a broad-scale, small-fish
survey in northern New Zealand inshore waters.
Estuarine fish habitat work in New Zealand has been
minimal and geographically limited. Currently, there is
no broad-scale information on the location and impor-
tance of fish nurseries, or on which fish species are
dependent on estuaries. Even the initial settlement and
recruitment areas of the most valuable inshore finfish
species (the sparid Pagrus auratus) were largely unknown
until very recently. In this paper, we present the results of
a survey of 30 estuaries spanning ca 1000 km of coastline
and three degrees of latitude. We develop statistical
models of fish presence and abundance, and assess the
predictive ability of these models. Our ultimate aim is to
predict the presence and/or abundance of fish species in
unsampled estuaries as a basis for intensive ecological
research at smaller spatial scales, and for management
purposes. This study is the first in a series which will
eventually cover the full 1600 km latitudinal range of
New Zealand’s 350 estuaries.

2. Materials and methods

2.1. 25-Harbour survey

Twenty-five estuaries and coastal bays around the
northern North Island of New Zealand were surveyed
by beach seine between 20 January and 30 March 2001
(Fig. 1, Table 1). Hereafter we refer to these estuaries
and bays as ‘harbours’, for consistency with the official
names of most of them. The 25 harbours ranged in size
from the large Kaipara Harbour (a 743-km2 drowned
valley composed of several major sub-estuaries) and
Firth of Thames (a 729-km2 coastal embayment) to
several small tidal lagoons less than 10 km2 in area. The
amount of fresh water flowing into these harbours also
varies dramatically, from high at Port Waikato, which is
the mouth of the Waikato River, the largest river in
North Island (31,300,000 m3 mean inflow over a 12.4-h
tidal cycle) to minimal in Mangemangeroa Estuary
(17,100 m3). Harbours having a wide variety of physical
characteristics, and covering the full geographic range of
both west and east coasts of northern North Island,
were chosen for this study in order to encompass the
maximum possible contrast in fish habitat and therefore
abundance.

2.2. 6-Harbour survey

Two years after the 25-harbour survey, in 6e18
February 2003, Kaipara Harbour was re-surveyed and
five new harbours were surveyed for the first time
(Fig. 1, Table 1). A total of 43 stations were sampled.
This was done to test predictions developed from models
of fish abundance and presence generated from the data
collected during the 25-harbour survey. Both surveys
used the same sampling techniques.

2.3. Sampling design and procedure

Sampling was conducted during daylight hours,
within 2.5 h of low tide. Previous work has shown that
sampling this way produces the highest estimates of fish
species richness, and of relative abundance for most
species (Morrison et al., 2002). For a few species, night
sampling produces higher abundance estimates, but
logistic and safety constraints did not permit night
sampling.

Sampling stations in each harbour were arranged
along anticipated environmental gradients, from the
brackish upper reaches to the harbour mouth. Eight
stations could be sampled comfortably over a single low
tide, so this was set as the target minimum per harbour.
Occasionally this target was not achieved, with only 5e7
stations being sampled (Table 1). Large harbours were
allocated additional (up to 40) stations in order to
sample all habitats adequately. The exception was the
large Firth of Thames which for logistical reasons had
the fewest stations (five). Small harbours were sampled
by one team of two people in one day, whereas the
largest harbours required two teams of two working for
2e3 days. Station positions were determined using
a Global Positioning System.
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Fig. 1. Map of northern North Island of New Zealand showing harbours sampled in 25-harbour survey (JanuaryeMarch 2001) and 6-harbour survey

(February 2003). Symbols indicate harbour mouths, and not actual sampling locations.
Fish were sampled using beach seine nets constructed
of braided knotless nylon. Nets were 11-m wide and
2.3-m high, with 9-mm mesh and 4-m long codend.
Attached to each end of the net were 5-m bridles and 15-
m sweeps (combined distance 20 m), the sweep end
being the point from which the net was hauled. When
fishing, a sweep/bridle angle of ca 25e35 � produced
a net mouth width of ca 9 m, which was thought to be
most effective for fish retention.

Our aim was to sample from and including the
channel adjacent to the tidal flats, upon and across part
of the tidal flat. At stations that could be comfortably
waded (!1.2 m deep), nets were deployed manually,
parallel to the shoreline, from a 3.5-m-long, shallow-
draft, inflatable boat, and then hauled to the shore by
two people. For deeper stations, a grapnel anchor with
a short length of chain was attached to one of the sweeps,
and deployed from the boat onto the shore. The boat
reversed offshore to the full length of the sweep, turned at
right angles down-current to set the net parallel to the
shoreline, and then drove back into the shoreline setting
the second sweep. The two sweeps were then hauled in
the same manner as for the manually deployed sets.

Hauling speed was constant at a slow walking pace.
Very soft mud occasionally ‘bogged’ the net, requiring
that it be pursed, and the mud manually sieved through
the mesh. The groundrope weight ensured direct contact
with the seabed throughout the tow, even when the
water depth exceeded the net’s 2.3-m drop. In these
circumstances, it was estimated that the net fished the
bottom 1.0e1.2 m of the water column.

Tow length could not be standardised, because of the
highly variable seabed slope, variation in the state of the
tide, and the need to haul the net on to the shore in
order to retrieve the catch. At extreme low tide, the
beach seine may have sampled only the subtidal channel
and a small amount of the adjacent tidal flat, whereas
a large amount of the tidal flat may have been included
in stations conducted 2.5 h before or after low tide. The
distance towed varied from 10 to 220 m (mean 41 m, std
dev. 31 m). The estimated mean swept area was 369 m2,
but ranged from 90 to 1980 m2.

Catches were retrieved from the net, bagged, labelled,
stored on ice in the field, and frozen on return to suitable
facilities. Subsequently, samples were thawed in the
laboratory, sorted to species, counted, and measured to
the millimetre below fork or total length (depending on
the tail shape of the species). For catches of more than
200 fish per species, a random sub-sample was
measured. Catch rates (numbers of fish per kilometre
towed) were calculated and treated as estimates of
relative abundance. Depth at the start of the tow, and
the distance towed, could affect the efficiency of the net
and therefore the catch rate. We accounted for such
variability by including these variables as predictors in
our models (see below).
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Beach seines are most effective at sampling small
fishes, and poor at retaining larger animals because of
escapement around the sides or over the top of the net.
Inspection of the length-frequency distributions of the
fishes caught showed that few fish longer than 250 mm
were caught (39 fish in the 25-harbour survey). We
therefore omitted fish 250 mm or longer, except for
large sand flounder (Rhombosolea plebeia) and yellow-
belly flounder (Rhombosolea leporina) which are prob-
ably well sampled by the net. We also omitted all
short-finned eels (Anguilla australis) as they are rarely
retained by the net because of their shape and
behaviour (only 17 were caught, three of them shorter
than 250 mm).

Table 1

Type and area of the harbours surveyed, number of beach seine

stations conducted in each harbour, and number of fish species caught

(excluding species caught at fewer than 2% of stations overall).

Harbours are arranged from south-west to south-east (see Fig. 1)

within the two surveys (25-harbour and 6-harbour)

Harbour Harbour type Area

(km2)

Number

of stations

Number

of species

25-Harbour survey

Kawhia Tidal lagoon 67.6 8 12

Aotea Tidal lagoon 31.9 8 14

Port Waikato Drowned valley 18.2 8 6

Manukau Drowned valley 365.6 30 15

Kaipara Drowned valley 743.1 40 18

Hokianga Drowned valley 106.5 16 18

Rangaunu Drowned valley 101.7 8 14

Whangaroa Drowned valley 25.4 8 14

Kerikeri Drowned valley 35.8 8 11

Waikare Drowned valley 52.1 6 11

Ngunguru Tidal lagoon 5.1 8 10

Whangarei Drowned valley 103.6 16 14

Whangateau Tidal lagoon 7.5 8 10

Matakana Tidal lagoon 4.2 8 14

Mahurangi Drowned valley 24.6 8 13

Waitemata Drowned valley 79.8 32 14

Mangemangeroa Coastal

embayment

0.6 8 9

Firth of Thames Coastal

embayment

729.1 5 7

Coromandel Coastal

embayment

25.4 8 13

Whangapoua Tidal lagoon 13.0 8 14

Whitianga Tidal lagoon 15.5 8 16

Tairua Tidal lagoon 6.0 8 12

Whangamata Tidal lagoon 4.4 8 14

Tauranga Drowned valley 200.4 24 17

Ohiwa Tidal lagoon 26.8 8 16

6-Harbour survey

Raglan Tidal lagoon 31.9 8 15

Kaipara Drowned valley 743.1 7 14

Mangonui Tidal lagoon 8.7 8 15

Whangaruru Drowned valley 11.7 8 13

Manaia Tidal lagoon 6.3 6 11

Kennedy Bay Drowned valley 4.9 6 9
2.4. Site physical variables

At each station, a number of site physical variables
were recorded (Table 2). Substratum composition was
classified subjectively into four classes (from soft mud to
sand) and surface sediment samples were collected and
archived for analysis at a later date. The presence of
vegetation (mangroves, Avicennia marina var. austral-
asica, and seagrass, Zostera muelleri) at or near each
sampling station was also recorded.

The depth at the start of each tow was measured
using a weighted tape measure. Depths ranged between
0.2 and 1.0 m for shallow gradient sets and between 1.0
and 6.0 m for deeper channel sets. Water samples were
collected and frozen for salinity measurements on return
to the laboratory using a TPS WP-84 handheld meter.
Salinity measurements were not available for 21 stations
(7%) spread across four different harbours. Water
clarity was measured with a 200-mm Secchi disk, and
temperature was measured with a TPS WP-82 handheld
meter.

The distance of each station from the harbour mouth
was determined in a GIS from the latitude and longitude

Table 2

Predictor variables used in GAMs. The levels of each categorical

variable are shown in square brackets

Variable type Variable name Description

Harbour Harbour Harbour

Site location Latitude Latitude ( �S)

Coast Coast of North Island [east, west]

Site physical Substratum Sediment type at station [soft

mud, firm mud, sandy mud, sand]

Vegetation Aquatic vegetation at or near

station [none, mangroves nearby,

seagrass nearby, seagrass present

at station]

Depth Depth at start of tow (m)

Salinity Salinity at start of tow

Clarity Water clarity at start of tow

measured by Secchi disk (m)

Temperature Water temperature at start

of tow ( �C)

Distpercent Distance of station between mouth

and upper end of harbour (%)

Towdist Distance towed by beach seine (m)

Time Time of day

Harbour

physical

Type Harbour type [coastal embayment,

drowned valley, tidal lagoon]

Tideflow Ratio of spring tidal prism to total

estuary volume

Riverflow Ratio of river inflow to total

estuary volume

Complexity Shoreline complexity index

Area Harbour surface area at spring

high tide (m2)

Tiderange Mean M2 tide range (mm)

Catchtemp Annual mean terrestrial catchment

temperature ( �C)
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of both locations, and expressed as a percentage of the
distance between the mouth and the upper reaches of the
harbour. The distance covered by each beach seine tow
was estimated by eye, and the time of day was recorded.

2.5. Data analyses

2.5.1. Fish assemblages
Two complementary but fundamentally different

multivariate approaches were used to identify fish
assemblages: ordination and clustering. Similar results
from the two techniques would provide confidence that
any identified species assemblages were robust. We used
correspondence analysis (CA), implemented by the
CORRESP procedure in SAS, for ordination (Greena-
cre, 1984; Ter Braak and Prentice, 1988). CA is
equivalent to a weighted principal components analysis
of c2 transformed data. The transformation converts the
abundance data into c2 distances among species
(Legendre and Legendre, 1983; Digby and Kempton,
1987), and the weighting increases the influence of
stations containing larger numbers of fish. Since our aim
was to identify species assemblages, we interpreted only
the species ordination, and not the station ordination.
Rare species, defined as those occurring in fewer than
5% of the stations, were eliminated from the data set
before analysis to prevent them having an undue
influence on the results (Gauch, 1982).

Ward’s minimum variance cluster analysis (WCA; an
agglomerative hierarchical method) was also applied to
the same suite of species using the CLUSTER procedure
in SAS. The abundance data were c2 transformed by
dividing each element of the species by stations matrix
by the row (species) total and the square root of the
column (stations) total, and weighted by the row total
(total abundance of a species) before analysis so that the
clustering was performed in the same space as that used
for the CA.

2.5.2. Predictor variables
Nineteen predictor variables were developed for use

in Generalized Additive Models (GAMs, Hastie and
Tibshirani, 1990). These variables fall into two main
types e those describing the spatial location of the
sampling stations, and those describing the physical
environment. Each of these two main types is further
subdivided into two subtypes (Table 2).

Spatial location variables may add predictive power
by acting as surrogates for one or more unknown
environmental variables, or variables that cannot be
measured easily. They can also potentially capture
genuine geographic effects, such as proximity to
favourable habitat features such as spawning sites, or
where juvenile dispersal is aided by particular habitat
combinations. However, spatial variables offer limited
insight into the possible causal factors influencing the
distribution and abundance of fishes. We applied GAMs
with and without spatial location variables in order to
assess their descriptive and predictive utility.

The first spatial subtype consists of the variable
Harbour, which has a separate level (and therefore
model coefficient) for each harbour. This variable
therefore captures spatial variability at the medium
scale. The second spatial subtype consists of the
variables Latitude and Coast, which allow for large-
scale geographic variation with latitude, and between
the east and west coasts of North Island.

Variables describing the physical environment fall
into two subtypes e those that are specific to individual
sampling stations (site physical variables), and those
that apply to an entire harbour or its catchment
(harbour physical variables).

Site physical variables were described above (see also
Table 2). The percentage distance of each station from
the harbour mouth (Distpercent) is strictly a location
variable, but it may act as a surrogate for one or more
physical variables that vary along an estuarine gradient.
In doing so, it integrates across the full range of short-
term temporal variation (especially over a tidal cycle)
thereby providing a measure of the average, gradient-
dependent, physical conditions experienced by fish at
each site. Some of the other site physical variables (e.g.,
Salinity, Clarity, Temperature) were measured only at
the time of sampling (daytime low tide), and do not
reflect the range of conditions experienced by fish. The
depth at the start of each beach seine tow (Depth), the
distance towed (Towdist), and the time of day (Time) are
‘nuisance’ variables that may affect the catch rates of
fishes, and need to be allowed for when modelling
abundance.

Harbour physical variables were selected from
a larger set of variables compiled for a physical
classification of New Zealand estuaries (Hume et al.,
2003; T. M. Hume, NIWA, Hamilton, pers. comm.).
This data set contains numerous measured and derived
variables describing harbour physical properties and
dimensions, oceanic and terrestrial forcing, wind and
waves, and terrestrial catchment properties (e.g., hy-
drology, geology, vegetation, temperature). A subset of
33 potential predictor variables was selected, based on
an a priori consideration of the factors most likely to
affect fish abundance. This subset was then reduced to
the final subset of seven variables (Table 2) by
eliminating one of each pair of highly correlated
variables (jrjO 0.9), and variables with missing values.

2.5.3. Descriptive and predictive models
Using the 25-harbour data set, GAMs were

developed that related species abundance to physical
variables for the 12 most frequently caught fish species
(Table 3). Similar GAMs were developed for species
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Table 3

Frequency of occurrence and numbers of fish caught at 305 beach seine stations during the 25-harbour survey, arranged in descending order of

frequency of occurrence. Only species caught at more than 2% of the stations are included. The species group column summarises the principal life

style (D, demersal; P, schooling pelagic) and habitat (C, open coastal waters; F, freshwater; H, harbours, estuaries and sheltered bays) of each species,

and the life stages sampled in this study (A, adults and juveniles; J, juveniles only)

Common name Scientific name Family Code Species group Frequency Number

Yellow-eyed mullet Aldrichetta forsteri Mugilidae AFO P, H, J 275 30,151

Exquisite goby Favonigobius exquisitus Gobiidae FEX D, H, A 211 11,962

Sand flounder Rhombosolea plebeia Pleuronectidae RPL D, H, J 190 1663

Speckled sole Peltorhamphus latus Pleuronectidae PLA D, H, A 186 3120

Anchovy Engraulis australis Engraulidae EAU P, H, J 111 8968

Yellow-belly flounder Rhombosolea leporina Pleuronectidae RLE D, H, J 100 821

Sand goby Favonigobius lentiginosus Gobiidae FLE D, H, A 93 2538

Smelt Retropinna retropinna Retropinnidae RRE P, F, A 85 6847

Estuarine triplefin Grahamina nigripenne Tripterygiidae GNI D, H, A 81 2837

Spotty Notolabrus celidotus Labridae NCE D, C, A 70 239

Snapper Pagrus auratus Sparidae PAU D, C, J 48 248

Grey mullet Mugil cephalus Mugilidae MCE P, H, J 45 272

Mottled triplefin Grahamina capito Tripterygiidae GCA D, H, A 39 225

Trevally Pseudocaranx dentex Carangidae PDE D/P, C, J 30 83

Parore Girella tricuspidata Girellidae GTR D, C, J 25 298

Garfish Hyporhamphus ihi Hemiramphidae HIH P, H, J 24 429

Red gurnard Chelidonichthys kumu Triglidae CKU D, C, J 19 34

Spotted stargazer Genyagnus monopterygius Uranoscopidae GMO D, H, J 15 18

Estuarine stargazer Leptoscopus macropygus Leptoscopidae LMA D, H, J 14 54

Jack mackerel Trachurus novaezelandiae Carangidae TNO P, C, J 13 33

Kahawai Arripis trutta Arripidae ATR P, C, J 11 23
richness, defined as the number of fish species caught at
each station after excluding species that were caught in
fewer than 2% of stations across the entire survey area
(see Table 3 for the full list of 21 species). Rare species
are either not a normal component of the fish fauna in
the harbours surveyed, or not usually vulnerable to the
beach seine sampling method.

The response variable used in the initial GAMs was
relative abundance (catch in numbers per kilometre) for
each species, or species richness. For a number of fish
species, the predictive power of these models was low, so
further models were applied to presenceeabsence data
to determine whether it was easier to predict fish
occurrence than abundance.

A series of GAMs was fitted to each response variable
(Table 4). Our approach was to explore the effect of
adding and deleting variable types, in an attempt to
develop models with practical predictive ability. Three
descriptive models were developed. Model 1 (Harbour-
Site) included Harbour and all the site physical variables
as predictor variables. This represents a minimal model
that allows each harbour to have its own mean relative
abundance, or probability of occurrence, and incorpo-
rates a basic suite of environmental variables measured
at the sampling station. Model 2 (Site-Location) goes
a step further by using specific information about a site’s
geographic location (Latitude, Coast) in place of
Harbour, thus allowing the detection of more general
geographic patterns of abundance or occurrence.Model 3
(Environment) uses both site and harbour physical
variables but no variables describing geographic
location. This model therefore attempts to describe
the occurrence or abundance of a fish species, or
species richness, using only measurable features of the
physical and chemical environment.

Two predictive models were then developed. Model 4
(Prediction) incorporates only predictor variables that
are readily available for harbours and sampling sites
throughout northern North Island; consequently this
model enables prediction for harbours or sites that have
not been sampled previously. Most site physical varia-
bles are not available for new sites without conducting
a dedicated field sampling programme, so they cannot be
used for prediction. However, Distpercent is included in

Table 4

Type and number of predictor variables used in five GAM models.

Response variables were fish species abundance or presenceeabsence,

and species richness. See Table 2 for a list and description of variables

Model Name Variables in model

Harbour Site

location

Site

physical

Harbour

physical

1 Harbour-Site 1 9

2 Site-Location 2 9

3 Environment 9 7

4 Prediction 2 1a 7

5 Prediction-Habitat 2 3b 7

a Distpercent.
b Substratum, Vegetation, Distpercent.
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this model because it can be determined easily from
a chart of the harbour once sampling stations have been
selected. Model 5 (Prediction-Habitat) goes a step further
by adding two habitat descriptors, Substratum and
Vegetation, as predictor variables. Although these
variables are not usually available in advance, they
may be determined with minimal field sampling effort
and may add significant predictive power compared with
Model 4.

GAMs were fitted in Splus statistical software
(Chambers and Hastie, 1993) using the Generalized
Regression Analysis and Spatial Prediction (GRASP)
suite of programs (Lehmann et al., 2002a, 2002b).
GAMs are non-parametric extensions of Generalized
Linear Models (GLMs) that allow non-linear (smooth)
response surfaces to be fitted using a range of different
error structures (e.g., binomial, Poisson, see Hastie and
Tibshirani, 1990).

For relative abundance data and species richness, we
used a quasi-Poisson model with a log-link function,
and for presenceeabsence data we used a quasi-
binomial model with a logit-link function. Quasi likeli-
hood models do not specify the error structure a priori,
but allow it to be determined from the variance
function. This enables the estimation of the dispersion
parameter, which may differ dramatically from the
default value of one assumed in non-quasi models.
Models were fitted to the data in a stepwise backwards
fashion to select significant predictors. Starting models
incorporated continuous variables smoothed with four
degrees of freedom; the significance of including the
smoothed variable, or of including a simpler linear form
(with one degree of freedom) instead, was tested using
an analysis of variance. A probability level of 0.01 was
used for these tests to limit the inclusion of spurious
variables in the model. Interaction terms were not
included in the models because a large number of main
effect variables were offered to each model and
processing times were already significant. Further details
of the model fitting procedure are provided by Lehmann
et al. (2002a, 2002b).

Variable selection in a model may depend on the
order in which predictor variables are offered to it; this
occurs when two or more variables can substitute for
each other in a model, producing similar overall fits. We
offered variables to the models in the order shown in
Table 2.

Salinity measurements were missing for some sta-
tions in the 25-harbour survey, so models were initially
fitted to a reduced data set of 284 stations for which
salinity data were available. If Salinity was selected as
a significant variable, the final model was based on this
reduced set; if Salinity was non-significant, it was
dropped from the suite of variables offered to the
model, and the model was re-fitted using the full data
set of 305 stations.
2.5.4. Model validation
The validity of the GAMs was tested in several ways

using GRASP routines. For models fitted to abundance
data, we compared the values predicted for each station
with the observed values using the correlation coefficient
as a measure of model performance. We also used 10-
fold cross validation, in which 90% of the data were
used to predict the abundance of fish in the remaining
10% of stations; this process was carried out 10 times
using randomly selected data subsets (without replace-
ment) until the abundance of fish at all stations had been
predicted. The correlation coefficient between observed
and predicted values was again used as a measure of
model performance. For presenceeabsence models, we
used the area under the Receiver Operating Character-
istic (ROC) curve (Fielding and Bell, 1997) in place of
correlation coefficients to test performance.

The above validation methods suffer from non-
independence of the data sets used to develop and
validate the GAMs. To overcome this problem, we used
the 6-harbour data set, containing data collected in the
same way but two years later, to test the models
developed from the 25-harbour data set. For all stations
in the six harbours, we predicted probability of
occurrence using the relevant 25-harbour presencee
absence models based on the full data set for each
species. Five of the six harbours had not been sampled
in the 25-harbour survey, and therefore provide a strong
test of the generality of the model predictions. The ROC
statistic was used as a measure of model performance.
An additional performance measure, the percentage
of samples correctly classified by the model, was also
calculated. For this purpose, we assumed that a pre-
dicted probability of occurrence greater than or equal to
0.5 represented a predicted presence. Unfortunately, the
two-year time lag between the 25-harbour and 6-harbour
surveys means that the between-survey validation may
be confounded by temporal effects, particularly inter-
annual variation in year class strength. The results of the
between-survey validation might therefore underesti-
mate true within-year model performance.

3. Results

3.1. Catch composition and large-scale distribution
patterns

In the 25-harbour survey, 71,211 fish from 34 species
were caught at 305 stations. Twenty-one species were
caught in more than 2% of the stations, but only four
species (Aldrichetta forsteri, Favonigobius exquisitus,
Rhombosolea plebeia, Peltorhamphus latus) were caught
in more than half of the stations (Table 3, Fig. 2a).
Aldrichetta forsteri, a schooling mullet, was by far the
most abundant species, occurring in 90% of all stations
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and comprising 42% of the catch by number. The seven
most abundant species (A. forsteri, F. exquisitus,
Engraulis australis, Retropinna retropinna, P. latus,
Grahamina nigripenne, Favonigobius lentiginosus) made
up 93% of the total catch by number (Table 3, Fig. 2b).
A long tail of 12 rarer species occurred occasionally to
relatively often (in 4e23% of stations) but were only
caught in small numbers (Fig. 2a, b).

The number of species caught in each harbour varied
threefold (range 6e18; Table 1), but because of differ-
ences among harbours in the number of stations
sampled, and in a wide range of other factors, raw
species richness is not very informative. The species
caught fall into a range of behavioural life styles
(demersal, schooling pelagic), principal habitat types
(freshwater, sheltered inshore waters, open coastal
waters), and life stages sampled (small species for which
both adults and juveniles were sampled, large species for
which only juveniles were sampled) (Table 3). Thirteen
of the 21 species (62%) occur mainly in sheltered inshore
waters, and are regarded as residents of the sites
surveyed in this study. However, some of these species
(notably Rhombosolea plebeia, Mugil cephalus) also
occur along open coasts, and spawn at sea. Seven
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Fig. 2. Frequency (a) and total abundance (b) of fish species caught by

beach seine at 305 stations in 25 harbours. Only species occurring in

more than 2% of stations are shown.
species (33%) occur mainly in open coastal waters, and
are either transient members of the harbour fauna, or
use harbours as nursery grounds (sensu Beck et al.,
2001). One species (Retropinna retropinna; 5%) occurs
mainly in freshwater. Thirteen of the 21 species (62%)
were caught mainly as juveniles, but for most of these,
gear selectivity is likely to be the main reason; i.e. large
individuals were able to avoid the net. Only five species
that are vulnerable to beach seines seem to use these
harbours mainly as nurseries before migrating to the
open coast (Pagrus auratus, Pseudocaranx dentex,
Girella tricuspidata, Chelidonichthys kumu, Arripis trut-
ta); however all these species except G. tricuspidata also
occur along open coasts as juveniles. A number of other
species use the harbours both as nurseries, and as adult
habitat.

Aldrichetta forsteri occurred in all 25 harbours and
was abundant everywhere (Fig. 3). The three flatfish
species (Peltorhamphus latus, Rhombosolea plebeia,
Rhombosolea leporina) were also common in most
harbours, with no clear, large-scale abundance patterns.
However, large-scale spatial variation was observed for
many other species. Mugil cephalus and Chelidonichthys
kumu occurred exclusively or mainly in west coast
harbours (Fig. 4), whereas Grahamina nigripenne,
Favonigobius lentiginosus, Girella tricuspidata, Leptosco-
pus macropygus, and Notolabrus celidotus occurred
exclusively or mainly in east coast harbours (Fig. 5).
Favonigobius exquisitus was widespread, but was much
more abundant in Kaipara Harbour than elsewhere.
Retropinna retropinna was also widespread, but most
(92%) of the catch by number came from two harbours,
Port Waikato and Ngunguru.

3.2. Fish assemblages

Seventeen species occurred in more than 5% of the
stations. A preliminary CA on these species was
dominated by Hyporhamphus ihi, which was an outlier
on five of the first six CA axes. Although this species was
caught at 24 stations, 41% of the catch came from just
one station. We therefore omitted H. ihi, and carried out
a CA and WCA on the remaining 16 species.

The first two CA axes explained 33.9% of the
variation in the data, and the first five axes explained
72.4%. At a 6-cluster level, most species grouped into
two distinct assemblages, but four species remained
unassociated with any others (Fig. 6):

Assemblage 1e Favonigobius exquisitus,Rhombosolea
plebeia, Peltorhamphus latus, Rhombosolea leporina,
Mugil cephalus, Grahamina capito, Chelidonichthys
kumu
Assemblage 2 e Aldrichetta forsteri, Notolabrus
celidotus, Pagrus auratus, Pseudocaranx dentex, Gir-
ella tricuspidata
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Fig. 3. Catch rate of yellow-eyed mullet (Aldrichetta forsteri) in 25-harbour beach seine survey. Circle area is proportional to catch rate (maximum

circle sizeZ 37,000 fish per km towed).

Fig. 4. Catch rate of grey mullet (Mugil cephalus) in 25-harbour beach seine survey. Circle area is proportional to catch rate (maximum circle

sizeZ 1450 fish per km towed).
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Fig. 5. Catch rate of spotty (Notolabrus celidotus) in 25-harbour beach seine survey. Circle area is proportional to catch rate (maximum circle

sizeZ 950 fish per km towed).
Unassociated species e Engraulis australis, Favoni-
gobius lentiginosus, Retropinna retropinna, Grahamina
nigripenne

Reducing the number of clusters resulted in Graha-
mina nigripenne merging with Assemblage 1 (5 clusters),
and Favonigobius lentiginosus merging with Assemblage
2 (4 clusters). However, these two species were strongly
separated from the other species in the respective
assemblages on the fourth CA axis (not shown), so the
6-cluster solution appears most plausible.

3.3. Descriptive and predictive models

Fig. 7 shows two measures of the performance of
GAM descriptive Models 1e3 fitted to abundance data
for 12 fish species and species richness. The X-axis shows
the performance of each best-fit model when fitted to all
available data, and the Y-axis shows the performance
when tested by 10-fold cross validation. A high score on
both axes indicates that a model describes the available
data well, and that a model based on a 90% subset of
the data provides reasonable predictions (i.e. it is
relatively robust).

For most species, and for species richness, the
three different descriptive models were similar in perfor-
mance e the ‘performance polygon’ for each species was
usually small (Fig. 7). However, there was some fine-scale
pattern in the results: Model 1 usually performed best
(nine out of 13 models) when applied to all data. Under
cross validation, Model 1 was generally best for species
that were well predicted by the models, whereas Model 3
was generally best for species that were not as well
predicted. This indicates that, even for species whose
abundancewas predicted best by ourmodels, one ormore
important, harbour-specific variables was missing from
the suite offered to the models; i.e. whenHarbourwas not
included in the model, the other variables offered to
Models 2 and 3 were not able to compensate, and overall
model performance dropped. Retropinna retropinna was
a good example: most of the catch of this species came
from just two harbours, a feature that was captured well
by the inclusion ofHarbour inModel 1; however, Models
2 and 3 did not perform as well for this species.

Model performance varied widely among species.
Good model performance was observed for Retropinna
retropinna, Grahamina nigripenne, Favonigobius exquisi-
tus, and Favonigobius lentiginosus. Two species (Rhom-
bosolea plebeia, Aldrichetta forsteri) were poorly
described by the models. For the remaining species
(Rhombosolea leporina, Mugil cephalus, Peltorhamphus
latus, Pagrus auratus, Notolabrus celidotus, Engraulis
australis), an apparently good descriptive model
performed poorly under cross validation, suggesting
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significant over-fitting to the data. Inspection of the
correlation plots indicated that this was usually because
each data set had only a few stations with high catch
rates, and they strongly influenced which predictor
variables were included in the model. When these
influential stations were not selected in the 90% sub-
samples used for cross validation, the models were
unable to predict these high values, confirming that the
model was over-fitted to these rare high catch-rate
stations. Species richness was moderately well described
by all models, and performed reasonably under cross
validation.

Model 3 (Environment) generally performed well
under cross validation, relative to other descriptive
models, and we summarise the variables selected for
each species and species richness in Table 5. Clarity was
selected 11 out of the maximum possible 13 times (12
species plus species richness), and Salinity was selected
eight times. The variables selected most frequently were
(in descending order) ClarityO SalinityODistpercentZ
TimeZTiderangeO SubstratumZDepthZRiverflow. All
variables offered to the model were selected at least three
times. The variables most frequently selected as one of
the three most important variables in the model were
ClarityZRiverflowO SalinityO Towdist. Overall,
Clarity, Salinity, and Riverflow appear to be the most
useful of the variables available to this study for
describing the abundance of harbour fish species.

For Model 3, the relationships among species
abundance (or richness) and each predictor variable
are shown in Table 5. The relationships varied from
simple linear patterns (positive or negative) to more
complex unimodal or bimodal trends. Bimodal patterns
are difficult to interpret for most environmental
variables; for example, it is not clear why Peltorhamphus
latus would have high abundance at both low and high
temperatures, with low abundance at intermediate
temperatures. Interactions among variables, or among
species, may be important. One hypothesis worth
exploring further is that the abundance of a predator
or competitor peaks at intermediate values of the
variable, thus reducing the population abundance of
its prey to a level below that which can be physically
supported by the environment. Bimodal patterns
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occurred only once in a ‘top three’ variable, so another
possible explanation is that they may be spurious.

Conversely, bimodal relationships occurred three
times in the variable Time, and these may represent real
patterns. It is plausible that some species have higher
catchability in the morning and evening, perhaps
because low light levels make net avoidance difficult
(e.g., the schooling pelagics Engraulis australis and
Retropinna retropinna), or because they may burrow
into the sediment during the middle of the day (e.g., the
demersal flounder Rhombosolea leporina).

Predictive Models 4 and 5 were identical for five
species (Aldrichetta forsteri, Engraulis australis, Mugil
cephalus, Notolabrus celidotus, Pagrus auratus). For two
species (Grahamina nigripenne, Rhombosolea plebeia),
Model 5 performed slightly better than Model 4 based
on the correlation coefficient, but slightly worse under
cross validation. For the remaining five species (Favo-
nigobius exquisitus, Favonigobius lentiginosus, Pelto-
rhamphus latus, Rhombosolea leporina, Retropinna
retropinna) and species richness, Model 5 performed
better than Model 4, sometimes substantially so, under
both performance criteria. Thus the inclusion of the
habitat variables Substratum and Vegetation improved
the predictive models for some species but not others.

Predictive models generally performed worse than
descriptive models. Fig. 8 compares Model 3 (Environ-
ment) with Model 5 (Prediction-Habitat). This degraded
performance results from the restricted subset of
predictor variables available for the predictive models.

Correlation coefficient between observed and predicted
abundance for GAMs using all data

1.0

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 b

et
w

ee
n 

ob
se

rv
ed

 a
nd

 p
re

di
ct

ed
ab

un
da

nc
e 

fo
r G

AM
s 

us
in

g 
10

-fo
ld

 c
ro

ss
 v

al
id

at
io

n 
 

0.0
0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1

1

1

1
1

1

1

1

1

1

1
1

1

2

2

2

2

2

2

2
2

2
2

2

2

2

3

3

3

3
3

3

3

3

33

3
3

3

Model  1  Harbour-Site
Model  2  Site-Location 
Model  3  Environment

AFO

RPL

Richness

PLA

NCE

EAU

PAU

RLE

MCE

FLE

FEX

GNI

RRE

Fig. 7. Performance of three descriptive models of abundance for 12

fish species and species richness for the 25-harbour data set. The

dashed line is the 1:1 line of equivalence. Numerals indicate model

numbers, and solid lines link models for the same species. Three-letter

species codes are shown in Table 3.
Prediction models provided good fits to the data
(rO 0.75) for four species (Retropinna retropinna,
Grahamina nigripenne, Favonigobius exquisitus, Rhom-
bosolea leporina), and cross validation performance for
these species was moderate (rZ 0.41e0.61). Model 5
performance for species richness was also reduced
compared with Model 3.

Descriptive and predictive models were developed
using presenceeabsence data to determine whether we
were more successful in predicting occurrence than
abundance. ROC statistics, used here as performance
measures for presenceeabsence models, must be sub-
stantially greater than 0.5 to indicate a performance
better than could be expected by chance. For Model 3,
ROC statistics exceeded 0.75 for models fitted to the full
data, and 0.70 for cross validation, for all species (Fig. 9).
This performance degraded substantially for some
species in predictive Model 5, but our ability to predict
species occurrence was high (ROCO 0.75 on both axes)
for eight of the 12 species (Favonigobius lentiginosus,
Notolabrus celidotus, Mugil cephalus, Engraulis australis,
Grahamina nigripenne, Favonigobius exquisitus, Rhombo-
solea leporina, Retropinna retropinna).

Predictive Model 5 developed from the presencee
absence data from the 25-harbour survey was then used
to predict the occurrence of each fish species at the 43
stations sampled during the 6-harbour survey (Fig. 10).
Occurrence was well predicted for five of the same eight
species (Notolabrus celidotus, Grahamina nigripenne,
Favonigobius exquisitus, Rhombosolea leporina, Retro-
pinna retropinna) (ROCO 0.70; percentage of samples
correctly classifiedO 70%). For Mugil cephalus, 81% of
samples were correctly classified, but the ROC was less
than 0.5. Our predictions for Engraulis australis,
Favonigobius lentiginosus, Rhombosolea plebeia, Pagrus
auratus and Peltorhamphus latus were mediocre to poor.
The occurrence of Aldrichetta forsteri was correctly
classified in most (98%) of the stations, but this was
a result of the nearly universal occurrence of this species;
a similar success rate could be achieved by simply
predicting its presence at all stations (Fielding and Bell,
1997). The ROC for A. forsteri was low, indicating that
this statistic is of little use in comparing observed and
predicted values for species having very high (or very
low) prevalence.

4. Discussion

This study examined the performance of GAMs in
describing and predicting the abundance or presence of
a suite of 12 estuarine fishes and species richness. We
focused on the broad picture (multiple harbours across
a spatial scale of 1000 km, and multiple species) in order
to assess the overall utility of this approach for making
predictions. The results were mixed. Descriptive models
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Table 5

Variables selected in GAM Environment Model 3 showing the nature of the relationship between each continuous variable, or the level of each

categorical variable, and fish abundance or species richness

Variable Levels FEX RPL PLA RLE MCE AFO NCE PAU EAU FLE RRE GNI Richness Times
selected 

Times 
in top
three 

Assemblage 1 1 1 1 1 2 2 2 U U U U

Substratum Soft mud + + + – + 0 6 1

Firm mud + – + 0 + + 6 1

Sandy mud + 0 + + + + 6 1

Sand – 0 – 0 – – 6 1

Vegetation None 0 0 0 0 0 5 1

Mangroves nearby – 0 + 0 – 5 1

Seagrass nearby – – 0 0 0 5 1

Seagrass present + 0 + + + 5 1

Depth + + – ∪ + + 6 3

Salinity + – – + + + + – 8 5

Clarity – – – – ∪ + – + – – – 11 6

Temperature – + ∪ + – 5 2

Distpercent + + + + ∩ ∪ + 7 0

Towdist – – – – – 5 4

Time – ∪ – ∩ ∪ ∪ – 7 2

Type Coastal bay + 0 – – 4 2

Drowned valley – 0 + + 4 2

Tidal lagoon + + – – 4 2

Tideflow ∩ – ∪ ∩ 4 2

Riverflow – – – ? – – 6 6

Complexity + + + – 4 1

Area – – – – 4 2

Tiderange – + – ? – ∪ – 7 2

Catchtemp ? + + 3 0

Species

Species are arranged by descending frequency of occurrence within assemblages (U indicates an unassociated species). Blank cells indicate non-

significant variables. Shading indicates the three variables (and their associated levels) contributing most to each model. Also shown (last two

columns) are the number of times each variable was selected in the best-fit model, and the number of times it was selected in the top three variables.

�, negative; C, positive; 0, intermediate; X, unimodal with intermediate optimum; W, bimodal with low and high optima; ?, indeterminate. Three-

letter species codes are shown in Table 3.
of fish abundance performed well for four out of 12
species; for most other species, and species richness, the
models described the data well but performed poorly to
moderately under cross validation. The latter problem
may in part be a result of the small sample sizes, because
some models were strongly influenced by a small
number of stations with high species abundance, and
also the absence of other potential predictors. Predictive
models of fish abundance usually performed worse than
descriptive models, but appeared reasonable for four
species. The reduced performance of predictive models is
partly attributable to the smaller number of variables
included (Model 5, meanZ 3.9 variables, NZ 13)
compared with descriptive models (Model 3, meanZ
7.1 variables, NZ 13).

Presenceeabsence models performed better overall
than abundance models: descriptive models showed
good performance for all 12 species, and predictive
models performed well for eight of the 12 species.
Furthermore, predictions made for an independent data
set (collected two years later than the data used for model
development) successfully predicted occurrence for five
species. A sixth species (Aldrichetta forsteri) occurred in
nearly all samples in this part of New Zealand, so the
occurrence models were effectively redundant.

Our overall conclusion is that GAMs were successful
in describing and predicting the occurrence of most
species, and moderately successful in predicting their
abundance. This is encouraging, considering that our
models suffer from a number of limitations, and have
the potential to be significantly improved. Better models
could be built with better environmental data. Our
models were offered a limited set of environmental
variables, some of which were point measurements that
did not account for tidal, diel, or seasonal variation. Our
harbour physical variables were informative at the
medium spatial scale only; i.e. they were useful for
discriminating among harbours, but not among stations
within harbours. For some species at least, information
on the physical habitat (substratum and vegetation)
significantly improved model performance; in fact for
some species, predictions from Model 4 were of little
practical use, suggesting that resources devoted to an
initial habitat survey, in order to provide the informa-
tion required to fit Model 5 GAMs, would greatly
increase the chances of obtaining useful predictions.
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Future model development requires environmental
variables that describe both the average conditions
experienced by fish, and the spatial and temporal
variability in those conditions. Attrill (2002) has shown
that salinity variation, rather than salinity per se, is
a better predictor of invertebrate species diversity in
estuaries. Such variables are likely to be more powerful
in predicting abundance and occurrence than were
the point measurements available in this study, and
surrogate variables such as Distpercent. Better predic-
tions may also be possible for harbours for which
hydrodynamic models exist (e.g., Manukau Harbour:
Bell et al., 1998), but few are available in New Zealand.
Remotely sensed environmental data (e.g., water colour,
temperature, turbidity) are now becoming available at
sufficiently fine resolution (2 km or less) to provide
synoptic summaries for the habitats of estuarine fishes.
Such data are potentially powerful predictors for some
of the larger harbours in our study.

Our models also have temporal and spatial limita-
tions. They were based on samples collected in summer,
when fish abundance is highest for many species
(authors’ unpublished data). The applicability of the
models to other seasons needs to be tested. Further-
more, our models are limited to harbours in the
northern North Island of New Zealand. Harbours
further south experience different conditions, notably
temperature, that are known to affect the occurrence
and abundance of shallow water reef fishes around New

Correlation coefficient between observed and predicted
abundance for GAMs using all data
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Zealand (Francis, 1996). Thus our models are not
necessarily applicable outside the region surveyed.

The independent, 6-harbour validation test span-
ned two years, so it was not a test of within-season
performance. The test was applied only to presencee
absence data; the predictive ability of models among
years might be expected to be worse for abundance data
because of likely variation in year class strength (most
fish sampled by beach seine were from the 0C and 1C
age classes). Year class abundance in estuaries varies as
a result of both pre-settlement and post-settlement
processes (e.g., Petrik et al., 1999; Potter et al., 2001;
Neuman and Able, 2003; Smith and Sinerchia, 2004).
Few studies have so far investigated the inter-annual
stability of fish-habitat relationships, leading to sugges-
tions that ‘‘efforts to quantify essential fish habitat will
be limited in their effectiveness until inter-annual
variability can be assessed’’ (Able, 1999). But prediction
across years is necessary (unless the resources exist
to conduct within-year sampling whenever research or
management questions need to be addressed), so the
performance of our predictive models for the 6-harbour
data set may be a more realistic reflection of their
practical utility.

Beach seine nets are inherently selective. The main
sampling biases result from the escapement of very small
fish through the meshes, and the escapement of large fish
around or over the net. Our models clearly apply only to
the part of the fauna that is both vulnerable to capture
by beach seines, and available in the area sampled;
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i.e. small or juvenile fishes that have limited avoidance
behaviour, and which inhabit intertidal flats and the
upper subtidal fringe of shallow harbours. The poor
performance of models for some species may be
attributable to their low vulnerability or availability to
the nets. For example, Pagrus auratus mainly inhabits
deeper channels and the central parts of harbours that
were not sampled in this study (authors’ unpublished
data), suggesting that beach seine samples are not
appropriate for monitoring and modelling their abun-
dance. Similarly, Engraulis australis is a schooling
pelagic species that may be more abundant in central
harbour waters than around the fringes.

Water clarity, salinity and the amount of freshwater
inflow were important variables in describing and
predicting the abundance and occurrence of fishes. This
is not surprising, given that these variables reflect some
of the major physical processes that occur in estuaries,
and have been shown to affect fish and macro-
invertebrate species richness, abundance and biomass
in other estuaries (Thiel et al., 1995; Marshall and
Elliott, 1998; Wagner and Austin, 1999; Whitfield, 1999;
Ysebaert et al., 2002; Martino and Able, 2003; Maes
et al., 2004). Other variables were also important, and
inspection of the relationships between each variable (or
each level in the case of categorical variables) and
species abundance revealed that the GAMs were
generally interpretable and plausible.

The fish assemblages identified by CA and WCA were
generally consistent with the results of the Model 3
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Fig. 10. Performance of a predictive model (Model 5) for the presence

of 12 fish species for the 6-harbour data set as measured by the ROC

statistic, and the percentage of samples that were correctly classified

(assuming that a threshold probability greater than or equal to 0.5

represents a predicted presence). Three-letter species codes are shown

in Table 3.
GAMs (Table 5). Of the five Assemblage 1 species for
which GAMs were developed, four showed a negative
relationship with Clarity (they were more abundant at
low clarity stations), and three showed a positive
relationship with Distpercent, Complexity, and one or
more of the mud levels of Substratum. These results
suggest that Assemblage 1 species are associated mainly
with the muddy, turbid, upper reaches of harbours that
have a complex coastline. Of the three Assemblage 2
species for which GAMs were developed, all showed
a positive relationship with Salinity, and two showed
a positive relationship with Depth and the ‘seagrass
present’ level of Vegetation. Assemblage 1 species
apparently prefer higher salinity waters, seagrass beds,
and deeper water (either channels adjacent to the tidal
flats or surface waters away from the shore).

The assemblage composition also reflects larger scale
biogeographic factors. Four of the seven Assemblage 1
species (Favonigobius exquisitus, Mugil cephalus, Graha-
mina capito, Chelidonichthys kumu) were most abundant
in harbours on the west coast of North Island (the
remaining three species occurred in similar numbers on
both coasts). Conversely, three of the five Assemblage 2
species (Notolabrus celidotus, Pagrus auratus, Girella
tricuspidata) were most abundant on the east coast (the
remaining two occurred in similar numbers on both
coasts). Similar large-scale patterns are apparent in
western and north-eastern Atlantic estuaries (Vieira and
Musick, 1993; Elliott and Dewailly, 1995).

Despite the limitations of our data and models, we
believe they will be useful within the northern North
Island for planning intensive process-based research,
and for guiding the management of human activities
that impinge on coastal marine environments. Detailed
results of the GAMs for individual species will be
reported elsewhere. Furthermore, we have recently
sampled harbours in the south-eastern South Island
and Stewart Island of New Zealand using the same
methods, and are currently extending our modelling to
those areas.

Our approach has widespread applicability elsewhere,
and our results lead to several recommendations that
may assist other researchers. We identified patterns in
estuarine fish abundance over a large spatial scale that
has rarely been achieved previously (but see Vieira and
Musick, 1993; Edgar et al., 1999). Failure to survey
a sufficiently large spatial scale may result in predictive
models that do not account for major regional
variability. It may also result in the omission of
important predictor variables from the models, or
conversely, the inclusion of unimportant variables, thus
limiting their utility. The use of GAMs to identify
predictive environmental variables is uncommon in
marine studies but should become routine in the future.
Many of the relationships between fish abundance and
environmental variables in our study were non-linear,
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indicating that GLMs, which have traditionally been
used for this kind of analysis, could provide a poor fit to
the data, and erroneous predictions. We have shown
that presenceeabsence models performed better than
abundance models, so researchers and managers need to
be aware of the trade-off between achieving precise but
potentially inaccurate predictions (abundance models)
and achieving less informative but more accurate
predictions (presenceeabsence models). Variation in
year class strength must be considered if models
developed in one year are used to predict fish abundance
or presence in another. Information on sediment and
vegetation characteristics of the fish habitat can
significantly enhance the predictive capability for some
species, and is probably worth collecting despite the
additional expense.
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Thiel, R., Sepúlveda, A., Kafeman, R., Nellen, W., 1995. Environ-

mental factors as forces structuring the fish community of the Elbe

Estuary. Journal of Fish Biology 46, 47e69.

Toepfer, C.S., Fisher, W.L., Warde, W.D., 2000. A multistage

approach to estimate fish abundance in streams using Geographic

Information Systems. North American Journal of Fisheries

Management 20, 634e645.

Underwood, A.J., Chapman, M.G., Connell, S.D., 2000. Observations

in ecology: you can’t make progress on processes without

understanding the patterns. Journal of Experimental Marine

Biology and Ecology 250, 97e115.

Vieira, J.P., Musick, J.A., 1993. Latitudinal patterns in diversity of

fishes in warm-temperate and tropical estuarine waters of the

western Atlantic. Atlantica 15, 115e133.

Wagner, C.M., Austin, H.M., 1999. Correspondence between envi-

ronmental gradients and summer littoral fish assemblages in low

salinity reaches of the Chesapeake Bay, USA. Marine Ecology

Progress Series 177, 197e212.

Whitfield, A.K., 1999. Ichthyofaunal assemblages in estuaries: a

South African case study. Reviews in Fish Biology and Fisheries

9, 151e186.
Wyatt, R.J., 2003. Mapping the abundance of riverine fish popula-

tions: integrating hierarchical Bayesian models with a Geographic

Information System (GIS). Canadian Journal of Fisheries and

Aquatic Sciences 60, 997e1006.

Ysebaert, T., Meire, P., Herman, P.M.J., Verbeek, H., 2002. Macro-

benthic species response surfaces along estuarine gradients: pre-

diction by logistic regression. Marine Ecology Progress Series 225,

79e95.

Zacharias, M.A., Howes, D.E., Harper, J.R., Wainright, P., 1998.

The British Columbia marine ecosystem classification: rationale,

development, and verification. Coastal Management 26,

105e124.


	Predictive models of small fish presence and abundance in northern New Zealand harbours
	Introduction
	Materials and methods
	25-Harbour survey
	6-Harbour survey
	Sampling design and procedure
	Site physical variables
	Data analyses
	Fish assemblages
	Predictor variables
	Descriptive and predictive models
	Model validation


	Results
	Catch composition and large-scale distribution patterns
	Fish assemblages
	Descriptive and predictive models

	Discussion
	Acknowledgements
	References


