Water Quality Survey of the Lower Kaituna Catchment 2007 - 2008

Prepared by Stephen Park, Senior Environmental Scientist

Bay of Plenty Regional Council Environmental Publication 2010/01 January 2010

5 Quay Street P O Box 364 Whakatane NEW ZEALAND

Working with our communities for a better environment E mahi ngatahi e pai ake ai te taiao

ISSN: 1175 9372 (Print) ISSN: 1179 9471 (Online)

Water Quality survey of the lower Kaituna Catchment 2007 - 2008

Environmental Publication 2010 01 ISSN 1175 9372

January 2010

Bay of Plenty Regional Council 5 Quay Street PO Box 364 Whakatane 3158 NEW ZEALAND

Prepared by Stephen Park, Senior Environmental Scientist

The assistance of Rob Donald in editing the draft report and Laboratory staff for assistance with sample handling and analysis has been appreciated.

An extensive water quality survey of the lower Kaituna River catchment was conducted between May 2007 and June 2008 to provide an assessment of environmental quality and a baseline against which future comparisons could be made. It included;

- Regular baseflow water quality monitoring of the main tributary streams.
- Storm event peak flow water quality sampling.
- Limited sampling of small inflows.
- Water and sediment sampling (for metals and organic contaminants).
- Sediment and shellfish quality sampling in Maketu Estuary.

This information will be used to support the implementation of the Kaituna River and Ongatoro/Maketu Estuary Strategy.

The general water quality results show that the tributaries range from lightly to moderately impacted. Observed trends in declining water quality generally correlate with the percentage of catchment in horticultural, agricultural and urban land cover. This was very apparent in the smallest streams or drains which tend to have high ammonium nitrogen levels. Bacterial contamination ranged from moderate to high with the Kopuaroa and Te Puke streams exceeding the Ministry for the Environment (MfE) contact recreation guideline values for nearly all samples. Overall these two streams had the poorest water quality.

Of the organic contaminants tested for in water, only three Polycyclic Aromatic Hydrocarbon (PAH) compounds were detected. None of these or any of the metal contaminants exceeded guidelines values for human consumption, aluminium (all sites) and zinc at the Te Puke, Kopuaroa and Parawhenuamea Streams exceed the ANZECC trigger levels (95%) for the protection of aquatic life. High zinc values are most likely the result of agricultural and urban land use impacts.

Sediment testing for a similar range of organic and metal contaminants produced similar results but with more PAH compounds and four organochlorine pesticides detected. Three pesticides, DDT and Dieldrin and Endrin, exceeded the ANZECC ISQG-high value for the protection of aquatic life in the Ohineangaanga and Te Puke Stream. These pesticides are all very persistent in the environment and result from historic use. The geothermal influence on the Kaituna River and Maketu Estuary was clearly evident from the elevated levels of arsenic and mercury in the sediments. This resulted in the Kaituna River exceeding the ANZECC low trigger value for mercury. The Te Puke Stream had the highest elevation of metals overall strongly suggesting land use impacts.

The levels of metals and organic contaminants in shellfish from Maketu Estuary were very similar to those found in 1992. Mercury and arsenic are elevated due to the geothermal influence but the levels are below New Zealand guidelines for human consumption. The only organic compounds detected in shellfish were DDT or its break down products and these were below the guideline for consumption.

Contents

cutive Summary	iii
1: Introduction	1
Overview	1
Background on the Kaituna River	1
General	1
The Lower Kaituna Catchment	2
River and Stream Flows	3
Land cover	4
2: Sampling locations and methods	7
River and Stream Sites	7
General water quality	7
Rainfall events	8
Metal and organic contaminants	8
Estuary Sites	8
Sampling and Analysis Methods	9
Shellfish	9
Sediments	10
Water	10
3: Results – River and Stream Sites	13
General Water Quality	13
Kaituna River and main tributaries	13
Confluence samples	15
Minor inflows	15
Anions and cations	16
Organic Contaminants	17
	Autive Summary

3.2.1	Water	17
3.2.2	Sediment	17
3.3	Metals	19
3.3.1	Water	19
3.3.2	Sediments	20
3.4	Rainfall event monitoring	20
3.4.1	Rainfall	20
3.4.2	Stream levels	23
3.4.3	Water quality data for rain events	25
Part	4: Results - Maketu Estuary	27
4.1	Sediment quality	27
4.1.1	Organic contaminants	27
4.1.2	Metals	27
4.2	Shellfish quality	28
Part	5: Summary	31
5.1	Introduction	31
5.2	Results	31
5.2.1	Water quality	31
5.2.2	Organic contaminants	31
5.2.3	Metals	32
5.2.4	Storm event sampling	32
5.2.5	Maketu Estuary	32
5.3	Quality Assessment	32
Part	6: References	35
Apper	ndix I – Lists of organic compounds that were tested in water and shellfish	39
Apper sedim	ndix II – Lab analysis reports for organics and metals in stream/river water an ient samples	าd 41

Appendix - III Lab analysis reports for organics and metals in shellfish samples from Maketū Estuary 57

Appendix IV – Lab analysis reports for organics and metals in sediment samples from Maketū Estuary 65

Tables and Figures

Table 1	Flow statistics (Litres/second) for the Kaituna River and tributaries.	3
Table 2	Land cover (km ²) in each of the Lower Kaituna River sub-catchments.	4
Table 3	Land cover (%) in each of the lower Kaituna River sub-catchments.	4
Table 4	Water quality survey sites in the lower Kaituna River catchment, description and NZ 260 map grid reference.	8
Table 5	Description of sites in the Maketu and Kaituna Estuaries sampled for sediment and shellfish contaminants.	9
Table 6	Median values (n=13) for water quality parameters for samples collected from the Kaituna River and tributaries monthly between May 2007 and June 2008.	, 13
Table 7	Comparison of E.coli results (no./100ml) from monthly sampling in 2007/2008 from the Kaituna River and tributaries against the MfE 200 microbial water quality guidelines for single samples (sample <260-acceptable, >260-alert mode, >550-action mode).	3 14
Table 8	Median values (n=13) of nutrient parameters (g/m ³) and Chlorophyll-a (mg/m ³) for samples collected from the Kaituna River and tributaries monthly between May 2007 and June 2008.	14
Table 9	Mean water quality parameter values (n=2) of samples taken at the confluence of streams with the Kaituna River in June 2007.	15
Table 10	Mean suspended sediment and nutrient values (g/m ³ , n=2) of samples taken at the confluence of streams with the Kaituna River in June 2007.	s 15
Table 11	Mean water quality parameter values (n=2) for samples taken in mino inflows to the Kaituna River in June 2007.	r 15
Table 12	Mean suspended sediment and nutrient values (g/m ³ , n=2) for sample taken in minor inflows to the Kaituna River in June 2007.	es 16
Table 13	Results of analysis of cations and anions on water samples collected 7 May 2008 from the Kaituna River and tributaries.	on 16
Table 14	Organochlorine pesticide concentrations (mg/kg dry wt) detected in sediment shown as-sampled and normalised to 1% organic carbon. Samples collected on 7 May 2008.	18

vii

Table 15	PAH concentrations (mg/kg dry wt) in sediment as collected and normalised to 1% organic carbon for sites recording levels above the limit of detection from samples collected on 7 May 2008.	18
Table 16	Results for total metals (g/m ³) in water column samples collected from the Kaituna River and the main tributaries on 7 May 2008. Highlighter values exceed the ANZECC 2000 95% protection guideline for aquatilife.	n d ic 19
Table 17	Sediment parameters and total metal concentrations (mg/kg –dw) measured in streambed samples collected from the lower Kaituna catchment on the 7 May 2008.	20
Table 18	Peak flows for the rainfall events sampled in 30 June and 17 August 2007 expressed as a percentage of the mean annual peak flood flow.	25
Table 19	Maximum values for water quality parameters recorded at each of the streams/rivers sampled on 30 June and 17 August 2007 (n=5).	e 25
Table 20	Median values for water quality parameters recorded at each of the streams/rivers sampled on 30 June and 17 August 2007 (n=5).	26
Table 21	Ratio of the median rain event flow/median base flow concentration of key water quality parameters to show change during high flow events.	of 26
Table 22	Concentration of PAH's (mg/kg dry wt) in surface sediment samples collected from Maketu Estuary on 5 May 2008 (detects highlighted).	27
Table 23	Concentration of metals (mg/kg dry wt) in surface sediment samples collected from Maketu Estuary on 5 May 2008.	28
Table 24	Metals and organic contaminants found in shellfish samples collected from Maketu Estuary on 5 May 2008.	1 29
Figure 1	Sub-catchments of the lower Kaituna catchment.	2
Figure 2	Land cover in the lower Kaituna Catchment based on 1995 SPOT satellite imagery with horticulture updated to 2003.	5
Figure 3	Locations of the water quality sampling sites in the lower Kaituna catchment.	7
Figure 4	Sediment and shellfish sites sampled in Maketu Estuary for analysis organic and metal contaminants.	of 9
Figure 5	Rainfall recorded at the Kaharoa, Saunders Road and Te Matai gaug on 30 June 2007.	es 21
Figure 6	Rainfall recorded at the Kaharoa, Saunders Road and Te Matai gaug on 17 August 2007.	es 22

viii

- Figure 7 Water levels recorded on the Mangorewa River, Raparapahoe Stream and the Kaituna River on 30 June 2007. 23
- Figure 8Water levels recorded on the Mangorewa River, Raparapahoe Stream
and Kaituna River on 17 August 2007.24

1.1 **Overview**

The objective of this study was to provide catchment-wide water quality data for the Kaituna River and tributaries downstream of the Okere outlet from Lake Rotoiti. This involved a number of surveys including;

- Monthly sampling of the general water quality (temperature, turbidity, suspended solids, nutrients and bacterial levels) of seven streams from May 2007 to June 2008. Sampling (twice) of eight additional sites including minor inflows was carried out in June 2007.
- Sampling of water and sediment May 2008 for a range of heavy metals; organochlorines, organonitrogen and organophosphorus pesticides, polycyclic aromatic hydrocarbons (PAH's), polychlorinated biphenyls (PCB's) and chlorinated phenols.
- Storm flow sampling of seven streams around the time of peak flow to assess the impact on sediment and nutrient run-off.
- Sampling of sediment and shellfish for a range of metals and organic contaminants at one site in the Kaituna River Estuary and four sites in the Maketu Estuary.

A key aim of this report is to provide a baseline against which any future change can be accurately assessed. This information will be used to support the implementation of the Kaituna River and Ongatoro/Maketu Estuary Strategy.

1.2 Background on the Kaituna River

1.2.1 General

The Kaituna River is situated in the central Bay of Plenty and flows from the Okere arm of Lake Rotoiti to the sea at Te Tumu. Historically the river flowed through Maketu Estuary but was diverted directly to the sea in 1958 by engineering works. Re-diversion of restricted flows back to the estuary occurred in 1996 following the granting of consent to the Minister of Conservation.

Lakes Rotorua and Rotoiti form the upper catchment of the Kaituna River and both have experienced long-term deterioration of water quality. This decline has been documented through a number of research projects and therefore there is good information on the source water quality of the Kaituna River. The water quality assessment prepared to support the diversion of the Ohau Channel directly into the top of the Kaituna River is particularly relevant (McIntosh 2005).

The upper regions of the lower Kaituna River catchment (downstream of the lakes) are dominated by pastoral and exotic forestry with some sub-catchments retaining extensive native forest cover. In recent years there has been some conversion of exotic forestry to dairy farms. Much of the mid section of this catchment has had suitable land converted to horticulture with kiwifruit being dominant. The lower regions of the catchment are predominantly productive river-flat plains with extensive drainage schemes and the dominant land use is dairy farming.

A review of the water quality of the lower Kaituna River catchment (Park 2007) found an increasing trend in nitrogen. The review also highlighted the lack of water quality data available for many of the tributaries.

1.2.2 The Lower Kaituna Catchment

The total Kaituna catchment area (including the lakes) is approximately 1,218 km². The catchment feeding directly into the Kaituna River (referred to here as the lower Kaituna catchment) has an area of approximately 580 km², 47.6% of the total. The sub-catchments in the lower Kaituna are shown in Figure 1 and the area of each is given in Table 2.

Figure 1 Sub-catchments of the lower Kaituna catchment.

Most of the Papamoa sub-catchment ("1" in Figure 1) drains into the Wairakei Stream. This wetland/drainage system flows towards the Kaituna River but then reaches an area where the water soaks away into the ground. A small part of the catchment in the vicinity of Bell Road and the Kopuaroa canal does drain as surface water to the Kaituna River.

The lower Kaituna sub-catchment ("2" in Figure 1) is flat low-lying land which drains to the Kaituna River via a number of small drains. Much of the water is pumped out of the drains in the area near the river mouth.

The upper Kaituna sub-catchment ("11" in Figure 1) consists of a large number of very small rolling to steep catchments which all flow directly into the Kaituna River. Because of their small size, number and similarity they have been grouped together.

The Parawhenuamea Stream which drains sub-catchment 8 has been diverted and now flows into the Kaituna River just above the State Highway 2 Bridge at Waitangi (Te Matai).

1.2.3 River and Stream Flows

The Kaituna River is around 53 km in length from Lake Rotoiti (at Okere) to its discharge point at the coast near Maketu. The first 25 km is fast flowing and drops some 260 m through a number of waterfalls and an incised gorge. The remaining 28 km is slower flowing dropping just 20 m in altitude to the sea. The residence time over the whole river from lake to sea is relatively short at approximately one day.

The available flow data for the Kaituna River and tributaries is summarised in Table 1. There are only a few small surface inputs in the lower section of the river for which there are no flow gauging records. A considerable part of the total river flow at Te Matai is attributed to sizable cold water springs between Okere and Te Matai (Freestone 1975, cited in White et. al 1978). Many of the more sizable stream inputs, such as those from the Waiari and Raparapahoe, join the Kaituna River well down towards the sea.

Site	Mean flow	Low flow - mean annual	Maximum flow - mean annual	% of flow at Te Matai
Kaituna at Taaheke (Okere) [#]	20,687	13,008	31,377	52.3
Mangorewa River	6124	4,557	162,794	15.5
Waiari Stream*	4,039	3,406	34,804	-
Ohineangaanga Stream*	350	-	-	-
Raparapahoe Stream*^	1,852	494	39,875	-
Kopuaroa Stream*	88	-	-	-
Other streams and springs	6,379	-	-	32.2
Kaituna at Te Matai	39,519	29,072	133,311	-

Table 1Flow statistics (Litres/second) for the Kaituna River and tributaries.

[#] Data derived from measurements at Okere (before construction of the lake level control structure) and at the Trout Pools at Taaheke (after construction of the lake level control structure).

* Confluence is below Te Matai.

^ The Raparapahoe Stream has recently had a name change to Atuaroa Stream.

1.2.4 Land cover

Land cover estimates for the lower Kaituna River catchment are given in Tables 2 and 3 and shown in Figure 2. These estimates are based on the 1995 SPOT satellite remote sensing maps. The horticulture category was updated to 2003 while all other categories are based on the 1995 data with adjustment for horticulture changes.

	Total Area	Grass	Horti culture	Exotic Forest	Native Forest	Scrub	Urban	Bare
Lower Kaituna	45.8	28.5	15.5	0.6	0.1	0.1	0.6	0.1
Papamoa	31.8	23.8	0.9	0.9	0.1	0.1	5.5	0.1
Kopuaroa	30.3	20.8	1.8	1.9	5.1	0.3	0.1	0.4
Raparapahoe	53.6	14.0	9.4	1.6	27.8	0.7	0.1	0.0
Ohineangaanga	24.8	11.5	6.0	0.5	3.5	0.0	3.4	0.0
Te Puke East	9.1	1.1	6.0	0.3	0.7	0.0	1.2	0.0
Waiari	72.0	21.1	4.6	19.1	26.4	0.1	0.1	0.0
Parawhenuamea	31.4	10.7	14.0	2.2	1.3	3.0	0.1	0.0
Rangiuru South	3.9	1.6	1.9	0.1	0.2	0.0	0.0	0.0
Mangorewa	189.0	72.9	2.3	46.6	64.8	1.6	0.0	0.0
Upper Kaituna	58.5	10.6	0.8	30.5	16.4	0.2	0.0	0.0
Hururu	27.5	14.1	0.0	9.5	4.0	0.0	0.0	0.0
Total Area (km ²)	577.7	230.7	63.1	114.5	150.4	6.0	11.3	0.6

Table 2Land cover (km^2) in each of the Lower Kaituna River sub-catchments.

* Note 1km² = 100 hectares

Table 3	Land cover (%) in each of the lower Kaituna River sub-catchments.
---------	---

	Grass	Horti	Exotic	Native	Scrub	Urban	Bare
	01233		101051	101631		UIDall	
Lower Kaltuna	02.3	33.8	1.3	0.2	0.1	1.4	0.1
Papamoa	74.7	2.9	2.8	0.3	0.2	17.1	0.3
Kopuaroa	68.6	6.0	6.3	16.8	0.9	0.5	1.3
Raparapahoe	26.1	17.5	3.0	51.8	1.4	0.2	0.0
Ohineangaanga	46.4	24.0	2.0	14.1	0.0	13.6	0.0
Te Puke East	12.2	66.0	3.3	7.7	0.0	13.6	0.0
Waiari	29.3	6.4	26.5	36.7	0.1	0.1	0.0
Parawhenuamea	34.1	44.7	7.0	4.1	9.5	0.4	0.0
Rangiuru South	40.9	49.2	3.3	5.3	0.0	0.5	0.3
Mangorewa	38.6	1.2	24.6	34.3	0.8	0.0	0.0
Upper Kaituna	18.1	1.3	52.1	28.0	0.3	0.0	0.0
Hururu	51.1	0.0	34.4	14.6	0.1	0.0	0.0
% of total	39.9	10.9	19.8	26	1	2	0.1

The largest sub catchment is the Mangorewa River at 189 km² or 32.7% of the total catchment area. The Waiari Stream at 72 km² is the next largest.

Table 3 provides the percentage of each land cover category in the sub catchments. In the bottom line of Table 3 the percentage of each land cover type for the whole of the Lower Kaituna catchment is shown. Grass cover comprises around 40% of the area while native forest covers 26% and exotic forest 19.8%. Horticulture comprises 10.9% of the total area while scrub, urban and bare areas are relatively low.

Catchments lower down the Kaituna River generally have the highest grass cover with the Papamoa catchment having nearly 75%. Areas around Te Puke have high

levels of horticultural use with Te Puke East at 66%, Rangiuru South at 49% and Parawhenuamea at 45%.

The numerous small catchments along the upper Kaituna River sub-catchment collectively have 52% cover of exotic forest. The Raparapahoe has the highest percentage of native forest cover at 52%. Scrub cover in the Parawhenuamea catchment is proportionately high compared to the other catchments. This catchment has incised stream beds and the numerous steep gulleys host the bulk of the scrub cover.

Figure 2 Land cover in the lower Kaituna Catchment based on 1995 SPOT satellite imagery with horticulture updated to 2003.

2.1 River and Stream Sites

The locations of the river and stream sampling sites are shown in Figure 3 and described in Table 4.

Figure 3 Locations of the water quality sampling sites in the lower Kaituna catchment.

2.1.1 General water quality

The numbered sites (1-7) cover the major stream and river inflows to the lower Kaituna River. These sites were sampled for water quality once each month from May 2007 to June 2008. When possible sampling was undertaken on or about the same day that permanent monitoring sites on the Kaituna River were sampled to allow better comparison of results. Sites A - H were all sampled twice around June 2007.

The general water quality parameters measured included temperature, conductivity, nutrients (dissolved and totals) and bacteria (*E.coli*, faecal coliforms and enterococci). Chlorophyll-*a* (Chl-*a*) was also measured at the Mangorewa site to give an indication of phytoplankton biomass.

Table 4	Water	quality	survey	sites	in	the	lower	Kaituna	River	catchment,
	descrip	otion and	d NZ 26	0 map	gri	d ref	erence).		

Site #	Site name/location	Lab id	East	North
1	Kopuaroa Stream, SH2 bridge	210159	2801057	6378241
2	Raparapahoe (Atuaroa) Stream, SH2 bridge	210002	2801430	6376420
3	Ohineangaanga Stream, SH2 bridge	210001	2802286	6374692
4	Te Puke East, SH2 culvert	210275	2803779	6374090
5	Waiari Stream, SH2 bridge	210053	2804217	6373698
6	Parawhenuamea Stream, Rangiuru Rd	210052	2806711	6372958
7	Mangorewa River, at Kaituna River confluence	210274	2808620	6369159
Α	Old Parawhenuamea Stream – farmland drain	210273	2804800	6376155
В	Waiari Stream, at Kaituna River confluence	210054	2804761	6376252
С	North Te puke - farmland drain	210272	2804690	6376390
D	Raparapahoe, at Kaituna River confluence	210058	2804930	6377160
E	Kopuaroa, at Kaituna River confluence	210271	2805380	6377970
F	Papamoa Drain	210270	2806220	6378870
G	Kaituna Wetlands level control outlet	210269	2809080	6377827
Н	Fords Cut pump station farmland drain	240014	2810900	6377270
	Maungarangi Road - Kaituna River	160128	2808527	6368170

2.1.2 Rainfall events

Sites 1-7 were sampled around the peak of two rainfall events that occurred on 30 June and 17 August 2007. These samples were analysed for suspended solids, turbidity and nutrients.

2.1.3 Metal and organic contaminants

Sites 1-7 and Maungarangi Road (Kaituna River) were sampled on 7 May 2008 for a range of metal, pesticide, PAH and PCP contaminants in the surface water and sediments. A water sample was taken at Site H (Fords cut pump station) and analysed for the same range of contaminants.

2.2 Estuary Sites

Additional sites were sampled for analysis of contaminants in sediments from the Kaituna River estuary and the Maketu Estuary. Shellfish were also sampled from the Maketu Estuary. The sampling sites are described in Figure 4 and Table 5.

- Figure 4 Sediment and shellfish sites sampled in Maketu Estuary for analysis of organic and metal contaminants.
- Table 5Description of sites in the Maketu and Kaituna Estuaries sampled for sediment
and shellfish contaminants.

Site	Description	Sample #	Easting	Northing
M1	Mid Maketu Estuary sediment	082899	2813622	6376525
M2	Mid Maketu Estuary sediment	082900	2813725	6377075
M3	Mid Maketu Estuary sediment	082901	2813467	637690
M4	Mid Maketu Estuary sediment	082902	2813098	6377175
K1	Kaituna Estuary 100m from entrance	082958	2810970	6377680
SF1	Mid Maketu Estuary pipi	082895	2814212	6377093
SF2	Mid Maketu Estuary pipi	082896	2813720	6377150
SF3	Mid Maketu Estuary cockle	082897	2814212	6377093
SF4	Mid Maketu Estuary cockle	082898	2813274	6377040

2.3 **Sampling and Analysis Methods**

2.3.1 Shellfish

The collection of shellfish from Maketu Estuary was carried out using hand gathering with each sample (minimum 50 shellfish) placed in labelled plastic bags on ice in chilly bins. Samples were sent by overnight courier to the laboratory.

Shellfish were shucked and blended to produce a homogenised flesh sample before analysis as below.

 The moisture content of the flesh was determined by drying at 65°C for a minimum of 24 hours.

- Metals analysis was by ICP-MS following digestion of sample by nitric and hydrochloric acid, micro digestion at 85°C for 1 hour.
- Lipid content was determined by gravimetric method.
- Organic contaminants (PCB, PAH and organochlorine pesticides) were determined by sonication extraction, SPE cleanup, GPC cleanup, dual column GC-ECD analysis. Pentachlorophenol trace levels by ASE extraction, acetylation and GC-ECD analysis.
- Dry matter was determined by drying at 103°C and gravimetry.

2.3.2 Sediments

Both freshwater and estuarine sediment samples were obtained using a stainless steel trowel to sample the top 2 cm of sediment. A minimum of ten replicates from each site were combined and well mixed to form a composite sample before being placed into a labelled plastic bag and stored on ice. Samples were sent by overnight courier to the laboratory. Samples were then air dried at 35°C and sieved to obtain the fraction less than 2 mm. The analysis methods are outlined below.

- Dry matter was determined by drying at 103°C then gravimetric method.
- Total carbon analysis was by catalytic combustion (900°C, O₂), separation, thermal conductivity detector (elementar analyser).
- Metals (total recoverable trace level) by nitric/hydrochloric acid digestion, ICP-MS, trace level.
- Organochlorine pesticides (trace) by sonication extraction, SPE cleanup, GPC cleanup, dual column GC-ECD analysis.
- Organonitro and phosphorus pesticides (trace) by sonication extraction, GPC cleanup, GC-MS analysis.
- Trace polycyclic aromatic hydrocarbons (PAH's) by sonication extraction, SPE cleanup, GC-MS SIM analysis.
- Pentachlorophenol (PCP) screen determined by solvent extraction, acetylation, GC-ECD analysis.

2.3.3 Water

Water samples were collected as mid-stream grab samples in containers washed and provided by the laboratory as appropriate for the analysis being conducted. Stream flows at the time were average base flow levels. The water analysis methods are outlined below.

- Nutrients were determined by the use of standard methods. A summary of these methods is included in the laboratory report included in Appendix II.
- Total anions and cations by calculation of sum as mEquiv/L, total alkalinity using APHA 2320 B (modified for alk <20) 21st ed. 2005, bicarbonate using APHA 4500-CO2 D 21st ed. 2005, total hardness by calculation from Calcium and Magnesium.
- Samples for dissolved metals were filtered using 0.45 micron membrane filters and preservation with nitric acid. APHA 3030 B 21st ed. 2005.

- Total metals (drinking water suite trace) by nitric acid digestion and ICP-MS APHA 3125 B 21st ed. 2005.
- Dissolved Calcium, Magnesium, Potassium and Sodium (trace) by ICP-MS APHA 3125 B 21st ed. 2005.
- Organochlorine/Organonitro and phosphorus pesticides (ultra trace) determined by solid phase extraction, GPC and GC-MS analysis.
- Trace polycyclic aromatic hydrocarbons (PAH's) by solid phase extraction, SPE, GC-MS SIM analysis.

3.1 General Water Quality

3.1.1 Kaituna River and main tributaries

The results of the general water quality monitoring are summarised as median values in Tables 6 to 8. Sites on the Kaituna River are listed in order of occurrence from the top of the river (Okere Falls) to the coast (Te Tumu). The results reflect the lake source with increasing influence as the river flows through the lower catchment. Median conductivity values decrease down river with the exception of Te Tumu which has some saline influence. Chlorophyll-*a* concentrations decrease down the river indicating dilution of lake sourced-algae while nutrient concentrations increase.

Table 6Median values (n=13) for water quality parameters for samples collected
from the Kaituna River and tributaries monthly between May 2007 and
June 2008.

	Temp	COND	SS	TURB				
Site	°C	ms/m	g/m³	NTU	pН	Ecoli*	Ent*	FC*
KR - Okere Falls	13.6	18.9	2.2	1.2	6.9	11	8	10
KR - Maungarangi Road	14.9	16.8	4.9	1.7	6.8	30	8	34
KR - Te Matai	14.4	14.5	6.7	2.0	6.8	75	16	76
KR - Te Tumu	17.1	76.3	5.6	3.5	6.9	201	23	201
Mangorewa River	13.1	7.5	2.5	0.9	6.9	58	24	67
Parawhenuamea Strm	14.2	9.2	6.8	3.2	6.7	191	87	211
Waiari Stream	13.2	7.4	5.9	1.8	7.0	188	47	101
Te Puke Stream	14.7	14.6	8.6	9.8	6.6	1301	544	1601
Ohineangaanga Stream	14.2	9.8	5.3	2.7	6.7	389	89	480
Raparapahoe Stream	14.2	7	8.6	4.1	6.9	356	57	346
Kopuaroa Stream	13.6	13.1	16	17.5	6.8	1801	633	1801

* numbers/100 ml

Of all the tributaries sampled the Te Puke and Kopuaroa Streams had the highest conductivity, suspended solids (SS) and turbidity levels. The Kopuaroa Stream stands out as having a particularly high median SS value. These two streams also had very high bacterial loadings while the Ohineangaanga and Raparapahoe Streams have moderate bacterial loadings.

Table 7 below compares the *E.coli* results to the single sample criteria set out in the Microbial Water Quality Guidelines for Recreational areas (MfE 2003). With the exception of the Kaituna River at Okere Falls, all other sites have at least one sample that exceeds the alert mode criteria. The lower Kaituna River (Te Matai - Te Tumu) also has at least one sample that exceeds the action criteria. Nearly all the samples from the Kopuaroa and Te Puke Streams exceed the action criteria.

Table 7Comparison of E.coli results (no./100ml) from monthly sampling in
2007/2008 from the Kaituna River and tributaries against the MfE 2003
microbial water quality guidelines for single samples (sample <260-
acceptable, >260-alert mode, >550-action mode).

	Number of samples	% >260	% >550
Okere Falls	14	0.0	0.0
Maungarangi Road	13	7.7	0.0
Te Matai	13	7.7	7.7
Te Tumu	8	25.0	12.5
Mangorewa	13	15.4	7.7
Parawhenuamea	12	25.0	8.3
Waiari	12	41.7	25.0
Te Puke	12	91.7	91.7
Ohineangaanga	12	75.0	33.3
Raparapahoe	12	58.3	25.0
Kopuaroa	12	100	100

The results for nutrients (Table 8) show some interesting values. Nearly all of the phosphorus in the Mangorewa River is in the dissolved reactive phosphorus (DRP) form. This is biologically available and the Mangorewa has the highest median concentration of all the tributaries sampled. Because of its moderate size, the Mangorewa is a significant contributor to the DRP load in the Kaituna River. The Parawhenuamea and Waiari Streams also have moderately high DRP concentrations which accounts for nearly all the total phosphorus measured. In terms of total phosphorus concentrations the Kopuaroa Stream has the highest median values.

Median ammonium nitrogen (NH4) concentrations were high in the Kopuaroa Stream, moderately high in the small Te Puke Stream and very low in the Mangorewa River. All tributaries contribute additional nitrate/nitrite nitrogen (NOx) loading to the Kaituna River. The Parawhenuamea and Ohineangaanga Streams have the highest median concentrations of NOx and total nitrogen (TN).

Table 8Median values (n=13) of nutrient parameters (g/m³) and Chlorophyll-a
(mg/m³) for samples collected from the Kaituna River and tributaries
monthly between May 2007 and June 2008.

Site	DRP	NH4-N	NOx-N	TKN	TN	TP	Chl-a
KR - Okere Falls	0.003	0.017	0.017	0.270	0.288	0.021	6.3
KR - Maungarangi Road	0.017	0.014	0.238	0.291	0.521	0.033	4.5
KR - Te Matai	0.030	0.063	0.520	0.300	0.792	0.044	3.1
KR - Te Tumu	0.030	0.067	0.570	0.375	0.838	0.044	2.4
Mangorewa River	0.054	0.007	1.065	0.168	1.223	0.050	0.2
Parawhenuamea Stream	0.043	0.019	1.910	0.192	2.115	0.049	
Waiari Stream	0.042	0.016	1.080	0.166	1.241	0.042	
Te Puke Stream	0.022	0.091	1.355	0.550	1.869	0.036	
Ohineangaanga Stream	0.022	0.024	2.245	0.197	2.414	0.022	
Raparapahoe Stream	0.015	0.022	0.710	0.212	0.938	0.014	
Kopuaroa Stream	0.031	0.220	0.717	0.696	1.612	0.064	

The only tributary in which Chlorophyll-*a* measurements were made is the Mangorewa River. Median concentrations are very low indicating a near absence of phytoplankton which means it effectively dilutes phytoplankton in the Kaituna River. The other tributaries are likely to be similar and this helps explain why algal concentrations in the river decrease down to the sea.

3.1.2 **Confluence samples**

The water quality of samples taken on two days in June 2007 at the confluence of the Kopuaroa, Raparapahoe and Waiari Streams is shown in Tables 9 and 10. When compared to the upstream samples taken around the same time the results tend to be similar with the exception of the Waiari Stream. The nutrient levels recorded at the confluence site for the Waiari Stream were higher than the upstream values.

Table 9Mean water quality parameter values (n=2) of samples taken at the
confluence of streams with the Kaituna River in June 2007.

Site	Temp ℃	COND ¹	TURB (NTU)	pН	Ecoli ²	ENT ²	FC ²
Kopuaroa	10.4	15	13.3	6.9	220	126	310
Raparapahoe	11.1	6	5.7	7	405	54	545
Waiari	12.3	7	2.2	7.1	83	24	109

mS/m @25C, ² number /100 ml.

Table 10	Mean suspended sediment and nutrient values (g/m ³ , n=2) of samples
	taken at the confluence of streams with the Kaituna River in June 2007.

	SS	DRP	NH4-N	NOx-N	TKN	TP
Kopuaroa	6	0.031	0.227	0.086	0.61	0.062
Raparapahoe	10.3	0.015	0.035	1.51	0.237	0.027
Waiari	8.7	0.08	0.038	1.23	0.208	0.075

3.1.3 Minor inflows

Some of the smaller inflows in the lower reaches of the Kaituna River were sampled on two occasions in June 2007 to provide an indication of the quality of and potential impact on the Kaituna River. The results are shown in Tables 11 and 12 below.

Table 11Mean water quality parameter values (n=2) for samples taken in minor
inflows to the Kaituna River in June 2007.

Site (*) – shown on Fig 3	Temp	COND ¹	TURB	рΗ	Ecoli ²	ENT ²	FC ²
Kaituna Wetland (G)	11.2	48	8.0	6.8	140	31	129
Papamoa drain (F)	11.5	30	5.9	7.0	25	19	31
Small Drain (C)	9.5	20	5.4	6.6	225	105	265
Old Parawhenuamea (A)	9.2	18	21.5	6.5	2635	715	4300
Farm drain Fords Cut (H)	10.7	390	29.0	6.6	145	82	245

mS/m @25C, ² number /100 ml.

Table 12Mean suspended sediment and nutrient values $(g/m^3, n=2)$ for samples
taken in minor inflows to the Kaituna River in June 2007.

				NH4-	NOx-		
Sites as shown on Fig 3	SS	DRP	TP	Ν	Ν	TKN	TN
Kaituna Wetland (G)	5.5	0.033	0.079	0.314	0.481	0.689	1.170
Papamoa drain (F)	4.0	0.037	0.068	0.182	0.713	0.650	1.363
Small Drain (C)	3.6	0.034	0.067	0.449	1.850	1.090	2.940
Old Parawhenuamea (A)	28.0	0.086	0.246	0.652	0.422	0.710	1.132
Farm drain Fords Cut (H)	14.5	0.004	0.045	0.632	0.492	0.855	1.347

Of these sites one (Site H) has high conductivity. Both sites A and H have high suspended solids and turbidity readings. In terms of bacteria (*E.coli*, enterococi and faecal coliforms) site A has high numbers.

In terms of nutrients, DRP and TP concentrations were high at site A. Concentrations of oxidised forms of nitrogen (NOx) and total nitrogen were reasonably low at sites G, A and H, but moderate at site C. All of these sites show elevated concentrations of ammonium nitrogen, particularly sites A and H.

Site H was sampled on the river side of the discharge point on 7 May 2008 while the drain was discharging large volumes as a result of rainfall on the previous night. Results for nutrients were much higher (NH4 1.3, NOx 0.85, TKN 2.9, TN 3.8 and TP 0.61 g/m³) after rain.

3.1.4 Anions and cations

Water samples were collected from a number of sites to determine their anioncation characteristics. The results are shown in Table 13 below.

	Kopuar	Rapara	Ohinea	Te		Parawhen	Mangor	Maungar	
	oa	pahoe	nga	Puke	Waiari	uamea	ewa	angi	Site H
Anions*	1.4	0.55	0.83	1.7	0.7	0.92	0.61	1.5	44
Cations*	1.3	0.49	0.75	1.5	0.64	0.83	0.54	1.4	42
pН	6.4	6.8	6.6	6.5	6.8	6.6	6.9	6.8	6.3
Alkalinity CaCO3 ¹	24	14	18	34	21	23	18	16	53
Bicarbonate ¹	29	17	21	42	25	28	22	19	65
Hardness ¹	34	9.2	14	40	11	16	10	15	540
Conductivity ²	15	5.7	8.9	18	7.2	9.5	6.2	17	470
Ca dissolved ¹	9	2.1	3.3	10	2.6	3.6	2.3	3.3	85
Mg dissolved ¹	2.7	0.94	1.4	3.4	1.1	1.6	1	1.7	80
Ka dissolved ¹	4.1	1.8	2.9	6.2	2.2	3	1.9	4	37
Na dissolved ¹	11	6.1	9	13	8.4	10	6.8	24	680
Chloride ¹	13	6.3	8.9	15	5.8	8.8	5.2	22	1400
Nitrite-N ¹	0.0150	<0.002	<0.002	0.021	<0.002	0.0027	<0.002	<0.002	0.031
Nitrate-N ¹	2.1	0.59	2	1.7	1.1	1.8	0.86	0.21	0.82
Sulphate ¹	17	2.8	4	21	2.5	4.2	2.1	28	200

Table 13Results of analysis of cations and anions on water samples collected on
7 May 2008 from the Kaituna River and tributaries.

Units: * = meq/L, 1 = g/m 3 , 2 = mS/m

3.2 **Organic Contaminants**

3.2.1 Water

Water column samples from the Maungarangi Road site on the Kaituna River and main tributaries in the lower catchment were collected on 7 May 2008 and analysed for a range of organic contaminants. These included organochlorine, organonitrogen and phosphorus based pesticides with the list and detection level provided in Appendix I (lab report in Appendix II). These detection limits are generally well below the mav's (maximum acceptable values) of the New Zealand Drinking Water Standards (MoH 2005). None of the listed pesticides were detected in any of the samples.

Other organic contaminants tested in the water samples included pentachlorophenol (PCP), 2, 3, 4, 6-tetrachlorophenol and polycyclic aromatic hydrocarbons (PAH's). The two chlorophenols were not detected in any samples (detection level of 0.000014 g/m³). PAH's were detected at the Waiari Stream and Mangorewa River sites at concentrations just above the detection limits as listed below.

	Waiari Stream	Mangorewa River
Benzo[b,j]fluoranthene (g/m ³)	0.000011	0.000013
Benzo[g,h,i]perylene (g/m ³)	0.000009	0.000012
Benzo[k]fluoranthene (g/m ³)	0.000013	<0.00008

3.2.2 Sediment

Sediment was collected for organics analysis from the Kaituna River at Maungarangi Road and the river entrance along with the tributaries in the lower catchment. The organic contaminants analysis included PAH"s, organochlorine, organonitrogen and phosphorus pesticides.

Many sites had no detectable levels of pesticides. The most common pesticide detected was DDT or its breakdown products, which were detected at three of the nine freshwater sites tested (Table 14).

The Ohineangaanga Stream is the only site where detectable levels of pesticides other than DDT were found. This result is even more significant due to the very low proportion of mud (0.3% by volume) and organic carbon (0.097g/100g) present in the sample collected. The amount of mud and carbon in the sediment are important indicators of the ability of sediment to accumulate both organic and inorganic contaminants as it is these components that bind with chemicals and trap them in the sediment.

Table 14Organochlorine pesticide concentrations (mg/kg dry wt) detected in
sediment shown as-sampled and normalised to 1% organic carbon.
Samples collected on 7 May 2008.

	Ohineangaanga			01			
	Str	ream	Te Puł	ke Stream	KR - Ma	ungarangi	
	as sampled	normalised	as sampled	normalised	as sampled	normalised	
4,4-DDD	0.0013	0.0134	0.0015	0.0052			
4,4-DDE	0.0013	0.0134	0.011	0.0379	0.0021	0.0014	
2,4-DDT					0.0021	0.0014	
4,4-DDT	0.0014	0.0144	0.0042	0.01448	0.014	0.0093	
Dieldrin	0.0018	0.0186					
Endrin	0.0014	0.0144					
Hexachlorobenzene	0.0018	0.0186					

In Table 14 the normalised results have been compared against the ANZECC water quality guidelines for the protection of aquatic life (ANZECC 2000). The yellow shaded results indicate sediment samples that exceed the ISQG-low trigger value (interim sediment quality guideline-low value) which is a level at which further investigation is recommended as sensitive species may be impacted. The red shaded results indicate the ISQG-high value has been exceeded and some impact on species is likely. All three sites in Table 14 have results that exceed the low value while the Te Puke Stream had levels of DDE which exceed the ISQG-high value. Ohineangaanga Stream also has results for Dieldrin and Endrin which exceed the ISQG-high value.

In contrast to the pesticides, none of the individual PAH's (or totals) detected exceeded the ANZECC interim sediment quality guidelines for the protection of aquatic life (Table 15).

Table 15	PAH concentrations (mg/kg dry wt) in sediment as collected and
	normalised to 1% organic carbon for sites recording levels above the
	limit of detection from samples collected on 7 May 2008.

	Te Puke Stream		Waiari	Stream	KR - Maungarangi		
	as		as		as		
PAH mg/kg dry wt	sampled	normalised	sampled	normalised	sampled	normalised	
Acenaphthene	<0.0034		<0.0025		<0.0028		
Acenaphthylene	<0.0034		<0.0025		<0.0028		
Anthracene	0.0069	0.0238	<0.0025		<0.0028		
Benzo[a]anthracene	0.023	0.079	<0.0025		0.0074	0.0049	
Benzo[a]pyrene	0.033	0.114	<0.0025		0.0076	0.0051	
Benzo[b,j]fluoranthene	0.057	0.197	<0.0025		<0.0028		
Benzo[g,h,i]perylene	0.043	0.148	<0.0025		0.0096	0.0064	
Benzo[k]fluoranthene	0.036	0.124	<0.0025		0.012	0.008	
Chrysene	0.035	0.121	0.0032	0.0011	0.0094	0.0063	
Dibenzo[a,h]anthracene	0.0068	0.0234	<0.0025		<0.0028		
Fluoranthene	0.069	0.238	0.0064	0.0021	0.018	0.012	
Fluorene	<0.0034		<0.0025		<0.0028		
Indeno(1,2,3-c,d)pyrene	0.027	0.093	<0.0025		0.006	0.004	
Naphthalene	<0.017		<0.013		<0.014		
Phenanthrene	0.023	0.079	0.0055	0.0018	0.0063	0.0042	
Pyrene	0.077	0.266	0.006	0.002	0.02	0.013	

Total detected PAHs 0.4367	1.506	0.0211	0.007	0.0963	0.0642
----------------------------	-------	--------	-------	--------	--------

3.3 Metals

3.3.1 Water

Water column samples from the Maungarangi Road site on the Kaituna River and the main tributaries in the lower catchment were collected on 7 May 2008 and analysed for metals. The results are shown in Table 16 and were all below the relevant drinking water standard values (MoH 2005). The results that came closest to the maximum accepted values were arsenic (mav – 0.01) in the Kaituna River (Maungarangi Road site) and manganese (mav – 0.4) at the Kopuaroa and Te Puke Stream sites.

The Kaituna River results show high concentrations of geothermally derived metals (arsenic, boron, lithium) compared to the tributaries which have little or no geothermal influence. The highest overall metal concentrations were found in the small Te Puke stream indicating possible urban influences while the Kopuaroa Stream with no urban catchment had the next overall highest results.

Table 16	Results for total metals (g/m^3) in water column samples collected from
	the Kaituna River and the main tributaries on 7 May 2008. Highlighted
	values exceed the ANZECC 2000 95% protection guideline for aquatic
	life.

	Kopuaroa	Rapahoe	Ohineanga	Te Puke	Waiari	Parawhenu	Mangorewa	Maungrangi
Aluminium	0.52	0.56	0.33	0.58	0.27	0.15	0.14	0.08
Antimony	<0.00021	<0.00021	<0.00021	<0.00021	<0.00021	<0.00021	<0.00021	0.00022
Arsenic	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	0.0051
Barium	0.084	0.034	0.063	0.13	0.049	0.064	0.031	0.025
Beryllium	0.00014	<0.00011	<0.00011	0.00013	<0.00011	<0.00011	<0.00011	<0.00011
Boron	0.017	0.0091	0.015	0.02	0.0087	0.009	0.0091	0.24
Cadmium	0.000057	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053
Calcium	9.5	2.3	3.7	12	2.9	3.8	2.6	3.5
Chromium	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053
Copper	0.00083	<0.00053	<0.00053	0.001	<0.00053	<0.00053	<0.00053	<0.00053
Iron	1.2	0.41	0.53	1.1	0.21	0.41	0.095	0.081
Lead	0.00033	0.00039	0.00038	0.0005	0.00016	0.00017	<0.00011	<0.00011
Lithium	0.0028	0.0017	0.0034	0.0043	0.0041	0.0048	0.0049	0.1
Magnesium	2.9	1.1	1.6	3.8	1.2	1.8	1.2	1.9
Manganese	0.26	0.021	0.055	0.34	0.025	0.042	0.0077	0.022
Mercury	<0.000080	<0.000080	<0.000080	<0.000080	<0.000080	<0.000080	<0.000080	<0.000080
Molybdenum	<0.00021	<0.00021	<0.00021	<0.00021	<0.00021	<0.00021	<0.00021	<0.00021
Nickel	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053
Potassium	4.3	1.9	3.2	7.2	2.4	3.2	2.1	4.2
Selenium	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011
Silver	<0.00011	<0.00011	<0.00011	<0.00011	<0.00011	<0.00011	<0.00011	<0.00011
Sodium	12	6.5	10	16	8.9	11	7.4	26
Tin	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053	<0.00053
Uranium	0.000055	0.000042	0.000025	0.000067	0.000025	<0.000021	<0.000021	<0.000021
Zinc	0.0087	0.0028	0.0056	0.018	0.0034	0.0083	0.0016	0.0038

The highlighted results in Table 16 indicate that the ANZECC trigger value for the protection of aquatic life (95% protection level) has been exceeded (ANZECC 2000). The guideline used for aluminium applies at pH >6.5. Both the Kopuaroa and Te Puke Streams had pH <6.5 which increases the toxicity of aluminium. Zinc exceeded the guideline in the Kopuaroa, Te Puke and Parawhenuamea Streams.

3.3.2 Sediments

Metal concentrations in the stream bed sediments are shown in Table 17 on an as sampled basis (i.e. not normalised for mud or organic content). The Maungarangi Road site on the Kaituna River shows the influence of geothermal inputs with mercury being just over the ISQG low trigger value for sediments (ANZECC 2000). The site with the highest levels of non-geothermal metals was the Te Puke Stream with cadmium, copper, lead and zinc being higher than other sites.

Table 17Sediment parameters and total metal concentrations (mg/kg –dw)measured in streambed samples collected from the lower Kaitunacatchment on the 7 May 2008.

Site	Kopuaroa	Raparapa	Ohineanga	Te Puke	Waiari	Parawhenu	Mangorew	Maunga	Te Tumu
TOC ¹	0.72	0.25	0.097	0.29	3	1.2	0.7	1.5	0.63
Mud ²	0.6	2.6	0.3	15.4	19.8	7.9	3.1	22.6	4.1
Antimony	0.041	0.099	<0.04	0.11	0.051	0.076	<0.04	0.14	0.088
Arsenic	3.9	3.7	0.63	3.5	1.9	1.7	1.3	6.7	5.1
Beryllium	0.36	0.33	0.12	0.55	0.78	0.59	0.31	0.36	0.23
Cadmium	0.061	0.029	0.016	0.22	0.058	0.075	0.031	0.042	0.015
Chromium	3.1	4.1	1	3.9	1.6	2.3	1.3	1.5	1.8
Copper	2.4	3	0.89	8.5	3	2.9	1.7	2.5	1.4
Lead	4.4	5.7	2.6	12	5.3	6.3	3.7	6.5	2.9
Mercury	0.033	0.077	<0.010	0.052	0.032	0.027	0.019	0.24	0.032
Nickel	0.92	1.3	0.24	1.5	0.65	0.7	0.45	0.69	0.74
Silver	0.023	0.027	<0.02	0.068	0.048	0.032	0.024	0.038	<0.02
Thallium	0.098	0.076	0.034	0.19	0.062	0.093	0.066	0.093	0.035
Zinc	30	45	29	70	29	43	29	22	18

¹ g/100g² % by volume

3.4 Rainfall event monitoring

Sampling of rainfall events occurred three times on 30 June 2007 and twice on 17 August 2007. Sampling effort was around the time of peak flow levels at each of the sites monitored.

To help with interpretation of the water quality data recorded during the two rainfall events hydrological records are provided from three rainfall sites and three stream/river level sites.

3.4.1 Rainfall

Rainfall in the Kaituna Catchment at the time of sampling is provided in Figures 5 and 6 for the Kaharoa gauge (uppermost southwest area of the catchment), Saunders Road (mid catchment) and Te Matai (lower catchment). Most of the rainfall on 30 June 2007 fell around the centre of the lower Kaituna River catchment. In contrast most of the rainfall on 17 August 2007 occurred in the upper catchment (Figure 6).

Mangorewa at Saunders : Rainfall Depth

Kaituna at Te Matai : Rainfall Depth

Figure 5 Rainfall recorded at the Kaharoa, Saunders Road and Te Matai gauges on 30 June 2007.

Figure 6 Rainfall recorded at the Kaharoa, Saunders Road and Te Matai gauges on 17 August 2007.
3.4.2 Stream levels

Stream levels for gauged sites on the Kaituna River (Te Matai), Mangorewa River and Raparapahoe Stream for the two rainfall events in which water sampling took place are shown in Figures 7 and 8.

Figure 7 Water levels recorded on the Mangorewa River, Raparapahoe Stream and the Kaituna River on 30 June 2007.

Figure 8 Water levels recorded on the Mangorewa River, Raparapahoe Stream and Kaituna River on 17 August 2007.

In line with the rainfall data, the Mangorewa and Kaituna Rivers reached higher levels on 17 August 2007 as a result of heavier rain falling over a greater proportion of their catchments which are further inland. During the 30 June event the Kaharoa rain gauge recorded 70 mm while 102 mm was recorded on 17 August. In contrast, catchments nearer the coast received more rain on 30 June 2007 with 108 mm recorded at Saunders Road and only 57 mm on 17 August 2007. As a result, the smaller streams nearer the coast, such as the Raparapahoe, reached far higher levels during the 30 June event.

The above is also highlighted in Table 18 which shows the peak flow and expresses that flow as a percentage of the mean annual peak flood event. For Raparapahoe Stream the event on 30 June reached close to the mean annual peak flow. It is likely that the similar adjacent catchments of the Kopuaroa, Ohineangaanga, Parawhenuamea and the small Te Puke Streams all came near to their mean annual peak flow levels.

Table 18 Peak flows for the rainfall events sampled in 30 June and 17 August 2007 expressed as a percentage of the mean annual peak flood flow.

River/stream	Date	Peak flow m ³ /s	% mean ann. peak flow
Raparapahoe	70	39.7	93.6
Waiari	200 ו	27.7	85.2
Mangorewa	Jur	33.5	21.3
Kaituna	3(76.5	57.5
Raparapahoe	70	18.7	44.1
Waiari	g 200	40.5	124.6
Mangorewa	Z Aug	68.8	43.8
Kaituna	17	97.2	73.1

Water quality data for rain events 3.4.3

The results of water quality sampling of the two rainfall events are summarised in Tables 19 and 20 below. The small Te Puke Stream recorded the highest conductivity, suspended solids (SS) and turbidity concentrations. The Waiari and Parawhenuamea Streams had the highest dissolved phosphorus (DRP) levels and the Kopuroa and Parawhenuamea Streams were the highest for dissolved oxidised nitrogen (NOx).

Table 19	Maximum values for water quality parameters recorded at each of the
	streams/rivers sampled on 30 June and 17 August 2007 (n=5).

SITE	COND	SS ¹	TURB	DRP ¹	NH4-N ¹	NOx-N ¹	TKN ¹	TN^1	TP ¹
Ohineangaanga	5.26	1100	330	0.062	0.066	0.529	3.16	3.20	0.888
Raparapahoe	5.4	540	196	0.025	0.035	0.262	1.59	1.32	0.382
Waiari	6.83	980	313	0.120	0.095	0.309	4.21	4.44	0.727
Kopuaroa	12	455	207	0.079	0.309	0.949	3.70	2.31	0.828
Mangorewa	6.99	240	101	0.082	0.107	0.462	1.29	1.59	0.385
Te Puke	13.8	1600	1700	0.046	0.202	0.697	3.66	1.89	1.210
Parawhenuamea	8.6	815	375	0.106	0.325	0.905	3.06	1.93	0.808
¹ g/m ³ Turbidity (NTI					•	•			

g/m², Turbiality (NTU)

Median values show that the Ohineanagaanga Stream is similar to the Te Puke Stream for suspended solids (Table 20). The much higher median turbidity readings in the Te Puke Stream are likely due to the presence of fine light coloured clay. The Mangorewa River had the highest median concentration of DRP while the Ohineangaanga had the highest total phosphorus (TP) concentrations. The highest median ammonium nitrogen concentrations were recorded in the Kopuaroa Stream and, along with the Parawhenuamea Stream, this site also had the highest median concentration of NOx.

SITE	COND	SS ¹	TURB	DRP ¹	NH4N ¹	NOxN ¹	TKN ¹	TN^1	TP^1
Ohineangaanga	4.96	840	225	0.041	0.049	0.474	2.88	2.58	0.696
Raparapahoe	4.97	280	99	0.021	0.028	0.254	1.16	1.22	0.231
Waiari	4.06	480	131	0.039	0.078	0.270	2.08	3.41	0.479
Kopuaroa	8.20	100	86	0.043	0.230	0.879	1.50	2.23	0.316
Mangorewa	4.44	125	51	0.072	0.030	0.228	1.13	1.52	0.274
Te Puke	12.77	720	890	0.030	0.167	0.646	1.31	1.86	0.334
Parawhenuamea	7.96	320	127	0.058	0.120	0.894	1.96	1.88	0.566

Table 20	Median values for water quality parameters recorded at each of the
	streams/rivers sampled on 30 June and 17 August 2007 (n=5).

¹ g/m³, Turbidity (NTU)

A comparison of the difference in concentration of suspended sediment and dissolved nutrient during base flow and high flow is given in Table 21. The Ohineangaanga Stream had the greatest increase in SS during rainfall event peak flows while the Kopuaroa Stream had the smallest. It should be noted that although the Kopuaroa had the lowest proportional SS increase during high flow it also has the highest SS levels during base flow.

Most streams show a slightly higher median concentration of DRP during significant rainfall events with the exception of the Waiari Stream which had higher concentrations during base flow. Most streams recorded higher NH₄ concentrations during significant rainfall events and the Kopuaroa Stream stood out with the largest increase. The Kopuaroa Stream was also the only stream to show an increase in the concentration of NOx during rainfall events.

Table 21	Ratio of the median rain event flow/median base flow concentration of
	key water quality parameters to show change during high flow events.

Site	SS	DRP	ТР	NH4-N	NOx-N	TN
Ohineangaanga	158	1.86	33.1	2.0	0.21	1.1
Raparapahoe	33	1.40	16.5	1.3	0.36	1.3
Waiari	81	0.93	11.4	4.9	0.25	2.7
Kopuaroa	6	1.39	4.9	11.5	1.23	1.4
Mangorewa	50	1.33	5.5	4.3	0.21	1.2
Te Puke	84	1.36	9.3	1.8	0.48	1.0
Parawhenuamea	47	1.35	11.6	6.3	0.47	0.9

4.1 Sediment quality

4.1.1 Organic contaminants

Of the estuary sites sampled only the M3 and M4 sites showed detectable levels of polycyclic aromatic hydrocarbons (PAH's) in the sediments (Table 22). There were no detectable levels of organochlorine, organonitrogen and phosphorus pesticides or chlorophenols. The list of organic contaminants measured is the same as that in section 3.3.2 and full results in Appendix IV.

Site	M1	M2	M3	M4	Kaituna
Total carbon g/100g	0.66	0.27	0.61	0.6	0.63
Mud - %	8.4	1.7	6.4	7.1	4.1
Acenaphthene	<0.0022	<0.002	<0.0023	<0.0022	<0.002
Acenaphthylene	<0.0022	<0.002	<0.0023	<0.0022	<0.002
Anthracene	<0.0022	<0.002	<0.0023	<0.0022	<0.002
Benzo[a]anthracene	<0.0022	<0.002	<0.0023	<0.0022	<0.002
Benzo[a]pyrene	<0.0022	<0.002	0.0028	0.0022	<0.002
Benzo[b,j]fluoranthene	<0.0022	<0.002	<0.0023	<0.0022	<0.002
Benzo[g,h,i]perylene	<0.0022	<0.002	0.0046	0.0022	<0.002
Benzo[k]fluoranthene	<0.0022	<0.002	0.0057	<0.0022	<0.002
Chrysene	<0.0022	<0.002	0.0029	0.0035	<0.002
Dibenzo[a,h]anthracene	<0.0022	<0.002	<0.0023	<0.0022	<0.002
Fluoranthene	<0.0022	<0.002	0.0049	0.0075	<0.002
Fluorene	<0.0022	<0.002	<0.0023	<0.0022	<0.002
Indeno(1,2,3-c,d)pyrene	<0.0022	<0.002	<0.0023	<0.0022	<0.002
Naphthalene	<0.011	<0.010	<0.012	<0.011	<0.010
Phenanthrene	<0.0022	<0.002	0.0035	0.0057	<0.002
Pyrene	<0.0022	<0.002	0.0057	0.0068	<0.002
Total detected PAHs	0	0	0.0301	0.0279	0

Table 22Concentration of PAH's (mg/kg dry wt) in surface sediment samples
collected from Maketu Estuary on 5 May 2008 (detects highlighted).

Comparison of the normalised (to 1% carbon content) results for detectable PAH's with the ANZECC sediment quality guidelines for the protection of aquatic life showed that no results exceed those guidelines.

4.1.2 Metals

None of the metals measured in sediments form the estuary sites exceeded the ANZECC sediment quality guidelines for the protection of aquatic life on a whole sample basis (Table 23). If the were normalised to 5% mud content then site M2 would exceed the Canadian sediment quality trigger value for arsenic. If normalised to higher mud content, which is common in more sheltered parts of the estuary, then arsenic, mercury and nickel have the potential to exceed sediment quality guidelines.

Table 23	Concentration of metals (mg/kg dry wt) in surface sediment samples
	collected from Maketu Estuary on 5 May 2008.

Site	M1	M2	М3	M4	Kaituna
Antimony	<0.04	<0.04	<0.04	<0.04	0.088
Arsenic	3.3	4.0	4.8	4.0	5.1
Berylllium	0.14	0.17	0.2	0.19	0.23
Cadmium	0.03	<0.01	0.03	0.035	0.015
Chromium	1.7	2.9	3.1	3.0	1.8
Copper	1.1	1.2	1.6	1.4	1.4
Lead	1.7	2.1	2.2	2.1	2.9
Mercury	0.013	0.025	0.034	0.023	0.032
Nickel	0.95	1.7	1.9	1.8	0.74
Silver	<0.02	<0.02	<0.02	<0.02	<0.02
Thallium	0.069	0.03	0.06	0.066	0.035
Zinc	9.8	17	17	18	18

4.2 **Shellfish quality**

Pipi and cockles collected from Maketu Estuary on 5 May 2008 were analysed for a range of organic and metal contaminants.

The organic contaminants found at detectable concentrations are shown in Table 24 and the full list is given in Appendix III. Contaminants that were not detected in shellfish included PAHs, pentachlorophenol and 2,3,4,6 tetrachlorophenol. Thirty three PCB congeners were tested for but not detected (detection limit <0.0005 mg/kg wet weight).

The only organic compounds detected in the shellfish samples were DDT (used as a pesticide) and its breakdown products. In a 1992 study (Park 1992) only a breakdown product, DDE was detected, as the level of detection (0.0015 mg/kg) was not as low. There is no New Zealand maximum permitted level standard for DDT and its breakdown products, but the recorded levels are well below the Australian standard of 1 mg/kg (all DDT and breakdown products summed). The presence of DDT is due to historic use. It is a very persistent organic compound in the environment which leads to it being banned in most countries.

Total arsenic levels in pipi and cockles were very similar to those found in 1992 (Park 1992) with pipi having slightly lower levels than cockles. In the 1992 study an analysis of the inorganic arsenic showed that it generally comprises around 10% of the total. The New Zealand Department of Health guidelines for human consumption (FSANZ 2010) are set in terms of the inorganic arsenic present and levels in the shellfish are extremely unlikely to exceed the maximum permitted value of 1.0 mg/kg.

Mercury levels are also very similar to the 1992 results and well below the Department of Health maximum permitted value of 0.5 mg/kg for human consumption. The levels of cadmium, copper, lead and zinc in the shellfish samples are low and below their respective permitted values of 2.0, 30, 2.0 and 40 mg/kg.

Site - see Figure 4	SF1 - Pipi	SF2 - Pipi	SF3 - Cockles	SF4 - Cockles
moisture g/100g	85	85	90	90
Dry matter g/100g	19	18	16	15
Lipid g/100g	1.10	1.10	0.96	0.96
Metals mg/kg wet wt				
Arsenic	1.8	1.7	3.3	2.8
Cadmium	0.033	0.030	0.028	0.028
Chromium	0.023	0.032	0.17	0.12
Copper	0.58	0.55	0.68	0.53
Lead	0.01	0.011	0.015	0.014
Mercury	0.012	0.012	0.015	0.010
Nickel	0.081	0.079	0.950	0.800
Zinc	8.9	8.3	7.1	7.4
Organic pollutants mg/kg wet wt				
4,4-DDD	0.00051	0.0017	0.0018	0.00058
4,4-DDE	< 0.00050	0.0028	0.0026	< 0.00050
2,4-DDT	< 0.00050	< 0.00050	0.00051	< 0.00050
4.4-DDT	0.0005	0.0018	0.0054	0.0019

Table 24Metals and organic contaminants found in shellfish samples collected
from Maketu Estuary on 5 May 2008.

5.1 Introduction

An extensive water quality survey of the lower Kaituna River catchment was conducted between May 2007 and June 2008. This was intended to provide an assessment of environmental quality and a baseline against which future comparisons could be made. This information will be used to support the implementation of the Kaituna River and Ongatoro/Maketu Estuary Strategy.

The following summarises the main findings of the study.

5.2 **Results**

5.2.1 Water quality

The water quality results for the Kaituna River and tributaries monitored under base flow conditions show a number of important findings. The tributary inflows dilute conductivity and plankton levels and increase dissolved nutrient, suspended solids and bacterial levels in the Kaituna River.

Of the seven tributaries monitored, the Kopuaroa Stream had the highest median suspended solids, turbidity, ammonium-nitrogen and bacterial levels. All *E.coli* bacterial results from the Kopuaroa Stream exceed the MfE recreational water quality guidelines single sample ">550-action mode" value. The Mangorewa River and Parawhenuamea Stream had the lowest bacterial levels being similar to that recorded at the Te Tumu site on the Kaituna River. All tributaries had higher oxidised and total nitrogen concentrations compared to the Kaituna River. The Parawhenuamea and Ohineangaanga Streams had the highest oxidised nitrogen levels. The Mangorewa River had the highest dissolved phosphorus concentrations and this may be sourced from groundwater.

The minor inflows to the Kaituna River monitored in June 2007 generally had poor water quality. Bacterial numbers were reasonable at most sites with the "Site A" drain (former Parawhenuamea Stream) standing out with high numbers. With the exception of the Fords Cut drain all had high phosphorus levels (particularly Site A) and all had ammonium nitrogen concentrations well above the median values recorded from the tributaries.

5.2.2 Organic contaminants

The results for a range of organic contaminants on water samples were generally below the limit of detection. The exceptions were the Waiari Stream with three PAH compounds found and the Mangorewa River with two. Analysis for the same organic contaminants in sediments resulted in detectable levels of DDT at three sites (Ohineangaanga Stream, Te Puke Stream and Kaituna River at Maungarangi) and Dieldrin, Endrin and Hexachlorobenzene in the Ohineangaanga Stream.

All of the detected compounds are chlorinated pesticides which are now banned due to their toxicity and persistence in the environment. The levels of 4,4-DDE (a break down product of DDT) recorded at the Te Puke Stream site and Dieldrin and Endrin at the Ohineangaanga Stream site exceed the ANZECC ISQG-high value for the protection of aquatic life. PAH compounds were detected at the Te Puke Stream, Waiari Stream and Kaituna River (at Maungarangi site) but none exceeded the ANZECC guidelines for the protection of aquatic life.

5.2.3 Metals

Water from the Kaituna River had the highest concentrations of geothermally derived metals (arsenic, boron, lithium). The Te Puke Stream had the highest concentrations of zinc, copper and lead and these are characteristic of an urban pollutant source. None of the metal results exceeded the New Zealand drinking water standards. However, aluminium concentrations in the Kopuaroa, Raparapahoe, Ohineangaanga, Te Puke and Waiari Streams exceeded the ANZECC trigger values for the protection of aquatic life as did zinc at the Kopuaroa, Te Puke and Parawhenuamea sites.

The sediment metal concentrations also reflected the geothermal influence on the Kaituna River which had the highest levels of arsenic and mercury, just exceeding the ANZECC ISQG-low guideline for the protection of aquatic life. Te Puke Stream had the highest levels of cadmium, copper, lead, nickel, silver, thallium and zinc, but none exceeded the ANZECC guidelines.

5.2.4 Storm event sampling

The Te Puke Stream was found to have the highest median suspended solids and turbidity levels at peak flow of the seven tributaries sampled. The Ohineangaanga Stream displayed the highest suspended solids load increase compared to its base flow state.

The concentration of dissolved phosphorus increased slightly for most steams at peak flow while total phosphorus increased more significantly. Ammonium nitrogen concentrations increased during peak flow at all sites while dissolved oxidised nitrogen concentrations decreased in all but the Kopuaroa Stream. Total nitrogen concentrations remained the same for many of the sites with the Waiari Stream being the only one where total nitrogen increased significantly above base flow levels.

5.2.5 Maketu Estuary

The levels of organic contaminants and metals in the sediments of Maketu Estuary were found to be at acceptable levels. No pesticides were detected at any of the sites while two sites recorded detectable levels of some PAH compounds at levels well below the ANZECC guidelines for the protection of aquatic life. When normalised to 5% mud content, the sediment concentration of arsenic was found to exceed the Canadian quality trigger value. In this case the arsenic is likely to originate from natural geothermal sources.

The concentrations of metals and organic contaminants in shellfish were similar to those found in a 1992 study. This included low levels of DDT and moderate levels of arsenic and mercury. All contaminants were below the New Zealand Department of Health guidelines for human consumption.

5.3 Quality Assessment

In terms of general water quality the Kopuaroa Stream has excessive levels of suspended solids and turbidity. Nutrients are also high with ammonium nitrogen levels suggesting horticulture and/or agriculture sources. The small drains flowing from dairy farmland (sites C, A, H) all had similar high ammonium nitrogen concentrations and generally moderate to poor water quality.

Assessment of bacterial levels against the MfE Guidelines for Recreational Water Quality showed that all tributaries exceeded the criteria for single samples. The best

tributaries (Mangorewa River and Parawhenuamea Stream) had results similar to the Te Matai site on the Kaituna River. The Waiari Stream site is used for swimming in summer and 25% of samples exceeded the action mode value. The Kopuaroa and Te Puke Streams have very poor water quality with all samples from the Kopuaroa Stream exceeding the action mode value.

The Kaituna River and Maketu Estuary show the influence of natural geothermal inputs but the metals tend to be at or below levels that would be of any concern.

The results for organic contaminants are generally very good with only the Ohineangaanga and Te Puke streams recording organochlorine pesticides (DDT, Dieldrin, Endrin) above the ANZECC ISQG-high values for the protection of aquatic life. These two stream catchments have a high percentage of horticultural land use and the pesticides have been banned for many years due to their environmental persistence.

The Te Puke stream also has one of the highest percentages of urban land use in its catchment and this may have been a factor in this stream having the highest overall metal levels. High zinc, copper and lead levels are very characteristic of urban influence. However even this stream had sediment metal levels below the ANZECC guidelines and hence must rank as only moderately impacted in respect of metals alone. In conjunction with all other aspects of water quality it would possibly score poorly if a biological assessment of quality were made.

Finally, with the exception of arsenic, organic contaminants and metals in sediments and shellfish from Maketu Estuary were found to be within acceptable levels.

Part 6: References

- ANZECC. 2000: Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council.
- Commission for the Environment. 1984: Maketu Estuary. Environmental Issues and options. Issues and options paper 1984/1. Commission for the Environment, New Zealand.
- FSANZ 2010: Food Standards Australia New Zealand; Australia New Zealand Food Standards Code (includes amendments up to 116). NZ office PO Box 10559, Wellington 6036.
- McIntosh, J. 2005: Impact of the Ohau Channel diversion on the Okere Arm, Kaituna River and Maketu Estuary. Environmental Report 2005/3. Environment BOP, P.O. Box 364, Whakatane.
- MfE. 2003: Microbial Guidelines for Marine and Freshwater Recreational Areas. Published June 2003, Ministry for the Environment, PO Box 10-362 Wellington, New Zealand.
- MoH. 2005: Drinking-water Standards for New Zealand 2005. Welington : Ministry of Health. PO Box 5013 Wellington, New Zealand.
- Park, S.G. 1992: Maketu Estuary Environmental Baseline Monitoring Project 1990/91. Technical Report No. 20. Bay of Plenty Regional Council, P.O. Box 364, Whakatane.
- Park, S.G. 2003: Kaituna River Diversion to Maketu Estuary. Environmental Report 2003/6. Bay of Plenty Regional Council, P.O. Box 364, Whakatane.
- White, E., Don, B., Downes, M.T. & Kemp, L. 1978: Distribution of plant nutrients in the Kaituna River. New Zealand Journal of Marine and Freshwater Research 12(1): 23-27.

Appendices

Appendix I – Lists of organic compounds that were tested in water and shellfish

Organochlorine pesticides – detection limit 0.0000020 g/m³

Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-chlordane trans-chlordane 2,4'-DDD 4,4'-DDD 2,4'-DDE 4,4'-DDE 2,4'-DDT 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin Ketone Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor Total Chlordane [(cis+trans)*100/42]

Organonitrogen and phosphorus pesticides – detection limit 0.000050 g/m³ or better

Acetochlor Alachlor Atrazine Atrazine-desethyl Atrazine-desisopropyl Azaconazole Azinphos-methyl Benalaxyl Bitertanol Bromacil Bromopropylate Butachlor Captan Carbaryl Carbofuran Chlorfluazuron Chlorothalonil Chlorpyrifos Chlorpyrifos-methyl Chlortoluron Cyanazine Cyfluthrin Cyhalothrin Cypermethrin Deltamethrin Diazinon Dichlofluanid Dichloran Dichlorvos Difenoconazole Dimethoate Diphenylamine Diuron

Fenpropimorph Fluazifop-butyl Fluometuron Flusilazole Fluvalinate Furalaxyl Hexaconazole Hexazinone IPBC (3-lodo-2-propynyl-n butylcarbamate) Iprodione Kresoxim-methyl Linuron Malathion Metalaxyl Methamidophos Metolachlor Metribuzin Molinate Myclobutanil Naled Norflurazon Oxadiazon Oxyfluorfen Paclobutrazol Parathion-ethyl Parathion-methyl Pendimethalin Permethrin Pirimicarb Pirimiphos-methyl Prochloraz Procymidone Prometryn Propachlor

Propanil Propazine Propiconazole Pyriproxyfen Quizalofop-ethyl Simazine Simetryn Sulfentrazone TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan] Tebuconazole Terbacil Terbufos Terbumeton Terbuthylazine Terbuthylazine-Terbutryn Thiabendazole Thiobencarb Tolylfluanid Triazophos Trifluralin Vinclozolin

Persistent organic pollutants tested for in shellfish

Acephate Acetochlor Alachlor Aldrin Atrazine Atrazine-desethyl Atrazine-desisopropyl Azaconazole Azinphos-methyl Azoxystrobin Benalaxyl Bendiocarb Benodanil Benoxacor alpha-BHC beta-BHC gamma-BHC (Lindane) delta-BHC Bifenox Bifenthrin Bitertanol Bromacil Bromophos-ethyl Bromopropylate Bupirimate Buprofezin Butachlor **Butamifos** Cadusafos Captafol Captan Carbaryl Carbofenothion Carbofuran Carboxin cis-chlordane trans-chlordane Chlorfenapyr Chlorfenvinphos Chlorfluazuron Chlorobenzilate Chlorothalonil Chlorpropham Chlorpyrifos Chlorpyrifos-methyl Chlorthal-dimethyl Chlortoluron Chlozolinate Clomazone Coumaphos Cyanazine Cyanophos Cyfluthrin Cyhalcthrin Cypermethrin Cyproconazole Cyprodinil 2,4-DDD 4,4-DDD 2,4-DDE 4,4-DDE 2,4-DDT 4,4-DDT Deltamethrin Demeton-S-methyl Diazinon Dichlobeil Dichlofenthion Dichlofluanid Dichloran Dichlorvos Dicofol Dicrotophos Dieldrin Difenoconazole Diflufenican

Dimethenamid Dimethoate **Dimethomorph Dimethylvinphos** Dinocap Dioxabenzofos Diphenylamine Disulfoton Diuron Edifenphos Endosulfan I Endosulfan II Endosulfansulphate Endrin Endrin aldehyde Endrin ketone EPN Epoxiconazole EPTC Esfenvalerate Esprocarb Ethion Ethoprpphos Etridiazole Etrimfos Famphur Fenamiphos Fenarimol Fenchlorphos Fenitrothion Fenobucarb Fenoxaprop-ethyl Fenpicionil Fenpropathrin Fenpropimorph Fensulfothion Fenthion Fenvalerate Fluazifop-butyl Flucythrinate Fludioxonil Fluometuron Flusilazole Flutriafol Fluvalinate Folpet Fonofos Furalaxyl Furathiocarb Halfenprox Haloxyfop-methyl Heptachlor Heptachlor epoxide Hexachlorobenzene Hexaconazole Hexazinone Hexythiazox Imazalil Indoxacarb Iodofenphos Iprobenfos . Iprodione Isazophos Isofenphos Isoprocarb Kresoxim-methyl Leptophos Linuron Malathion Mepronil Metalaxyl Methacrifos Methamidophos Methidathion Methiocarb Methoxychlor Metolachlor

Mevinphos Metribuzin Molinate Monocrotophos Myclobutanil Naled Napropamide Nitrofen Nitrothal-isopropyl Norflurazon Omethoate Oxadiazon Oxadixyl Oxychlordane Oxyfluorfen Paclobutrazol Parathion-ethyl Parathion-methyl Penconazole Pendimethalin Permethrin Phenthoate Phorate Phosalone Phosmet Phosphamidon Piperonyl-butoxide Pirimicarb Pirimiphos-methyl Prochloraz Procymidone Profenofos Prometryn Propachlor Propanil Propaphos Propazine Propetamphos Propham Propiconazole Propoxur Propyzamide Prothiofos Pyraclofos Pyrazophos Pyrazoxyfen Pyrethrin Pyrifenox Pyrimethanil Pyriproxyfen Quinalphos Quintozene Quizalofop-ethyl Simazine Simetryn Sulfentrazone Sulfotep Tebuconazole Tebufenpyrad Terbacil Terbufos Terbumeton Terbuthylazine Terbuthylazine-desethyl Tetrachlorvinphos Tetradifon Thenylchlor Thiobencarb Thiometon Tolclofos-methyl Tolylfluanid Triadimefon Tri-allate Triazophos Trifloxystrobin Trifluralin Vinclozolin

Appendix II – Lab analysis reports for organics and metals in stream/river water and sediment samples

Kopuaroa; samples numbers 08-2941 & 08-2950, Raparapahoe; 08-2942 & 08-2951, Ohineangaanga; 08-2943 & 08-2952, Te Puke 08-2944 & 08-2953, Waiari; 08-2945 & 08-2954, Parawhenuamea; 08-2946 & 08-2955, Mangorewa; 08-2947 & 08-2956, Maungarangi Kaituna; 08-2948 & 08-2957, Ford rd drain; 08-2949, Te tumu Kaituna; 08-2958.

M	A WORL	D LEADER IN	ANALYTICA	L SERVICES	; Hamilton 3240, N	ew Zealand Web	www.hill-labs.co.nz
AN	ALY	SIS	REP	ORT			Page 1 of 16
Client: Contact:	Environment Spence, Adr c/o Environn P O Box 384 WHAKATAN	I BOP lian hent BOP li			ab No: ate Registered: ate Reported: uote No: rder No: lient Reference: ubmitted By:	641657 10-May-2008 30-May-2008 32803 105551 Spence, Adri	sing an
Sample Ty	pe Sodimen						
		Sample Name: Lab Number:	08-2950 07-May-2008 641657.10	08-2951 07-May-2008 641657.11	08-2952 07-May-2008 641657.12	08-2953 07-May-2008 841657.13	08-2954 07-May-2008 641657,14
Individual Te	ists		Section Contraction	1			
Total Carbon		g/100g dry wt	0.72	0.25	0.097	0.29	3.0
USEPA Prio	rity Pollutants - Tr	race Level, 13 metals	1.				
Total Recove	arable Antimony	mg/kg dry wt	0.041	0.099	< 0.040	0.11	0.051
Total Recove	arable Arsenic	mg/kg dry wt	3.9	3.7	0.63	3 5	1.9
Total Recove	arable Beryllium	mg/kg dry wt	0.36	0.33	0.12	0.55	0.78
Total Recove	arable Cadmium	mg/kg dry wt	0.061	0.029	0.016	0.22	0.058
Total Recove	srable Chromium	mg/kg dry wt	3.1	4.1	1.0	3.9	1.6
Total Recove	arable Copper	mg/kg dry wt	2.4	3.0	0.89	8.5	3.0
Total Recove	rable Lead	mg/kg dry wt	4.4	5.7	2.6	12	5.3
Total Recove	rable Mercury	mg/kg dry wt	0.033	0.077	< 0.010	0.052	0.032
Total Recove	rable Nickel	mg/kg diry wt	0.92 -	1.3	0.24	1.5	0.65
Total Recove	racie seienium	mg/kg diry wt	< 2.0	< 2.0	<2.0	< 2.0	< 2.0
Total Recove	rable Thefium	mg/kg dry wt	0.023	0.027	< 0.020	0.068	0.048
Total Recover	rable Tios	mgrkg dry wt	0.096	0.076	0.034	0.19	0.062
Organachlari	na Pasticidas Tra	mg/kg ary wi	30	40	29	70	29
Aldrin	ne resources ma	cen adi	- 0.0040				
alpha-BHC		marke day wit	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
beta-BHC		ma/ka dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
delta-BHC		mg/kp dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
amma-BHC	(Lindane)	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00000	< 0.0010
cis-chlordane		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00009	< 0.0010
rans-chlordar	пе	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
2.4-DDD		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
4-DDD		mg/kg dry wt	< 0.0010	< 0.0010	0.0013	0.0015	\$ 0,0010
2,4'-DDE		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
4-DDE		mg/kg dry wt	< 0.0010	< 0.0010	0.0013	0.011	< 0.0010
4-DDT		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
4-DDT		mg/kg dry wt	< 0.0010	< 0.0010	0.0014	0.0042	< 0.0010
Xieldrin		mg/kg dry wt	< 0.0010	< 0.0010	0.0018	< 0.00099	< 0.0010
Indosultan I		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
Indosulfan II		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
Indosulfan su	alphate	mg/kg diry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
ndrin		mg/kg diry wt	< 0.0010	< 0.0010	0.0014	< 0.00099	< 0.0010
indrin aldehy	de	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
indrin Ketone		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
septachior		ma/ka dry wt	< 0.0010	< 0.0010	× 0.0010	- 0.00000	

his Laboratory is accredited by international Accreditation New Zealand (IANZ), which represents New Zealand in the Internatic aboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation Internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which

stored stable Land Transformer						
	Sample Name:	08-2950 07-May-2008	08-2951 07-May-2008	08-2952 07-May-2008	08-2953 07-May-2008	08-2954 07-May-2008
	Lab Number:	641657.10	641657.11	641657.12	641667.13	641657.14
Organochlorine Pesticides Ti	race in Soil					
Heptachlor epoxide	mgikg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
Hexachlorobenzene	mgikg dry wt	< 0.0010	< 0.0010	0.0018	< 0.00099	< 0.0010
Methoxychior	mgikg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
Total Chlordane ((cis+trans)* 100/42]	mgikg dry wt	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Organonitro&phosphorus Pe	sticides Trace in MR	Soil by GCMS	1.12.20.10	Contraction and		
Dry Matter	g/100g as rovd	62	70	75	45	55
Acetochiar	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Alachior	mg/kg dry wt	< 0.0060	< 0.0050	< 0.0060	< 0.0074	< 0.0060
Atrazine	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Atrazine-desethyl	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Atrazine-desisopropyl	mg/kg dry wt	< 0.019	< 0.017	< 0.016	< 0.030	< 0.022
Azaconazole	marka dry wt	< 0.0048	< 0.0043	< 0.0040	< 0.0074	< 0.0054
Azinphos-methyl	maika dry wt	< 0.019	< 0.017	< 0.016	< 0.030	< 0.022
Benalaxyl	mg/kp dry wt	< 0.0048	< 0,0043	< 0.0040	< 0.0074	< 0.0054
Bitertanol	maika dry wt	< 0.019	< 0.017	< 0.016	< 0.030	\$ 0.022
Bromacil	marke dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Bromooropvlate	marka day wit	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Butachine	make decut	€ 0.0005	€ 0.0085	< 0.0078	< 0.015	< 0.011
Cantan	maike des wit	< 0.019	< 0.047	< 0.018	< 0.010	< 0.022
Carband	marke dou ut	< 0.0005	< 0.0005	< 0.010	< 0.030	< 0.022
Carbary	mgikg day wit	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Chieduran	marke dount	< 0.0005	< 0.0085	< 0.0079	< 0.015	< 0.011
Chlorothalagil	marke dound	< 0.0005	< 0.0085	< 0.0079	< 0.015	< 0.011
Chloronitoni	mgwg ary wi	× 0.0005	< 0.0085	< 0.0079	< 0.015	< 0.011
Chiorpyritos	mging dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Chiorpyntos-methyl	mgikg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Chiertoluron	mg/kg dry wt	< 0.019	< 0.017	< 0.016	< 0.030	< 0.022
Cyanazine	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Cyfluthrin	mg/kg dry wt	< 0.019	< 0.017	< 0.016	< 0.030	< 0.022
Cyhalothnin	mgikg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Cypermethrin	mg/kg dry wt	< 0.038	< 0.034	< 0.032	< 0.059	< 0.043
Deltamethrin	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Diszinon	mg/kg dry wt	< 0.0048	< 0.0043	< 0.0040	< 0.0074	< 0.0054
Dichlofluanid	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Dichloran	mg/kg dry wt	< 0.030	< 0.030	< 0.030	< 0.037	< 0.030
Dichlorvos	mg/kg dry wt	< 0.019	< 0.017	< 0.016	< 0.030	< 0.022
Difenoconazole	mg/kg dry wt	< 0.027	< 0.024	< 0.023	< 0.042	< 0.031
Dimethoate	mg/kg dry wt	< 0.019	< 0.017	< 0.016	< 0.030	< 0.022
Diphenylamine	mg/kg dry wt	< 0.019	< 0.017	< 0.016	< 0.030	< 0.022
Diuron	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Penpropimorph	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Fluazifop-butyl	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Fluometuron	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Fiusilazole	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Fluvalinate	mg/kg dry wt	< 0.014	< 0.012	< 0.012	< 0.021	< 0.016
^s uralaxyl	mg/kg dry wt	< 0.0048	< 0.0043	< 0.0040	< 0.0074	< 0.0054
Haloxylop-methyl	mg/kg dry wt	< 0.0095	< 0 0085	< 0.0079	< 0.015	< 0.011
lexaconazole	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Hexazinone	mg/kg dry wt	< 0.0048	< 0.0043	< 0.0040	< 0.0074	< 0.0054
PBC (3-lodo-2-propynyl-n- utylcarbamate)	mg/kg dry wt	< 0.048	< 0.043	< 0.040	< 0.074	< 0.054
orodione	moles doubt	< 0.0005	¢ 0.0095	c 0.0070	<0.04F	
Cresovim-method	mp/kg dry wi	< 0.0048	< 0.0005	< 0.0079	< 0.015	< 0.011
in mon	moles day wi	< 0.0046	< 0.0045	< 0.0040	< 0.0074	< 0.0064
Asisthion	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
And the second sec	and all well				- 0.010	-0.011

	Sample Name:	08-2950	08-2951	08-2952	08-2953	08-2954
	Lab Marshan	07-May-2008	07-May-2008	07-May-2008	07-May-2008	07-May-2008
Organonitra£nhoenhonse Pes	tinidas Trans is MR	Sollby GCMS	041007.11	041007.12	041007.10	041007.14
Asteland	maika douwt	< 0.0005	< 0.00985	< 0.0070	< 0.015	<0.011
Aetaaxyi Aetaamidoohoo	marka day wit	< 0.048	< 0.043	< 0.040	< 0.015	< 0.054
Vetramicoprica	maika dar ut	< 0.0080	< 0.0080	< 0.0080	< 0.0074	< 0.0060
Metribuzin	maika day wi	× 0.0005	< 0.0005	< 0.0079	< 0.0015	< 0.011
Volinete	moliko day wi	< 0.019	< 0.017	< 0.016	< 0.030	< 0.022
Myclobutanil	malka dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Nalod	mo/ko dry wt	< 0.048	< 0.043	< 0.040	< 0.074	< 0.054
Norfurazon	ma/ka dry wt	< 0.019	< 0.017	< 0.016	< 0.030	< 0.022
Oxadiazon	ma/ka dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Oxyfluorfen	ma/ka dry wt	< 0.0048	< 0.0043	< 0.0040	< 0.0074	< 0.0054
Paclobutrazol	ma/ka dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Parathion-ethyl	ma/ka dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Parathion-methyl	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Pendimethalin	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Permethrin	mg/kg dry wt	< 0.0055	< 0.0060	< 0.0056	< 0.011	< 0.0076
Pirimicarb	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Pinimiphos-methyl	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Prochloraz	mg/kg dry wt	< 0.048	< 0.043	< 0.040	< 0.074	< 0.054
Procymidone	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Prometryn	mg/kg dry wt	< 0.0048	< 0.0043	< 0.0040	< 0.0074	< 0.0054
Propachior	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Propanil	mg/kg dry wt	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030
Propazine	mg/kg dry wt	< 0.0048	< 0.0043	< 0.0040	< 0.0074	< 0.0054
Propiconazole	mg/kg dry wt	< 0.014	< 0.012	< 0.012	< 0.021	< 0.016
Pyriproxyfen	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Quizalofop-ethyl	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Simazine	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Simetryn	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Sulfentrazone	mgikg dry wt	< 0.048	< 0.043	< 0.040	< 0.074	< 0.054
TCMTB [2-(thiocyanomethylth benzothiazole,Busan]	io) mg/kg dry wt	< 0.019	< 0.017	< 0.016	< 0.030	< 0.022
l'ebuconazole	mg/kg dry wt	< 0.048	< 0.043	< 0.040	< 0.074	< 0.054
Terbacil	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
l'erbufos	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Ferburneton	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Terbuthylazine	mg/kg dry wt	< 0.0048	< 0.0043	< 0.0040	< 0.0074	< 0.0054
Ferbuthylazine-desethyl	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Ferbutryn	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Thiabendazole	mg/kg dry wt	< 0.048	< 0.043	< 0.040	< 0.074	< 0.054
Thiobencarb	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Tolylfluanid	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Triazophos	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Triffuralin	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
/inclozofin	mg/kg dry wt	< 0.0095	< 0.0085	< 0.0079	< 0.015	< 0.011
Polycyclic Aromatic Hydrocarl	bons Trace in Soil					12.2
cenaphthene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	< 0.0034	< 0.0025
Cenaphthylene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	< 0.0034	< 0.0025
Inthracene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	0.0069	< 0.0025
lenzo(a)anthracene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	0.023	< 0.0025
enzo[a]pyrene (BAP)	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	0.033	< 0.0025
Senzo(b)fluoranthene + Benzo luoranthene	[] mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	0.057	< 0.0025
enzo(g,h,i)perylene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	0.043	< 0.0025
senzo[k]fluoranthene	mg/kg diry wt	< 0.0022	< 0.0020	< 0.0020	0.036	< 0.0025
hrysono	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	0.035	0.0032

Sampla Type: Sedime	nt					
	Sample Name:	08-2950 07-May-2008 641657.10	08-2951 07-May-2008 641657.11	08-2952 07-May-2008 641657 12	08-2953 07-May-2008 641657 13	08-2954 07-May-2008 641657 14
Polycyclic Aromatic Hydroca	rbons Trace in Soil				011001110	011007.11
Dibenzo(a,h)anthracene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	0.0068	< 0.0025
Fluoranthene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	0.069	0.0054
Fluorene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	< 0.0034	< 0.0025
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	0.027	< 0.0025
Naphthalene	mg/kg dry wt	< 0.011	< 0.010	< 0.010	₹0.017	< 0.013
Phenanthrene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	0.023	0.0055
Pyrene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0020	0.077	0.0050
Pentachlorophenol Screening	g in Soil by GC-ECD					
Pentachiorophenol (PCP)	malka drv wt	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
2,3,4,6-Tetrachiorophenol	ma/kg dry wt	< 0.050	< 0.050	< 0.050	< 0.050	× 0.050
	Sample Name:	08-2955	08-2956	08-2957	08-2958	- 0.000
	Lab Number	641657 15	07-May-2008 641657 16	07-May-2008 641657 17	07-May-2008	
Individual Tests	Las Humber	General.10	041001.10	041007.11	041037.18	
Total Carbon	a/100a day wt	1.2	0.70	15	0.69	
USEPA Priority Pollutante - 1	Frace Level 13 motor	1.6	0.10	1.0	0.63	•
Total Recoverable Actimory	mailes doubt	0.079	10040	0.44		
Total Recoverable America	mailen dorard	1.7	1.0	0.14	0.088	
Total Recoverable Readly m	make deved	0.69	1.3	6.7	5.1	Section 1
Total Recoverable Cedmium	make doubt	0.05	0.01	0.36	0.23	Start and
Total Recoverable Chromium	make doubt	0.010	0.031	0.042	0.015	
Total Recoverable Concernant	mg/kg dry wt	2.5	1,3	1.5	1.8	
Total Recoverable Lead	malka dauwt	2.0	1.7	2.5	1.4	
Total Reneworshie Mercury	make doubt	0.00	0.010	6.5	2.9	19 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total Recoverable Nickel	mg/kg dry wi	0.021	0.019	0.24	0.032	
Total Recoverable Selecium	mg/kg dry wi	0.70	0.45	0.69	0.74	
Total Recoverable Silver	mg/kg dry wi	< 2.0	< 2.0	< 2.0	< 2.0	•
Total Recoverable Thalium	marka day wi	0.032	0.024	0.038	< 0.020	1
Total Recoverable Zinc	mp/kg dry wi	47	0.066	0.093	0.035	
Ornanochiorina Restinidae Tr	inging ury m	45	28		18	
Aldrin	ave in our	- 0.0040				
John BHC	mgrkg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
spna-bhu	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
ielle BHC	mgrkg ary wt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	-
HIL-DHC	mgrkg ary wt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
jamina-Bric (Lindane)	mgikg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
rana, chiordana	mgikg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
	mg/kg dry we	4 0.0010	< 0.0010	< 0.0010	< 0.00098	
4.000	mg/kg dry we	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
-DDF	mging dry wi	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
A-DDE	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
A'-DDT	mgring dry wit	< 0.0010	< 0.0010	0.0021	< 0.00098	
4-001	mg/kg dry wt	< 0.0010	< 0.0010	0.0021	< 0.00098	•
Neldrin	marke doubt	< 0.0010	< 0.0010	0.014	< 0.00098	
indoe: iften I	marka dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
indosulfan II	mg/kg diy wt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	·
ndosulfan suisbata	marka day wit	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
indrin	marke device	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
odrin aldehude	mong dry wt	< 0.0010	< 0.0010	< 0.0010	< 0,00098	
ndrin Ketone	make doubt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
entachlor	make dound	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
lentarhlor enorde	make doubt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
exachlorobenzene	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
athoosphior	mgrkg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00098	
and your a	mping any wi	< 0.0010	< 0.0010	< 0.0010	< 0.00098	-

	Sample Name:	08-2955	08-2956	08-2957	08-2958	
	Lab Number	641657.15	07-May-2008 641657.16	07-May-2008 641657.17	07-May-2008 841657 18	
Organochlorine Pesticides T	race in Soil					
Total Chlordane [(cis+trans) 100/42]	mg/kg dry wt	< 0.0020	< 0.0020	< 0.0020	< 0.0020	-
Organonitro&phosphorus Pr	sticides Trace in MR	Soil by GCMS				
Dry Matter	g/100g as rovd	62	58	54	69	
Acetochior	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Alachior	mg/kg dry wt	< 0.0060	< 0.0060	< 0.0061	< 0.0060	
Atrazine	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	Sec. 1
Atrazine-desethyl	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Atrazine-desisopropyl	mg/kg diry wt	< 0.022	< 0.021	< 0.025	< 0.018	
Azaconazole	mg/kg dry wt	< 0.0053	< 0.0052	< 0.0061	< 0.0044	-
Azinphos-methyl	mg/kg diry wt	< 0.022	< 0.021	< 0.025	< 0.018	1.1
Benalaxyl	mg/kg dry wt	< 0.0053	< 0.0052	< 0.0061	< 0.0044	1000
Bitertanol	mg/kg dry wt	< 0.022	< 0.021	< 0.025	< 0.018	-
Bromacil	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Bromopropylate	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
Butachlor	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
Captan	mg/kg dry wt	< 0.022	< 0.021	< 0.025	< 0.018	
Carbaryl	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Carbofuran	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Chlorfluazuron	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Chlorothalonil	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Chlorpyrifos	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
Chlorpyrifos-methyl	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
Chlortoluron	mg/kg dry wt	< 0.022	< 0.021	< 0.025	< 0.018	-
Cyanazine	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Cynuthnin	mg/kg dry wt	< 0.022	< 0.021	< 0.025	< 0.018	
Cyhalothrin	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Cypermethrin	mg/kg dry wt	< 0.043	< 0.041	< 0.049	< 0.035	
Deltamethrin	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
Diazinon	mg/kg dry wt	< 0.0053	< 0.0062	< 0.0061	< 0.0044	•
Dichloflusnid	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
Dichloran	mg/kg dry wt	< 0.030	< 0.030	< 0.031	< 0.030	
Dichiorvos	mg/kg dry wt	< 0.022	< 0.021	< 0.025	< 0.018	
Direnoconazore	mg/kg dry wt	< 0.030	< 0.029	< 0.035	< 0.025	K.D. + 77
Dimethoate	mg/kg dry wt	< 0.022	< 0.021	< 0.025	< 0.018	
Siphenylamine	mg/kg dry wt	< 0.022	< 0.021	< 0.025	< 0.018	
Auron	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
enpropimorph	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
luazitop-butyi	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
luciterate	mg/kg ary wt	< 0.011	< 0.011	< 0.013	< 0.0087	
luvalinate	mg/kg ary wit	< 0.011	< 0.011	< 0.013	< 0.0087	-
uralmote	mg/ng dry wt	0.015	< 0.015	< 0.018	< 0.013	
aloutos maltud	mg/kg dry wt	< 0.0053	< 0.0052	< 0.0081	< 0.0044	-
lexaconazola	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
lexazioone	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
BC (3-lodo-2-propynyl-n-	mg/kg dry wt	< 0.053	< 0.052	< 0.0061	< 0.0044	
vodione	mader dound					
resovin-math/	mgrkg dry wi	< 0.011	< 0.011	< 0.013	< 0.0087	
inuran	mg/kg dry w(< 0.0083	< 0.0052	< 0.0061	< 0.0044	
alathion	marke day we	<0.011	<0.011	< 0.013	< 0.0087	
latalawi	marka dound	<0.011	< 0.011	< 0.013	< 0.0087	
lethamidophos	moles down	0.011	< 0.011	< 0.013	< 0.0087	
letolachior	motion doe we	< 0.000	< 0.052	< 0.061	< 0.044	
	uilling all wi	- 0.0000	< 0.0080	< 0.0061	< 0.0050	

		annan ann ann an an an an an an an an an				
Sa	mple Name:	08-2955 07-May-2008	08-2956 07-May-2008	08-2957 07-May-2008	08-2958 07-May-2008	
Omanonitro&nhosnhon is Pestic	das Trace in MP	Sollby GCMS	041037.10	041007.17	641657.16	
Metribuzio	motes dos ut	× 0.011	< 0.011	<0.013	< 0.0007	
Molinate	maka day wi	< 0.022	< 0.021	< 0.015	< 0.0001	
Myclobutanii	marka dry wt	< 0.011	< 0.011	< 0.023	< 0.0087	
Naled	marka dry wt	< 0.053	< 0.052	< 0.061	< 0.0001	
Norflurazon	ma/ka dry wt	< 0.022	< 0.021	< 0.025	< 0.044	
Oxadiazon	ma/ka dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Dxyfluorfen	ma/ka dry wt	< 0.0053	< 0.0052	< 0.0061	< 0.0044	
Paclobutrazol	malka div wt	< 0.011	<0.011	< 0.013	< 0.0087	
Parathion-ethyl	malka dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Parathion-methyl	ma/ka dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Pendimethalin	malkg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Permethrin	ma/ka dry wt	< 0.0075	< 0.0073	< 0.0086	< 0.0062	
Pirimicarb	malka dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Pirimiphos-methyl	malka dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Prochloraz	mg/kg dry wt	< 0.053	< 0.052	< 0.061	< 0.044	
Procymidone	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Prometryn	mg/kg dry wt	< 0.0053	< 0.0052	< 0.0081	< 0.0044	
Propachlor	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	and a second
Propanil	mg/kg dry wt	< 0.030	< 0.030	< 0.030	< 0.030	S. Barber
Propazine	mg/kg dry wt	< 0.0053	< 0.0052	< 0.0061	< 0.0044	
Propiconazole	mgikg dry wt	< 0.015	< 0.015	< 0.018	< 0.013	
Pyriproxyfen	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	11-21-21
Quizalofop-ethyl	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Simazine	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Simetryn	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Sulfentrazone	mg/kg dry wt	< 0.053	< 0.052	< 0.061	< 0.044	
CMTB [2-(thiocyanomethylthio)	mg/kg dry wt	< 0.022	< 0.021	< 0.025	< 0.018	
senzothiazole,Busan]	1422.24					
Tebuconazole	mg/kg dry wt	< 0.053	< 0.052	< 0.061	< 0.044	-
Terbacil	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Terbufos	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
Ferburneton .	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
erbuthylazine	mg/kg dry wt	< 0.0053	< 0.0052	< 0.0081	< 0.0044	
arbuthylazine-desethyl	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
erbutryn	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
hisbendazole	mg/kg dry wt	< 0.053	< 0.052	< 0.061	< 0.044	
hiobencarb	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
olyffluanid	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
nazophos	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	-
influration	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Anclazolin	mg/kg dry wt	< 0.011	< 0.011	< 0.013	< 0.0087	
Polycyclic Aromatic Hydrocarbons	s Trace in Soil					
cenaphthene	mg/kg dry wt	< 0.0024	< 0.0023	< 0.0028	< 0.0020	
cenaphthylene	mg/kg dry wt	< 0.0024	< 0.0023	< 0.0028	< 0.0020	
nthracene	mg/kg dry wt	< 0.0024	< 0.0023	< 0.0028	< 0.0020	
enzo[a]anthracene	mg/kg dry wt	< 0.0024	< 0.0023	0.0074	< 0.0020	
enzojajpyrene (BAP)	mg/kg dry wt	< 0.0024	< 0.0023	0.0076	< 0.0020	
enzojb]fluoranthene + Benzojj] uoranthene	mg/kg dry wt	< 0.0024	< 0.0023	< 0.0028	< 0.0020	•
enzo(g.h.i)peryiene	mg/kg dry wt	< 0.0024	< 0.0023	0.0096	< 0.0020	
enzo[k]fluoranthene	mg/kg dry wt	< 0.0024	< 0.0023	0.012	< 0.0020	
hrysene	mgikg dry wt	< 0.0024	< 0.0023	0.0094	< 0.0020	
ibenzo(a,h)anthracene	mg/kg dry wt	< 0.0024	< 0.0023	< 0.0028	< 0.0020	
luoranthene	mg/kg dry wt	< 0.0024	< 0.0023	0.018	< 0.0020	
ucrene	mg/kg dry wt	< 0.0024	< 0.0023	< 0.0028	< 0.0020	-

cannae Type, bearing	Sample Mame	08-2055	08.2055	08-2057	08-2058	
	sample Name:	07-May-2008	07-May-2008	07-May-2008	07-May-2008	
	Lab Number:	641657.15	641657.16	641657.17	641657.18	
Polycyclic Aromatic Hydroc	arbons Trace in Soil					
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.0024	< 0.0023	0.0060	< 0.0020	-
Naphthalene	. mg/kg dry wt	< 0.012	< 0.012	< 0.014	< 0.010	
Phenanthrene	mg/kg dry wt	< 0.0024	< 0.0023	0.0063	< 0.0020	-
Pyrene	mg/kg dry wt	< 0.0024	< 0.0023	0.020	< 0.0020	-
Pentachlorophenol Screening	ng in Soil by GC-ECD					
Pentachiorophenol (PCP)	mg/kg dry wt	< 0.050	< 0.050	< 0.050	< 0.050	-
2,3,4,8-Tetrachlorophenol	mg/kg dry wt	< 0.050	< 0.050	< 0.050	< 0.050	
Sample Type: Clean v	vaters					
	Sample Name:	08-2941 07-May-2008	08-2942 07-May-2008	08-2943 07-May-2008	08-2944 07-May-2008	08-2945 07-May-2008
Individual Tests	Lab Number:	641657.1	641657.2	641657.3	641657.4	641657.5
Providual rests				12000000000000		
Reactive Slica	gim ³ as SiO ₂	44	31	47	58	48
Drinking water metals suite,	totals, trace		AND THE REAL PROPERTY.	Steel States		
Total Aluminium	g/m ³	0.52	0.56	0.33	0.58	0.27
Total Antimony	g/m³	< 0.00021	< 0.00021	< 0.00021	< 0.00021	< 0.00021
Total Arsenic	g/m ³	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
Total Barium	g/m ³	0.084	0.034	0.063	0.13	0.049
Total Beryllium	g/m ^a	0.00014	< 0.00011	< 0.00011	0.00013	< 0.00011
Total Boron	6 m/G	0.017	0.0091	0.015	0.020	0.0087
Total Cadmium	9/m3	0.000057	< 0.000053	< 0.000053	< 0.000053	< 0.000053
Total Calcium	g/m ³	9.5	2.3	3.7	12	2.9
Total Chromium	ð _i m ₃	< 0.00053	< 0.00053	< 0.00053	< 0.00053	< 0.00053
Total Copper	ð _{im3}	0.00083	< 0.00053	< 0.00053	0.0010	< 0.00053
Total Iron	g/m ³	1.2	0.41	0.53	1.1	0.21
Total Lead	Bi,w ₃	0.00033	0.00039	0.00038	0.00060	0.00016
Total Lithium	g/m³	0.0028	0.0017	0.0034	0.0043	0.0041
Total Magnesium	g/m ³	2.9	1.1	1.6	3.8	1.2
Total Manganese	8\u03	0.26	0.021	0.055	0.34	0.025
Total Mercury	g/m³	< 0.000080	< 0.000080	< 0.000080	< 0.000080	< 0.000080
Total Molybdenum	ĝ/m a	< 0.00021	< 0.00021	< 0.00021	0.00027	< 0.00021
Total Nickel	g/m ³	< 0.00063	< 0.00053	< 0.00053	< 0.00053	< 0.00053
Total Potassium	g/m ³	4.3	1.9	3.2	7.2	2.4
Total Selenium	g/ms	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
Total Silver	g/m3	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011
Total Socium	g/m ⁵	12	6.5	10	16	8.9
Total Tin	g/m ³	< 0.00053	< 0.00053	< 0.00053	< 0.00053	< 0.00053
Total Uranium	g/m ³	0.000055	0.000042	0.000025	0.000067	0.000025
Total Zinc	g/m ^a	0.0087	0.0028	0.0056	0.018	0.0034
Anion / Cation profile, trace I	level	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
Sum of Anions	meq/L	1.4	0.55	0.83	1.7	0.70
Sum of Cations	meg/L	1.3	0.49	0.75	1.5	0.64
pH	pH Units	6.4	6.8	6.6	6.5	6.8
Total Alkalinity	g/m³ as CaCO ₃	24	14	18	34	21
Bicarbonate	g/m ³ at 25°C	29	17	21	42	25
Total Hardness	g/m³ as CaCO ₃	34	9.2	14	40	11
Electrical Conductivity (EC)	mS/m	15	5.7	8.9	18	7.2
Dissolved Calcium	ð _{tm3}	9.0	2.1	3.3	10	2.6
Assolved Magnesium	g/m ³	2.7	0.94	1.4	3.4	1.1
Dissolved Polassium	8/m3	4.1	1.8	2.9	6.2	2.2
Dissolved Sodium	g/m ³	11	6.1	9.0	13	8.4
Chiloride	g/m ³	13	6.3	8.9	15	5.8
Vitinte-N	g/m ³	0.015	< 0.0020	< 0.0020	0.021	< 0.0020
Nitrate-N	0/m3	21	0.59	20	47	

e	ample Name:	08-2041	08-2042	08-2043	08.2044	08 2045
3	ample Name:	07-May-2008	07-May-2008	07-May-2008	07-May-2008	07-May-200
Anion (Cation crofile trace law	Lab Number:	641657.1	641657.2	641657.3	641657.4	641657.5
Anion / Cabon prome, trace leve	a 		0.50			
Culobate N + NOTICE-N	9m.	2.1	0.59	2.0	1./	1.1
Suprate	g/m*	17	2.8	4.0	21	2.5
Organochionne Pesticides Ultra	Trace in water, By	SPE				
Aldrin	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
alpha-BHC	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
beta-BHC	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
dena-BHC	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
gamma-BHC (Lindane)	Qr/m ²	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
cis-chlordane	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
trans-chlordane	grm3	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
2,4'-DDD	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
4,4'-DDD	B(m ₃	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
2,4'-DDE	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
4,4'-DDE	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
2,4'-ODT	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
4,4'-DDT	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Dioldrin	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Endosulfan I	glm ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Endosulfan II	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Endosulfan sulphate	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Endrin	g/m ⁵	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Endrin aldehyde	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Endrin Ketone	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Heptachlor	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Heptachlor epoxide	g/m³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Hexachlorobenzene	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Methoxychior	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000020
Total Chlordane [(cis+trans)*100	1/42] g/m ³	< 0.0000029	< 0.0000029	< 0.0000029	< 0.0000029	< 0.0000029
Organonitro&phosphorus Pestic	ides Ultratrace in	MR Water				
Acetochior	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Alachior	g/m²	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050
Atrazine	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Atrazine-desethyl	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Atrazine-desisopropyl	g/m ³	< 0.000020	< 0.000020	< 0 000020	< 0.000020	< 0.000020
Azaconazole	g/m ³	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050
Azinphos-methyl	g/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000020
Benalaxyl	g/m ³	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050
Bitertanol	g/m ²	< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000020
Bromacil	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Bromopropylate	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Butachlor	g/m ²	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Captan	0/m ⁸	< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000010
Carbaryl	o/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000020
Carbofuran	Q/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Chlorfluszuron	p/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
hlorothalonil	¢/m²	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Chlorpyrifos	a/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
hlorpyrifos-methyl	cr/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Chlortoluron	[min	< 0.000020	< 0.000000	< 0.000010	< 0.000010	< 0.000010
vanazine	6 mins	< 0.000010	< 0.000010	< 0.000020	< 0.000020	< 0.000020
Wiluthrin	ning.	< 0.000000	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Whalothrin	Smith	< 0.00020	< 0.000020	< 0.000020	< 0.000020	< 0.000020
wemethin	gint	× 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
altamethrin	Quit's	< 0.000040	< 0.000040	< 0.000040	< 0.000040	< 0.000040
liazinon	grins .	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
	gim.	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050

		00.00.14				
	Sample Name:	08-2941 07-May-2008	08-2942 07-May-2008	08-2943 07-May-2008	08-2944 07-May-2008	08-2945 07-May-200
	Lab Number:	641657.1	641657.2	641657.3	641657.4	641657.5
Organonitro&phosphorus Pes	ticides Ultratrace in	MR Water				
Dichlofluanid	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Dichloran .	g/m ³	< 0.000025	< 0.000025	< 0.000025	< 0.000025	< 0.000025
Dichlorvos	g/m ²	< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000020
Difenoconazole	g/m ³	< 0.000029	< 0.000029	< 0.000029	< 0.000029	< 0.000029
Dimethoate	p/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000020
Diphenylamine	g/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000020
Diuron	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Fenpropimorph	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Fluazifop-butyl	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Fluometuron	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Flusilazole	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Fluvalinate	g/m ³	< 0.000015	< 0.000015	< 0.000015	< 0.000015	< 0.000015
Furalaxyl	g/m ³	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050
Haloxyfop-methyl	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Hexaconazole	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Hexazinone	g/m ³	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050
PBC (3-lodo-2-propynyl-n- outylcarbamate)	g/m ³	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
prodione	g/m ^a	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Kresoxim-methyl	g/m ³	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050
Linuron	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Malathion	g/m ²	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Victalaxyl	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Metolachior	g/m ^a	< 0.0000060	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050
Vetribuzin	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Molinate	g/m3	< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000070
Ayclobutanii	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000020
Valed	Q/m ³	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000010
Vorifiurazon	g/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000000
Dxadiazon	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.0000010
Dxyfluorfen	g/m ²	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050
Paclobutrazol	°g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Parathion-ethyl	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
arathion-methyl	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Pendimethalin	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
ermethrin	g/m ³	< 0.0000071	< 0.0000071	< 0.0000071	< 0.0000071	< 0.0000071
lirimicarb	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.0000010
irimiphos-methyl	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
rochloraz	g/m ³	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
rocymidane	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
rometryn	g/m³	< 0.0000050	< 0.0000060	< 0.0000050	< 0.0000050	< 0.0000050
vopachlor	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.0000010
ropanil	g/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000020
ropazine	g/m ³	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050
ropiconazole	g/m ³	< 0.000015	< 0.000015	< 0.000015	< 0.000015	< 0.000015
yriproxyfen	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
luizalofop-ethyl	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
imazine	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000040
imetryn	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
ulfentrazone	g/m ³	< 0.000060	< 0.000050	< 0.000050	< 0.000050	< 0.000050
CMTB [2-(thiocyanomethylthio enzothiazole,Busan]	a) grim ³	< 0.000020	< 0.000020	< 0.000020	< 0.000020	< 0.000020
ebuconazole	g/m ²	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
erbacil	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
erbufos .	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
erburneton	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
	mannen				0.000010	< 0.000010

	ample N	08.2044	08.0010	00.0010		
	ample Name:	08-2941 07-May-2008	08-2942 07-May-2008	08-2943 07-May-2008	08-2944 07-May-2008	08-2945 07-May-2008
Ornanonitro&phosphon & Pasti	cides Ultratrace in	MR Water	041007.2	641657.3	641657.4	641657.5
Tech thularine	odes ofinanace in	< 0.0000050	- 0.0000070			
Terbuthylazine desetted	g/m-	< 0.0000050	< 0.0000050	< 0.0000060	< 0.0000050	< 0.0000050
Terbudaya Terbudaya	gime	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Thishendarole	gima	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Thiobencark	g/m ²	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
Tribificanid	g/m-	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Triazophos	gims atm3	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Triffuralio	gim'	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Vinclozalin	gim3	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Polycyclic Aromatic Hydrocarbo	gene Trace in Mate	Du ODE	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Assessed these	vis Trace in viate	r, by SPE				1
Acenaphthetera	Bim.	< 0.000008	< 0.000008	< 0.000008	< 0.000008	< 0.000008
Anthrasesse	g/m ³	< 0.000008	< 0.000008	< 0.000008	< 0.000008	< 0.000008
Renzolalanthrannon	gims	< 0.000008	< 0.000008	< 0.000008	< 0.00008	< 0.000008
Benzolalovrena (PAP)	gima	< 0.000008	< 0.000006	< 0.000008	< 0.00000.8	< 0.000008
Banzalbili oranitana a Banzali	gima	< 0.000008	< 0.000006	< 0.000008	< 0.000008	< 0.000008
fluoranthene	gim.,	< 0.00008	< 800000.0 >	< 0.000008	< 0.000008	0.000011
Benzojg.h.jperviene	g/m ^s	< 0.000008	< 0.000008	< 0.000008	< 0.000008	0.000008
Benzo(k)fluoranthene	g/m ³	< 0.000008	< 0.000008	< 0.000008	< 0.000008	0.000009
Chrysene	g/m ³	< 0.000008	< 0.000008	< 0.000008	< 0.000005	< 0.000008
Dibenzo(a,h)anthracene	g/m ³	< 0.000008	< 0.000008	< 0.000008	< 0.000008	< 0.000008
Fluoranthene	g/m ³	< 0.000008	< 0.000008	< 0.000008	< 0.000008	< 0.000008
Fluorene	g/m ³	< 0.000008	< 0.000008	< 0.000008	< 0.000008	< 0.000008
Indeno(1,2,3-c,d)pyrene	g/m³	< 0.000008	< 0.000008	< 0.000008	< 0.000008	< 0.000000
Naphthalene	g/m ³	< 0.000040	< 0.000040	< 0.000040	< 0.000040	< 0.000000
Phenanthrene	g/m ³	< 0.000008	< 0.000008	< 0.000008	< 0.000008	< 0.000040
Pyrene	g/m ²	< 0.000008	< 0.000008	< 0.000008	< 0.000008	< 0.000008
Pentachlorophenol Trace in Wal	ter by GC-ECD					- 0.000000
Pentachilorophenol (PCP)	a/m ³	< 0.000014	< 0.000014	< 0.000014	< 0.000014	<0.000014
2,3,4,6-Tetrachlorophenol	o/m ²	< 0.000014	< 0.000014	< 0.000014	< 0.000014	< 0.000014
			- 0.0000 14	4 0.000014	~ 0.000014	< 0.000014
51	ample Name:	08-2946 07-May-2008	08-2947 07-May-2008	08-2948 07-May-2008	08-2949 07-May-2008	
	Lab Number:	641657.6	641657.7	641657.8	641657.9	
ndividual Tests						
fotal Nitrogen	g/m ³			-	3.8	
otal Ammoniacal-N	g/m*	-	•	•	1.3	-
rotal Kjeldahl Nitrogen (TKN)	g/m³	-		1.	2.9	-
otal Phosphorus	g/m³	-	-		0.61	-
Reactive Silica	g/m ³ as SiO ₂	61	40	13	47	- 11
Drinking water metals suite, total	s, trace					5
otal Aluminium	g/m ³	0.15	0.14	0.080	0.86	-
otal Antimony	g/m ^s	< 0.00021	< 0.00021	0.00022	< 0.0011	1000000
otal Arsenic	g/m ³	< 0.0011	< 0.0011	0.0051	< 0.0053	1.00
otal Barium	g/m ³	0.064	0.031	0.025	0.17	
otal Beryllium	g/m ³	< 0.00011	< 0.00011	< 0.00011	< 0.00053	-
otal Boron	g/m ³	0.0090	0.0091	0.24	0.31	
otal Cadmium	g/m³	< 0.000053	< 0.000053	< 0.000053	< 0.00027	
otal Calcium	g/m ³	3.8	2.6	3.5	85	
otal Chromium	g/m ³	< 0.00053	< 0.00053	< 0.00053	< 0.0027	
otal Copper	g/m ³	< 0.00053	< 0.00053	< 0.00053	< 0.0027	
otal fron	g/m ³	0.41	0.095	0.081	8.9	
	g/m ²	0.00017	< 0.00011	< 0.00011	< 0.00053	
otal Lead						
otal Lead otal Lithium	g/m ³	0.0048	0.0049	0.10	0.065	-
otal Lead otal Lithium otal Magnesium	g/m ³ g/m ³	0.0048	0.0049	0.10	0.065	

	Sample Name:	08-2946	08-2947	08-2948	08-2949	
		07-May-2008	07-May-2008	07-May-2008	07-May-2008	
	Lab Number:	641657.6	641657.7	641657.8	641657.9	
Drinking water metals suite,	totals, trace	1940.00			1999 (1997 - 1997 -	
Total Mercury	g/m ³	< 0.000080	< 0.000080	< 0.000080	< 0.000080	-
Total Molybdenum	g/m ³	< 0.00021	< 0.00021	< 0.00021	< 0.0011	-
Total Nickel	g/m ³	< 0.00053	< 0.00053	< 0.00053	< 0.0027	-
Total Potassium	g/m ³	3.2	2.1	4.2	39	101 - C -
Total Selenium	g/m ³	< 0.0011	< 0.0011	< 0.0011	< 0.0053	
Total Silver	g/m ²	< 0.00011	< 0.00011	< 0.00011	< 0.00011	
Total Sodium	g/m ³	11	7.4	26	740	-
Total Tin	g/m ³	< 0.00053	< 0.00053	< 0.00053	< 0.0027	-
Total Uranium	g/m ³	< 0.000021	< 0.000021	< 0.000021	0.00012	-
Total Zinc	g/m ^a	0.0083	0.0016	0.0038	0.040	
Anion / Cation profile, trace le	evel					
Sum of Anions	meq/L	0.92	0.61	1.5	44	-
Sum of Cations	Treem	0.83	0.64	1.4	42	
pМ	pH Units	6.6	6,9	6.8	6.3	-
Total Alkalinity	g/m3 as CaCO3	23	18	16	53	-
Bicarbonate	g/m3 at 25°C	28	22	19	65	
Total Hardnoss	g/m³ as CaCO ₃	16	10	15	540	-
Electrical Conductivity (EC)	m\$/m	9.5	6.2	17	470	
Dissolved Calcium	9/m ³	3.6	2.3	3.3	85	
Dissolved Magnesium	g/m ³	1.6	1.0	1.7	80	
Dissolved Potassium	g/m ³	3.0	1.9	4.0	37	-
Dissolved Sodium	g/m ³	10	6.8	24	680	
Chioride	g/m ³	8.8	5.2	22	1400	
Nitrite-N	g/m ³	0.0027	< 0.0020	< 0.0020	0.031	
Nitrate-N	g/m ³	1.8	0.86	0.21	0.82	
Nitrate-N + Nitrite-N	g/m ³	1.8	0.86	0.21	0.85	
Sulphate	g/m ³	4.2	2.1	28	200	Contraction of the
Organochlorine Pesticides U	ItraTrace in water, By	SPE				
Aldrin	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
alpha-BHC	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
beta-BHC	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
delta-BHC	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
gamma-BHC (Lindane)	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
cis-chlordane	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
trans-chlordane	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	1996-1997
2,4'-DDD	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
4.4-DDD	g/m ^s	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
2,4'-DDE	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	States and a
I,4'-DDE	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	balance -
.4'-DOT	g/m ²	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	Contraction of
1,4'-DOT	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
Dieldrin	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
Endosultan I	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
Endosultan II	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
Endosulfan sulphate	g/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
Endrin	c/m ²	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
Endrin aldehyde	Q/m ²	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
Indrin Kelone	Q/m ²	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
leptachlor	Q/m3	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
leptachlor epoxide	e/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	
lexachlorobenzene	o/m ³	< 0.0000020	< 0.0000020	< 0.0000020	< 0.0000040	(particular)
Aethorychior	olm)	< 0.0000020	< 0.0000020	< 0.0000020	< 0.000040	· · · ·
otal Chlordane I(cis+tracs)*1	100/421 0/m3	< 0.0000028	< 0.0000020	< 0.0000020	< 0.0000040	
free endship	manual Manuel	0.0000020	4 0.0000028	4 0.0000029	< 0.0000067	State Barrie

	Sample Name:	08-2946	08-2947	08-2948	08-2949	
	Gampie raine.	07-May-2008	07-May-2008	07-May-2008	07-May-2008	
	Lab Number:	641657.6	641657.7	641657.8	641657.9	1
Organonitro&phosphorus P	esticides Ultratrace in	MR Water				
cetochlor	9/m3	< 0.000010	< 0.000010	< 0.000010	< 0.000020	-
Vachlor	g/m ³	< 0.0000050	< 0.0000050	< 0.0000050	< 0.000010	-
trazine	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	-
trazine-desethyl	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	-
trazine-desisopropyl	g/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000040	
zaconazole	8µm3	< 0.0000050	< 0.0000050	< 0.0000050	< 0.000010	
zinphos-methyl	B/m3	< 0.000020	< 0.000020	< 0.000020	< 0.000040	
lenalaxyl	g/m ³	< 0.0000050	< 0.0000050	< 0.0000050	< 0.000010	
itertanol	g/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000040	
romacil	g/m³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
romopropylate	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
utachlor	g/m ²	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
aptan	g/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000040	
arbaryl	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
arbofuran	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
hiorfluazuron	c m/g	< 0.000010	< 0.000010	< 0.000010	< 0.000020	-
hlorothalonil	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
hlorpyrifos	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
hiorpyrifos-methyl	2 mig	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
hlortoluron	g/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000040	
yanazine	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
yfluthrin	g/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000040	1 and the second
yhalothrin	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
ypermethrin	g/m ³	< 0.000040	< 0.000040	< 0.000040	< 0.000080	· · · · · · · · · · · · · · · · · · ·
eltamethrin	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
iazinon	g/m ³	< 0.0000050	< 0.0000050	< 0.0000050	< 0.000010	
ichlofluanid	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
ichloran	g/m ³	< 0.000025	< 0.000025	< 0.000025	< 0.000050	
ichlarvos	a/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000040	
ifenoconazole	a/m ³	< 0.000029	< 0.000029	< 0.000020	< 0.000040	
imethoate	alm ³	< 0.000020	< 0.000020	< 0.000020	< 0.000000	Child Street
iphenvlamine	alm ³	< 0.000020	< 0.000020	< 0.000020	< 0.000040	
iuron	alm?	< 0.000010	< 0.000010	< 0.000020	< 0.000040	
enpropimorph	olm3	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
uszifon-butvl	gring	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
uometuron	gint .	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
usinzole	ginit.	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
usaleste	grim-	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
ralmod	grms*	< 0.000015	< 0.000015	< 0.000015	< 0.000029	
along for mathed	gimis	< 0.0000050	< 0.0000050	< 0.0000060	< 0.000010	
avaconstole	g/m ²	< 0.000010	< 0.000010	< 0.000010	< 0.000020	•
execting	grma	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
BC (3-lodo-2-propynyl-n-	g/m ³	< 0.000050	< 0.0000050	< 0.0000050 < 0.000050	< 0.000010 < 0.00010	
rodione	cim3	× 0.000010	< 0.000010	< 0.000040	- 0.000000	
esoxim-method	gini s	< 0.0000000	< 0.000010	< 0.000010	< 0.000020	
	grid a	< 0.0000000	4 0.0000050	< 0.0000050	< 0.000010	-
alathion	gmis	< 0.000010	< 0.000010	0.000010	< 0.000020	
Halavd	grin*	< 0.000010	< 0.000010	< 0.000010	< 0.000020	-
atolachior	gym,	< 0.000010	< 0.000010	< 0.000010	< 0.000020	-
atributin	Buu ₃	< 0.0000050	< 0.0000050	< 0.0000050	< 0.000010	
Enote	grm ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	-
anate	g/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000040	
cioducani	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
100	g/m ^a	< 0.000050	< 0.000050	< 0.000050	< 0.00010	
orthurazon	g/m ³	< 0.000020	< 0.000020	< 0.000020	< 0.000040	

	Sample Name:	08-2946	08-2947	08-2948	08-2949	
	Lab Number	07-May-2008	07-May-2008	07-May-2008	07-May-2008	
Omanonitra Enhornhorus P	Lab Number:	MP Water	641037.7	041007.8	041607.9	
Overland	am1	< 0.000010	< 0.000040	- 0.000010		
Oxduazon	gini-	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
Daciobedration	gimi	< 0.0000000	< 0.0000050	< 0.0000060	< 0.000010	
Parathion_athul	gima	< 0.000010	< 0.000010	< 0.000010	< 0.000020	and the second
Parathion-method	olm3	< 0.000010	< 0.000010	< 0.000010	< 0.000020	all and the start
Pandimathalin	olm3	< 0.000010	< 0.000010	< 0.000010	< 0.000020	1
Permethrio	gina	< 0.000010	< 0.000010	< 0.000010	< 0.000020	· · · · · · · · · · · · · · · · · · ·
Pirimicarh	- inve	< 0.0000011	< 0.0000011	< 0.0000071	< 0.000015	
Piriminhos-methyl	olm3	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
Prochloraz	alm ²	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
Procymidane	gim ²	< 0.000000	< 0.000000	< 0.000050	< 0.00010	
Prometrum	- ing	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
Pronachlor	grin-	< 0.0000000	< 0.0000050	< 0.0000050	< 0.000010	
Propanil	grill ²	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
Propazine	- Ing	< 0.0000050	< 0.000020	< 0.000020	< 0.000040	1000
Propiconazole	grine	< 0.0000050	< 0.0000000	< 0.0000050	< 0.000010	
Putintronifen	grins .	< 0.000010	< 0.000018	0.000015	< 0.000029	
Ouizalafon_etited	- Freing	< 0.000010	< 0.000010	< 0.000010	< 0.000020	· ····································
Cimatina	g/m ²	< 0.000010	< 0.000010	< 0.000010	< 0.000020	· · ·
Simultun	gim?	< 0.000010	< 0.000010	< 0.000010	< 0.000020	1000
Sulfantrazona	gims	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
TOUTE IS able to the second	g/m-	< 0.000050	< 0.000050	< 0.000050	< 0.00010	· · · · · · · · · · · · · · · · · · ·
benzothiazole, Busan]	uio) gim-	< 0.000020	< 0.000020	< 0.000020	< 0.000040	•
Tebuconazole	9/m ³	< 0.000050	< 0.000050	< 0.000050	< 0.00010	
Terbacil	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
Terbufos	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
Terburneton	g/m³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	10
Terbuthylazine	g/m ³	< 0.0000050	< 0.0000050	< 0.0000050	< 0.000010	
Terbuthylazine-desethyl	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
Terbutryn	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	-
Thiabendazole	g/m ³	< 0.000050	< 0.000050	< 0.000050	< 0.00010	-
Thiobencarb	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
Folylfluanid	g/m ³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
Friazophos	g/m³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
Frifluralin	g/m³	< 0.000010	< 0.000010	< 0.000010	< 0.000020	
/inclozolin	g/m ²	< 0.000010	< 0.000010	< 0.000010	< 0.000020	-
Polycyclic Aromatic Hydroca	rbons Trace in Water.	By SPE				
Acenaphthene	g/m ³	< 0.000008	< 0.000008	< 0.000008	< 0.000008	-
Acenaphthylene	g/m ³	< 0.000008	< 0.000008	< 0.000008	< 0.000008	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Anthracene	g/m ³	< 0.000008	< 0.000008	< 0.000008	< 0.000008	
Benzo(a)anthracene	g/m²	< 0.000008	< 0.000008	< 0.000008	< 0.000008	and the second
Benzojajpyrene (BAP)	g/m ²	< 0.000008	< 0.000008	< 0.000008	< 0.000008	1000
kenzo(b)fluoranthene + Benz luoranthene	to[j] g/m ³	< 0.000008	0.000013	< 0.000008	< 0.000008	•
Benzo(g,h,i]pervlene	c.tm3	< 0.000008	0.000012	< 0.000000	< 0.000000	
Benzo(k)fluoranthene	olm)	< 0.000008	0.000012	< 0.000008	< 0.000008	1
Ihrysene	ofm3	< 0.000008	< 0.0000008	< 0.000008	< 0.000008	
libenzola hlanthracene	(min)	< 0.000008	€ 0.000000	< 0.000000	< 0.000008	19.00
luoranthene	faire .	< 0.000008	< 0.000008	< 0.000008	< 0.000008	
luorene	(mine)	< 0.000008	< 0.000000	< 0.000005	< 0.000008	
ndeno(1,2,3-c,d)evene	n/m2	< 0.000008	< 0.000000	< 0.000008	< 0.000008	
laohthalene	olm3	< 0.000008	< 0.000006	< 0.000008	< 0.000008	
henaulbrene	gims otm3	< 0.000040	< 0.000040	< 0.000040	< 0.000040	
Anene .	gims	< 0.000008	< 0.000008	< 0.000008	< 0.000008	
	8ms	- 0.000008	₹ 0.000008	< 0.000008	< 0.000008	

Sample Na	ame: 0	08-2946 7-May-2008	08-2947 07-May-2008	08-2948 07-May-2008	08-2949 07-May-2008	
Lab Num	iber:	641657.6	641657.7	641657.8	641657.9	
Pentachlorophenol Trace in Water by GC-I	ECD	1973 S.				1.
Pentachiorophenol (PCP)	g/m ³	< 0.000014	< 0.000014	< 0.000014	< 0.000014	
2,3,4,6-1 etrachiorophenoi	ĝ/m ²	< 0.000014	< 0.000014	< 0.000014	< 0.000014	-
SUMMARY O	FN	ИЕТН	ODS			
the following table(s) gives a brief description of the r Detection limits may be higher for individual samples sh	methods used hourd insuffice	a to conduct the an ant sample be svela	alyans for this job. The d the, or if the matrix requir	etection limits given by res that diutions be per	blow ard those atteinable in a rela formed during analysis	lively clean mat
Sample Type: Sediment						
Test	Method	Description			Default Detection Limit	Samples
individual Tests	Law area					
Environmental Solids Sample Preparation*	Air dried at 35°C and sieved, <2mm fraction.					10-18
Dry Mamer (Org)	gravimetr	y.	3-6% more water th	tan air dry),	0.10 g/100g as revd	10-18
Total Recoverable digestion	Nitrie / hy	drochloric acid	digestion. US EPA ;	200.2		10-18
Total Carbon	Catalytic Conducti	Combustion (90 vity Detector [El	0°C, O ₂), separation ementar Analyser].	n, Thermal	0.050 g/100g dry wt	10-18
USEPA Priority Pollutants - Trace Level, 13 metals*	Dried sar digestion	nple, <2mm frac ICP-MS, trace	ction. Nitric/Hydroch	loric acid		10-18
Organochiorine Pesticides Trace in Sol*	Sonicatio	n extraction, SP	E cleanup, GPC cle	sanup (if	-	10-18
Organonitro&phosphorus Pesticides	Sonicatio	n extraction, GF	C-ECD analysis C cleanup, GC-MS	analysis		10-18
Polycyclic Aromatic Hydrocarbons Trace	Sonicatio	n extraction, SP	E cleanup, GC-MS	SIM analysis	······	10-18
Pentachlorophenol Screening in Soil by SC-ECD*	Solvent e	xtraction, acetyl	ation, GC-ECD anal	ysis	1	10-18
ampin Type: Clean waters						
Test	Method	Description			Default Detection Lines	
ndividual Tests	Alection	Description			Detault Detection Limit	Samples
filtration, Unpreserved	Sample fi	Itration through	0.45um membrane t	filter.		1.0
Total Digestion	Boiling nit	ric acid digestic	n. APHA 3030 E 21	# ed. 2005.		1.0
otal acid digest for Silver/Tin analysis	Boiling nit 3030 F (n	ric / hydrochlori nodified) 21st ed	c acid digestion (5:1 2005.	ratio). APHA		1-9
otal Kjeldahl Digestion	Sulphuric	acid digestion v	with copper sulphate	catalyst.		9
otal Phosphorus Digestion	Acid pers	ulphate digestio	n.		-	9
otal anions for anion/cation balance heck	Calculatio	n: sum of anion	s as mEquiv/L.		0.070 meg/L	1-9
otal cations for anion/cation balance theory	Calculatio	n: sum of cation	ns as mEquiv/L		0.050 meq/L	1-9
н	pH meter.	APHA 4500-H	B 21= ed. 2005.		0.1 pH Upits	1-9
otal Alkalinity	Titration to (Modified	pH 4.5 (M-alku for alk <20) 214	alinity), autotitrator. /	APHA 2320 B	1.0 g/m ³ as CaCO ₃	1-9
licarbonate	Calculatio 500 mg/L carbonate 2005.	(Modified for alk <20) 21 st ed. 2005. Calculation: from alkalinity and pH, valid where TDS is not > 500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO₂ D 21 st ed. 2006.			1.0 g/m³ at 25°C	1-9
otal Hardness	Calculatio	n from Calcium	and Magnesium.	The second	1.0 g/m ² as CaCO ₂	1-9
lectrical Conductivity (EC)	Conductiv	ity meter, 25°C.	APHA 2510 B 21	ed. 2005.	0.10 mS/m	1.9
itration for dissolved metals analysis	Sample fill	tration through 0	0.45µm membrane f	Iter and	-	1-9
issolved Calcium	Filtered sa 2005	imple, ICP-MS,	trace level. APHA 3	≈ed. 2005. 125 B 21≤ ed.	0.050 g/m ³	1-9
issolved Magnesium	Filtered sa 2005	imple, ICP-MS,	trace level. APHA 3	125 B 21 st ed.	0.020 g/m ³	1-9
issolved Potassium	Filtered sa 2005.	mple, ICP-MS,	trace level. APHA 3	125 B 21st ed.	0.050 g/m ³	1-9
issolved Sodium	Filtered sa 2005.	mple, ICP-MS,	trace level. APHA 3	125 B 21 st ed.	0.020 g/m ³	1-9
				C. C		

Test	Method Description	Default Detection Limit	Samples
Chloride	Filtered sample. Ferric thiocyanate colorimetry. Discrete Analyser. APHA 4110 Ct E (modified from continuous flow	0.50 g/m ³	1-9
Total Nitrogen	analysis) 21 st ed. 2005. Calculation: TKN + Nitrate-N + Nitrite-N	0.050 p/m ²	0
Total Ammoniacal N	Filtered semale Dhenol/tunochiorite existingto: Discrete	0.010 atm3	
TOGEROUTERCHERCHERCHER	Analyser. (NH-AN = NH ₄ +N + NH ₅ -N). APHA 4500-NH ₃ F (modified from manual analysis) 21 st ed. 2005	0.010 gmP	9
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NOs I (Proposed) 21st ed. 2005.	0.0020 g/m ³	1-9
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - NO2N	0.0020 g/m ³	1-9
Nitrate-N + Nitrite-N	Total oxidised nitrogen. Automated cadmium reduction, flow injection analyser. APHA 4500-NO ₃ : I (Proposed) 21 st ed. 2005.	0.0020 g/m ³	1-9
Total Kjeldahl Nitrogen (TKN)	Total Kjeldahl digestion, phenol/hypochlorite colorimetry. Discrete Analyser: APHA 4500-Nerg C. (modified) 4500 NH ₃ F (modified) 21 st ed. 2005.	0.10 g/m ³	9
Total Phosphorus	Total phosphorus digestion, ascorbic acid colorimetry. Discrete Analyser. APHA 4500-P E (modified from manual analysis) 21 st ed. 2005.	0.0040 g/m ³	9
Reactive Silica	ca Filtered sample. Heteropoly blue colorimetry. Discrete analyser. APHA 4500-SiO ₂ F (modified from flow injection analysis) 21 st ed. 2005.		
Sulphate	Filtered sample. Ion Chromatography. APHA 4110 B 21st ed. 2006.	0.50 g/m ³	1-9
Drinking water metals suite, totals, trace*		-	1-9
Anion / Cation profile, trace level*			1-9
Organochlorine/Organonitro&phos Pest.s Ultratrace in Water*	Solid phase extraction, GPC (if required), GC-MS analysis	•	1-9
Organochlorine Pesticides UltraTrace in water, By SPE*	Solid phase extraction, SPE cleanup (if required), dual column GC-ECD analysis		1-9
Organonitro&phosphorus Pesticides Ultratrace in MR Water*	Solid phase extraction, GPC (if required), GC-MS analysis		1-9
Polycyclic Aromatic Hydrocarbons Trace n Water, By SPE*	Solid phase extraction, SPE (if required), GC-MS SIM analysis	• 600	1-9
Pentachlorophenol Trace in Water by GC- ECD*	Solvent extraction, acelylation, GC-ECD analysis	•	1-9
Drinking water metals suite, totals, trace			
Fotal Aluminium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005.	0.0032 g/m ³	1-9
Fotal Antimony	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005	0.00021 g/m ³	1-9
Total Arsenic	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 2144 ed. 2005.	0.0011 g/m ³	1-9
Fotal Barium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005	0.00021 g/m ³	1-9
otal Beryllium	Nitric solid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005.	0.00011 g/m ³	1-9
otal Boron	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 ^{ac} ed. 2005.	0.0053 g/m ³	1-9
fotal Cadmium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005.	0.000053 g/m ³	1-9
otal Calcium	Nitric acid digestion, ICP-MS, trace level, APHA 3125 B 21 ^{ad} ed. 2005.	0.053 g/m ³	1-9
otal Chromium	Nitric acid digestion, ICP-MS, trace level, APHA 3125 B 21 ^{ad} ed. 2005.	0.00053 g/m ³	1-9
otal Copper	Nitric acid digestion, ICP-MS, trace level, APHA 3125 B 21 ^e ed. 2005.	0.00053 g/m ³	1-9
otal Iron	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005.	0.021 g/m ³	1-9
ctal Lead	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005.	~ 0.00011 g/m ³	1-9
otal Lithium	Nitric acid digestion, ICP-MS, trace level, APHA 3125 B 21* ed. 2005.	0.00042 g/m ³	1-9
otal Magnesium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 214 ed. 2005	0.021 g/m ³	1-9

Test	Nethod Description	Default Detection Limit	Samalas	
Total Manganese	Nitric acid digestion, ICP-MS, trace level, APHA 3125 B 21 st ed. 2005.	0.00053 g/m ³	1-9	
Total Mercury	Permanganate / Persulphate digestion. Analysis by FIMS. US EPA 245.2	0.000080 g/m ³	1-9	
Total Molybdenum	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005.	0.00021 g/m ³	1-9	
Total Nickel	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005.	0.00053 g/m ³	1-9	
Total Potassium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21st ed. 2005.	0.063 g/m ³	1-9	
Total Selenium	Nitric acid digestion. ICP-MS, trace level. APHA 3125 B 21 st ed. 2005.	0.0011 g/m ³	1-9	
Total Silver	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005.	0.00011 g/m ³	1-9	
Total Sodium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005.	0.021 g/m ³	1-9	
Total Tin	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 ^a ed. 2005.	0.00053 g/m ³	1-9	
Total Uranium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 ^a ed. 2005.	0.000021 g/m ⁵	1-9	
Total Zinc	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 21 st ed. 2005.	0.0011 g/m ²	1-9	

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

a

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental Division

Lab No: 641657 v 2

Hill Laboratories

Page 16 of 16

Appendix - III Lab analysis reports for organics and metals in shellfish samples from Maketū Estuary

	MACALC AND		CALLER		F	Page 1 of
Client: Enviro Contact: Spence c/o En P O Bo WHAK	nment BOP xe, Adrian vironment BOP ox 364 (ATANE			ab No: bate Registered bate Reported: buote No: brder No: client Reference bubmitted By:	641480 1: 08-May-2008 03-Jun-2008 32877 104425 e: 2008/024 Spence, Adrian	5₽
Sample Type Sh	ellfish					
	Sample Name: Lab Number:	08/2895 05-May-2008 641480.1	08/2895 05-May-2008 641480.2	08/2897 05-May-2008 641480.3	08/2898 05-May-2008 641480.4	
Moisture	g/100g as rcvd	85	85	90	90	
Vrsenic	mg/kg as rovd	1.8	1.7	3.3	2.8	
Cadmium	mg/kg as rovd	0.033	0.030	0.028	0.028	-
hromium	mg/kg as rovd	0.023	0.032	0.17	0.12	
opper	mg/kg as rcvd	0.58	0.55	0.68	0.53	
ead	mg/kg as rovd	0.010	0.011	0.015	0.014	
Aercury	mg/kg as rcvd	0.012	0.012	0.015	0.010	
lickel	mg/kg as rcvd	0.081	0.079	30.0	0.80	
SUMM/	mg/kg as rovd	8.9 METH used to conduct the and	8.3 ODS	7.1	7.4 slow are those attainable in a rela	tívely clean ma
Enc SUMM/ http://www.subictional restormational analytic pages sample Type: Shi	mg/kg as rovd A R Y O F a bref description of the methods of for incluidual samples should inside of firsh	8.9 METH used to conduct the and record tempto be availed	8.3 ODS syses for this job. Th sole, or if the metric re-	7.1 7.1 e delection limits given b	7.4 elow are those attainable in a relat formed outing analysis.	they clean ma
Zinc SUMM/ hs following table(s) gives exection limits may be high sample: Type:// Shi Test	mg/kg as rovd ARYOF s brief description of the methods of for individual samples should ins cliffish	8.9 METH used to conduct the anu- ristorit sample be availated	8.3 ODS syses for the job. Th table, or if the matrix re	7.1 e selector limits given b quires that dilutions be pe	7.4 elow are those attainable in a rela formed outing analysis. Default Detection Limit	they clean ma
Zinc SUMM/ he following table(s) gives invection limits may be highe Samplie: Type: Shi Test Shucking of Shellfish	mg/kg as rovd A R Y O F a bref description of the methods if for individual samples should ins cliffis in Meth Remin Labor Innov	8.9 METH used to conduct the anu- interf sample be availed tood Description val of tissue from s ratories - Food & Brid ation Park, Ruskura	8.3 ODS syses for this job. Th table, or if the matrix re- banalytical Division Lane, Hamilton.	7.1 e celector limits given b guines that dilutions be pe nformed at Hill n, Walkato	7.4 elow stro those attainable in a relat formed outing analysis. Default Detection Limit	tively clean ma Samples 1-4
Zinc SUMM/ he delowing table(s) gives exector binds may be highe Sample Type: Shi Tost Shucking of Shellfish Homogenise	mg/kg as rovd A R Y O F a bref description of the methods a for individual samples should ins citrus in Meth Remit Labor Innov Minci Labor Innov	8.9 METH used to conduct the anu- international states of the second cod Description wal of tissue from s ratories - Food & Bid ation Park, Ruakura ing, chopping, or bile genous sample frac atories - Food & Bid atories - Food & Bid atories - Food & Bid	8.3 ODS syses for this job. This syses for this job. This is an alternative banalytical Divisio Lane, Hamilton. Inding of sample tion. Analysis pe banalytical Divisio Lane, Hamilton.	rformed at Hill n, Waikato	7.4 elow sre those attainable in a relat formed outing analysis. Default Detection Limit	Samples
Enc SUM MAX he detexting table(s) by two exection lambs may be higher sampler Type: Shi Test Shucking of Shellfish Homogenise Moisture	mg/kg as rovd A R Y O F a bref description of the methods of for individual samples should ins critinis in	8.9 METH used to conduct the ani- ani-back sample be weak and Description wal of tissue from s ratories - Food & Bid atories	8.3 0 D S syses for this job. The table, or if the matrix re- solution of the matrix re- banalytical Division banalytical Division banalytica	7.1 e delector limits given b guines that diutions be per rformed at Hill n, Walkato to form efformed at Hill n, Walkato gravimetry. cod & Bioanalytical a Lane, Hamilton. f Chemical, ssing and ed Sediment Sites.	7.4 elow are those attainable in a relat formed outing analysis. Default Detection Limit	Samples
Eine SUMMA In following (able(s) gives teaction lands may be higher Sample: Type: Shi Fest Shucking of Shellfish formogenise Moisture Hological Materials Dig	mg/kg as rovd A R Y O F a bref description of the methods a for individual samples should ins cliffish Meth Remu Labor Innov Minci homo Labor Innov Dryin Analy Divisi Fact 2003. gestion Nitric Analy Divisi	8.9 METH used to conduct the anu- internet sample be availed tood Description oval of tissue from s atories - Food & Bits atorion Park, Ruakuras genous sample frac atories - Food & Bits genous sample frac atories - Food & Bits atories - Food	8.3 ODS system for this job. The table, or if the metric re- banalytical Divisio Lane, Hamilton. Inding of sample- tion. Analysis per banalytical Divisio Lane, Hamilton. I Laboratories - Fi tion Park, Ruakum A Compendium of tethods for Assee on of Contaminat tid micro digestion I Laboratories - Fi tion Park, Ruakum	rformed at Hill n, Waikato to form efformed at Hill n, Waikato to form efformed at Hill n, Waikato gravimetry. good & Bioanalytical a Lane, Hamiton. f Chemical, ssing and ed Sediment Sites, n, 85°C for 1 hour, ood & Bioanalytical a Lane, Hamiton.	7.4 elow are those attainable in a relat formed outing analysis. Default Detection Limit	Samples 1-4 1-4 1-4 1-4 1-4
Cinc SUN MAN Is following (active(s) gives tootton listles may be inglie controller Type: Shi cet ihucking of Shellflish formogenise foisture foisture	mg/kg as rovd A R Y O F a bref description of the methods a for individual samples should ins cliffish Meth Labor Innov Minci home Labor Innov Siffient Dryin Analy Divisi Gestion Nitric Analy Divisi Biolog	8.9 METH used to conduct the anu- internet sample be availed tood Description oval of tissue from s atories – Food & Bite genous sample frac- atories – Food & Bite genous sample frac- statories – Food & Bite genous sample frac- atories – Food & Bite genous sample frac- atories – Food & Bite genous sample frac- atories – Food & Bite genous sample frac- statories – Food & Bite genous sample frac- statories – Food & Bite genous sample frac- atories – Food & Bite genous sample frac- statories – Food & Bite genous sample frac- atories – Food & Bite genous sample frac- satories – Food & Bite genous sample frac- satories – Food & Bite genous sample frac- satories – Food & Bite genous sample frac- atories – Food & Bite frac- satorie	8.3 ODS system for this job. The table, or if the metric re- banalytical Divisio table, Hamilton. Inding of sample tion. Analysis per sanalytical Divisio table, Hamilton. I Laboratories - Fi tion Park, Ruakum A Compendium of tethods for Asseed on of Contaminata tid micro digestion I Laboratories - Fi tion Park, Ruakum tion, ICP-MS.	7.1 a detector limits given b quires that dilutions be per rformed at Hill n, Walkato to form arformed at Hill n, Walkato to form arformed at Hill n, Walkato pravimetry. cod & Bioanalytical a Lane, Hamiton. a Sediment Sites. n, 85°C for 1 hour. cod & Bioanalytical a Lane, Hamilton.	7.4 elow are those attainable in a relat formed outing analysis. Default Detection Limit 0.10 g/100g as rowd	Samples 1-4 1-4 1-4 1-4 1-4 1-4
Cinc SUN MAN Is following (active) proves is following (active) is following (active) is following of Shellflish formogenise foisture follogical Materials Dig rsenic admium	gestion A R Y O F a bref description of the methods a bref description of the methods Billion Biolog Biolog	8.9 METH used to conduct the ani- international statutes of the second method bescription out of tissue from s- atories – Food & Bits atories – Food & Bi	8.3 ODS avyses for this job. The table, or if the metric re- banalytical Divisio to Lane, Hamilton. Inding of sample- tion. Analysis per banalytical Divisio Lane, Hamilton. I Laboratories - Fi tion Park, Ruakum A Compendium of tethods for Asset on of Contamination and micro digestion I Laboratories - Fi tion Park, Ruakum tion, ICP-MS. tion, ICP-MS.	7.1 a detector limits given b quires that dilutions be per rformed at Hill n, Walkato to form erformed at Hill n, Walkato to form erformed at Hill n, Walkato pravimetry. cod & Bioanalytical a Lane, Hamilton. f Chemical, soing and ed Sediment Sites, n, 85°C for 1 hour, cod & Bioanalytical a Lane, Hamilton.	7.4 elow are those attandble in a relater formed outing analysis. Default Detection Limit 0.10 g/100g as rowd 0.020 mg/kg as rowd 0.00040 mg/kg as rowd	Samples 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4
inc SUN M M / Is following teatie(s) pros section limits may be ingle section limits may be ingle section limits may be ingle fest inucking of Shellfish formogenise foisture foisture isological Materials Dig rsenic admium hromium	gestion A R Y O F a bref description of the methods a bref description of the methods for individual samples should ins Methods Remu Labor Dryin Analy Divisi Biolog Biolog Biolog	8.9 METH used to conduct the ani- internet sample be availed tood Description val of tissue from s atories – Food & Biti genous sample frac atories – Food & Biti atories – Food & Biti number of the sample sample fraction of the sample atories – Food & Biti atories – Food & B	8.3 ODS system for this job. The rate, or if the metric re- banalytical Divisio Lane, Hamilton. Inding of sample- tion. Analysis per banalytical Divisio Lane, Hamilton. I Laboratories - Fi ion Park, Ruakum A Compendium of tethods for Asset on of Contamination ad micro digestion I Laboratories - Fi ion Park, Ruakum tion, ICP-MS. tion, ICP-MS. tion, ICP-MS.	7.1 a detector limits given b quires that dilutions be per rformed at Hill n, Walkato to form erformed at Hill n, Walkato provimetry, cod & Bioanalytical a Lane, Hamiton. f Chemical, soing and ed Sediment Sites, n, 85°C for 1 hour, cod & Bioanalytical a Lane, Hamilton.	7.4 elow are those attandble in a relate formed outing analysis. Default Detection Limit 0.10 g/100g as rowd 0.020 mg/kg as rowd 0.00040 mg/kg as rowd 0.020 mg/kg as rowd	Samples 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4
Cinc SUN MAN Is following (table(t)) gives isocoton lands may be higher isocoton lands may be higher isocoton lands may be higher isotopic Type: Shi rest isological Materials Dig rsenic isological Materials Dig rsenic isodomium hromium isopper	gestion A RY OF a bref description of the methods for individual samples should ins A RY OF a bref description of the methods for individual samples should ins A Remo Labor Innov Minci homo Labor Innov Bridig Biolog Biolog Biolog	8.9 METH used to conduct the ani- interest sample be available tood Description oval of tissue from s atories – Food & Bid genous sample frac atories – Food & Bid site Performed at Hill on, Waikato Innoval pical materials diges pical materials diges pical materials diges	8.3 ODS syses for this job. The table, or if the metric re- banalytical Divisio to Lane, Hamilton. Inding of sample- tion. Analysis per- banalytical Divisio table, Hamilton. I Laboratories - F tion Park, Ruakur at micro digestion I Laboratories - F tion Park, Ruakur tion, ICP-MS. tion, ICP-MS. tion, ICP-MS.	7.1 a detector limits given b quires that dilutions be per rformed at Hill n, Waikato to form erformed at Hill n, Waikato pravimetry. cod & Bioanalytical a Lane, Hamilton. f Chemical, ssing and ed Sediment Sites, n, 85°C for 1 hour. cod & Bioanalytical a Lane, Hamilton.	7.4 elow are those attanable in a relation formed outing analysis. Default Detection Limit 0.10 g/100g as rowd 0.020 mg/kg as rowd	Samples 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4
Cinc SUN MAN Is following tracket(s) gives a section listics may be higher section listics may be higher section listics may be higher fest Shucking of Shellflish formogenise floisture floiogical Materials Dig rsenic admium hromium copper ead	gestion Nitric Analysis and Analysis and Ana	8.9 METH used to conduct the ani- information of the second information of the second information of the second information park, Ruakura atories - Food & Bid genous sample frac atories - Food & Bid sperformed at Hill on, Waikato Innoval pical materials diges pical mater	8.3 ODS syses for this job. The table, or if the matrix re- banalytical Divisio to Lane, Hamilton, inding of sample- tion. Analysis per- banalytical Divisio to Lane, Hamilton, inding of sample- tion. Analysis per- banalytical Divisio to Lane, Hamilton, inding of sample- tion. Analysis per- banalytical Divisio to Lane, Hamilton, i Laboratories - F- tion Park, Ruakur tion, ICP-MS. tion, ICP-MS. tion, ICP-MS. tion, ICP-MS.	7.1 a detector limits given b quires that dilutions be per rformed at Hill n, Waikato to form erformed at Hill n, Waikato pravimetry. cod & Bioanalytical a Lane, Hamilton. f Chemical, sing and ed Sediment Sites, n, 85°C for 1 hour. cod & Bioanalytical a Lane, Hamilton.	7.4 elow are those attanable in a relation formed outing analysis. Default Detection Limit 0.10 g/100g as rowd 0.020 mg/kg as rowd	Samples 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4
Enc SUM MAX he following table(s) gives coactor banks may be highe coactor banks may be highe cost cost Shucking of Shellflish formogenise doisture Biological Materials Dig krsenic cadmium chromium copper ead fercury	gestion Nitric Analysis and Analysis and Ana	8.9 METH used to conduct the ani- inforce sample be available tood Description val of tissue from si- ratories - Food & Bid genous sample frac- atories - Food & Bid- genous sample frac- sis performed at Hill on, Waikato Innoval pical materials diges pical materials diges pical materials diges pical materials diges pical materials diges	8.3 ODS syses for this job. The table, or if the matrix re- banalytical Divisio to Lane, Hamilton, inding of sample- tion. Analysis per- banalytical Divisio to Lane, Hamilton, inding of sample- tion. Analysis per- banalytical Divisio to Lane, Hamilton, inding of sample- tion. Analysis per- banalytical Divisio to Lane, Hamilton, i Laboratories - F- tion Park, Ruakur tion, ICP-MS. tion, ICP-MS. tion, ICP-MS. tion, ICP-MS. tion, ICP-MS.	7.1 e detector limits given b quires that dilutions be per rformed at Hill n, Waikato to form erformed at Hill n, Waikato pravimetry. cod & Bioanalytical a Lane, Hamilton. f Chemical, sing and ed Sediment Sites, n, 85°C for 1 hour. cod & Bioanalytical a Lane, Hamilton.	7.4 elow are those attanable in a relation formed outing analysis. Default Detection Limit 0.10 g/100g as rowd 0.020 mg/kg as rowd	Samples 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4
Enc SUM MAX he following tracket(s) gives exection lands may be higher control and a may be higher cost cost cost doisture Reological Materials Dig drisenic codmium chromium copper ead dercury lickel	gestion Mitric Analy a bref description of the methods for individual samples should ins cliffish Meth Labor Innov Minci homo Labor Innov Biolog Biolog Biolog Biolog Biolog	8.9 METH used to conduct the ani- inforced sample be availed tood Description val of tissue from si- ratories - Food & Si atories - Food & Si sie performed at Hill on, Waikato Innoval pical materials diges pical mat	8.3 ODS system for this job. The table, or if the matrix re- ball. Analysis per- banalytical Divisio to Lane, Hamilton. Inding of sample- tion. Analysis per- banalytical Divisio to Lane, Hamilton. I Laboratories - F lion Park, Ruakur tion, ICP-MS. tion, ICP-MS. tion, ICP-MS. tion, ICP-MS. tion, ICP-MS. tion, ICP-MS. tion, ICP-MS. tion, ICP-MS. tion, ICP-MS. tion, ICP-MS.	7.1 e detector limits given b quires that dilutions be per rformed at Hill n, Waikato to form erformed at Hill n, Waikato pravimetry. ood & Bioanalytical a Lane, Hamilton. f Chemical, ssing and ed Sediment Sites, n, 85°C for 1 hour. ood & Bioanalytical a Lane, Hamilton.	7.4 elow sre those attanuble in a relation formed outing analysis. Default Detection Limit 0.10 g/100g as rovd 0.020 mg/kg as rovd	Samples 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4

A	Hill Laboratories

R J HII Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zaaland Web www.htil-labs.co.nz

SPy1

$\mathbf{R} = \mathbf{P} \otimes \mathbf{R} \mathbf{I}$

Client: Environment BOP Contact: Spence, Adrian c/o Environment BOP POBox 364 WHAKATANE

Lab No:	641296
Date Registered:	07-May-2008
Date Reported:	10-Jun-2008
Quote No:	32877
Order No:	104425
Client Reference:	2008/024
Submitted By:	Spence, Adrian

Sa	mple Name: Lab Number:	06/2895 05-May-2008 641296.1	08/2896 05-May-2008 641296.2	08/2897 05-May-2008 641296.3	08/2898 05-May-2008 641296.4	
Individual Tests						1111
Lipid Content*	g/100g	1.1	1.1	0.96	0.96	
Dry Matter	g/100g as revd	19	18	16	15	
Organochlorine Pesticides in Bio	matter					
Aldrin	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
alpha-BHC	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	1000
beta-BHC	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
delta-BHC	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
gamma-BHC (Lindane)	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
cis-chlordane	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
trans-chlordane	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
2,4°-DDD	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
4,4'-DDD	mg/kg	0.00051	0.0017	0.0018	0.00058	
2.4'-DDE	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
4.4'-DDE	mg/kg	< 0.00050	0.0028	0.0026	< 0.00050	
2,4'-DDT	mg/kg	< 0.00050	< 0.00050	0.00051	< 0.00050	
4,4'-DDT	mg/kg	0.00050	0.0018	0.0054	0.0019	
Dieldrin	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
Endosulfan I	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
Endosulfan II	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
Endosulfan sulfate	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
Endrin	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
Endrin aldehyde	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00060	-
Endrin Ketone	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	1
Heptachlor	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
Heptachlor epoxide	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
Hexachlorobenzene	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
Methoxychior	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
Total Chlordane [(cis+trans)*100/	42] mg/kg	< 0.0020	< 0.0020	< 0.0020	< 0.0020	
Polycyclic Aromatic Hydrocarbons	s in Biomatter					
Acenaphthene	mg/kg as rovd	< 0.00076	< 0.00079	< 0.0015	< 0.0018	
Acenaphthylene	mg/kg as rovd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	
Anthracene	mg/kg as revd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	
Benzo(a)anthracene	mg/kg as revd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	
Benzo(a)pyrene (BAP)	mg/kg as revd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	
Benzo(b)fluoranthene + Benzo(j) Nuoranthene	mg/kg as rovd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	-
Benzo(g.h.i)perylene	mg/kg as rovd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	
Benzo[k]fluoranthene	mg/kg as rovd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked ", which are not accredited.
Contraction of the second s	Sample Name	08/2895	08/2896	08/2897	08/2898	
	Lab Number	05-May-2008 641296.1	05-May-2008 641296 2	05-May-2008	05-May-2008	
Polycyclic Aromatic Hydrocarb	calo Humber.	041200.1	041230.2	041200.0	041280.4	
Chrysene	malka as revel	< 0.00076	< 0.00079	< 0.0018	< 0.0018	
Dibenzola hlanthracene	mg/kg as rovd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	Constantine .
Fluoranthene	mg/kg as revd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	
Fluorene	ma/ka as revd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	11111
Indeno(1,2,3-c,d)pyrene	mg/kg as rcvd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	
Naphthalene	mg/kg as rovd	< 0.0050	< 0.0050	< 0.0088	< 0.0089	
Phenanthrene	mg/kg as rovd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	
Pyrene	mg/kg as revd	< 0.00076	< 0.00079	< 0.0018	< 0.0018	
Polychlorinated biphenyls in Bi	iomatter			100 C 100 C 100		
PCB-101	mp/kp	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-105	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-110	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-114	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-118	mg/kg	< 0.00050	< 0.00050	< 0.00060	< 0.00050	
PCB-121	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-123	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-126	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-128	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-138	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-141	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-149	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	-
PCB-151	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	-
PCB-153	mg/kg	< 0.00060	< 0.00050	< 0.00050	< 0.00050	-
PCB-156	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-167	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-159	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-167	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00060	
PCB-169	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00060	
PCB-170	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-180	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PGB-189	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-194	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PGB-206	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PG8-209	mgrikg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PCB-28 + PCB-31	mg/kg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PUB-44	mgrkg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
PUB-45	mgrikg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
00-02	mgikg	< 0.00060	< 0.00050	< 0.00060	< 0.00050	-
PCB-77	mging	< 0.00050	< 0.00050	< 0.00050	< 0.00060	-
PCB-81	mgikg	< 0.00050	< 0.00050	< 0.00050	< 0.00050	in minister
00.8.86	marka	< 0.00050	< 0.00050	< 0.00050	< 0.00050	
Total PCB (Sum of 33 concern	rs) malka	< 0.00000	< 0.00050	< 0.00050	< 0.00050	
Pentachlorophenol Trace in Bid	ta by GC-ECD	- 0.02	< 0.02	< 0.02	< 0.02	
Pentachlorophenol /BCD)	na by GO-ECO	< 0.0000	- 0.0004			
2.3.4.6-Tetrachiorophenol	mg/kg	< 0.0029	< 0.0034	< 0.0033	< 0.0030	
a a la la activa chinella	mg/ng	~ 0.0028	< 0.0034	< 0.0033	< 0.0030	
SUMMAR	YOF	METH	ODS			
he following lable(s) gives a brief des election limits may be higher for individ	ception of the methods u Lai samples should insu	sed to conduct the ana ficient sample be available	lyses for this job. The de ble, or if the matrix require	lection limits given b 16 That divisions be pe	elow are those attainable in a re- rformed during analysis.	sävely clean ma
Sample Type: Shellfish		10				
inid Contect?	Metho	a Description			Default Detection Limit	Samples
ibio Compil	Gravin	HEU'RG.			0.10 g/100g	1-4

Sample Type: Sheifish			
Test	Method Description	Default Detection Limit	Samples
PCB, PAH And OCP in Biomatter			1-4
Shucking of Shellfish*	Removal of tissue from shell. Analysis performed at Hill Laboratories - Food & Bioanalytical Division, Walkato Innovation Park, Ruakura Lane, Hamilton.		1-4
Homogenisation of Biological samples for Organics Tests*	Mincing, chopping, or blending of sample to form homogenous sample fraction.		1-4
Hamogenise*	Mincing, chopping, or blending of sample to form homogenous sample fraction. Analysis performed at Hil Laboratories - Food & Bioanalytical Division, Waikato Innovation Park, Ruakura Lane, Hamitton.	1	1-4
Organochlorine Pesticides in Biomatter	Sonication extraction, SPE cleanup, GPC cleanup, dual column GC-ECD analysis	-	1-4
Polycyclic Aromatic Hydrocarbons in Biomatter			1-4
Polychlorinated biphenyls in Biomatter		-	1-4
Pentachlorophenol Trace in Biota by GC- ECD	ASE extraction, acetylation, GC-ECD analysis		1-4
Dry Matter (Org)	Dried at 103°C (removes 3-5% more water than air dry), gravimetry.	0.10 g/100g as rovd	1-4

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental Division

Lab No: 641296 v 1	Hill Laboratories	Page 3 of 3

Client: Contact:	Environment BOP Spence, Adrian c/o Environment BOP P O Box 364 WHAKATANE		La Da Da Qu Or Cli Su	b No: te Registered: te Reported: tote No: der No: tent Reference: bmitted By:	641477 08-May-2008 20-Jun-2008 32877 104425 2008/024 Spence, Adriar	POPw
Sample Ty	/pe: Shellfish					
	Sample Name: Lab Number:	08/2895 05-May-2008 641477.1	08/2896 05-May-2008 641477.2	08/2897 05-May-2008 841477.3	08/2898 05-May-2008 641477.4	
Multiresidue	GC Analysis (fresh & dried samples)					
	Analytes Detected:	None	None	None	None	

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recorded herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * which

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

malytes	Detection Limit	Analytes	Detection Limit	Analytes	Detection Lie
Aultiresidue GC Analysis (fre	esh & dried	Multiresidue GC Analysis (fresh	a & dried	Multiresidue GC Analysis (In	ash & ririari
amples)		samples)		samples)	point da General
cephate	0.010 mg/kg	Cyhaiothrin	0.010 mg/kg	Fenobucarb	0.010 mg/k
cetochior	0.010 mg/kg	Cypermethrin	0.010 mg/kg	Fenoxaprop-ethyl	0.010 mg/k
lachior	0.010 mg/kg	Cyproconazole	0.010 mg/kg	Fenpicionil	0.010 mg/
ldrin	0.010 mg/kg	Cyprodinil	0.010 mg/kg	Fenpropathrin	0.010 mg/
trazine	0.010 mg/kg	2,4'-DDD	0.010 mg/kg	Fenpropimorph	0.010 mg/l
trazine-desethyl	0.010 mg/kg	4,4'-DDD	0.010 mg/kg	Fensulfothion	0.010 mg/
trazine-desisopropyl	0.020 mg/kg	2,4'-DDE	0.010 mg/kg	Fenthion	0.010 mg/
zaconazole	0.010 mg/kg	4,4'-DDE	0.010 mg/kg	Fenvalerate	0.010 mg/
zinphos-methyl	0.010 mg/kg	2,4'-DDT	0.010 mg/kg	Fluazifop-butyl	0.010 mg/
zoxystrobin	0.010 mg/kg	4.4'-DDT	0.010 mg/kg	Flucythrinate	0.010 mg/
enalaxy	0.010 mg/kg	Deltamethrin (Traiomethrin)	0.010 mo/kg	Fludiaxonil	0.010 mg/
endiocarb	0.010 mg/kg	Demeton-S-methyl	0.010 mp/kg	Fluometuron	0.010 mg/
enodanil	0.010 molea	Diazinon	0.010 molko	Flusilazole	0.010 mg/
engwacor	0.010 motion	Dichlohenil	0.010 molks	Elutriafol	0.010
nha.BHC	0.010 motio	Dichlofenthing	0.010 mpkg	Figurato	0.010 mg/
Va.RHC	0.010 mg/kg	Dichiofi innici	0.010 mpkg	Falsat	0.010 mg/
amma BHC (Lindana)	0.010 mg/kg	Dishlora	0.010 mg/kg	Forper	0.020 mg/
ata BHC	0.010 mg/kg	Dichlosus	0.010 mg/kg	Fonotos	0.010 mg/
sta-BHC	0.010 mg/kg	Dichlorvos	0.010 mg/kg	Puralaxyl	0.010 mg/
Tenck	0.010 mg/kg	Dicotol	0.050 mg/kg	Furathiocarb	0.010 mg/
itenthrin .	0.010 mg/kg	Dicrotophos	0.010 mg/kg	Halfenprox	0.010 mg/
itertanol	0.010 mg/kg	Dieldrin	0.010 mg/kg	Haloxyfop-methyl	0.010 mg4
romacil	0.010 mg/kg	Difenoconazole	0.020 mg/kg	Heptachlor	0.010 mg/
romophos-ethyl	0.010 mg/kg	Diflufenican	0.010 mg/kg	Heptachlor epoxide	0.010 mg/
romopropylate	0.010 mg/kg	Dimethenamid	0.010 mg/kg	Hexachlorobenzene	0.010 mg4
upirimate	0.010 mg/kg	Dimethoate	0.010 mg/kg	Hexaconazole	0.010 mgA
uprofezin	0.010 mg/kg	Dimethomorph	0.010 mg/kg	Hexazinone	0.010 mgA
utachior	0.010 mg/kg	Dimethylvinphos	0.010 mg/kg	Hexythiazox	0.050 mg/
utamifos	0.010 mg/kg	Dinocap	0.050 mg/kg	Imazali	0.010 mg/
adusafos	0.010 mg/kg	Dioxabenzofos	0.010 malkg	Indoxacarb	0.010 mg/
aptafol	0.010 mp/kp	Diphenylamine	0.010 marka	Iodofenphos	0.010 mod
aptan	0.010 mo/kg	Disulfoton	0.010 maka	Inrobentos	0.010 mod
arbarvi	0.010 mo/kg	Diuran	0.010 make	Inrodione	0.020
arbofenothion	0.010 motes	Editembos	0.010 make	leannhon	0.010
arhofuran	0.010 mp/mg	Endoeulfan I	0.010 mg/kg	Isotennikes	0.010 mgs
arbovia	0.010 mg/kg	Endoschan I	0.010 mg/kg	Isolenphos	0.010 mgs
a chlordana	0.010 mg/kg	Endosullan sullate	0.010 mgrkg	Keepingano	0.010 mgs
s-chiordane	0.010 mg/kg	Endosuran suitate	0.010 mg/kg	Krescoam-methyl	0.010 mg/
ans-chiordane	0.010 mg/kg	Enarin	0.010 mg/kg	Leptophos	0.010 mg1
niorrenapyr	0.010 mg/kg	Endrin aldehyde	0.010 mg/kg	Linuron	0.020 mg/
hiorferwinphos	0.010 mg/kg	Endrin Ketone	0.010 mg/kg	Malathion	0.010 mg/
hiorfluazuron	0.010 mg/kg	EPN	0.010 mg/kg	Mepronil	0.010 mg/
hlorobenzilate	0.010 mg/kg	Epoxiconazole	0.010 mg/kg	Metalaxyi (Mefencikam)	0.010 mg/
hlorothalonil	0.010 mg/kg	EPTC	0.010 mg/kg	Methacrifos	0.010 mgA
hlorpropham	0.010 mg/kg	Esfenvalerate	0.010 mg/kg	Methamidophos	0.020 mg/
hlorpytifos	0.010 mg/kg	Esprocarb	0.010 mg/kg	Methidathion	0.010 mg/
hlorpyrifos-methyl	0.010 mg/kg	Ethion	0.010 mg/kg	Methiocarb	0.010 mgA
hiorthal-dimethyl	0.010 mg/kg	Ethoprophos	0.010 mg/kg	Methoxychior	0.010 mg/
hiortaluron	0.010 mg/kg	Etridiazole	0.020 mg/kg	Metolachior	0.010 mg/
hlozolinate	0.010 mg/kg	Etrimfos	0.010 mg/kg	Metribuzin	0.010 mod
omazone	0.010 mg/kg	Famphur	0.010 mg/kg	Mevinphos	0.010 mm
oumaphos	0.010 mo/kg	Fenamiphos	0.010 malke	Molinate	0.010 mm
vanazine	0.010 motion	Fenarimol	0.010 malks	Monocratochos	0.020 mot
vanophos	0.010 motion	Fenchlorphos	0.010 mmbr	Muclohutanii	0.010 mgs
- opines	0.010 mg/kg	Fanitrathing	0.010 mg/kg	Alalad	0.010 mg/s
duthrin			The second produced	The second	11 11 211 MARA

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNE	fresh & dried	Midlessides OC Analysis /	an R drind	
samples)	mean or oned	samples)	ish & dried	
Napropamide	0.010 mg/kg	Terbufos	0.010 marka	
Nitrofen	0.010 mg/kg	Terburneton	0.010 mg/kp	
Nitrothal-Isopropyl	0.010 mg/kg	Terbuthylazine	0.010 mg/kg	
Norflurazon	0.020 mg/kg	Terbuthylazine-desethyl	0.010 mg/kg	
Omethoate	0.020 mg/kg	Terbutryn	0.010 mg/kg	
Oxadiazon	0.010 mg/kg	Tetrachiorvinphos	0.010 mo/kg	
Oxadixvl	0.010 malka	Tetracifon	0.010 molka	
Oxychlordane	0.010 marks	Thenvichior	0.010 molka	
Oxyfiuorfen	0.010 malka	Thichencarb	0.010 molko	
Paclobutrazol	0.010 marka	Thiometon	0.010 molko	
Parathion-ethyl	0.020 morke	Tololofos-methyl	0.010 malka	
Parathion-methyl	0.010 moles	Toldfuanid	0.010 malka	
Penconazole	0.010 motes	Triadimaton	0.020 malka	
Pendimethalin	0.010 motion	Tri-allate	0.010 mpikg	
Permethón	0.010 mpkg	Triazoohos	0.010 mg/kg	
Phonthoate	0.010 mg/kg	Triflooustochic	0.010 mg/kg	
Phorate	0.010 mg/kg	Triffuratio	0.010 mg/kg	
Discalaria	0.010 mg/kg	Maalazalia	0.010 mgag	
Phoemat	0.010 mg/kg	4 InGlozolin	0.010 mg/kg	
Phosphamidae	0.010 mg/kg			
Pricephannoon Diseased badevide	0.010 mg/kg	-		
Piperonyi-outoxide Disimisash	0.010 mg/kg			
Primicarb	0.010 mg/kg			
Primiphos-methyl	0.010 mg/kg			
Prochioraz	0.010 mg/kg			
Procymidone	0,010 mg/kg	C.C. C.C. C.C.		
Protencios	0.010 mg/kg			
Prometryn	0.010 mg/kg			
Propachior	0.010 mg/kg	No. No. No. No. 1		
Propanil	0.020 mg/kg			
Propaphos	0.010 mg/kg	The Contraction		
Propazine	0.010 mg/kg			
Propetamphos	0.010 mg/kg			
Propham	0.010 mg/kg			
Propiconazole	0.010 mg/kg			
Propoxur	0.010 mg/kg			
Propyzamide	0.010 mg/kg			
Prothiofos	0.010 mg/kg			
Pyraciofos	0.020 mg/kg			
Pyrazophos	0.010 mg/kg			
Pyrazoxyfen	0.020 mg/kg			
Pyrethrin	0.030 mg/kg			
Pyrifenox	0.010 mg/kg			
Pyrimethanil	0.010 mg/kg			
Pyriproxyfen	0.010 mg/kg			
Quinalphos	0.010 mg/kg			
Quintozene	0.010 mg/kg			
Quizalofop-ethyl	0.010 mg/kg			
Simazine	0.010 mg/kg			
Simetryn	0.020 mg/kg			
Suffentrazone	0.010 molks	Salar and Salar		
Sulfoteo	0.010 motka			
Tebuconazole	0.010 marks			
Tabu denourad	0.010 molton			
Press and the rest of the rest	o o co			
Techacil	C. C			

SUMMARY O	F METHODS	and the second second				
he following table(s) gives a brief description of the betection limits may be higher for individual samples a	methods used to conduct the analyses for this job. The detection limits given it hould insufficient sample be available, or if the matrix requires that dilutions be pr	relow are those attainable in a relat rformed during analysis	vely clean ma			
Sample Type: Shellfish						
Test	Method Description	Default Detection Limit	Samples			
Multiresidue GC Analysis (fresh & dried samples)	Ethyl scetate extraction, GPC cleanup, GC-MS SIM analysis, GC-ECD/NPD analysis. Analysis performed at Hill Laboratories - Food & Bioanalytical Division, Walkato Innovation Park, Ruakura Lane, Hamilton,		1-4			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

CP. Malah

Colin Malcolm BSc Divisional Manager - Food & Bioanalytical Division

Lab No: 641477 v 2	Hill Labo	ratories	Page 4 o

Appendix IV – Lab analysis reports for organics and metals in sediment samples from Maketū Estuary

AN	ANALYSIS REP						Page 1 of 4
Client: Contact:	Environment Spence, Adri c/o Environm P O Box 364 WHAKATAN	BOP an leent BOP E		Lat Dat Qu Orc Cliu	o No: te Registered: te Reported: ote No: der No: ent Reference: bmitted By:	641486 08-May-2008 21-May-2008 32803 104425 2008/024 Spence, Adriar	SPv2
Sample Ty	pe: Sediment					Contraction of the	
	1	Sample Name:	08/2899 05-May-2008	08/2900 05-May-2008	08/2901 05-May-2008	08/2902 05-May-2008	
Individual Te	esta	Lab Number:	041400.1	041400.2	041400.3	041400.4	
Total Organia	c Carbon	g/100g dry wt	0.66	0.27	0.61	0.60	
USEPA Prio	rity Pollutants - Tr	race Level, 13 metals	5				
Total Recove	rable Antimony	mg/kg dry wt	< 0.040	< 0.040	< 0.040	< 0.040	-
Total Recove	rable Arsenic	mg/kg dry wt	3.3	4.0	4.8	4.0	
Total Recove	arable Beryllium	mg/kg dry wt	0.14	0.17	0.20	0.19	
Total Recove	arable Cadmium	mg/kg dry wt	0.030	< 0.010	0.030	0.035	-
Total Recover	arable Chromium	mg/kg dry wt	1.7	2.9	3.1	3.0	
Total Recover	arable Copper	mg/kg dry wt	1.1	1.2	1.6	1.4	-
Total Recove	arable Lead	mg/kg dry wt	1.7	2.1	22	2.1	
Total Recove	arable Mercury	mg/kg dry wt	0.013	0.025	0.034	0.023	
Total Recover	arable Nickel	mg/kg dry wt	0.95	1.7	1.9	1.8	
Total Recove	arable Selenium	mg/kg dry wt	< 2.0	< 2.0	< 2.0	< 2.0	
Total Recove	erable Silver	mg/kg dry wt	< 0.020	< 0.020	< 0.020	< 0.020	-
Total Recove	arable Thallium	mg/kg dry wt	0.069	0.030	0.050	0.066	
Total Recove	arable Zinc	mg/kg dry wt	9.8	17	17	18	
Organochior	ine Pesticides Tra	ace in Soil					
Aldrin		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
alpha-BHC		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
beta-BHC		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
delta-BHC		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	-
gamma-BHC	(Lindane)	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	-
cls-chlordan	0	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
trans-chlorda	sne	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	•
2,4'-DDD		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
4,4'-DDD		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	-
2,4'-DDE		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	•
4.4'-DDE		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
2,4-DDT		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
4,4-DDT		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	-
Dieldrin		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
Endosultan I		mg/kg ary wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	110
Endosulfan I	a substants	mgrkg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
Endosulfan s	suipnate	mgnkg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	· · · ·
Endrin Feddig eid 1		mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
Endrin aideh	yua	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
Englini Kelor	IC	mg/kg ary wt	0.0010	0.0010	0.0010	< 0.0011	

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked ", which are not accredited.

States of the CALIFORNIA STATES OF THE OWNER OWNER OF THE OWNER	Sample Hames	08/2800	08/2000	08/2004	09/2002	
	sample Name:	05-May-2008	05-May-2008	05-May-2008	05-May-2008	
	Lab Number:	641486.1	641486.2	641486.3	641486.4	
Organochlorine Pesticides Tr	ace in Soil					
Heptachlor epoxide	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
Hexachlorobenzene	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
Methoxychlor	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0011	
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.0020	< 0.0020	< 0.0020	< 0.0020	
Organonitro&phosphorus Pes	ticides Trace in MR	Soll by GCMS		San Star		Ser. Salar
Dry Matter	g/100g as rcvd	63	72	60	62	
Acetochlor	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Alachior	mg/kg dry wt	< 0.0060	<.0.0060	< 0.0060	< 0.0060	
Atrazine	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Atrazine-desethyl	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Atrazine-desisopropyl	mg/kg dry wt	< 0.019	< 0.017	< 0.020	< 0.019	
Azaconazole	mg/kg dry wt	< 0.0048	< 0.0042	< 0.0050	< 0.0048	-
Azinphos-methyl	mg/kg dry wt	< 0.019	< 0.017	< 0.020	< 0.019	
Benalaxyl	mg/kg dry wt	< 0.0048	< 0.0042	< 0.0050	< 0.0048	
Bitertanol	mg/kg dry wt	< 0.019	< 0.017	< 0.020	< 0.019	
Bromacil	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Bromopropylate	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	-
Butachlor	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Captan	mg/kg dry wt	< 0.019	< 0.017	< 0.020	< 0.019	
Carbaryl	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Carbofuran	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Chlorfluazuron	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Chlorothalonil	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Chlorpyrifos	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Chlorpyrifos-methyl	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Chlortoluron	mg/kg dry wt	< 0.019	< 0.017	< 0.020	< 0.019	
Cyanazine	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Cyfluthrin	mg/kg dry wt	< 0.019	< 0.017	< 0.020	< 0.019	
Cyhalothrin	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Cypermethrin	mg/kg dry wt	< 0.038	< 0.034	< 0.040	< 0.038	
Deltamethrin	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Diazinon	mg/kg dry wt	< 0.0048	< 0.0042	< 0.0050	< 0.0048	
Dichlofluanid	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Dichloran	mg/kg dry wt	< 0.030	< 0.030	< 0.030	< 0.030	
Dichlorvos	mg/kg dry wt	< 0.019	< 0.017	< 0.020	< 0.019	
Difenoconazole	mg/kg dry wt	< 0.027	< 0.024	< 0.028	< 0.027	20.4.2.2
Dimethoate	mg/kg dry wt	< 0.019	< 0.017	< 0.020	< 0.019	-
Diphenylamine	mg/kg dry wt	< 0.019	< 0.017	< 0.020	< 0.019	
Diuron	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Fenpropimorph	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Fluazifop-butyl	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Fluometuron	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Flusilazole	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Fluvalinate	mg/kg dry wt	< 0.014	< 0.012	< 0.014	< 0.014	
Furalaxyl	mg/kg dry wt	< 0.0048	< 0.0042	< 0.0050	< 0.0048	
Haloxytop-methyl	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
lexaconazole	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Hexazinone	mg/kg dry wt	< 0.0048	< 0.0042	< 0.0050	< 0.0048	
PBC (3-lodo-2-propynyl-n- outylcarbamate)	mg/kg dry wt	< 0.048	< 0.042	< 0.050	< 0.048	•
prodione	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Kresaxim-methyl	mg/kg dry wt	< 0.0048	< 0.0042	< 0.0050	< 0.0048	
Linuron	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Malathion	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	

	Sample Name:	08/2899	08/2900	08/2901	08/2902	
	Lab Number	05-May-2008 641488.1	05-May-2008 641485 2	05-May-2008	05-May-2008	
Organonitro&phosphorus Pest	icides Trace in MR	Soil by GCMS	041400.2	041400.0	041400.4	
Metalavvi	molika day wit	< 0.0095	< 0.0083	< 0.0000	< 0.0005	
Methamidophos	malka dry wt	< 0 D48	< 0.042	< 0.050	< 0.0090	
Metalachior	malka dry wt	< 0.0060	< 0.0060	< 0.0080	< 0.040	1. S. A.
Metribuzin	malka dru wt	< 0.0005	< 0.0003	< 0.0000	< 0.0000	· · · ·
Molinate	malka dry wt	< 0.019	< 0.017	< 0.020	< 0.0085	
Myclobutanil	malka dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0005	
Naled	malka dry wt	< 0.048	* 0.042	< 0.050	< 0.0050	-
Norflurazon	malka dry wt	< 0.019	< 0.017	< 0.030	< 0.040	
Ovarliazon	malka dru wi	< 0.0095	< 0.0083	< 0.0000	< 0.0005	
Oxyfluorfen	malka dry wt	< 0.0048	< 0.0042	< 0.0050	< 0.0035	
Paclobutrazol	malka dry wt	< 0.0095	< 0.0093	< 0.0000	< 0.0005	
Parathion-ethyl	malka day wit	< 0.0005	< 0.0000	< 0.0000	< 0.0005	
Parathion-methyl	make dry wit	< 0.0005	< 0.0000	< 0.0000	< 0.0005	
Pendimethalin	ma/ka dry wt	< 0.0005	< 0.0083	< 0.0000	< 0.0005	
Permethrin	malka day wit	< 0.0067	< 0.0050	< 0.0070	< 0.0007	
Pirimicarb	malka day we	< 0.0007	< 0.0009	< 0.0070	< 0.0067	
Piriminhos-method	mailes day we	< 0.0005	< 0.0003	< 0.0000	< 0.0095	
Prochloraz	make device	< 0.048	< 0.0003	< 0.0000	< 0.0095	
Provinciana	marke device	< 0.040	< 0.042	< 0.000	< 0.048	
Prometrum	marka day we	< 0.0048	< 0.0083	< 0.0099	< 0.0005	
Pronectyn	mgrkg dry we	< 0.0048	< 0.0042	< 0.0050	< 0.0048	
Propacilio	migrikg dry we	× 0.0080	< 0.0083	< 0.0099	< 0.0095	•
Propanii	mgrkg dry we	< 0.030	< 0.030	< 0.030	< 0.030	
Dreplagne	mgrkg dry we	< 0.0046	< 0.0042	< 0.0050	< 0.0048	
Propiconazole	mgrkg dry we	< 0.014	< 0.012	< 0.014	< 0.014	
Pyriprokyren Oviaziatas attad	mg/kg ary we	< 0.0095	< 0.0083	< 0.0099	< 0.0085	
Quizaiotop-etnyt	mg/kg dry wt	< 0.0095	< 0.0003	< 0.0099	< 0.0095	
Simazine	mg/kg dry we	< 0.0095	< 0.0083	< 0.0099	< 0.0095	Contraction of the
Simetryn	mg/kg ary wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Sulfentrazone	mg/kg dry wt	< 0.048	< 0.042	< 0.050	< 0.048	
TCMTB [2-(thiocyanomethythi benzothiazole,Busan]	 mg/kg dry wt 	< 0.019	< 0.017	< 0.020	< 0.019	
Tebuconazole	mg/kg dry wt	< 0.048	< 0.042	< 0.050	< 0.048	-
Terbacil	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Terbufos	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Terbumeton	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Terbuthylazine	mg/kg dry wt	< 0.0048	< 0.0042	< 0.0050	< 0.0048	
Terbuthylazine-desethyl	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Terbutryn	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Thiabendazole	mg/kg dry wt	< 0.048	< 0.042	< 0.050	< 0.048	
Thiobencarb	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	•
Tolyifluanid	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	-
Triazophos	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Trifluralin	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Vinclozolin	mg/kg dry wt	< 0.0095	< 0.0083	< 0.0099	< 0.0095	
Polycyclic Aromatic Hydrocarb	ons Trace In Soil					
Acenaphthene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0023	< 0.0022	
Acenaphthylene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0023	< 0.0022	
Anthracene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0023	< 0.0022	
Benzo(a)anthracene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0023	< 0.0022	
Benzo(a)pyrene (BAP)	mg/kg dry wt	< 0.0022	< 0.0020	0.0028	0.0022	
Benzo(b)/fluoranthene + Benzo fluoranthene)) mg/kg dry wt	< 0.0022	< 0.0020	< 0.0023	< 0.0022	
Benzolg, h.liperviene	ma/ke dry wt	< 0.0022	< 0.0020	0.0046	0.0022	
Benzolkifluoranthene	malka div ut	< 0.0022	< 0.0020	0.0057	\$ 0.0022	
Chrysene	malka day wit	< 0.0022	× 0.0020	0.0029	0.0026	
and agene	undiver out we	3300.0	- 0.0020	0.0028	0.0035	

	Sample Name: Lab Number:	08/2899 05-May-2008 641486.1	08/2900 05-May-2008 641486.2	08/2901 05-May-2008 641486.3	08/2902 05-May-2008 641486.4	
Polycyclic Aromatic Hydroca	arbons Trace in Soil				Sales and the second	
Dibenzo(a,h)anthracene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0023	< 0.0022	-
Fluoranthene	mg/kg dry wt	< 0.0022	< 0.0020	0.0049	0.0075	
Fluorene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0023	< 0.0022	
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.0022	< 0.0020	< 0.0023	< 0.0022	
Naphthalene	mg/kg dry wt	< 0.011	< 0.010	< 0.012	< 0.011	
Phenanthrene	mg/kg dry wt	< 0.0022	< 0.0020	0.0035	0.0057	
Pyrene	mg/kg dry wt	< 0.0022	< 0.0020	0.0057	0.0068	
Pentachlorophenol Screenin	ng in Soil by GC-ECD					
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.050	< 0.060	< 0.050	< 0.050	-
2,3.4,6-Tetrachlorophenol	mg/kg dry wt	< 0.050	< 0.050	< 0.050	< 0.050	

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix Detection limits may be higher for includual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation*	Air dried at 35°C and sieved, <2mm fraction.		1-4
USEPA Priority Pollutants - Trace Level, 13 metals*	Dried sample, <2mm fraction. Nitrio/Hydrochloric acid digestion, ICP-MS, trace level.		1-4
Organochlorine Pesticides Trace in Soil*	Sonication extraction, SPE cleanup, GPC cleanup (if required), dual column GC-ECD analysis		1-4
Organonitro&phosphorus Pesticides Trace in MR Soil by GCMS*	Sonication extraction, GPC cleanup, GC-MS analysis		1-4
Polycyclic Aromatic Hydrocarbons Trace in Soil*	Sonication extraction, SPE cleanup, GC-MS SIM analysis		1-4
Pentachiorophenol Screening in Soil by GC-ECD*	Solvent extraction, acetylation, GC-ECD analysis	1000	1-4
Dry Matter (Org)	Dried at 103°C (removes 3-5% more water than air dry), gravimetry.	0.10 g/100g as revd	1-4
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2		1-4
Total Organic Carbon	Acid pretreatment to remove carbonates if present, Elementar Combustion Analyser.	0.050 g/100g dry wt	1-4

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Peter Helen 10

Peter Robinson MSc (Hons), PhD, FNZIC Client Services Manager - Environmental Division

Lab No: 641486 v 2

Hill Laboratories

Page 4 of 4