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Abstract 

 
In this study, RapidEye (RE_ 5m multispectral-orthorectified) and Landsat 7 ETM+ imagery 

over the Ahipara region were utilized to classify the land cover from the study area. Various 

methods of image classification were implemented to produce the thematic maps of the land 

cover types. Twelve classified images from the L7 and RE images were generated by using 

different band (432, 543) and principle components 1, 2 with vegetation index layer 

combinations, as well as applying the supervised classification algorithms, including the 

maximum likelihood classifier (MLC) and combination of MLC with the parallelepiped 

algorithm. The error matrix and Kappa statistic of the classified images were estimated. The 

results of the classified images for both sensors (L7 and RE) identified all classified images 

by PPMLC had a higher accuracy and Kappa statistic than the classified images used by 

MLC approach. Furthermore, the Kappa statistics and the overall accuracies represented that 

the Red-Edge band from the RapidEye system combined with NIR and Red can improve the 

classification performance as it is sensitive to distinguish in vegetation cover.  

 

This study revealed that one of the most accurate procedures for classifying the RapidEye 

image of the study area was a combination of principal components and vegetation index 

layers (PC12VI) while the degraded images (RE with 30m spatial resolution) and also the 

images with 432 band combination had lower accuracy assessment results. The results of the 

classification processes and comparative assessments between LCDB2 and RE data indicated 

the RE_543_PPMLC and RE_PC12VI_PPMLC images had higher classification 

performance in discriminating land cover types than the LCDB2 classification. 

 

The RapidEye high spatial and spectral-resolution image represented more accurate 

classification performance with useful information in classifying the study area in Ahipara 

region whereas the Landsat 7 classified images had moderate classification accuracy. 
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Chapter 1 

Introduction 

 

Traditionally, ecologists have used the direct sampling method to characterize shoreline and 

coastal habitats or classify land-cover features. However, this method is neither time nor cost 

effective for vast expanses of coastline. Remote sensing tools, such as aerial photography, 

airborne and satellite imagery, are appropriate for surveying and classifying marine habitats 

or land-cover features (Guillaumont, Callens, & Dion, 1993; Bajjouk, Guilaumont, & 

Populus, 1996; Guillaumont, Bajjouk, & Talec, 1997; Méléder, Launeau, Barille, & Rince, 

2003; Combe, Launeau, Carrere, Despan, & Méléder, 2005). 

 

Remote sensing technologies have been considered widely in forested and aquatic                                     

environments for mapping vegetation and other attributes (Banko, 1998; Czaplewski, 

2003). Satellite imagery can be a significant source of environmental data that would be 

combined in GIS-based and marine ecosystem models with bathymetry, submerged 

vegetation, sea surface temperature, chlorophyll, and so on (Phinn, Roelfsema, Brando, & 

Anstee, 2008). High resolution remote sensing observation can be applied to monitor 

patterns and processes of selected ecosystem attributes over multiple spatial and temporal 

scales. 

 

The vegetation or non-vegetation features on the Earth’s surface that are assigned as land-

cover would be monitored at the particular place and time (Campbell, 2002). In fact, land-

cover demonstrates the observable data of land use including vegetation and non vegetation 

features. There is an obvious difference between land cover and land use, however they are 

often utilized identically with each other, in view of the fact that land-use is referred to as all 

controls and activities which are made by humans on the land while, land-cover includes all 

type of lands whether manipulated by humans for any purposes or not, for instance; grass, 

forest, urban and so on (Campbell, 2002). The change in land cover is widely considered as 

one of the main parameters of global change affecting biodiversity, ecological and 

environmental systems (Vitousek, 1994). Hence, land cover could describe the existence and 

non existence of such species and habitats on the specific area of the Earth’s surface. The fire 

burning, deforestation and urban development, or other human activities are causes of the 
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land cover changes that can be mapped for further study and observation (Huang & Siegert, 

2006).  

 

As a result, it is essential to collect information for a range of purposes, for example, natural 

resources monitoring, detecting crop, agriculture, forestry, hydrological analysis and land 

management to apply some procedures for land-cover conservation or modification (Coppin, 

Jonckheere, Nackaerts, & Muys, 2004.  

  

Supervised and unsupervised methods are generally implemented for land cover mapping, as 

explained in Campbell (2002), Franklin and Wulder (2002), Lillesand, Kiefer and Chipman 

(2004), Jensen (1996) and Liu, Skidmore and Van Oosten (2002). There are several methods 

that need to be considered to detect the land cover changes, however some of the applications 

are more regularly used depending on the purposes for which analyses are intended. These 

kinds of approaches can be categorized as pre-processing of satellite data before performing 

image classification and post-processing after image classification (Coppin et al., 2004; 

Lunneta & Elvidge, 1999). Utilizing a high resolution remote sensing satellite imagery can be 

the most efficient approach to provide large scale, high quality information for land-cover 

and land-use monitoring and classification (Hester, Cakir, Nelson, & KHorram, 2008). 

 

 

1.1 Satellite Remote Sensing for Land Cover Mapping and Vegetation 

Monitoring in New Zealand            

 

Satellite imagery has been available for New Zealand more than 30 years; The data over  

New Zealand were acquired by Landsat series (1, 2 and 3) and Spot satellites in 1970s and 

1980s (Stephens, 1991). The Spot XS data was used by Israel and Fyfe (1996) for mapping of 

vegetation along the coastline of the Otago Harbour.  

 

New Zealand Land Cover Database (LCDB) is database containing information about 

monitoring and mapping vegetation through remotely sensed images (Walker, Price, 

Rutledge, Stephens, & Lee, 2006). There are two versions of the LCDB, 1 and 2 that applied 

SPOT 2 (1996/97) and Landsat 7 (2001/02) images, respectively. The aim of the New 
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Zealand Ministry of the Environment (MfE) was to collect the data for land cover 

management and environmental change assessment (Thompson, Grüner, & Gapar, 2003).   

1.2 Research Problem 

In this study, the RapidEye (RapidEye AG, Inc.) and ETM+ images were applied to select 

training pixels to produce the reference data set for the classification procedure. There are 

different methods to cluster data pixels into classes with using various band combinations and 

classification algorithms so that the results can be different. Furthermore, the collection of a 

training sample may have a huge effect on the classification result. Using specific areas as 

training sites for the supervised classification can be more crucial than the selection of 

classification methods for finding out the accuracy of classification of agriculture fields in the 

United States (Scholtz, Fuhs, & Hixson, 1979; Al-Ahmadi & Hames, 2009; Campbell, 2002). 

In fact, an approach for selecting training sites relies on the purposes of the classification and 

the land-cover features identification where the specific area of interest (AOI) is considered 

to study (Jensen, 2005). 

 

In multispectral image classification, the spectral raster data properties of each pixel which 

include several image layers can be converted into a specific set of categorization which 

signifies the land cover types as observed in the satellite imagery (Jensen, 2005). Remote 

sensing data can be analysed by different methods and purposes, including using a false 

colour-infrared (CIR) image and different band combination. 

 

The best selection of three band combinations could be essential to represent appropriate 

information from a remotely sensed data set for demonstration and further analysis. 

The selection and combination of specific layers depends on the characteristics of the area 

under study, the spectral reflectance of an object and also using the data of interest. The 

desired bands from the data acquired can be selected according to the spectral band 

specifications of the sensor (Liu et al., 2002). On the other hand, applying image processing 

techniques may not detect or classify all features on the Earth’s surface, for example, by 

using false colour composites, the soil or vegetation moisture cannot be monitored, but 

vegetation to be identified readily in the image because of a high reflectance in the NIR band. 

At the end of land cover classification, an accuracy assessment of the classification results 

could be applied, thus the ground truthing data for characterizing the area of interest with 

combination of enhanced layers would be essential. 
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The goal of this study was to assess the benefits of different approaches for using higher 

resolution imagery (represented by RapidEye imagery with 5m orthorectified, multispectral 

data) to classify lower resolution imagery (Landsat7 ETM+ at 30m resolution). The 

classification approaches were compared in terms of classification accuracy and included 

different band combinations, different training fields, and different classification algorithms. 

By using multi-spectral data such as RapidEye and Landsat7 (ETM+), general or specific 

vegetation classes can be identified and also the extensive vegetation communities can be 

discriminated (Harvey & Hill, 2001; Li, Ustin, & Lay, 2005).  High resolution satellite 

imagery by RapidEye sensor would provide 5m multispectral resolution across 5 spectral 

bands, including blue, green, red, red-edge and NIR. These bands are uniquely chosen for a 

variety of applications resources management, vegetation detection, coastal mapping and 

environmental monitoring (RapidEye, AG 2012). 

 

The specific aim of my research was to demonstrate that satellite remote sensing imagery 

and GIS application can be applied to detect and classify land cover from Ahipara Bay 

through to Herekino Harbour which is located in New Zealand’s Far North (Figure 1.1). 
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Figure 1.1 Map of Northland Conservancy (MfE, 2010) 

The following main objectives were implemented in this project:  

 

1) To critically assess the effectiveness of the RapidEye and the Landsat 7 (ETM+) 

imagery to mapping land-cover in the Ahipara region. 

2) To develop and apply different image classification methods on Landsat ETM+ and 

RapidEye data for optimal land cover classification. 

3)  To conduct a comparative analysis of the accuracy of the classification results for 

the RapidEye and Landsat7 images. 

4) To conduct a comparative analysis of land cover classified using RapidEye imagery 

and the Land Cover Databases Version 2 (LCDB 2) from the Ministry for the 

Environment. 

 

1.3 Structure of the Thesis 

 

Land-cover classification was assessed by using RapidEye which is a high spatial and 

temporal resolution satellite (5m orthorectified, multispectral) and also Landsat 7 (ETM+) 

as medium spatial resolution (15m pan, 30m multispectral), with geographic information 

system (GIS) models. A variety of classification methods including different layer 

combinations, options for characterizing training fields, and different classification 

approaches (algorithms) were compared in terms of classification accuracy using ERDAS 

Imagine as an advanced remote sensing analysis and spatial modelling application. 

 

1.3.1 Thesis Outline 
 

Chapter1 provides a general introduction that indicates the research problems and objectives. 

Chapter 2 provides a literature review and research background. 

Chapter 3 describes the methods used to connect observational and experimental evidence. 

Chapter 4 provides some results of the study, accuracy assessments, Landsat 7 and RapidEye 

images classification. 

Chapter 5 contains discussion, conclusion and recommendation that identify the important 

findings of this study effort for future research. 
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Chapter 2 

Literature Review 

 

 

2.1 Overview of Remote Sensing in Environmental Modeling  

Every piece of land on this earth’s surface presents a distinctive feature in terms of the cover 

it possesses (Meyer, Staenz, & Itten, 1996). Land use and land cover are two distinct aspects, 

yet they are linked to one another. Land use includes agricultural land, land for urban area 

development, logging and mining land and so forth. On the other hand, land cover 

classification may be ranked as farming land, forests, wetland, roads, urban areas and so 

forth. Land cover can refer to the classification of land according to state of its existing plant 

life for instance, forest cover. However, it may also be used in identifying the subsequent 

procedures that can include human inhabitation structure, soil type, bio-diversity and so forth.  

 

According to Riebsame, Meyer, and Turner (1994), Turner, Ollinger and Kimball (2004), 

Sundarakumar, Harika, Begum, Yamini, and Balakrishna (2012), Land-use and land-cover 

change can provide as warning sign of the economic causes of environmental change. The 

changes can impact on a local or global range of environmental characteristics including the 

quality of water, land and natural resources, ecosystem developments, and the climate 

system. The land use/land cover model of an area is a result of natural and human activities. 

In fact, land use has direct effects on land cover and, changes observed on land cover affects 

land use. However, they argue that land transformation in aspect either does not necessarily 

mean it is a creation resulting from the impacts of the other. There are so many factors that 

would involve the land cover and land use changes.  

 

The result of land cover change that have a direct influence on biodiversity of some aspects 

such as water as well as emission released in the form of trice gases among other 

development that on overall come together to affect both climate as well as affect the 

biosphere.    

    



7 
 

Not only anthropogenic, but also other forces can distort similar arguments on Land cover 

(Manandhar, Odeh and Ancev, 2009).  There are natural events that can be a cause to land 

cover change. This may be in the form of weather, flooding and environmental dynamics, 

which are identified to have effects that may result to modification on land development. 

However, current trend across the globe indicates that land cover alteration is principally 

through direct human land use, by either agricultural practices, forest harvesting or through 

land development in the urban region as well as suburban areas.  There are cases where land 

cover is altered by human activities for example, lakes and forest damage through acidic rain 

caused by fossil energy ignition, while most of the crops within the urban areas are toxified 

through extensive use of tropospheric zone that is released to the ozone from diesel fuel 

engines.   

 

In order to use land effectively, it is not only necessary to have information on existing land 

use/cover, but it is also important to understand the capability to monitor dynamics of land 

use as a result of both change in demands of increasing population and forces of nature acting 

to shape the landscape. The traditional ground methods of land use mapping are labor 

intensive and time consuming and at the same time relatively infrequent (Manandhar et al., 

2009). These traditional mapping models are soon becoming outdated with the passage of 

time, notably in rapidly changing environments. Some researchers have monitored changes 

and time series analysis reveals that this process in itself is difficult if traditional methods of 

surveying are to be used. More recently, satellite remote sensing methods have been applied, 

which have provided benefits for mapping the land use or cover maps while examining any 

identifiable transformation achieved at regular timeframes. Remote sensing provides a 

reliable technique, which is possibly the only technique of acquiring broad scale data on a 

cost-effective and timely basis, especially to inaccessible or remote areas. Marine ecologists 

have for decades used the direct sampling method to discriminate shallow and intertidal 

marine vegetation and habitats for classification and mapping. However, this method requires 

extensive field work. Remote sensing reduces the time and effort in obtaining large amounts 

of data directly from the field, particularly in marine environments that are often remote and 

difficult to access (Holden & LeDrew, 1998). In fact, remote sensing is defined as the 

technique of capturing information of an object, area or phenomena from a distance and all 

the acquired data can be analyzed by using digital image processing techniques without 

making any physical contact with the object (Thomas, Davies, & Dunn, 2004; Chandra, 

Ziemke, Bhartia, & Martin, 2002; Luzi, Monserrat, Crosetto, Copons, & Altimir, 2010). This 
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procedure is getting close to mathematical concepts when the satellite sensor is getting started 

to calculate the quantity of electromagnetic radiation (EMR) reflected an object or Earth’s 

surface from the space or distance and also deriving precious information from a digital 

remotely sensed data with applying the statistical and mathematical algorithms, it would be a 

scientific process (Fussell, Rundquist, & Harrington, 1986).  

 

Remote sensing tools, such as aerial photography, airborne and satellite imagery, are 

appropriate for surveying and classifying marine habitats in the tidal zone and land cover 

features (Guillaumont et al., 1993; Bajjouk et al., 1996; Guillaumont et al., 1997; Méléder et 

al., 2003; Combe et al., 2005). Use of remotely sensed data in natural resources mapping and 

as a source of input data for environmental processes modeling has been popular in modern 

times. Due to the availability of remotely sensed data from sensors of diverse platforms, with 

a series of spatiotemporal radiometric, as well as spectral resolutions, is achieved remotely 

sensing as the best source of data for large scale applications and research (DeFries & Chan, 

2000).  Remote sensing techniques create a possibility for images for target land surface 

taken in different wavelength as per the area of the electromagnetic band (EMS). For 

instance, remote sensing is applied in hydrological modeling and imaging fractional 

vegetation cover and urban modeling. Similarly, aspects such as drought prediction can be 

forecasted through monitoring soil water index, whose data can be obtained from remotely 

sensed technique (Vogelmann, Sohl, & Howard, 1998). 

 

High resolution remote sensing observation can be applied to monitor patterns and processes 

of selected ecosystem attributes over multiple spatial and temporal scales. These techniques 

have been used for decades to make regional observations of coastal marine ecosystems 

(Tucker, 1979; Jensen, 1996; Deysher, 1993). For this advantage, many researchers have 

used multi-spectral data such as Landsat TM, SPOT, RapidEye and QuickBird imagery to 

identify general vegetation classes or to attempt to discriminate broad vegetation 

communities (May, Pinder, & Kroh, 1997; Harvey & Hill, 2001; Li et al., 2005), and hyper-

spectral data to discriminate and map coastline vegetation or at the species level (Belluco, 

Camuffo, & Ferrari, 2006; Skidmore, 2002; Rosso, Ustin, & Hastings, 2005; Pengra, 

Johnston, & Loveland, 2007; Vaiphasa, Ongsomwang, Vaiphasa, & Skidmore, 2005). 

 



9 
 

2.2 Remote Sensing Sensors  

Remote sensing is primarily a process, which relies on sensors obtaining information from an 

object while not in direct contact with the object under investigation. Consequently, sensors 

usually detect either emitted or reflected electromagnetic energy from the investigated object, 

which is often found on the Earth’s surface. 

 

Each satellite carries specific platforms and sensors with a variety of characteristics, and 

these are able to detect and acquire all radiations reflected from the object on the Earth’s 

surface (Wulder, Hall, Coops, & Franklin, 2004). All sensors are categorized based on the 

source of energy on the Earth or from the Sun. The energy that is naturally available, 

including all reflected energy during the time when the sun is illuminating the earth, can be 

estimated by passive sensors remotely. On the other hand, active sensors are able to generate 

their own energy source for radiance. 

 

2.3 Remote Sensing in the Optical and Microwave Domains 

Remote sensing is a process involving interaction between radiance and objects in which the 

emitted and reflected electromagnetic radiance can be detected by satellite sensor. After 

acquiring data from sensors for further processing and analysis, all data to be transmitted to 

the Earth to monitor any environmental changes and issues (Campbell, 2002).    

 

The electromagnetic spectrum ranges which are used extensively for remote sensing 

applications are in visible and microwave. The optical wavelength includes a visible portion 

about 0.4 µm to 0.7 µm as well as infrared ranges about 0.7 to 300 µm (Near IR, Middle IR 

and Far IR). The microwave region (1 mm to 1 m) is another part of EM spectrum that is 

frequently used to gather valuable remote sensing information (Jensen, 2005).  

 

2.3.1 Electromagnetic Radiation 

Remote sensing is the science of acquiring data (temporal, spectral, and spatial) about areas, 

objects or features without any physical contact with the items or areas under observation. In 

remote sensing the data transfer is performed by utilizing of electromagnetic radiation 
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(EMR). One of the main sources of remote sensing data is the electromagnetic radiation 

(EMR), which is reflected from an object on earth. The extensive range of electromagnetic 

spectrum (EMR) from gamma ray (short wave) to a very long Radio wave can be used in 

remote sensing technology (Figure 2.1). There is the optical wavelength of EMR with the 

different range of EM spectrum from gamma ray, X-ray, ultraviolet (UV), visible light, 

infrared (IR) and radio wave (Reitz, Facius, Bilski, & Olko, 2002)  

 

 

Visible range                      0.38 – 0.72 mm 

Near IR (NIR)                     0.72 – 1.30 mm 

Middle IR                            1.30 – 3.00 mm 

Far IR Thermal                   7.00 – 15.00 mm 

 

 

  

Figure 2.1Electromagnetic spectrum (Keiner, 2003). 

 

http://www.goodreads.com/author/show/194190.John_R_Reitz
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For example, the far infrared region can be used to detect thermal signatures for fire 

monitoring. The optical satellite sensors are capable to estimate the amount of radiation such 

as light or radiant heat which is called the radiance that is emitted by a specific area or object. 

The radiance SI unit is watts per steradian per square meter (w.sr-1
.m-²). Radiance indicates 

total emission from the source and reflection of the describe surface. The spectral radiance SI 

units are w.sr-1.m-².Hz-1 or wavelength (nm), w.sr-1.m-².nm-1. The fact of irradiance is the 

amount of radiation occurrence on unit area of a surface. It is defined in watts per square 

meter w/m² or w. m-².nm-1. 

 

2.3.1.1 Spectral Reflectance Curves   

Spectral reflectance curves are the spectral response that is measured in order to assess the 

condition of the target feature. It is hence a graph of spectral reflectance of a feature as a 

function of wavelength. Spectral reflectance is the basis for the color in satellite images of a 

feature. For instance, vegetation mainly appears green because it reflects a great amount of 

green wavelength. Various features have varying values of spectral reflectance over a defined 

wavelength interval, hence the determination of vegetation and other features in Ahipara. It is 

therefore, dependant on wavelength having a variety of values on various terrain features 

(Jenson, 1996). Consequently, the plot between reflectivity and wavelength is depicted as 

spectral reflectance curve, which vary depending on the chemical composition and physical 

situation of the feature.  

 

Ρ(λ) = [Er(λ) / EI(λ)] × 100 

Legend:  

 

Source: (Jenson, 1996)  
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Figure 2.2The diagram shows a typical reflectance signature of various features on earth’s 

surface (Jenson, 1996). 

 

When the energy is reached to the surface it is called irradiance which is reflected by the 

surface as called radiance. Each object on the surface has specific reflectance that is a part of 

the radiation that will be reflected as a wavelength operation (Henry, Chastanet, Fellah, & 

Desnos, 2006). 

The longer wavelength bands commonly are used by remote sensing. The reflectance curves 

are created in optical range of EM will be used to estimate the overall reflectance in such 

bands. There are some of the land cover types with their reference (Figure 2.2). 

 

2.3.1.2 Vegetation 

Reflectance curve for green vegetation can be distinguished with wavelength (Aggarwal, 

2003). As shown in Figure 2.3 the most absorption or lowest reflectance regions of the visible 

spectrum occur in blue and red bands. The chlorophyll of the green leaf can absorb the 

maximum of the energy emitted by the sun. There is a high reflectivity of green vegetation in 

the near infrared section of the spectrum (0.7µm). 
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Figure 2.3The domain of optical observations extends from 400 nm in the visible region of 

the electromagnetic spectrum to 2500 nm in the shortwave infrared region. 

 

 

2.3.1.3 Normalized Difference Vegetation Index (NDVI) 

NDVI is one of the commonly used vegetative indices, which consisting an index primarily 

for plant photosynthetic action. The vegetative indices are often generated due to the 

reflective effect generated from different types of lights hitting the surface, while it still 

reflects a bigger position that is next to infrared light. On the other hand, the non-vegetated 

land cover posse a bigger reflectance on the light spectrum. If the ratio of the infrared bands 

and the red ratio generated from a remotely sensed surface image or even an indicator of 

vegetation increased the possibility of identification. NDVI is perhaps the most common of 

all ratio indices used in vegetation detection.  

 

NDVI is computed based on a per-pixel considering the normalized disparity between red 

and close to infrared bands and indicated from the identified image. This implies that the 

NDVI is actually a regular grid-distributed across with an expression that reveals specified 

resolutions according to the data source. In fact, the ground characteristic groups themselves 

through identifying inner characteristics that illustrated in remote sensing imageries, when 

textures, digital numbers among other things detected. This paper proposes new models that 
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are lays its basis on the advanced division and data integration aimed at performing a land use 

classification. Particularly, for urban vegetation examination and extraction, the model makes 

use of ASTER data in developing a hierarchical resolution importantly to reflect the inbuilt 

relations between the land surface features under different scale levels (Shirish, Roy, & 

Sharma, 1995).   

 

2.3.2 Energy Interactions in the Atmosphere  

The satellite sensor gather the radiation from the sun and energy emitted by the Earth 

however, the electromagnetic energy should pass through the atmosphere hence, it can affect 

on the sensor’s observation (Tso & Mather, 2009). 

 

The electromagnetic radiation can be changed on the intensity and direction when it travel s 

through the atmosphere so that two basic components are known as Scattering and 

Absorption which are needed to consider when measuring radiation (Jensen, 2005). 

 

2.4 Data Requirements 

Remote sensing data can be specified in terms of spectral, radiometric, temporal and spatial 

(Lefsky, Turner, Guzy, & Cohen, 2004). The spatial resolution and the region under 

investigation with the other surveyor’s considerations can be the most priorities to choose the 

satellite acquired data (Lu & Weng, 2007). If the objective of using satellite imagery for land 

cover classification is at the small scale, it should be a high resolution image like Ikonos, 

RapidEye and QuickBird imagery that could be required. Landsat TM and ETM+ data as a 

medium spatial resolution or MODIS imagery are used for different purposes and scales. 

 

2.4.1 Spectral Resolution 

For remote sensing applications to effectively create desired image, distance separating the 

target object to be detected, in addition, the platform has a critical role in pinpointing out the 

detail that regard useful information acquired on the entire area, for classification. The 

involved Sensors platforms that are identified to be far from the main targets, naturally view a 

wider area, however, they cannot provide much detail (Behnia, 2005). When compared to an 
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astronaut involve space shuttle that one can view while off the target location from a distance 

located airplane. The spectral resolution of a remotely sensing system can described as its 

ability to differentiate different parts of the range of calculated wavelengths. In essence, this 

amounts to number of wavelengths intervals measured and how narrow each interval is. The 

finer the spectral resolution, the narrower the wavelength for a specific band, for instance 

black and white films have a characteristic lower spectral resolution as compared to color 

films.  

 

Image produced by sensor system contain wider wavelength band, several wide-ranging 

bands or even many narrow wavelength bands. The names used for these three categories are 

panchromatic, multispectral and hyper-spectral (Atmopawiro, 2004). Whereas, multispectral 

sensors mainly measure energy over several separated wavelength ranges, considering 

various spectral resolutions. With the advanced system, sensors detect numerous narrow 

spectral bands throughout the near infrared, visible and mid-infrared parts of the 

electromagnetic spectrum. As a result, such sensors promote fine discrimination between 

various targets basing on their specific spectral response in the various bands (Table 2.1).    
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Table 2.1Characteristics of selected satellite sensors (Hester et al., 2008) 

 

 

 

2.4.2 Spatial Resolution 

The spatial, spectral and temporal components of the image(s) that all provide information 

that we use in forming interpretations about surface materials and their present conditions. 

Understanding the properties, we can define resolution of the images generated by the 

classification system. Image resolution has several aspects or features in place that limits 

information, which is usually generated by remotely sensed imagery data (Goetz, 1997). In 

particular, spatial resolution measures special detail in the generated image, elaborating on 

the function of the design of sensor as well as its operating elevation above the target surface. 

The smaller each individual patches are the more detailed is the spatial information that can 

be used to construe the image. For digital images, spatial resolution can commonly be 

compared to the ground proportions of an image cell. Shape is one visual factor, which can be 
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useful in recognizing and identifying image(s) (Behnia, 2005). Often, shape can only be 

discernible if the object dimensions are larger compared to the cell dimensions. 

Spatial resolution is highly dependent on IFOW, which is the angular funnel of perceptibility 

of the employed in a remote sensing sensor. On this case the cone of IFOV into the earth’s 

surface or any other surface that is, Ahipara is referred to as resolution cone (Cakir, Khorram, 

& Nelson, 2006). Consequently, spatial resolution is managed by the separation between 

remote sensing sensor and the target (Table 2.1).  

 

Spatial resolution in terms of a homogenous feature measured and detected, the objects’ 

dimension has to have the same ratio as the resolution cell or rather larger when contrasted to 

the latter. On this incidence when the size of the object is smaller compared to the resolution 

cell, can be difficult to identify because the mean intensity of present objects in the resolution 

cell that may be verified (Cakir et al., 2006).  

 

2.4.3 Temporal Resolution 

The environmental surface of the earth’s dynamic, which is progressively transitioning 

ranging from seconds to decades. The periodic cycle on the continuous growth of plants, 

which affects natural ecosystem, is a vital example (Ashraf, Brabyan, Hicks, & Collier, 2010). 

Through repeated imagery of a similar area after some period adds to the potential of one to 

detect and distinguish between two phenomena for instance plants. Moreover, a time series 

can also be employed to monitor variations on earth surface features because of other natural 

activities or human triggered activities. Thus, this period, which separates consecutive images 

in such a sequence, defines temporal resolution of image sequence.  

 

Therefore, temporal resolution depicts the frequency with which the remote sensing system 

images the same area over a given period of time say one planting season. When the 

frequency of imaging is high, it is significant in monitoring and management of 

environmental issues such as soil erosion, vegetation cover and encroachment of human 

activity. Moreover, this is also employed in change detection (Atmopawiro, 2004).  

 

A majority of surface-monitoring satellites is spatially gyrating in low-Earth orbit of an 

altitude approximately 650-850 Km above the earth’s surface and pass almost close to the 
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poles that is North and South Pole. Mainly the satellite completes numerous orbits in 24 

hours in accordance with the Earth’s rotation beneath the system (Masek, Honzak, Goward,  

Liu, & Pak, 2001). The determining factors of the periodic interval between repeat passes 

over a similar point on the surface are the orbital parameters and swath width. For instance, 

periodic interval between repeat passes of Landsat7 TM satellite is usually 16 days. 

Therefore, placing duplicate satellite in offset orbits such as LandSat7 series (EMT, TM) and 

RapidEye is a major approach towards minimizing the repeat periodic interval.  

 

2.4.4 Radiometric Resolution 

For a sensor’s detector to be capable of detecting digital energy characteristic progressive 

range of incoming energy must be split into a number of distinct levels recorded in integer 

values. Most of up-to-date satellite systems split data into 256 levels. This element is 

dependent on the number of levels recorded that is the greater the number the higher the 

radiometric resolution. On this case, this element provides the system with the ability to 

discriminate minute differences using the recorded energy. Thus, the finer the radiometric 

resolution the sensor the higher the sensitivity in detecting minute differences in emitted 

energy (Nelson, Niemann, & Wulder, 2003).  

 

During the analysis of bands of multispectral images (RapidEye) of Ahipara, high 

radiometric resolution was relevant when utilizing a computer to manipulate and examine the 

band’s numerical values. Moreover, use of visual analysis of multispectral images with high 

radiometric resolution is beneficial, this is because a defined variety of wavelength bands can 

be coalesced to create a color display. Each band is usually assigned to each of the RGB 

monitor colors (Red, Green, and Blue). With additive color model of the three monitor colors 

(RGB), they band together to form numerous variety of `subtle colors. On this event, each 

cell within the multispectral image disparity values in the chosen bands establishes the RGB 

values that were used to generate the color relayed (Nelson et al., 2003). Through using the 

256-color channel, a computer VDU would creates over 16million colors. Recent research 

indicates that the human visual system can differentiate approximately 7 million colors and is 

extremely familiar to spatial associations this is in relation to the area under investigation. 

Notwithstanding the power of the computer system examination, the visual system analyses 

color present in a multispectral imagery that may still be an effectual device in interpretation.  
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2.5 The Satellite Imagery Used in This Study 

 

2.5.1 RapidEye 

RapidEye AG is an information system provider that was heavily used in the study of the area 

under investigation, Ahipara. It primarily focuses on aiding in the management administrative 

through provision of information based on observation made via imagery obtained from the 

systems. An ocular system, five satellites, five bands, and a 5m resolution (orthorectified) 

system characterize it. The system usually quantifies the reflectance of UV radiation from the 

earth in numerous bands (5 bands). On this case, the Red-edge band is highly sensitive 

concerning the N-status of vegetation. This element is significant in analysis procedures in 

vegetation monitoring in its various applications (Figure 2.4). 

 

 

Figure2.4 RapidEye multispectral bands (Losel, 2009). 

 

The system basing on its application in fields such as Agriculture, uses NDVI approach, 

which is to a large, extend used index in vegetation canopy studies in conjunction with 

remote sensing methodologies. It is the ratio between near infrared and red reflectance 

denoted as (NIR-Red) :( NIR + Red) = NDVI (Normalized Difference Vegetation Index). 

The approach can be also specifically applied on vegetative information (Murakami, Ogawa, 

Ishitsuka, Kumagai, & Saito, 2001).    
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As a result, the system provides information based on management remedies in various 

sectors associated with geospatial information such as Agriculture (effective farming 

operations), risk assessment, forestry (unlawful logging) and deforestation. On this event 

RapidEye is AG based which utilizes Red Edge canal that appreciates the efficiency of 

detecting chlorophyll content, with the 5 satellites the system is able to cover larger 

geographical area at a much higher interval, hence up-datedness in imagery (Losel, 2009). 

The system framework is based on: 

 

 

 

Figure 2.5 RapidEye’s framework (Losel, 2009). 

 

2.5.2 LANDSAT 7 (ETM+) 

LANDSAT 1-7 series were made and launched by United States which they have the longest 

record and vastest utilization for investigation of the surface of the Earth. The first of these 

was launched by NASA, USA in 1972. The different kinds of more advanced multispectral 

sensors are carried by LANDSAT satellites for example, Thematic Mapper (TM, 1982), 

Multispectral Scanner (MSS, 1984) and Enhanced Thematic Mapper Plus (ETM+, 1999). 

 

A full coverage of Landsat MSS, TM and ETM+ sensor have acquired millions images that 

still some of them are nonstop gathering the data from the Earth surface during their 
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operations and the acquisition data supplied by the United State Geological Service on the 

USGS website for near to 40 years.   

 

Table 2.2 Landsat ETM+ and TM technical information (Colby & Keating, 1998).  

 

 

Landsat series have provided the data for remote sensing and Geographic Information System 

(GIS) science and remotely sensed the valued multispectral imagery for the natural resources 

monitoring on the global base and global purpose such as agriculture activities, urban 

development, forest evaluation, oceanography and hydrobiology considerations.  

 

Enhanced Thematic Mapper Plus (ETM+) instrument is an enhanced version of its earlier 

sequence of the Thematic Mapper series that sited on Landsat 4 and 5. ETM+ sensor has the 

capability to acquire data in eight spectral bands including visible/near infrared (VNIR), 

short-wave infrared (SWIR), long-wave infrared (LWIR), thermal infrared and panchromatic 

with wavelengths ranging from 0.45 to 12.50 µm and a spatial resolution of 30 meters for 

visible bands, 60 meters for thermal band and panchromatic band at 15 meters resolution.  

This satellite was designed to orbit at 705 km in altitude and also has a fixed 16-day repeat 

coverage with 233 orbits cycle, as is the 185 km (115 mi) swath width for imaging (Table 

2.2). 
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Landsat 7 could supply sufficiently reliable data with indication to special and spectral 

resolution; acquisition geometry and calibration to approach global change research 

necessities ensure a sustainable future for the globe and people. 

 

For mapping vegetation largely at the specific area, Landsat series data have been utilized. As 

Landsat has archived a massive amount of information since it was launched, it is 

significantly useful to create map for vegetation cover and investigate on its changes. For 

instance, almost 20 year nonstops Landsat TM/ETM+ imagery covering the Western Oregon 

were applied to distinguish and differentiate permanent changes in near the beginning forest 

progression (Schroeder, Canty, &Yang, 2006). Thematic Mapper imagery was used to 

perform in determinable analyses of wetland region models and changes in the Minjiang 

River estuary at a long term period from 1986 to 2002 (Zheng, Zeng, & Chen, 2006). As a 

consequence of the different distinctiveness of spectral resolution of sensors (i.e. TM and 

ETM+) in the Landsat imagery series, it is required to accurate the spectral reflectance among 

images acquired by the sensors. For utilizing TM and ETM+ images, it can be particularly 

crucial in long term vegetation cover observing study. An empirical line method was 

suggested by Moran, Bryant and Thome (2001) for reflectance factor retrieval (RFR) from 

Landsat 5 TM and Landsat 7 (ETM+). Due to the medium level of the Landsat spatial 

resolution, its data are typically applied to map vegetation at small and medium scales. It is a 

tough undertaking to employ Landsat images for identifying and mapping at species scale, in 

particular in a case of heterogeneous surface. Nevertheless, when merging with other 

secondary datasets, it will be possible to determine some species and create a map. In the 

Amanos Mountains region of southern central Turkey, Landsat imagery was used with the 

environmental parameters data and a series of forest supervision maps to classify the 

vegetation species of the study area (Domacx & Suzen, 2006). As the medium level of the 

Landsat spatial resolution provides a limitation for acquiring data, the comparatively lack of 

its temporal resolution can confine using Landsat imagery for vegetation mapping. 

 

Landsat satellites are popular and sun synchronous. It takes; 16 days for the satellites to 

revisit the last location. This inflicts an issue to map vegetation applying Landsat monitoring 

specifically when the surface is covered by cloud during the winter and it might significantly 

reduce the image quality.  
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As a result, for any remote sensing analyst who is interested to study on vegetation map, 

satellite’s repeat coverage interval is very essential to get the mapping function to order a 

satellite image. 

 

Recent research shows that other versions of Landsat 5,6,7 tremendous developments. For 

instance the diagram below (Figure 2.6) reveals that ETM+ in high-gain mode verifies up to 

1 bit of additional information for explicit bands and vegetation cover variety. Bands 2, 3, 

and 7 revealed distinct appreciation in information content for various vegetation varieties, on 

the other hand band 4 revealed an appreciation for grassland and crops. There was a minute 

change in band 1 and 5 in comparison with Landsat-5 TM of ETM+ bands.  

 

 

Figure 2.6 Entropy per band (bits) for Landsat-5 TM (dashed line) and Landsat-7 ETM+  

Source: (Masek et al., 2001) 

 

The figure depicts the entropy per bit for the systems: Landsat5 shown by dashed lines and 

Landsat7 ETM+ shown by solid lines from information that was acquired concurrently under 

fly in 1999 of Washington DC region (Masek et al., 2001).This will be exemplified in the 

model used in Ahipara. Consequently, employing Landsat TM/ETM+ information from 

various periods’ yields resembling outcomes, however a minute difference is reflected such 

as land cover conditions in the acquisition process.                  
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2.6 Remote Sensing for Vegetation Mapping 

Monitoring and analyzing the environmental changes on the Earth’s surface is a crucial 

fundamental principle of global change research (Jang, Bartholome, & Viau, 2006; Lanbin, 

Turner, & Helmut, 2001). The survey, classifying and mapping of vegetation is an important 

baseline inventory for sustainable natural resources management (Lu & weng, 2007; 

Uluocha, 2003; Luque, 2000). 

 

Satellite data provides valuable information for mapping vegetation and monitoring 

vegetation change (El-Mezouar, Taleb, Kpalma, & Ronsin,  2011; Peterson, 2008) through 

measuring and distinguishing vegetation land covers from a small region to worldwide scales 

using hyper or multispectral imagery (Govender, Dye, Weiersbye, Witkowski, & Ahmed,  

2009). The main purpose of remote sensing is to map and monitor the planet earth’s resources 

which is compared with traditional survey techniques, including field surveys, literature 

reviews, map interpretation and data analysis satellite remote sensing is accurate, timely and 

cost effective (Sivakumar, Morel, Bencherif, Baray, Baldy, Hauchecorne, & Rao, 2004; 

Jakomulska, Zagajewski, & Sobczak, 2003). 

 

Applying remote sensing approaches to develop the land cover and land use classification 

mapping are becoming increasingly useful to detect and observe the large areas of 

agriculture, forestry, urban as well as it can be used to map submerged aquatic vegetation 

(SAV) in intertidal zone which is as a environmental indicator in marine or fresh water 

ecosystem (Olmanson, Bauer, & Brezonik, 2002; Ashraf et al., 2010; Langley, Cheshire, & 

Humes, 2001; Levin, Ben-Dor, & Singer, 2005).   

 

The Landsat satellite series have been reportedly the largest history and the widely applied 

model in detecting and monitoring land use/cover so that with introducing Landsat Data 

Continuity Mission (LDCM) satellite (as known as the Landsat 8), the Landsat program have 

been observing the Earth’s surface for 40 years (NASA, 2011).  

 

As already mentioned in the first chapter, the satellite imagery was available for New- 

Zealand about in the early 1790s. According to MfE (2012), the national Land Cover Data 

Bases1 and 2 (LCDB1 and 2) programs have used the Spot 2 imagery data from 1996/1997 
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and the Landsat 7 ETM+ images from 2001/2002 to map land cover in New Zealand. New 

Zealand’s land cover was classified in nine main categorizes by LCDB1 and LCDB2 

datasets, including exotic forest, exotic shrubland, native forest, native vegetation, other 

native land cover, primarily horticulture, high-producing exotic grassland, low-producing 

exotic grassland and artificial surfaces. The database series classified land cover into different 

classes in the North Island (figure 2.7).  

 

 

Figure 2.7 Northland land cover classification_LCDB2 (DoC, 2002) 

2.6.1 Vegetation Extraction from Remote Sensing Imagery 

Identifying, extraction and vegetation classification from remotely sensed data by interpreting 

satellite image is the main part of digital image processing which is derived from the analysis 

of land cover features, for instance, texture, shadow, pattern, shape and size, etc. there are 

different procedures that have been created to use for image processing. Supervised and 

unsupervised techniques may be used to classify the features extracted and they can be 
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proposed depending on whether the ground truth data are provided as ground control points 

or not. 

 

The conventional steps of vegetation mapping comprise pre-processing of the image, 

classification and post processing of the data. All preliminary stages in an image processing 

needed to develop the quality of initial images acquired, so that every pixel of the image can 

be categorized into one of several land cover classes identified in a classification process 

(Jensen, 2005). Methods used for vegetation evaluation is distinguished in terms of subjective 

and objective. With each approach reported to have its own advantages over the other. 

However, the species analysis is reportedly the widely accepted objective model, with most 

literatures sighting that is deemed free all means of bias operators; however, the information 

obtained from this model has little significance until communities are separated for 

identification. RS creates the possibility of having better subjective approach where 

overriding species is accurately identified based on spectral characteristics of the area under 

study.  

 

2.6.2 Land Cover and Land Use  

Land cover assigns to some objects which cover the Earth’s surface, such as water, soil, 

vegetation and urbanized area etc., in as much as land use assigns for some applied purposes 

including agriculture field, recreation and pasture area. Remote sensing data provides some 

useful and accurate information for investigators who working on both land cover and use 

(Al-Ahmadi & Hames, 2009). 

 

Despite of all desires to land cover classification, there are some uncompromising parameters 

may affect the performance of the satellite imagery, such as atmospheric conditions 

(scattering and absorption), the variation of seasonality and the complexity of surface 

geometrics so that the land use determination process by remotely sensed data may produce 

insufficient information to apply land use classification.  

2.7 Satellite Image Classification  

Satellite images have layers, each layer comprise of special information defined under the 

satellite specification instructions. For example, when using the Landsat satellite images that 
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has special task in detecting weather patterns, the first layer may for instance contain 

information on water, the second layer report useful information on soil information and so 

forth. In fact, each of the layers has to be designed in a pixel matrix can be without difficulty 

converted to a matrix representing real number values (Richards & Watt, 2006).  Matrices are 

created to store specified information that corresponds to identifiable terrain surface on the 

area under study.  Hence, the superposition of the matrices provides desired surface features 

on the target area.     

 

        

Figure 2.8 Satellite Image Classification through use of self-organized mapping on GRID 

Computing (Arias et al., 2009) 

 

The figure above (2.8) illustrates a typical method to obtain soil and weather forecasting by 

use of satellite Image Landsat 7 (Arias, Gomez, Prieto, Boton, & Ramos, 2009). 

 

2.7.1 Supervised and Unsupervised Classifications 

It is common that some vagetation type have unlike spectral features as observed in remote 

sensed images. Similalry, different land surface types contains related spectra, this makes it 

very hard to achieve accurate classification results (Atmopawiro, 2004). In fact, this may 

result from use of either the conventional models of unsupervised classifications or from 

surpervised classification. Search for superior method presents a tough research topic 

considering all these methods that are utilized in modern times are derived from tradtional 

models.Thus, this is often used as the basis of classification hence, developing improving 
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methods usually focus on expanding specific techniques, which leads to enhanced 

classification results (Yichun, Zongyoa, & Mei, 2008).  

 

2.7.1.1 Unsupervised Classification 

a. This model is often applied while defining spectral class identifying images, where 

previous knowledge on the area under study. 

 

b. Before the classification process, normalization process is used in while collecting the 

pixels that are readily available on the satellite image. However, only the agent pixels are 

stored.  

 

In unsupervised classification, clusters of pixels are assigned based on statistically similar 

spectral response models. Every pixel in an image is matched up to a separate cluster to find 

out which set as being most similar to it and it is closest to. Colors are then determined to 

each class and the clusters are interpreted after classification based on information of the 

image or by ground-truthing. 

 

2.7.1.2 Supervised Classification 

Supervised classification method generates data from training dataset. In order to obtain the 

training data, the process involved collects several sources that are relevant in documentation 

and may include aerial photography and cartography among other classification models. The 

collected data has to be representing the area on research (Atmopawiro, 2004).  

 

2.7.1.3 Parallelepiped Supervised Classification 

Parallelepiped use uncomplicated decision rule in classifying multispectral data. The adopted 

decision creates n-dimension within the image data gap. This dimension lies above the lower 

band and beneath the higher band for all specified n-bands that are to be classified (Richards 

& Jia, 2006). The statistical modeling is essential in synthetic aperture radar (SAR) image 

analysis. It provides technical support, which is important for creating a comprehensive 
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terrain scattering mechanism necessary in developing algorithms to effectively interpret 

images and help in accurate image simulation.   

 

2.7.1.4 Maximum Likelihood Classification 

An elaborate likelihood classification method in handling remotely sensed image is often 

suggested, it helps in reducing the processing time associated with traditional maximum 

likelihood when applied to imaging spectrometer data, similarly it important since it aids in 

coping with preparation of the geographical small clauses. In addition, there are great benefits 

of large number of spectral per partial, which are presents available data kept through 

imaging spectrometers such as the AVIRIS. This helps in developing a full reflectance 

spectrum for an identified ground region whose features can be easily distinguished (Richards 

& Watt, 2006). To easily interpret images by using features as identified in the spectral, the 

basis have to either be drawn from theoretical approaches or develop a library based 

searching model.  

 

However, in cased the identified techniques are absent recourse is still needed to create more 

conventional approach, for example, the supervised classification on the basis of maximum 

likelihood methods, this model however, was used in the past and proved a success approach 

especially in areas where partial number of bands is applied. The maximum likelihood 

classification is based on assumption considered that the probability distribution for each 

spectral class is of essence and forms the multivariate a normal model with dimensions that 

equal the number of spectral bands(Atmopawiro, 2004).   

 

2.8 Remotely Sensed Data Processing 

Pre-processing of satellite images proceeding to feature extraction is essential to detect and 

eliminate noise and error and enhance accuracy in image classification. It can be particularly 

considered when a time series of images acquired to be applied to enhance recognition 

accuracy. After doing pre-processing techniques on a time series images the result will be 

obtained as the data acquired by the similar satellite sensor (Hall, Strebel, & Nickeson, 1991). 

It can be remembered that the pre-processing methods should not be constantly required, so 

that some of these procedures might be done by data supplier companies. Therefore, it is 
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suggested to discuss with the data supplier and find out about the level of data product which 

is required (0, 1A, 1B, 2A, 2B, 3A, 3B the product quality improved step by step) before 

obtaining the data. For example, in this project, the different type and sources of the data 

were obtained, including the RapidEye and the Landsat 7 (ETM+) which level 3A product of 

the RapidEye imagery has been used. According to the RapidEye supplier company, there are 

some standard image products which are offered at two different levels to hold up the various 

requests of the user: 1. RapidEye Basic (Level 1B) products are sensor level products with a 

minimum quantity of processing (geometrically uncorrected) for user who like better to geo-

correct the images themselves; and 2. RapidEye Ortho (Level 3A) are orthorectified products 

with radiometric, geometric and terrain corrections in a map projection (RapidEye, 2012). 

 

2.8.1 Radiometric Normalization of Multi-Temporal Data 

Remote sensing is very significant primarily in the study of environmental dynamics and is 

widely established by the geospatial community. On this event, remote sensing has become a 

vital tool in detection of spectral changes affiliated with phenomenon such as land cover and 

utilization. Landsat has progressively provided a global land surface imagery change since 

1972, with depicts the main persistent archive of land history. Spatial harmonization and 

chronological resolution of large spatial areas have relevant developed quantity and quality of 

satellite data imagery, which play a significant role in environmental monitoring. Initial 

processing shortcomings of multispectral satellite information as the core information on the 

study of land cover within Ahipara persist because of errors due to noise, environmental 

situations and radiometric and geometric alterations, which are initiated during data 

attainment and transmission stages (Canty, Nielsen, & Schmidt, 2004).    

 

Various methodologies are employed in radiometric normalization and multispectral analysis 

of imagery acquired from satellite and can be either absolute or relative. Absolute techniques 

are less feasible because it is only relevant when a measure of optical properties of the 

atmosphere taken into consideration in situ and concurrently with the scene recording 

moment. On the other hand, a relative techniques progresses under the assumption that the 

affiliation flanked by the at-sensor radiances taken into account at two varying periods from 

spatial regions of persistent reflectance within Ahipara. This is spatially homogenous and is 

capable of being estimated by linear functions. The difficulty faced by each technique is the 
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establishment of appropriate time-invariant features for the basis of normalization (Du & 

Teillet, 2002).   

2.8.1.1 Conversion to Top of Atmosphere Reflectance Units 

This is a normalization process, significant in creation of multi-temporal or multispectral 

mosaics. This is because largely it eradicates inconsistencies between images because of 

sensor discrepancies, proximity of the sun, earth, and zenith solar angle. The procedure 

involves two steps: first is characterized by the conversion of measured DN to radiance 

utilizing in-flight sensor facets. The facets are provided in combination with imagery 

established from comparisons of in-flight calibration basis in conjunction with pre-flight 

values of absolute radiance. Radiometric comeback function for every band could probably 

be established and used practical for normalization of temporal radiometric variations 

between sensors (Freeman, Chapman, & Siqueira, 2002). Band equation can be given by:  

 

 

L = Gain × DN + Bias ……………………..eqn: 1 

Legend: 

 

Source: (Guyot, 1994)  

 

Secondly: this involves the calculation of TOA (Top of Atmosphere) reflectance for each 

explicit band. Equation ii used, which corrects illumination differences in and between 

scenes. This method of correction is applied to each pixel because each scene is in each era 

and the impacting reflectance is usually scaled to 8-bit data assortment (Guyot & Gu,1994).

 . 

 

 

ρλ = (πd
d
Lλ) / (E0λ Cos øs)…………………….. eqn: ii 
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Source: (Guyot, 1994) 

 

2.8.2 Rectification of Remotely Sensed Data 
 

2.8.2.1 Geometric Correction Approaches 

This approach involves modeling the affiliation between the image and ground coordinate 

systems. This involves non-logical and logical geometric errors that are prone to satellite 

images (Lillesand et al., 2004). For instance, systematic errors present in Landsat imagery are 

usually well documeted and are mainly utilities of scan skew, mirror scan speed, panoramic 

alteration, platform speed, perspective and diurnal motion of the earth (Mather, 1999). Sensor 

based data charaterstics are modelled then applied to raw satellite image as part of the logical 

correction that is done by Landsat base station. Non-logocal errors are usually as a result of 

varition through time in the spatial position and inclination angle of the platform. In absence 

of accurate sensor platform orientation facets this distortion can only be rectified through 

image-to-map correction averts (Mather, 1999).      

 

2.8.2.2 Image to Image Rectification 

Image to image rectification is a significant methodology in obtaining a fast representation of 

structuring facades and acquiring measurements directly from rectified frames. Conversely, 

this techniques is irrelevant when the façades does not entail various plane surfaces, hence 

the number of measure to be take becomes hurriedly significant and needs thorough 

topographic survey. Therefore, this method involves the matching of one image to another; 

on this case, one geographic area is coincidentally positioned in respect to a similar 

geographic area (Figure 2.9). The techniques is applied when it is not important to each pixel 

having a unique address that is x, y coordinate in a projection (Lillesand et al., 2004).  
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Figure 2.9 Image rectifications (Mather, 1999)      

 

2.8.2.3 Image to Map Rectification 

This is a rectification procedure, which involves making of the satellite imagery geometry 

plan metric. This technique is not 100% reliable in eradication of alteration caused by relief 

displacement of satellite images (Jensen, 2005). The method involves the selection of Ground 

control point (GCP) image unit element, coordinates in conjunction with their map coordinate 

(Figure 2.10).  

 

 

Figure 2.10 Image to map rectification (Jenson, 2005)  
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2.9 Area of Study (Ahipara, Kaitaia in New Zealand)  

Ahipara Ecological District situated on the West coast of the North Island and south of the 

Kaitaia. It stretches from Tauoa point in the North to Warawaraw forest and Herekino 

Harbour in the South. This region is connected to Aupouri area in the North, Maungataniwha 

forest in the East and Hokianga Harbour in the South. This area covers about 27,762 ha, 

among this land cover 88% comprise natural areas as illustrated. A large area of this 

ecological district is in a natural or semi-natural condition, including the vast areas under the 

indigenous vegetation cover for example, kauri forest, broadleaf-podocarps and forests, 

conifer-broadleaf forests, gumland shrubland, and coastal riparian habitat. The land-cover of 

this area is described as 71% forest, 22.3% shrubland, 5.6% duneland, and less than 1% 

wetland (Conning, 1998). 

 

The comprehensive ecological surveys were undertaken by the Department of Conservation 

from 1994 to 1996. This information is also available on national existing database.   

The region is associated with volcanic massifs with steep escarpments and gullies as well as 

far-reaching wild coastline. Ahipara region has a diversity of vegetation types and plant 

species. These include some nationally rare kinds of species for example gumlands, 

dunelands and mature kauri forests, providing the region with distinctive species.      

Land use and land cover is a significant component in understanding relations of human 

activities with the environment, hence necessary to simulate the identified changes, empirical 

studies have been observation and reveal change in terms of land use/ cover classification. 

This paper points out different land classification models employed in the study identifying 

changes in terms of land use/cover in Ahipara region in Kaitaia, New Zealand (DoC, 2009). 

A region that is extremely rich in biodiversity which has approximately 80,000 diverse 

species including native animals and plants among others.  

 

The region is legally protected conservation is one of the method that is adopted in order to 

preserve biodiversity as well as its services. The New Zealand’s legally protected land 

includes land that is protected by the Department of Conservation and regional council and so 

forth.  
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Figure 2.11 The Ahipara Ecological Distric (Doc, 1998).                                                                                          

 

 

Recent New Zealand Land Classification Situation by 2009, about 8,763,300 ha of this 

country was legally protected with the primary purpose being preservation of biodiversity. Of 

the total protected area, 8,401,500 ha cover native land including land with vegetation. 

However, the non-vegetative cover for example areas with permanent snow, waterways, 

regions covered with alpine gravel as well as regions covered with rocks and ice. During this 

time, the legally conserved public land accounted for 8,525,000 ha, an estimated increase of 

4.7% (386,500 ha), this is in contrasted the legally conserved private land accounted 238,300 

ha. The figure below clearly identifies the legally protected areas by 2009.    
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2.9.1 Land Cover Type in Ahipara Region 

There are some different types of habitat in Ahipara: 

 

Sand dunes  

The Ahipara region contains a large area of comparatively dune-lands leftover in New- 

Zealand, with huge parts of open sand. The front dunes are covered by Spinifex, Knobby and 

Pingao. Some other species, like Marram,and Kikuyu can be found.  

 

Wetland 

The wetlands include: 

o Duneland wetlands, the Tauroa Point Swamp consisting Raupo with sphecelata 

o Valley wetlands of raupo with Baumea articulate and irregular cabbage tree, surrounded 

by manuka 

o Coastal seeps, it consist of jointed rush, knobby clubrush, huge umbrella sedge some 

having Euphorbia glauca. 

o Sedge-herb that is associated with sand flats closer to the stream mouths. They include 

Myriophyllum votschii, Triglochin striata and Lilaeopsis novae-zealandiae (MfE, 2010). 

 

Coastal margins    

In this area, the most ordinary vegetation cover types are: Taupata, Tauhinu, the native 

iceplant, the coastal tussock and brake fern. 

 

Coastal shrubland  

The low height manuka is a dominated habitat of shrubland vegetation, and also coastal 

toetoe, cabbage tree with occasional flax should be discovered. Moreover, Kanuka with 

Kowhai, landcewood can be appeared on the dunelands’ edge. 

 

Coastal forest 

 In this zone, manuka and kanuka are the most dominated species with rewarewa, mangeao 

and the other regionally adapted vegetations.  
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2.9.2 Legally Preserved Native Land Cover in Ahipara (New Zealand) 

Most of lands under legal conservation for purposes include public conservation lands under 

control of the Department of Conservation (DoC), regional parks maintained by authorities 

and private land conserved under the covenant by QEII National trust.  

 

 

 

Figure 2.12 Legally protected area(DoC, 2010). 

 

 

At the end of 2004, 8.06 million hectares preserved in New Zealand, this was specifically set 

aside for public conserved land.  Another study report conducted on October 2007 a total of 

8.4M hectares reported to be under legal protection, an increase of about 4.56%.  In 2007, 

approximately 82,933 ha were legally protected through the National Trust Covenants 

(QEII). This was reported to be an increase since its introduction in 1977.    
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Chapter 3 

Material and Methods 
 

 

 

 Methodology 

 

The project’s research methodology included data preparation and pre-processing, object-

based classification, manual revision, accuracy assessment, and landscape analysis. 

The methodology adapted to conduct this research project is indicated in the flowchart 

diagram illustrated below in detail: 
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Figure 3.1The flowchart indicating image processing methods and stages.  
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3.1 Study Area and Satellite Data 

3.1.1 Study Area 

The study area considered in this project is located from the Ahipara Bay (35º 8ꞌ 6ꞌꞌ S, 173º 

10ꞌ 7ꞌꞌ E) to Herekino Harbour (35º 22ꞌ 26ꞌꞌ S, 173º 12ꞌ 52ꞌꞌ E) in the Western part of New 

Zealand’s North Island. The Landsat7 data was acquired over this area under cloud free 

condition on 3
rd

 June 2001 (Figure3.2) whereas the RapidEye data was captured on 8
th

 Dec    

2010 which their original specifications are listed in table 3.1.  

 

For each of both the ortho-rectification and geo-referencing was done in Universal 

Transverse Mercator (UTM) zone 59 S with a WGS 84 spheroid, WGS 84 datum.    

 

 

Figure 3.2 Location of the study site, Ahipara region, Northland (Koordinates, n.d.)   
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3.1.2 Landsat7 Imagery 

Landsat7 Enhanced Thematic Mapper Plus (ETM+) image (Path: 075 and Row: 084) with 

28.5 m spatial resolution which included eight channels ranging from 1 through 7 

multispectral bands (blue, green, red, NIR, 2 x MIR and thermal infrared) and 15 m 

panchromatic band, was used to perform land cover classification (Figure 3.3 and Table 3.1). 

For this study, thermal band was excluded due to its low spatial resolution (60 m). The 

Landsat ETM+ imagery was obtained from the Global Land Cover Facility (GLCF) through 

the URL: http://glcfapp.glcf.umd.edu:8080/esdi/index.jsp 

 

 

Figure 3.3 Subset of Landsat ETM+ image, Ahipara region 

 

http://glcfapp.glcf.umd/
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3.1.3 RapidEye Imagery 
 

The high resolution RapidEye multispectral image data was acquired (Figure 3.4) with spatial 

resolution of 6.5 m (5m_ orthorectified). Its multispectral sensor captures image in 5 spectral 

bands, including three standard bands (blue, green, red) in the visible part of electromagnetic 

spectrum as well as 2 further bands in near infrared (NIR) and “red edge” parts of the 

spectrum. The red edge band is sensitive to transformations in chlorophyll content, and 

appears for the first time in a commercial satellite. The RapidEye imagery was ordered from 

RapidEye AG German Company.  

 

 

Figure 3.4 Subset of RapidEye image, Ahipara region 
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Table 3.1 RapidEye and ETM+ specifications (NASA, 2012) 

 

Band 

RapidEye Sensor ETM + Sensor 

Spectral  
Range (μm) 

Resolution  
(m) 

Spectral  
Range (μm) 

Resolution  
(m) 

1 0.44 - 0.51 5 0.45 - 0.51 30 

2 0.52 - 0.59 5 0.53 - 0.60 30 

3 0.63 - 0.59 5 0.63 - 0.69 30 

4 0.690 - 0.73 5 0.75 - 0.90 30 

5 0.76 - 0.85 5 1.55 - 1.75 30 

6 - - 10.40 - 12.50 60 

7 - - 2.09 - 2.35 30 

(Panchromatic)   - 0.52 - 0.90 15 

Source: NASA 2012 
 
 
 

   

3.2 Land Use and Land Cover Classification Analysis 

 
Satellite image classification is the method of discriminating pixels, which are created in 

several spectral bands inside a digital image acquired. The procedure generates groups of 

pixels with similar spectral characteristics into the same categories (Campbell, 2002). The 

method can be implemented by unsupervised or supervised approaches which are broadly 

applied for a variety of purposes (Boyle et al., 1998; Campbell, 2002; Formard, Vega, & 

Proisy, 2004; Lillesand et al., 2004; Jensen, 2005; Carreiras, Pereira, & Shimabukuro, 2006; 

Lu &Weng, 2007). In this study, a supervised classification method with different type of 

algorithms, including maximum likelihood and parallelepiped mixed with maximum 

likelihood were used to classify remotely sensed data of Landsat ETM+ and RapidEye over 

the Ahipara region. As the image processing steps have been indicated in the flowchart 

(Figure 3.1), for an accurate comparative study between L7 and RE images, it is required to 

have different images for each of them to compare the results of the accuracy assessment of 

classified data, including an image with 4 bands of multispectral of RapidEye imagery (after 

removing the Red-edge band (B5)) the same as the false colour infrared image of Landsat7 

(combination of 4,3 and 2bands) and also a degraded image of RE from 5m to 30m, the same 

spatial resolution of L7.     



44 
 

After applying some pre-processing techniques, the following approaches have been 

employed to achieve the final desired results of this project. 

 

3.3 Data Processing 

Erdas Imagine application was utilized to process the remotely sensed data. First of all, the 

layer stack function was used to stack bands 1, 2, 3, 4, 5, 7 for ETM+ image. The seven 

scenes of RE required data were mosaiced together, then both images, the layer stacked of L7 

and mosaiced of RE images were subset to produce a dataset of the study area, and the next 

step the geometric registration was conducted using image to image registration for both 

datasets. 

 

3.3.1Conversion to Radiance and Top of Atmosphere (ToA) Reflectance  

 

In this step, the radiometric correction was applied for conversion of the measured 

multispectral brightness values to top of atmosphere (ToA) reflectance units. This 

normalization technique is important to remove or reduce the differentiations in the Earth-

Sun distance, solar zenith angle or scene dates, this process involved conversion of rescaled 

DN to radiance by using the ETM+ sensor calibration parameters (Guyot & Gu,1994). 

The following equations were used to convert DN to radiance units: 

 

L  = Gain * DN + Bias 

 

where:      L = spectral radiance measured over spectral bandwidth of a channel 

DN    =      digital number value recorded 

Gain  =      (Lmax – Lmin) ⁄ 255 

           

Bias   =       Lmin 

          =        intercept of response function 

Lmax =      radiance measured at detector saturation in mWcm-2sr-1 

Lmin  =       lowest radiance measured by detector in mWcm-2sr-1 
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The second equation that was used for the process: 

 

Lλ = ((LMAXλ - LMINλ)/(QCALMAX-QCALMIN)) * (QCAL-QCALMIN) + LMINλ 

where: Lλ = Spectral Radiance at the sensor's aperture in 

watts/(meter squared * ster * μm) 

 

Grescale = Rescaled gain (the data product "gain" contained in the 

Level 1 product header or ancillary data record) in 

watts/(meter squared * ster * μm)/DN 

  

Brescale = Rescaled bias (the data product "offset" contained in 

the Level 1 product header or ancillary data record ) in 

watts/(meter squared * ster * μm) 

  QCAL = the quantized calibrated pixel value in DN 

  
LMINλ = the spectral radiance that is scaled to QCALMIN in 

watts/(meter squared * ster * μm) 

  
LMAXλ = the spectral radiance that is scaled to QCALMAX in 

watts/(meter squared * ster * μm) 

  

QCALMIN = the minimum quantized calibrated pixel value 

(corresponding to LMINλ) in DN  

= 1 for LPGS products 

= 1 for NLAPS products processed after 4/4/2004  

= 0 for NLAPS products processed before 4/5/2004 

  

QCALMAX = the maximum quantized calibrated pixel value 

(corresponding to LMAXλ) in DN 

= 255 

 

 

The next step was performed by calculating the atmosphere reflectance for band 1, 2, 3, 4, 5 

and band 7 by applying the equation 3. The correction was used on a pixel by pixel and the 

output reflectance values measured to a float single data range. 
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According to equation 2: 

 

 

(191.600 -  - 6200) / (255 - 1) * (L7band1_nn10 - 1) + (- 6.200) 

(196.500 -  - 6.400) / (255 - 1) * (L7band2 _nn20 - 1) + (- 6.400) 

(234.400 -  - 5.000 ) / (255 - 1 ) * (L7band3 _nn30 - 1 ) + ( - 5.00)  

(157.400 -  - 5.100 ) / (255 - 1 ) * (L7band4 _nn40 - 1 ) + (- 5.100) 

(31.060 -  - 1.000 ) / (255 - 1 ) * (L7band5 _nn50 - 1 ) + (- 1.000) 

(10.800 -  - 0.350 ) / (255 - 1 ) * (L7band7 _nn70 - 1 ) + (- 0.350) 

 

                  

Equation 3: 

 

ρp   
           

             
 

 

Where: 

 

ρ p               = Unitless planetary reflectance 

 

L                  = Spectral radiance at the sensor’s aperture 

 

d           = Earth-Sun distance in astronomical units  

 

ESUN  = Mean solar exoatmospheric irradiances from Table 3.2 

 

θs           = Solar zenith angle in degrees 
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Table 3.2 L7 ETM+ Solar Spectral Irradiances 

 

ETM+ Band watts/(meter squared * μm) 

1 1997 

2 1812 

3 1533 

4 1039 

5 230.8 

7 84.90 

 

 

 

According to the equation 3: 

 

 

3.14 * $n1_rad_band1 * (1.01433 * 1.01433) / (1997 * COS( 24.1170033 ) ) 

3.14 * $n1_rad_band2 * (1.01433 * 1.01433) / (1812 * COS( 24.1170033 ) ) 

 3.14 * $n1_rad_band3 * (1.01433 * 1.01433) / (1533 * COS( 24.1170033 ) ) 

3.14 * $n1_rad_band4 * (1.01433 * 1.01433) / (1039 * COS( 24.1170033 ) ) 

3.14 * $n1_rad_band5 * (1.01433 * 1.01433) / (230.8 * COS( 24.1170033 ) ) 

3.14 * $n1_rad_band7 * (1.01433 * 1.01433) / (84.90 * COS( 24.1170033 ) ) 

 

3.3.2 Principal Component Analysis  

 

Principal Component Analysis (PCA) is a statistical method which is utilized to compress 

and transform the original multispectral data bands (they are highly correlated) to 

uncorrelated output bands as the new principal components axes before using the 

classification methods with a minimum loss of information (Yuan, Elvidge, & Lunetta, 1998; 

Lillesand et al., 2004).  
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By applying PCA approach, the results of land cover classification may improve (Tso et al., 

2009). It can increase the segregation land cover in terms of changed and unchanged after 

used to multi-temporal data (Li et al., 2005; Yuan et al., 1998). 

 

There are two types of PCA, including the procedure which is considered as a standardized 

PCA when the statistical transformation for the data density is achieved depend on the 

correlation matrix of the original bands (Yuan et al., 1998), and the second method of PCA 

that is recognized as unstandardized, can be performed when the variance-covariance matrix 

is utilized (Tso et al., 2009). 

 

The number of components created in the process is equal to that of the input bands; 

nevertheless, the first PC band includes the largest part of entire data variance detected in the 

original dataset. The second PC band has the second highest data variance and the following 

bands are uncorrelated and orthogonal with the minimum values of variance, thus the final 

components have a few amount of the data variance (Tso et al., 2009; Richards & Watt, 

2006). Therefore, the first two PC bands (1and 2) generally represent spectral data which is 

the same as along with input bands, whereas the following bands contain the least percentage 

of data variance which is uncorrelated to the data pattern from the first and second 

components. The eigenvalue indicate the amount of variance for each component’s account 

(Rogerson, 2001). By applying a PCA plot, it will be possible to recognize which PC bands 

could represent the multispectral original datasets, so that the maximum amount of 

eigenvalue for a component can be represented the largest value of variance in the original 

data. 

 

Principal component analysis was perform to bands 1, 2, 3, 4, 5 and 7 of the Landsat image to 

reduce the original datasets and calculate the components 1 and 2 for further investigation 

(Table 3.3). After applying PCA and as it is represented in the scree plot (Figure 3.5) and 

Table 3.4, the maximum amount eigenvalues and variances were observed for the 

components band 1 and 2, hence the components 3, 4, 5 and 6 were removed. 
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Table 3.3 Statistics from the principal component (PC) rotations performed on Lansat7 

imagery.  

 

Component 1 2 3 4 5 6 

Band 1 0.509826 -0.556873 -0.365435 0.410735 -0.037629 -0.355398 

Band 2 0.396341 -0.315202 -0.004507 -0.198295 0.186698 0.818147 

Band 3 0.353756 -0.206459 0.427728 -0.694290 -0.045820 -0.406378 

Band 4 0.535088 0.667097 -0.451633 -0.186440 -0.172688 -0.010477 

Band 5 0.348669 0.312853 0.476494 0.391662 0.625580 -0.093580 

Band 6 0.223515 0.070845 0.502461 0.348969 -0.735158 0.174122 

 

 

Table 3.4The eigenvalues and variances of PCA calculated from Landsat7 imagery 

 

Component Eignvalue % Variance % Accumulative 

B1 1998.109 84.758249 84.75 

B2 275.467 11.685116 96.45 

B3 63.319 2.685926 99.13 

B4 17.686 0.750212 99.88 

B5 1.671 0.070895 99.95 

B6 1.169 0.049608 100 

 

 

 
 

Figure 3.5The Scree Plot of eigenvalue of the PCA transformation (Landsat7)  

 

For the next step, PCA was utilized to band 1, 2, 3, 4 and 5 of the RapidEye dataset to 

produce components 1 and 2 as the input data for combining with vegetation index layer and 

applying supervised classification (Table 3.5).  
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Table 3.5 Statistics from the principal component (PC) rotations performed on RapidEye 

imagery 
 

Component 1 2 3 4 5 

      Band 1 0.543320 -0.403664 -0.567220 0.468617 0.227594 

Band 2 0.496319 -0.242586 -0.040315 -0.830042 -0.064988 

Band 3 0.380837 -0.215390 0.717225 0.216913 0.497099 

Band 4 0.364671 0.183116 0.360404 0.210602 -0.811935 

Band 5 0.424792 0.835633 -0.179814 -0.004831 0.298181 

 

 

As the Table 3.6 is shown, more than 98 percent of the variance of the 5 bands data are 

belong to components 1 and 2, and also the components 3, 4 and 5 were discarded based on 

the least amount of eigenvalues for those bands (Figure 3.6).  

 

 

Table 3.6 The eigenvalues and variances of PCA calculated from RapidEye imagery 

 

Component Eigenvalue % Variance % Accumulative 

B1 69294867.812 87.386820 87.37 

B2 8479516.245 10.693403 98.08 

B3 1335774.865 1.684528 99.77 

B4 147976.867 0.186612 99.95 

B5 38567.877 0.048637 100 

 

 

 

 

 
 

 

Figure 3.6 The scree plot of eigenvalue of the PCA transformation (RapidEye) 

0 

10000000 

20000000 

30000000 

40000000 

50000000 

60000000 

70000000 

80000000 

B1 B2 B3 B4 B5 

Ei
ge

n
va

lu
es

 

Components 



51 
 

3.3.3 Band Combination 

 
There is some type of layer combinations to discriminate different features on the ground thus 

the best band combination can be developed for image visualization and an effective 

supervised classification. For instance, the image for Landsat ETM+ can be displayed with 

combination of bands 4 (NIR), 3 (Red) and 2(Green) as the standard false colour RGB 

composite which commonly utilized for vegetation studies and crop growth monitoring. 

Furthermore, a combination of 4, 5, and 3 (NIR, MIR and Red) can distinguish the level of 

moisture in the soil or vegetation (NASA, 2011).  

 

For this project, some experiments were done using a variety of band combinations to display 

and classify Landsat 7 and RapidEye images. As a consequence, the combination of bands 4, 

3 and 2 as the standard false colour composite (CIR image) (Figure 3.7) and combination of 

bands PC1, PC2 and VI as the Principal Component layers (PCs) with combination of the 

Vegetation Index  layer (VI) (Figure 3.8) were selected and applied in the Landsat7 imagery. 

In addition, from RapidEye imagery the combination of bands 5, 4 and 3 (Figure 3.9, also the 

combination of PC1, PC2 layers as the Principal Components (PCs) and the Vegetation Index 

(VI) layer (PC1, PC2, VI) were used (Figure 3.10) to demonstrate classification methods.  

 

The two first principal components (PC1 and PC2) were chosen based on the results of the 

scree plot and assessment for 98.08 percent of the spectral variance of the original 5-band 

dataset from RapidEye imagery (Figure 3.6 and Table 3.6) and also the vegetation index (VI) 

was combined to create a new combination of three layers with the purpose of considering 

the vegetation distribution. In addition, according to the results of the principal components 

analysis of Landsat7 ETM+ data, 96.45 percent of the spectral variance of the original 7-band 

dataset is represented in PC1 and PC2 (Figure 3.5 and Table 3.4). Based on these results, PC1 

and PC2 were selected to be added with VI layer for creating a new bands combination. 
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Figure 3.7 False Colour Infrared (CIR-LandSat7)                Figure 3.8 PCs and VI Band Combination (ETM+)   

 

 

 

  

 
Figure 3.9RapidEye 543 (Band Combination)                    Figure 3.10 PCs and VI combination (RapidEye)         
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3.3.4 Image Classification Methods 
 

There are many different procedures have been developed to execute supervised 

classification, the Maximum Likelihood classifier (MLC) method is still one of the most 

commonly applied supervised classification approaches (Jensen, 2005). Moreover, it is 

recognized that Parallelepiped classifier (PPC) algorithm can generate the most accurate 

classification due to its traditional assessment rule although it might abandon large parts in 

data space and create more unassigned pixels in the image (Campbell, 2002). For this 

research, Maximum Likelihood (MLC) separately and also a combination of Parallelepiped 

and Maximum likelihood (PPMLC) classifiers were used for land-cover classification.  

 

 

3.3.4.1 Supervised Classification 

ERDAS IMAGINE software was used to perform image processing functions required to 

complete the land cover classification. In this method, user has to define the training areas. 

The specific area of interest (AOI) from the all land cover types in the image was extracted.  

 

The process was done, including: 

 

 The clustering algorithms were used which define the spectral classes from the image. 

 The area of interests was selected to assign information classes to the clusters. 

 Applying statistics distance approach to evaluate the selected clusters. In this stage 

after assessment results, some clusters should be merged or deleted. 

 At the end, the spectral subclasses were grouped into eleven actual informational 

categories that were included in Table 3.7. The categories are based on 2001 and 2002 

land cover databases version 2 (LCDB2), and then a supervised classification using 

maximum likelihood (MLC) algorithm and a combination of parallelepiped (PP) with 

MLC were utilized to produce a thematic image with classified spectral classes. 
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Table 3.7 land cover categories 

Code Class Name 

0 No data 

1 Water 

2 Mangrove 

3 Shallow water 

4 Low Producing Grassland 

5 Indigenous Forest 

6 Coastal Sand and Gravel 

7 Manuka/Kanuka 

8 Pine Forest 

9 Shrubland 

10 Grassland 

11 Wave 

 

 

 

 

3.3.5 Classification Accuracy Assessment 

Accuracy assessment is a crucial part of image classification process, which evaluates the 

level of agreement between reference and classified data (Tso & Olsen, 2005). The accuracy 

can be assessed by an error matrix. The error matrices introduce the quality of correctly or 

incorrectly classified images for each which they would be compared to a reference data. 

This reference data is taken from different sources, including high resolution satellite image, 

field survey (ground-truthing), aerial photograph or an existing map. At the end of the error 

matrix processing, overall accuracy of the land cover classification, the user’s and producer 

accuracy and kappa statistic will be calculated (Campbell, 2002; Lillesand et al., 2004; 

Jensen, 2005). Before applying the accuracy assessment, some initial alignments should be 

required that include the number of sample points and sample distribution parameters 

(Random, Stratified Random and Equalized Random).  

 

In this study, the simple random points were selected as distribution parameter pattern to 

evaluate the accuracy of classified images. The random pattern represents an equal possibility 
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of sampling points through the whole area of study without any previous considerations. 

According to Fitzpatrick-Lins (1981), Congalton (1991) and Jensen (2005) the number of 

random points can be determined:  

 

  
         

    

 

Where p is the expected percent accuracy of the entire map, q = 100 – p, E is the acceptable 

error, and Z = 2 from the standard normal deviate of 1.96 for the 95% two side confidence 

level.       

 

 Or:     
          

  
    

 

Where Πi is the part of a population in the ith class out of k classes, 50%, bi is the preferred 

precision, B is the upper percentile of the chi square distribution with 1 degree of freedom 

(α/k * 100
th

)  

 

At the initial process of accuracy, 1000 sampling points were selected, then the number of 

classes with no data (Class = 0) were discarded and also some random points considered for 

the water class were reduced, without any data manipulation or consideration of class 

distribution. About 350 ± 20 ground truth points were randomly tested on the high resolution 

aerial photography of the Ahipara region as reference image. 

 

3.3.6 LCDB2 Data 

Land cover databases version 2 which was derived from Landsat 7 ETM+ imagery acquired 

in 2001 and 2002, was used to perform the land cover classification for the New Zealand 

mainland. This classified data were compared with the results of the highest accurate of the 

RapidEye classified images. LCDB2 data was obtained from the Koordinates (Ltd) website 

through the URL: http://koordinates.com/#/layer/1072-land-cover-database-version-2-lcdb2/.   

 

ArcGIS 10 tools were used to subset the LCDB2 data to create a subset of the study area. 

http://koordinates.com/#/layer/1072-land-cover-database-version-2-lcdb2/
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The subset datasets included 127 polygon features that represented the land cover type, and 

then they were converted to the raster dataset which the subclasses were grouped into 

different nine categories of land cover (Figure 4.19). 
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Chapter 4 

Results 

 
 

4.1 Image Classification and Processing 

 
The results of the image classification were achieved using supervised classification 

techniques. Maximum Likelihood Classifier (MLC) and a combination of Maximum 

Likelihood and Parallelepiped (PP) techniques were applied to classify different band 

combination images of Landsat ETM+ and RapidEye sensors. The accuracy assessment of 

classified images was estimated by calculating the error matrices, for example, producer’s 

and user’s accuracies and Kappa statistics.     

 

 
 

4.2 Assessment of the Classification Accuracy 

 
The accuracy assessment of the classified images is an essential part of the classification 

analysis. For this project, a simple random sampling method was utilized to assess the 

accuracy of classified images that produced from different classification approaches and band 

combinations. To assess the accuracy of the classification result for each image, about 340 ± 

30 randomly reference points were determined to attain an accuracy of 70% at acceptable 

error of 5% (Fitzpatrick, 1981 and Jensen, 2005). 

 

High resolution aerial image from Ahipara region was used (Koordinates, n.d.) as reference 

to verify the Landsat ETM+ and RapidEye classified images. The results of overall 

classification accuracy for each of different twelve images were achieved (Figure 4.1). The 

Maximum likelihood and combination of MLC with Parallelepiped (PP) algorithms were 

used to classify the false colour image (432) of Landsat 7 and a combination of 2 layers of 

principle components 1 and 2 with the vegetation index layer. Furthermore, the supervised 

classification using MLC and combination of MLC with PP were employed on images of 

RapidEye data, including a combination of 5, 4, 3 bands, the principle components 1, 2 with 

vegetation index layer, the image with 4 bands (the Red-Edge band was removed) the same 
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bands as L7 false colour image (4, 3 and 2), and RE degraded image from 5m to 30m spatial 

resolution the same as L7 spatial resolution.  

      

As the Figure 4.1 shows, the overall accuracies for the RapidEye classified images were 

84.72% (543_ MLC), 86.73% (543_ PPMLC), 85.29% (PC12VI _ MLC), 85.94% (PC12VI _ 

PPMLC), 80.41% (4band_ MLC), 81.67% (4band_ PPMLC), 78.85% (DEGRADED _MLC) 

and 80.28% (DEGRADED_ PPMLC) with an overall kappa statistic of 0.82, 0.85, 0.83, 0.84, 

0.78, 0.79, 0.76 and 0.77, respectively. The overall accuracies derived from the Landsat 

ETM+ classified images (Table 4.1) were 76.79% (432_ MLC), 78.71% (432_ PPMLC), 

74.07% (PC12VI_MLC) and 79.78% (PC12VI _ PPMLC), with the overall Kappa statistics 

of 0.74, 0.75, 0.71 and 0.77, respectively.   

 

The overall accuracy and the overall Kappa statistics results for the Landsat 7 images 

indicated ( Figure 4.1 and Table 4.1) using the combination of the maximum likelihood 

(MLC) with Parallelepiped (PP) algorithms produced better accuracy to compare with using 

only MLC, so that the classified image of L7_PC12VI _PPMLC with 79.78% accuracy and 

0.77 overall statistic is more accurate that other L7 images (PC12VI_MLC, 432_ MLC and 

432_ PPMLC) and the classification of L7_432_ PPMLC image was more accurate than the 

L7_432_ MLC image. More details on accuracy assessment are summarized in the error 

matrices and accuracy statistics from Tables 4.2 to 4.25 and Figures 4.2 to 4.7.    

  

As Jensen (2005) suggested, “the probability of a reference pixel being correctly classified 

and is a measure of omission error that it is called the producer’s accuracy”, and the user’s 

accuracy represents the probability of the classified image correctly from the map as a 

reference data (Congalton, 1991). In this study, Khat Coefficient of classified images was 

measured to define the accuracy between the classified map and the reference data by chance 

agreement. The quantity of Khat coefficient amount more than 0.8 signifies high accuracy of 

classified data while the range of 0.4 and 0.8 identify an average accuracy assessment and 

less than 0.4 represent poor classification execution.  
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 Figure 4.1The results of overall accuracies for the Landsat 7 and RapidEye classified images 

 

 

Table 4.1 Overall accuracies and Kappa statistics results of Landsat 7 and RapidEye                

classified images  

Classified Images Overall  Accuracy Overall Kappa Statistic 

L7_432_MLC 77% 0.7377 

L7_432_PPMLC 79% 0.7585 

L7_PC12VI_MLC 74% 0.7062 

L7_PC12VI_PPMLC 80% 0.7692 

RE_4band_MLC 80% 0.7798 

RE_4band_PPMLC 82% 0.7919 

RE_543_MLC 85% 0.8249 

RE_543_PPMLC 87% 0.8484 

RE_DEGRADED_MLC 79% 0.7602 

RE_ DEGRADED _PPMLC 80% 0.7755 

RE_PC12VI_MLC 85% 0.8323 

RE_PC12VI_PPMLC 86% 0.8364 
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Table 4.2 Error Matrix of Landsat ETM+ (432) image using Maximum Likelihood algorithm  

Classified Data A  B C   D E F     G H  I J K  Row Total 

A. Shallow Water 29 
   

5 1 
    

4 39 

B. Grassland 
 

43 7 
   

1 
  

8 
 

59 

C. Low Producing  
    Grassland  

1 19 1 1 
 

1 
 

2 2 
 

27 

D. Mangrove 
  

4 15 2 
 

4 4 
   

29 

E. Coastal Sand  
     and Gravel 

2 
 

1 2 47 1 
    

1 54 

F. Wave 
    

1 6 
     

7 

G. Pine 
 

1 
 

1 
  

31 5 
 

4 
 

42 

H. Manuka/kanuka 
   

5 1 
 

5 59 
   

70 

I. Shrubland 
       

1 3 
  

4 

J. Indigenous Forest 
 

2 2 1 
  

3 
 

1 22 
 

31 

K. Water 3 
        

0 27 30 

             Column Total 34 47 33 25 57 8 45 69 6 36 32 392 

 

 

 

Table 4.3 Accuracy statistics for the classification results of Landsat ETM+ (432) image 

using Maximum Likelihood algorithm 

Class Name  
 Producer’s 
Accuracy  
(%)  

 User’s 
Accuracy  
(%)  

 Kappa 
 Statistic  

Shallow Water 85% 74% 0.72 

Grassland 91% 73% 0.69 

Low Producing Grassland 58% 70% 0.68 

Mangrove 60% 52% 0.48 

Coastal Sand and Gravel 82% 87% 0.85 

Wave 75% 86% 0.85 

Pine 69% 74% 0.70 

Manuka/kanuka 86% 84% 0.81 

Shrubland 50% 75% 0.75 

Indigenous Fore 61% 71% 0.68 

Water 84% 90% 0.89 

    Overall Classification Accuracy = 76.79% 

  Overall Kappa Statistics = 0.7377 
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Table 4.4 Error Matrix of Landsat ETM+ (432) image using combination of Maximum 

Likelihood with Parallelepiped algorithm 

Classified Data A B C D E F G H I J K Row Total 

A. Shallow Water 24 
   

2 
     

3 29 

B. Grassland 
 

44 4 1 
     

9 
 

59 

C. Low Producing  
     Grassland 

  
13 2 

     
3 

 
18 

D. Mangrove 
  

1 16 
  

4 2 
   

23 

E. Coastal Sand  
    and Gravel 1 

 
1 

 
36 1 

 
1 

   
41 

F. Wave 
    

1 13 
     

14 

G. Pine 
   

1 
  

24 3 1 1 
 

30 

H. Manuka/kanuka 1 
 

1 3 
  

7 62 2 4 
 

80 

I. Shrubland 
 

1 1 
     

2 
  

4 
J. Indigenous Forest 

 
4 2 

    
4 1 32 

 
43 

K. Water 3 
    

1 
    

26 30 

             Column Total 29 49 23 23 39 15 35 72 6 49 29 371 

 

 

 

Table 4.5 Accuracy statistics for the classification results of Landsat ETM+ (432) image 

using Maximum Likelihood algorithm with Parallelepiped algorithm 

Class Name 
 

Producer’s 
Accuracy  
(%) 

User’s 
Accuracy  
(%) 

Kappa  
Statistic 

Shallow Water 83% 83% 0.81 

Grassland 90% 75% 0.71 

Low Producing Grassland 57% 72% 0.70 

Mangrove 70% 70% 0.68 

Coastal Sand and Gravel 92% 88% 0.86 

Wave 87% 93% 0.93 

Pine 69% 80% 0.78 

Manuka/kanuka 86% 78% 0.72 

Shrubland 33% 50% 0.49 

Indigenous Forest 65% 74% 0.71 

Water 90% 87% 0.86 

    Overall Classification Accuracy =     78.71% 

  Overall Kappa Statistics = 0.7585 
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Figure 4.2 Comparing producer’s accuracies of Landsat ETM+ classified images (432_mlc/ppmlc) 

 

 

 

Classified Data A B C D E F G H I J Raw Total 

A. Manuka/Kanuka 47 0 9 1 1 6 0 0 1 0 65 

B. Grassland 1 35 0 3 4 5 2 0 0 0 50 

C. Mangrove 2 0 4 1 1 0 0 0 0 0 8 

D. Pine 2 0 3 21 3 5 0 0 0 0 34 

E. Low Producing  
    Grassland 2 7 0 2 43 2 3 0 0 0 59 

F. Indigenous Forest 3 2 1 9 2 33 0 0 0 0 50 

G. Coastal Sand  
     and Gravel 0 0 0 0 1 0 34 0 2 0 37 

H. Wave 0 0 0 0 0 0 2 9 1 0 12 

I. Shallow Water 0 0 0 0 0 0 1 2 28 2 33 

J. Water 0 0 0 0 0 0 0 1 3 26 30 

            Column Total 57 44 17 37 55 51 42 12 35 28 378 

 

 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

l7_432_mlc 

l7_432_ppmlc 

 

Table 4.6 Error Matrix of Landsat ETM+ image using combination of PC12 with 

Vegetation Index layer and Maximum Likelihood algorithm 
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Table 4.7 Accuracy statistics for the classification results of Landsat ETM+ (432) image 

using combination of PC12 with Vegetation Index layer and Maximum Likelihood algorithm 

Class Name 
 

Producer’s 
Accuracy  
(%) 

User’s 
Accuracy  
(%) 

Kappa  
Statistic 

Shallow Water 80% 85% 83% 

Grassland 80% 70% 66% 

Low Producing Grassland 78% 73% 68% 

Mangrove 24% 50% 48% 

Coastal Sand and Gravel 81% 92% 91% 

Wave 75% 75% 74% 

Pine 57% 62% 58% 

Manuka/Kanuka 82% 72% 67% 

Indigenous Forest 65% 66% 61% 

Water 93% 87% 86% 

   
                                                         

Overall Classification Accuracy = 74.07% 

 
                                                         

Overall Kappa Statistics = 0.7062 
 
 
 
 
 

 
                                                         

 

  
                                                         

Classified Data A B C D E F G H I J Total Raw 

A. Manuka/Kanuka 43 1 0 6 0 3 1 0 0 0 54 

B. Grassland 2 51 2 0 5 1 4 0 0 0 65 

C. Mangrove 0 0 6 2 0 1 0 0 0 0 9 

D. Pine 4 0 3 24 1 3 0 0 0 0 35 

E. Low Producing  
Grassland 0 4 0 2 27 1 1 0 0 0 35 

F. Indigenous Forest 5 3 2 2 1 49 1 0 0 0 63 

G. Coastal Sand  
    and Gravel 0 0 0 0 4 0 32 0 0 0 36 

H. Wave 0 0 0 0 0 0 0 8 1 0 9 

I. Shallow Water 0 0 0 0 0 0 0 1 27 3 31 

J. Water 0 0 0 0 0 0 0 0 3 21 24 

            Column Total 54 59 13 36 38 58 39 9 31 24 361 

 

 

 

 

Table 4.8 Error Matrix of Landsat ETM+ image using combination of PC12 with 

Vegetation Index layer and Maximum Likelihood with Parallelepiped algorithm 
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Table 4.9Accuracy statistics for the classification results of Landsat ETM+ image using combination 

of PC12 with Vegetation Index layer and Maximum Likelihood with Parallelepiped algorithm 

Class Name 
 

Producer’s 
Accuracy  
(%) 

User’s 
Accuracy  
(%) 

Kappa  
Statistic 

Shallow Water 87% 87% 0.86 

Grassland 86% 78% 0.74 

Low Producing Grassland 71% 77% 0.74 

Mangrove 46% 67% 0.65 

Coastal Sand and Gravel 82% 89% 0.88 

Wave 89% 89% 0.89 

Pine 67% 69% 0.65 

Manuka/Kanuka 80% 80% 0.76 

Indigenous Forest 84% 78% 0.74 

Water 88% 88% 0.87 

   
                                                         

Overall Classification Accuracy = 79.78% 

 
                                                         

Overall Kappa Statistics = 0.7692 

 
                                                         

 

 

 

 

 

Figure 4.3 Comparing producer’s accuracies of Landsat ETM+ classified images (pc12vi_mlc/ppmlc) 
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Classified Data A B C D E F G H I J K Raw Total 

A. Coastal Sand  
     and Gravel 

24 2 0 0 0 0 0 0 0 0 0 26 

B. Low Producing  
     Grassland 

0 26 2 0 0 0 0 0 0 4 0 32 

C. Shrubland 0 0 10 1 0 2 0 0 0 0 0 13 

D. Indigenous Forest 0 0 3 62 0 0 3 2 0 0 0 70 

E. Wave 0 0 0 0 4 0 0 0 0 0 0 4 

F. Mangrove 1 0 3 0 0 7 0 0 0 0 0 11 

G. Manuka/Kanuka 
0 1 1 3 0 0 35 2 0 0 0 42 

H. Pine 0 0 0 0 0 0 1 10 0 0 0 11 

I. Water 0 0 0 0 1 0 0 0 26 0 2 29 

J. Grassland 2 1 0 3 0 0 0 0 0 34 0 40 

K. Shallow water 0 0 0 0 1 0 0 0 3 0 17 21 

 
            

Column Total 27 30 19 69 6 9 39 14 29 38 19 299 

 

 

 

 

Table 4.11 Accuracy statistics for the classification results of RapidEye (543) image using Maximum 

Likelihood algorithm 

Class Name 
Producer’s 
Accuracy  
(%) 

User’s 
Accuracy  
(%) 

Kappa  
Statistic 

Water 90% 87% 0.85 

Mangrove 78% 64% 0.63 

Shallow water 89% 81% 0.80 

Low Producing Grassland 87% 81% 0.79 

Indigenous Forest 90% 87% 0.84 

Coastal Sand and Gravel 89% 92% 0.92 

Manuka/Kanuka 90% 83% 0.81 

Pine 71% 91% 0.90 

Shrubland 53% 77% 0.75 

Grassland 89% 85% 0.83 

Wave 67% 100% 1.00 

    

   
                                                         

Overall Classification Accuracy = 84.72% 

 
                                                         

Overall Kappa Statistics = 0.8249 
 

 
                                                

 

Table 4.10 Error Matrix of RapidEye (543) image using Maximum Likelihood algorithm 

 



66 
 

 

 

Classified Data A B C D E F G H I J K Row Total 

A. Coastal Sand  
     and Gravel 

18 2 0 0 1 1 0 0 0 1 0 23 

B. Low Producing  
     Grassland 

1 42 4 0 0 0 0 0 0 1 0 48 

C. Shrub 0 0 20 1 0 1 1 0 0 1 0 24 

D. Indigenous 
Forest 

0 0 2 56 0 1 4 1 0 0 0 64 

E. Wave 0 0 0 0 8 0 0 0 1 0 0 9 

F. Mangrove 0 0 1 0 0 7 2 0 0 0 0 10 

G. Manuka/Kanuka 0 0 1 1 0 1 43 0 0 0 0 46 

H. Pine 0 0 0 1 0 0 0 12 0 0 0 13 

I. Water 0 0 0 0 2 0 0 0 22 0 1 25 

J. Grassland 1 2 0 0 0 0 0 0 0 34 0 37 

K. Shallow Water 0 0 0 0 0 0 0 0 3 0 6 9 

             

Column Total 20 46 28 59 11 11 50 13 26 37 7 308 

 

 

Table 4.13 Accuracy statistics for the classification results of RapidEye (543) image using Maximum 

Likelihood algorithm with Parallelepiped algorithm 

Class Name 
Producer’s 
Accuracy  
(%) 

User’s 
Accuracy  
(%) 

Kappa  
Statistic 

Water 85% 88% 0.87 

Mangrove 64% 70% 0.69 

Shallow Water 86% 67% 0.66 

Low Producing 
Grassland 

91% 88% 0.85 

Indigenous Forest 95% 88% 0.85 

Coastal Sand and 
Gravel 

90% 78% 0.77 

Manuka/Kanuka 86% 93% 0.92 

Pine 92% 86% 0.85 

Shrubland 71% 83% 0.82 

Grassland 92% 92% 0.91 

Wave 73% 89% 0.88 

    
   

                                                         

Overall Classification Accuracy = 86.73%   

Overall Kappa Statistics = 0.8484  
 

 

Table 4.12 Error Matrix of RapidEye (543) image using combination of Maximum Likelihood with  

Parallelepiped algorithm 
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Figure 4.4 Comparing producer’s accuracies of RapidEye classified images (543_mlc/ppmlc) 

 

 

Classified Data A B C D E F G H I J K Raw Total 

A. Shallow water 15 0 0 0 0 0 0 0 2 0 0 17 

B. Water 2 26 0 0 0 0 0 0 1 0 0 29 

C. Low Producing  
    Grassland 

0 0 53 1 0 0 7 0 0 0 1 62 

D. Coastal Sand  
     and Gravel 

0 0 2 22 0 0 0 0 0 0 0 24 

E. Indigenous Forest 0 0 0 0 54 0 0 3 0 1 3 61 

F. Mangrove 0 0 0 0 0 9 0 0 0 0 3 12 

G. Grassland 0 0 3 0 0 0 31 0 0 1 0 35 

H. Manuka/Kanuka 0 0 0 0 4 3 0 48 0 6 0 61 

I. Wave 2 0 0 0 0 0 0 0 7 0 0 9 

J. Pine 0 0 0 0 1 0 0 0 0 7 0 8 

K. Shrubland 0 0 0 0 1 2 0 0 0 0 16 19 

 
            

Column Total 19 26 58 23 60 14 38 51 10 15 23 339 
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Table 4.14 Error Matrix of RapidEye image using combination of PC12 with Vegetation Index layer and 

Maximum Likelihood algorithm 
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Table 4.15Accuracy statistics for the classification results of RapidEye image using combination of 

PC12 with Vegetation Index layer and Maximum Likelihood algorithm 

Class Name 
Producer’s 
Accuracy (%) 

User’s 
Accuracy 
(%) 

Kappa 
Statistic 

Coastal Sand and Gravel 96% 92% 0.91 

Pine 47% 88% 0.87 

Grassland 82% 89% 0.87 

Shallow water 79% 88% 0.88 

Water 100% 90% 0.89 

Wave 70% 78% 0.77 

Low Producing Gravel 91% 85% 0.83 

Shrubland 70% 84% 0.83 

Manuka/Kanuka 94% 79% 0.75 

Indigenous Forest 90% 87% 0.84 

Mangrove 64% 75% 0.74 

    

   
                                                         

   
                                            

Overall Classification Accuracy = 85.29% 
  Overall Kappa Statistics = 0.8323 

 
 
                                                          

 
 
 
 

 
 
 

 
                                                         

Classified Data A B C D E F G H I J K Raw Total 

A. Shallow water 12 4 0 0 0 0 0 0 0 0 0 16 

B. Water 2 23 0 0 0 0 0 0 0 0 0 25 

C. Low Producing 
    Grassland 

0 0 60 0 0 0 5 0 0 1 0 66 

D. Coastal Sand  
     and Gravel 

0 1 0 15 0 0 0 0 0 0 0 16 

E. Indigenous Forest 0 0 0 0 51 0 1 4 0 1 5 62 

F. Mangrove 0 0 0 0 0 3 0 0 0 0 1 4 

G. Grassland 0 0 5 2 1 0 28 0 0 0 0 36 

H. Manuka/Kanuka 0 0 0 0 2 1 0 51 0 2 0 56 

I. Wave 0 0 0 1 0 0 0 0 8 0 0 9 

J. Pine 0 0 0 0 0 0 0 0 0 9 0 9 

K. Shrubland 0 0 1 0 0 0 0 1 0 0 9 11 

 
            

Column Total 14 28 66 19 54 4 34 56 8 13 15 311 

 

 

 

Table 4.16 Error Matrix of RapidEye image using combination of PC12 with Vegetation Index layer 

and Maximum Likelihood with Parallelepiped algorithm 
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Table 4.17 Accuracy statistics for the classification results of RapidEye image using combination of 

PC12 with Vegetation Index layer and Maximum Likelihood algorithm with Parallelepiped algorithm 

Class Name 
Producer’s 
Accuracy  
(%) 

User’s 
Accuracy  
(%) 

Kappa  
Statistic 

Coastal Sand and 
Gravel 

79% 94% 0.93 

Pine 69% 100% 1.00 

Grassland 82% 78% 0.75 

Shallow water 86% 75% 0.74 

Water 82% 92% 0.91 

Wave 100% 89% 0.89 

Low Producing 
Grassland 

91% 90% 0.87 

Shrubland 60% 82% 0.81 

Manuka/Kanuka 91% 89% 0.87 

Indigenous Forest 94% 82% 0.79 

Mangrove 75% 75% 0.75 

   
                                                         

   
                                            

Overall Classification Accuracy = 85.94% 
 

                                                     

Overall Kappa Statistics = 0.8364 
 

                                                         

 

 

 

 

Figure 4.5 Comparing producer’s accuracies of RapidEye classified images (pc12vi_mlc/ppmlc) 
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Classified Data A B C D E F G H I J K Raw Total 

A. Coastal Sand  
     and Gravel 

20   1  1      22 

B. Pine  11      1  2  14 

C. Grassland  1 48    15     64 

D. Shallow water 
1   56 4 5     1 67 

E. Water    3 27       30 

F. Wave    1 1 2     1 5 

G. Low Producing  
     Grassland 

1  9    32  1 1  44 

H. Shrubland       2 19  3 3 27 

I. Manuka/Kanuka 1       3 32 2 1 39 

J. Indigenous Forest  2     2 1 3 47 3 58 

K. Mangrove 1    1   1 1  8 12 

 

            

Column Total 24 14 57 61 33 8 51 25 37 55 17 382 

 

 

 

Table 4.19 Accuracy statistics for the classification results of RapidEye degraded image 

using Maximum Likelihood algorithm 

Class Name 
Producer’s 
Accuracy  
(%) 

User’s 
Accuracy  
(%)  

Kappa  
Statistic 

Coastal Sand and 
Gravel 

83% 91% 0.90 

Pine 79% 79% 0.78 

Grassland 84% 75% 0.71 

Shallow water 92% 84% 0.80 

Water 82% 90% 0.89 

Wave 25% 40% 0.39 

Low Producing 
Grassland 

63% 73% 0.69 

Shrubland 76% 70% 0.68 

Manuka/Kanuka 86% 82% 0.80 

Indigenous Forest 85% 80% 0.76 

Mangrove 47% 67% 0.65 

        Overall Classification Accuracy = 78.85% 
  Overall Kappa Statistics = 0.7602 
   

Table 4.18 Error Matrix of RapidEye (543) degraded image using Maximum Likelihood 

algorithm 
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Classified Data A B C D E F G H I J K Raw Total 

A. Coastal Sand  
     and Gravel 

18 0 0 0 0 1 0 0 0 1 0 20 

B. Pine 0 19 0 0 1 0 0 0 1 2 1 24 

C. Grassland 0 0 44 2 0 0 4 3 1 1 2 57 

D. Shallow water 0 0 1 47 3 4 0 0 0 0 0 55 

E. Water 0 0 0 1 22 1 0 0 0 0 0 24 

F. Wave 0 0 0 1 2 3 0 0 0 0 0 6 

G. Low Producing  
     Grassland 

1 0 5 1 0 0 24 0 1 0 1 33 

H. Shrubland 1 0 1 0 0 0 1 13 0 1 1 18 

 I. Manuka/Kanuka 0 1 0 0 0 0 1 1 36 5 0 44 

J. Indigenous Forest 0 3 1 0 0 0 2 1 6 57 1 71 

K. Mangrove 0 0 0 0 0 0 0 2 0 0 6 8 

 
            

Column Total 20 23 52 52 28 9 32 20 45 67 12 360 

 

 

 

 

Table 4.21 Accuracy statistics for the classification results of RapidEye degraded image using 

Maximum Likelihood algorithm with Parallelepiped algorithm 

Class Name 
Producer’s 
Accuracy  
(%) 

User’s 
Accuracy  
(%) 

Kappa  
Statistic 

Coastal Sand and 
Gravel 

90% 90% 0.89 

Pine 83% 79% 0.78 

Grassland 85% 77% 0.73 

Shallow water 90% 85% 0.83 

Water 79% 92% 0.91 

Wave 33% 50% 0.49 

Low Producing 
Grassland 

75% 73% 0.70 

Shrubland 65% 72% 0.71 

Manuka/Kanuka 80% 82% 0.79 

Indigenous Forest 85% 80% 0.76 

Mangrove 50% 75% 0.74 

        Overall Classification Accuracy = 80.28% 

  Overall Kappa Statistics = 0.7755 

   

Table 4.20 Error Matrix of RapidEye (543) degraded image using combination of Maximum 

Likelihood with Parallelepiped algorithm 
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Figure 4.6 Comparing producer’s accuracies of RapidEye classified images (degraded_mlc/ppmlc) 
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Table 4.22 Error Matrix of RapidEye (432) 4 bands image using Maximum Likelihood 

algorithm 
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Table 4.23 Accuracy statistics for the classification results of RapidEye (432) 4 bands image 

using Maximum Likelihood algorithm 

Class Name 
Producer’s 
Accuracy  
(%) 

User’s 
Accuracy  
(%) 

Kappa  
Statistic 

Water 87% 95% 0.95 

Mangrove 88% 78% 0.77 

Shallow water 96% 83% 0.81 

Low Producing 
Grassland 

81% 87% 0.85 

Indigenous Forest 87% 85% 0.82 

Coastal Sand and 
Gravel 

94% 89% 0.89 

Manuka/Kanuka 51% 82% 0.79 

Pine 67% 34% 0.31 

Shrubland 79% 77% 0.74 

Grassland 94% 89% 0.88 

Wave 50% 100% 1.00 

   
                                                

   
                                                         

Overall Classification Accuracy =  80.41%                                                      

Overall Kappa Statistics = 0.7798 
 
 

 

        

 

                           

 
 

   

Classified Data A B C D E F G H I J K Raw total 

A. Water 19 
 

3 
        

22 

B. Mangrove 
 

4 
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C. Shallow water 1 
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2 1 

  
2 
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57 
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2 
 

28 12 2 1 
 

45 
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1 1 
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1 
  

1 
  

2 17 1 
 

22 
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33 
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1 
        

3 4 

             Column Total 20 6 18 46 52 24 36 37 21 37 3 300 

 

 

 

Table 4.24 Error Matrix of RapidEye (432) 4 bands image using combination of Maximum 

Likelihood with Parallelepiped algorithm 
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Table 4.25 Accuracy statistics for the classification results of RapidEye (432) 4 bands image 

using Maximum Likelihood algorithm with Parallelepiped algorithm 

Class Name 
Producer’s 
Accuracy  
(%) 

User’s 
Accuracy  
(%) 

Kappa  
Statistic 

Water 95% 86% 0.85 

Mangrove 67% 100% 1.00 

Shallow water 83% 94% 0.93 

Low Producing Grassland 80% 88% 0.86 

Indigenous Forest 90% 82% 0.79 

Coastal Sand and Gravel 88% 91% 0.91 

Manuka/Kanuka 78% 62% 0.57 

Pine 57% 72% 0.69 

Shrubland 81% 77% 0.76 

Grassland 89% 92% 0.90 

Wave 100% 75% 0.75 

   
                                                         

Overall Classification Accuracy = 81.67% 
 

                                                     
Overall Kappa Statistics = 0.7919 
 

 
                                                         

 

 

 
 

Figure 4.7 Comparing producer’s accuracies of RapidEye classified images (4band_mlc/ppmlc)  

 

0% 

20% 

40% 

60% 

80% 

100% 

120% 

RE_4band_mlc 

RE_4band_ppmlc 



75 
 

 

Figure 4.8 Landsat classified images (432_MLC/PPMLC) 

 

For classified image of Landsat7 with band combination of 432, the maximum likelihood 

classifier provided a moderate overall classification accuracy of 76.79% (Table 4). The 

overall Kappa statistic of 0.73 is also shows a moderate classification performance. High 

producer’s accuracies were identified in the grassland (91%), manuka/ kanuka forest (86%), 

shallow water (85%) and water (84%), categories. For the remaining classes, moderate 

producer’s accuracy was occurred between 50% and 70%. High user’s accuracies were 

distinguished in the water (90%), coastal sand and gravel (87%), wave (86%) and manuka/ 

kanuka (84%) categories, and for the other classes, moderate user’s accuracies were observed 

ranging between 52% and 75% (Table 4.3). The classes of water, manuka/kanuka and coastal 

sand and gravel had high accuracy, because of the constantly high accuracy in both 

producers’ and users’ points.  

 

The Kappa statistics identified good classification execution in water, coastal sand and wave 

classes; while for the rest of the classes, moderate classification accuracies were achieved. 

Forest contained several errors from grassland, low producing grassland, pine and shrub land. 
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Mangrove class showed errors from low producing grassland, coastal sand, pine and 

manuka/kanuka.  

 

The combination of maximum likelihood with parallelepiped algorithm on the Landsat 

ETM+ identified moderate overall accuracy of 78.71% with Kappa statistic of 0.75. The 

results show slightly better accuracy than the classified data created by MLC procedure 

(Tables 4.1 and 4.5, Figure 4.1). In this classification performance more classes with high 

producer’s and user’s accuracy were observed in water (90%, 87%), coastal sand and gravel 

(92%, 88%), wave (87%, 93%), respectively. In addition, the grassland and pine classes 

assigned high accuracy of 90% for producer and 80% for user. Low producers accuracy of 

33% was indicated in the shrub-land class.  

 

The high value of Kappa were estimated for wave (0.93), coastal sand and gravel (0.86), 

water (0.86) and shallow water (0.81%) (Table 4.5).The accuracy assessment results indicate 

that using a combination of MLC with parallelepiped algorithm show improved image 

classification accuracy (Table 4.1 and Figure 4.2). 

 

Figure 4.9 Landsat classified images (PC12VI_MLC/PPMLC) 
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A combination of principle components 1 and 2 with vegetation index and MLC algorithm 

showed lower accuracy than L7_MLC and L7_PPMLC classified images (Figure 4.1 and 

table 4.1); whereas L7_PC12VI combined with PPMLC achieved the highest classification 

accuracy for several approaches that classify L7 images (Figure 4.3). The overall 

classification accuracies for L7_PC12VI_ MLC was 74.07% with a Kappa statistic of 0.70 

(table 4.7) and 79.78% overall accuracy was for L7_PC12VI_PPMLC with a Kappa statistic 

of 0.77 (table 4.9).  

 

The combination of PC12VI with PPMLC method provided the best classification 

performance (Table 4.9) for all L7 data. For both accuracies; producer’s and use’s high 

percentages were observed in wave, water, shallow water, costal sand and manuka/kanuka 

classes (Table 4.7). The mangrove category had the lowest producers of 24% accuracy for 

PC12VI with MLC method and 46% for PPMLC combination. The remaining categories had 

moderate classification accuracies for both images (Figure 4.3). 

 

 

Figure 4.10 RapidEye Classified images (543_MLC/PPMLC)  
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Applying the maximum likelihood classification algorithm on 543 band combination of RE 

image generated a high overall accuracy of 84.72% with a Kappa statistic of 0.82 (Table 

4.11). The high producer’s accuracies were estimated for manuka/ kanuka (90%) indigenous 

forest (90%), water (90%) shallow water (89%), coastal sand and gravel (89%), grassland 

(89%) and low producing grassland (87%), while other categories showed moderate 

accuracies. For user’s accuracy, wave class had the highest accuracy of 100%, whereas 

mangrove (64%) and shrub-land (77%) classes had moderate accuracies. All remaining 

classes had high level of use’s accuracies (Table 4.11). The Kappa statistic of 1.00 in wave 

represented that the classification of this class was the most accurate. Mangrove and shrub-

land had moderate Kappa value of 0.64 and 0.75, respectively. For the other remaining 

classes the high kappa values were observed.  

 

The combination of MLC with PP for RE (543) image generated highest overall classification 

accuracy of 86.73% and Kappa statistic of 0.85 among all the classified images (Table 4.13 

and 4.1, Figure 4.4). High producer’s accuracies were recorded for the most of classes, 

including indigenous forest (95%), grassland (92%), pine (92%), low producing grassland 

(91%), coastal sand and gravel (90%), manuka/kanuka (86%), shallow water (86%) and 

water (85%). The mangrove, shrub-land and wave classes had moderate producer’s 

accuracies. On the other hand, high user’s accuracies were observed for manuka/kanuka, 

grassland, wave, water, low producing grassland, indigenous forest, pine and shrub-land 

while shallow water (67%), mangrove (70%) and coastal sand and gravel (78%) showed 

moderate user’s accuracies. Shallow water mangrove and coastal sand and gravel had 

moderate Kappa statistics of 0.60, 0.69 and 0.77 respectively that showed moderate 

classification results. For the remaining classes, Kappa statistics indicate good classification 

performance (Table 4.13). 
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Figure 4.11 RapidEye Classified images (PC12VI_MLC/PPMLC) 

 

The second and third high accuracy assessment performances were observed for the 

RapidEye classified image using a combination of principle components 1 and 2 (PC12) with 

vegetation index (VI) layer for maximum likelihood (MLC) and parallelepiped (PP) 

classification algorithm and MLC (Table 4.1, Figure 4.1).The classification performed on 

RapidEye’s PC12VI image using MLC and PPMLC algorithms generated overall accuracies 

of 85.29% with a Kappa value of 0.83, and 85.94% with a Kappa value of 0.84, respectively 

that determined a good classification execution (Table 4.15 and 4.17, Figure 4.5). For both 

RE classified images using PC12VI _MLC and PPMLC methods high producer’s accuracies 

were distinguished in same categories; including indigenous forest (90%, 94%), manuka/ 

kanuka (94%, 91%), low producing grassland (91%, 91%), water (100%, 82%), grassland 

(82%, 82%), coastal sand and gravel (96%, 79%) and shallow water (79%, 86%) classes 

(Table 4.15 and 4.17). The moderate producer’s accuracies were observed in mangrove (64%, 

75%), shrub-land (70% , 60%) and pine (47%, 69%), respectively. similarly, high user’s 

accuracies were observed for both the RE classified images (PC12VI _MLC & PC12VI_ 

PPMLC) in coastal sand and gravel (92%, 94%), water (90%, 92%), low producing grassland 
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( 85% , 90% ), shrub-land (84%, 82%), indigenous forest (87%, 82%), manuka/kanuka (79%, 

89%) and pine (88%, 100%) classes respectively.  

 

Moreover, high individual accuracies were observed in the grassland (89%), shallow water 

(88%) classes for PC12VI _MLC image and in the wave (89%) class for PC12VI _PPMLC 

image. Kappa statistics for both classified images (MLC, PPMLC) were indicated as good 

classification performances for some same classes, such as costal sand and gravel (91%, 

93%), pine (87%, 1%), water (89%, 91%) and low producing grassland (83%, 87%) (Table 

4.15 and 4.17). 

 

 

Figure 4.12 RapidEye Classified images (DEGRADED_543_MLC/PPMLC) 

 

The RE_degraded (30 m) image with band combination of 543 was classified using MLC and 

PPMLC classifiers. For the RE_degraded classified image using PPMLC combination, the 

accuracy assessment was higher than the RE_degraded classified image using MLC (Figure 

4.1). The combination of maximum likelihood with parallelepiped algorithms produced a 

high overall accuracy of 80.28% with Kappa statistic of 0.78 (Table 4.21) that showed a good 

classification performance. The RE_degraded classified image using MLC generated 

moderate overall accuracy of 78.85% with Kappa value of 0.76 (Table 4.19).  
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For both classified images high or moderate producer’s accuracies were observed among the 

same categories. For RE_degraded classified images (MLC/ PPMLC), high producer’s 

accuracies were estimated (MLC, PPMLC) in the shallow water (92%, 90%), coastal sand 

and gravel (83%, 90%), indigenous forest (85%, 85%), grassland (84%, 85%) , 

manuka/kanuka  (86%, 80%), pine (79%, 83%) and water (82%, 79%) categories (Figure 4.6) 

respectively. Whereas, moderate accuracies were observed for same classes for both RE 

_degraded classified images, which included low producing grassland (63%, 75%), shrub-

land (76%, 65%) and mangrove (47%, 50%). However, the wave class for both images had a 

low producer’s accuracy of 25% and 33%, respectively. The tables 4.19 and 4.21revealed 

high and moderate user’s accuracies for both classified images in the same classes. The 

Kappa values showed good classification implementation in the coastal sand and gravel, 

shallow water, water, manuka/ kanuka categories for both RE-degraded images 

(MLC/PPMLC). 

 

 

Figure 4.13 RapidEye Classified images (4BAND_432_MLC/PPMLC) 
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The RapidEye image (432) without the Red-Edge band (same as L7 with 432 band 

combination) was classified by MLC and PPMLC classifiers. The accuracy assessment of RE 

_4band (PPMLC) classified image was higher than RE_4band (MLC) image (Figure 4.1).The 

mixture of PP and MLC algorithm generated slightly higher overall accuracy of 81.67% with 

Kappa of 0.79 while for the RE_4band (432) image using MLC algorithm only achieved 

80.41% of overall accuracy with Kappa value of 0.77. Both images had high producer’s 

accuracies for grassland, shrub-land, coastal sand and gravel, low producing grassland, 

shallow water and water classes (Tables 4.23 and 4.25). For the pine and manuka/kanuka 

classes, the moderate accuracies were recorded while the wave class for RE_4band (PPMLC) 

showed highest accuracy of 100%.  

 

The high user’s accuracies were observed for similar classes of both classified images 

(RE_4band_ ML/PPMLC) (table 4.23 and 4.25). The mangrove class from RE_PPMLC 

image and the wave class from RE_MLC image showed highest accuracies (100%) but the 

pine category had a low user’s accuracy of 34% in the maximum likelihood classifier. Kappa 

statistics indicated good classification performance for water, shallow water, low producing 

indigenous forest, coastal sand and gravel classes for both classified images while pine had 

low classification execution. 

 

 

4.3 The Comparison of the RapidEye Classified Data with the LCDB2  

       Data 

 

According to the results obtained in this study, the best classification performance including 

the combination of maximum likelihood with parallelepiped algorithm (PPMLC) in terms of 

the highest accuracy assessment result was considered as classifier to classify the RapidEye 

data with different band combinations (5,4,3 and PC12VI). The land cover databases 

(LCDB2) from the Ahipara region were used to compare with the RapidEye classified 

images. 

 

Three different classification approaches were implemented and the results were indicated in 

Tables 4.26, 4.27 and Figure 4.14. For both RapidEye classified images RE_543_PPMLC 

and RE_PC12VI_PPMLC, 13 classes were identified including low producing grass, wave, 

grassland, pine forest, water, rock, wetland, shallow water, mangrove, coastal sand and 
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gravel, indigenous forest, shrubland and manuka/kanuka while the classes of low producing 

grass, grass, pine forest, water, mangrove, coastal sand and gravel, indigenous forest, 

shrubland and manuka/kanuka were observed for LCDB2 classified data. The rock, wetland 

and shallow water classes were the most typical and specific features extracted from the 

RapidEye classified data while these features were not indicated in the LCDB2 classification 

(Table 4.26 and Figure 4.16).  

 

Table 4.26 The area of the classified data by different approaches (ha) 

 

Class Name RapidEye_543_PPMLC LCDB2 Classification RapidEye_PC12VI_PPMLC 

Low Producing Grassland 596.32 806.26 930.45 

Wave 150.96 0 221.70 

Grassland 1137.03 980.02 570.52 

Pine Forest 110.76 141.70 96.68 

Water 362.26 271.46 232.05 

Rock 7.69 0 8.69 

Wetland 26.02 0 123.58 

Shallow water 143.08 0 182.62 

Mangrove 158.05 161.86 233.29 

Coastal Sand and Gravel 663.26 727.22 565.45 

Indigenous Forest 197.58 286.10 444.66 

Shrubland 368.19 109.76 493.75 

Manuka/Kanuka 712.56 809.13 530.29 

 

 

 

For Re_543_PPMLC and RE_PC12VI_PPMLC, the rock class’s area was 7.69 and 8.69 (ha) 

respectively (Table 4.26), and similarly, the same percentage of 0.2% of rock area was 

estimated for both RE classified images (Table 4.27).  

 

Moreover, for RE_PC12VI_PPMLC image more area of wetland (123.58 ha with 2.7%) and 

shallow water (185.26 ha with 3.9%) classes were observed than the classified data of 

RE_543_PPMLC in the same classes on the amount of area in 26.02 ha with 0.6% and 

143.08 ha with 3.1% (Tables 4.26, 4.27 and Figure 4.14).   
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Table 4.27 The percentage of the area of the classified data by different approaches (ha) 

 

Class Name 
RapidEye_543_PPMLC 

% of Area 
LCDB2 Classification 

% of Area 
RapidEye_PC12VI_PPMLC 

% of Area 

Low Producing Grassland 12.9 18.8 20.1 

Wave 3.3 0 4.8 

Grassland 24.5 22.8 12.3 

Pine Forest 2.4 3.3 2.1 

Water 7.8 6.3 5 

Rock 0.2 0 0.2 

Wetland 0.6 0 2.7 

Shallow water 3.1 0 3.9 

Mangrove 3.4 3.8 5 

Coastal Sand and Gravel 14.3 16.9 12.2 

Indigenous Forest 4.3 6.7 9.6 

Shrubland 7.9 2.6 10.7 

Manuka/Kanuka 15.4 18.8 11.4 

 

 

 

 

 
 

Figure 4.14 The results of the area of the classified data for the Landsat 7 (LCDB2) and 

RapidEye images 
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The mixture of parallelepiped with maximum likelihood algorithms created good results 

when they were applied on the RapidEye data with the band combination of red-edge, IR, red 

and also PC1, 2 and vegetation index ( Figures 4.17 and 4.18). The results were accurate in 

determining the rock (along the coastline), wetland and shrubland classes (Figure 4.15 A and 

B), while these features were not revealed in the results of LCDB2 classification (Figures 

4.15 C and 4.19). 

 

 
 

Figure 4.15 The classified images of RE_543_PPMLC (A), RE_PC12VI_PPMLC (B) and 

LCDB2 (C) from the South of Herekino Harbour area.  

 

The Figure 4.16 indentified the difference between the distributions of features extracted 

from the RE_543_PPMLC, RE_PC12VI_PPMLC and Landsat 7 (LCDB2) classified images.  

For the LCDB2 classification the features such as coastal sand and gravel, pine forest, grass, 

low producing grassland, indigenous forest and shrubland were classified homogeneity into 

the separate patches (Figure 4.16 C). Whereas, applying the combination of maximum 

likelihood and parallelepiped classifiers on RE_543 and RE_PC12VI images produced more 

accurate classification results in distinguishing variations in vegetation covers, for instance, 

the grass, low producing grass and shrubland classes were identified as they were extracted 

from the remotely sensed data (Figure 4.16 A and B). 

 

 

 

 

 

A B C 
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Figure 4.16 The classified images of RE_543_PPMLC (A), RE_PC12VI_PPMLC (B) and 

LCDB2 (C) from the North of Ahipara region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 RapidEye classified image (PC12VI_ PPMLC) – Ahipara region 
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Figure 4.18 RapidEye classified image (543_ PPMLC) – Ahipara region 
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Figure 4.19 Landsat 7 classified image (LCDB2) – Ahipara region 
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Chapter 5 

Discussion and Conclusion 

 

 

5.1 Image Classification and Analysis 

 

This study demonstrated the use of remote sensing and GIS techniques to classify the land-

cover over the Ahipara region as well as the evaluation of the Landsat 7 and RapidEye 

classified images accuracies from different supervised classification algorithms and multi 

band combinations.  

5.2 Accuracy Assessment of RapidEye and Landsat 7 Classified Images 

A false colour image (band combination 4, 3, 2) and a combined image of principle 

component 1 and 2 layers with vegetation index layer of Landsat 7 data were utilized. After 

employing MLC and combination of MLC with PP algorithms on each image, the land-cover 

areas were classified into eleven categories, including shallow water, grassland, low 

producing grassland, mangrove, coastal sand and gravel, wave, pine forest, manuka/kanuka, 

shrub-land, indigenous forest and water.  

 

The accuracy assessment results indicated that the classified images of L7_ PPMLC (432) 

and L7_ PC12VI_PPMLC with 78.71% and 79.78% overall accuracies with the overall 

Kappa statistics of 0.76 and 0.77, respectively had higher overall classification accuracies 

than the classified images of L7_MLC (432) and L7_ PC12VI_MLC with 76.79% and 

74.07% overall accuracies with the overall Kappa statistics of 0.74 and 0.71, respectively. As 

the results represent that higher accuracy of the Landsat ETM+ image classification is 

generated when the combination of layers, which contain of the first and second principal 

components and vegetation index with the combined of maximum likelihood and 

parallelepiped algorithms were applied. As the Kappa statistic results assign highest 

classification performance was distinguished for L7_PC12VI_PPMLC classified image to 

compare with other Landsat classified images. According to Landis and Koch (1977) the 
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values of Kappa between 0.4 and 0.8 indicate moderate agreement. For the Landsat classified 

images the results of accuracy assessments were acceptable in discriminating the Ahipara 

land-cover features and classes. The studies have shown that the Landsat satellite acquired 

data with applying post processing remote sensing procedures can provide a significant 

source and method to classify the land use and land cover over in the study area. The overall 

accuracy was identified from 74% to 93% using Landsat imagery to classify LULC included 

forests, wetlands, grasslands, shrubs, water, urban areas, croplands and so on (MfE, 2012; 

Munoz-Villers & Lopez-Blanco, 2008 and Paiboonvorachat, 2008). 

 

In addition, the accuracy classification performances were assessed for the RapidEye 

classified images. The RapidEye images, including a degraded spatial resolution image 

(30m_similar to L7 imagery), 4 layer stacked bands (Red-Edge band was excluded) with 4, 3 

and 2 band combination (similar to L7 false colour image (432)), a combination of the NIR, 

Red-Edge (specifically considered for vegetation characterization) and Red band (543), and 

the mixture of the principle components 1, 2 with the vegetation index layer (PC12VI). The 

supervised classification approach utilizing MLC and a combination of MLC and PP 

algorithms were employed to classify all four different images, so that after classification 

process, eight RE classified images were generated.     

   

The accuracy assessment results signified that almost all classified RapidEye images except 

RE_ DEGRADED _MLC (78%) had high overall classification accuracy over 80% (Table 

4.1 and Figure 4.1). However, the overall Kappa statistic of over 0.8 identified for four RE 

classified images, including RE_543_PPMLC (0.85), RE_PC12VI_PPMLC (0.84), 

RE_PC12VI_MLC (0.83) and RE_543_MLC (0.82), which distinguished a high level of 

classification performance, while for RE_ degraded and 4band classified images applying 

MLC/PPMLC classifiers assigned moderate accuracies in terms of Kappa value of 0.76, 0.77, 

0.78 and 0.79, respectively.    

 

In this study as the results for twelve different classification approaches have revealed that 

using a combination of maximum likelihood with parallelepiped algorithm (PPMLC) can 

improve the accuracy classification performance for the Landsat ETM+ and RapidEye 

images. According to Younggu (2007) utilizing the mixture of MLC and PP classifiers 

provided higher accuracy of the classification for Landsat7 and Quickbird images.    
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For RE_543_PPMLC and RE_PC12VI_PPMLC images, almost all vegetation classes, 

including pine forest, grassland, low producing grassland, manuka/kanuka, indigenous forest 

had high Kappa statistics, producer’s and user’s accuracies. The higher accuracies were 

indicated due to using red-edge band (Bindel, Hese, Berger, & Schmullius,  2011) that 

combined with NIR and red band for RE_543 image and also applying principle component 

layers 1 and 2 with vegetation index layer on RE image. The RapidEye satellite was 

specifically designed to monitor vegetation, cropland and agriculture purposes with its red-

edge band that is especially sensitive to detect vegetation condition (Losel, 2009).   

 

For the Landsat ETM+ classified images, some classification errors characterized among 

vegetation classes that can be caused by low spatial resolution and lack of Red-Edge band, so 

that the separability of vegetation classes were not signified as high accuracy classification 

performance. The same misclassifications were reported in classifying the land cover in 

Mediterranean area (Ozdemir, Asan, Koch, Yesil, Ozkan, & Hemphill, 2005). In other study, 

Baskent and Keles (2005) identified some errors in the results of classification between 

cropland and forest. As the results indicated the lowest classification accuracy among the all 

the RapidEye classified images were recorded for the RE_DEGRADED_MLC and RE_ 

DEGRADED _PPMLC image with 78.85% and 80.28% overall accuracy and Kappa 

statistics of 0.76 and 0.77, respectively that it can be due to the lower spatial resolution of the 

degraded RE image (30m) compared to orthorectified RapidEye image (5m). 

 

In summary, the classified images of RE_543_PPMLC, RE_PC12VI_PPMLC, 

RE_PC12VI_MLC and RE_543_MLC with over 80% overall accuracy and Kappa statistic of 

over 0.8 represented the highest accuracy assessment results among other images, as well as 

they indicated good classification performance between all the classified images of RapidEye 

and Landsat ETM+ data.  

 

5.3 LCDB2 and RapidEye Classified Data Comparison 

The land cover classification of the Ahipara region from the subset of LCDB 2 data identified 

the nine categories of land cover (Table 4.27). For RapidEye data (543 and PC12VI), a 

combination of maximum likelihood with parallelepiped algorithm (PPMLC) was applied to 

classify remotely sensed data over the study area. As the results of RE classified data 
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signified, the most accurate classification performances were determined for 

RE_543_PPMLC, RE_PC12VI_PPMLC images, so that these images were considered to 

compare with LCDB2 classification.  

 

As the results revealed, the classes of rock, shallow water and wetland were extracted and 

identified from both RapidEye images while for LCDB2, the data were determined into nine 

land cover classes including low producing grassland, grassland, pine forest, water, 

mangrove, coastal sand and gravel, indigenous forest, shrubland and manuka/kanuka, so that 

the classes of rock, wetland and shallow water were not observed. According to the results of 

the classification processes and comparative assessments between LCDB2 and RE data, it 

was concluded that the images of RE_543_PPMLC and RE_PC12VI_PPMLC had higher 

classification performance in discriminating land cover types than the LCDB2 classification. 

 

5.4 Conclusions 

This study demonstrated the benefits of using higher resolution imagery (represented by 

RapidEye imagery with 5m orthorectified, multispectral data) compared to lower resolution 

imagery (free of charge Landsat-7 ETM+ data at 30m resolution) and applying different 

classification approaches to classify remotely sensed data (RE & L7). The classification 

approaches were compared in terms of classification accuracy and included different band 

combinations, and different classification algorithms. Moreover, a comparative analysis of 

land cover classified using RapidEye imagery and the Land Cover Databases Version 2 

(LCDB 2) from the Ministry for the Environment were conducted. 

 

 

In this study, different methods of image classification were tested to classify the Landsat 7 

and RapidEye acquired data over the Ahipara region. In addition, a comparative analysis of 

the results of the accuracy assessment for each of the classified images was conducted.  

 

Four images from the Landsat 7 data and eight images from the RapidEye data were 

generated by applying different band (432, 543) and layer (PC12VI) combinations. In 

addition, the supervised classification algorithms were used to classify twelve remotely 

sensed images by the maximum likelihood classifier (MLC) and combination of MLC with 
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the parallelepiped algorithm. The results of the classified images for both sensors (L7 and 

RE) indentified that all classified images by PPMLC had a higher accuracy and Kappa 

statistic than the classified images used by MLC approach. Furthermore, the Kappa statistics 

and the overall accuracies represented that the Red-Edge band from the RapidEye system 

combined with NIR and Red can improve the classification performance as it is sensitive to 

distinguish in vegetation cover.  

 

This study revealed that one of the most accurate procedure for classifying the RapidEye 

image of the study area was a combination of principal components and vegetation index 

layers (PC12VI) while the degraded images (RE with 30m spatial resolution) and also the RE 

images with 432 band combination had lower accuracy assessment results. 

 

High spatial, spectral and temporal resolution of The RapidEye data represented more 

accurate classification performance (PC12VI_PPMLC and 543_PPMLC) with useful 

information in classifying the study area in Ahipara region whereas the Landsat 7 image 

indicated moderate classification accuracy, as well as the LCDB2 data had lower 

performance in identifying the land cove types.  

 

5.5 Recommendations 

The results of this research revealed that due to the heterogeneous landscape characteristics 

of the study area, the use of RapidEye multispectral images will improve land use/land cover 

classification. The five RE satellites have advantages because of their unique ability to 

acquire high spatial resolution (5m, orthorectified) data, the high temporal resolution, which  

have a daily revisit capability anywhere on Earth, so that RE imagery can provide a good 

coverage of seasonal changes of vegetation phenology (Bahls and Kleinschmit, 2011).  

 

In addition, the mixture of maximum likelihood and parallelepiped algorithms applied to 

remotely sensed data can improve the classification accuracy assessment results. Also, it is 

recommended that high classification performance can be achieved when the combination of 

first and second of principle components with vegetation index layer (PC12VI) are used for 

classifying the satellite image.   
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Finally, the methods used in this study for the land cover and land use classification should 

be applied in other areas in New Zealand instead of using Landsat 7 ETM+ or Spot imagery 

(LCDB1 and 2). 
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Appendix1.1Landsat 7 Metadata 

 

 

GROUP = METADATA_FILE 

 PRODUCT_CREATION_TIME = 2004-02-12T14:51:10Z 

 PRODUCT_FILE_SIZE = 703.5 

 STATION_ID = "EDC" 

 GROUND_STATION = "EDC" 

 GROUP = ORTHO_PRODUCT_METADATA  

  SPACECRAFT_ID = "Landsat7"  

  SENSOR_ID = "ETM+"  

  ACQUISITION_DATE = 2001-06-03 

  WRS_PATH = 075 

  WRS_ROW = 084 

  SCENE_CENTER_LAT = -34.6058947  

  SCENE_CENTER_LON = +172.9906758   

  SCENE_UL_CORNER_LAT = -33.6506199  

  SCENE_UL_CORNER_LON = +172.2282297  

  SCENE_UR_CORNER_LAT = -33.9390168   

  SCENE_UR_CORNER_LON = +174.2085713 

  SCENE_LL_CORNER_LAT = -35.2610079 

  SCENE_LL_CORNER_LON = +171.7532610 

  SCENE_LR_CORNER_LAT = -35.5555498  

  SCENE_LR_CORNER_LON = +173.7707419 

  SCENE_UL_CORNER_MAPX = 613890.000 

  SCENE_UL_CORNER_MAPY = -3724095.000 

  SCENE_UR_CORNER_MAPX = 796575.000  

  SCENE_UR_CORNER_MAPY = -3760033.500 

  SCENE_LL_CORNER_MAPX = 568518.000 

  SCENE_LL_CORNER_MAPY = -3902248.500 

  SCENE_LR_CORNER_MAPX = 751146.000 

  SCENE_LR_CORNER_MAPY = -3938187.000 

  BAND1_FILE_NAME = "p075r084_7t20010603_z59_nn10.tif" 

  BAND2_FILE_NAME = "p075r084_7t20010603_z59_nn20.tif" 

  BAND3_FILE_NAME = "p075r084_7t20010603_z59_nn30.tif" 

  BAND4_FILE_NAME = "p075r084_7t20010603_z59_nn40.tif" 

  BAND5_FILE_NAME = "p075r084_7t20010603_z59_nn50.tif" 

  BAND61_FILE_NAME = "p075r084_7k20010603_z59_nn61.tif" 

  BAND62_FILE_NAME = "p075r084_7k20010603_z59_nn62.tif" 

  BAND7_FILE_NAME = "p075r084_7t20010603_z59_nn70.tif" 

  BAND8_FILE_NAME = "p075r084_7p20010603_z59_nn80.tif" 

  GROUP = PROJECTION_PARAMETERS  

   REFERENCE_DATUM = "WGS84"  

   REFERENCE_ELLIPSOID = "WGS84"  

   GRID_CELL_ORIGIN = "Center" 

   UL_GRID_LINE_NUMBER = 1 

   UL_GRID_SAMPLE_NUMBER = 1 

   GRID_INCREMENT_UNIT = "Meters" 

   GRID_CELL_SIZE_PAN = 14.250            

   GRID_CELL_SIZE_THM = 57.000            

   GRID_CELL_SIZE_REF = 28.500      

   FALSE_NORTHING = 0       

   ORIENTATION = "NUP" 

   RESAMPLING_OPTION = "NN" 

   MAP_PROJECTION = "UTM" 

  END_GROUP = PROJECTION_PARAMETERS  

  GROUP = UTM_PARAMETERS  
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   ZONE_NUMBER = +59 

  END_GROUP = UTM_PARAMETERS  

  SUN_AZIMUTH = 35.2678391 

  SUN_ELEVATION = 24.1170033 

  QA_PERCENT_MISSING_DATA = 0 

  CLOUD_COVER = 0 

  PRODUCT_SAMPLES_PAN = 17714 

  PRODUCT_LINES_PAN = 15852 

  PRODUCT_SAMPLES_REF = 8857 

  PRODUCT_LINES_REF = 7926 

  PRODUCT_SAMPLES_THM = 4429 

  PRODUCT_LINES_THM = 3963 

  OUTPUT_FORMAT = "GEOTIFF" 

 END_GROUP = ORTHO_PRODUCT_METADATA 

 GROUP = L1G_PRODUCT_METADATA 

  BAND_COMBINATION = "123456678" 

  CPF_FILE_NAME = "L7CPF20010401_20010630_07" 

  GROUP = MIN_MAX_RADIANCE  

   LMAX_BAND1 = 191.600            

   LMIN_BAND1 = -6.200           

   LMAX_BAND2 = 196.500           

   LMIN_BAND2 = -6.400            

   LMAX_BAND3 = 152.900           

   LMIN_BAND3 = -5.000           

   LMAX_BAND4 = 157.400           

   LMIN_BAND4 = -5.100           

   LMAX_BAND5 = 31.060            

   LMIN_BAND5 = -1.000          

   LMAX_BAND61 = 17.040            

   LMIN_BAND61 = 0.000            

   LMAX_BAND62 = 12.650            

   LMIN_BAND62 = 3.200            

   LMAX_BAND7 = 10.800            

   LMIN_BAND7 = -0.350          

   LMAX_BAND8 = 243.100          

   LMIN_BAND8 = -4.700           

  END_GROUP = MIN_MAX_RADIANCE  

  GROUP = MIN_MAX_PIXEL_VALUE  

   QCALMAX_BAND1 = 255.0             

   QCALMIN_BAND1 = 1.0              

   QCALMAX_BAND2 = 255.0             

   QCALMIN_BAND2 = 1.0                

   QCALMAX_BAND3 = 255.0               

   QCALMIN_BAND3 = 1.0             

   QCALMAX_BAND4 = 255.0               

   QCALMIN_BAND4 = 1.0            

   QCALMAX_BAND5 = 255.0              

   QCALMIN_BAND5 = 1.0            

   QCALMAX_BAND61 = 255.0              

   QCALMIN_BAND61 = 1.0             

   QCALMAX_BAND62 = 255.0               

   QCALMIN_BAND62 = 1.0             

   QCALMAX_BAND7 = 255.0              

   QCALMIN_BAND7 = 1.0            

   QCALMAX_BAND8 = 255.0              

   QCALMIN_BAND8 = 1.0             

  END_GROUP = MIN_MAX_PIXEL_VALUE  

  GROUP = PRODUCT_PARAMETERS  
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   CORRECTION_METHOD_GAIN_BAND1 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND2 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND3 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND4 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND5 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND61 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND62 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND7 = "CPF" 

   CORRECTION_METHOD_GAIN_BAND8 = "CPF" 

   CORRECTION_METHOD_BIAS = "IC" 

   BAND1_GAIN = "H" 

   BAND2_GAIN = "H" 

   BAND3_GAIN = "H" 

   BAND4_GAIN = "H" 

   BAND5_GAIN = "H" 

   BAND6_GAIN1 = "L" 

   BAND6_GAIN2 = "H" 

   BAND7_GAIN = "H" 

   BAND8_GAIN = "L" 

   BAND1_GAIN_CHANGE = "0" 

   BAND2_GAIN_CHANGE = "0" 

   BAND3_GAIN_CHANGE = "0" 

   BAND4_GAIN_CHANGE = "0" 

   BAND5_GAIN_CHANGE = "0" 

   BAND6_GAIN_CHANGE1 = "0" 

   BAND6_GAIN_CHANGE2 = "0" 

   BAND7_GAIN_CHANGE = "0" 

   BAND8_GAIN_CHANGE = "0" 

   BAND1_SL_GAIN_CHANGE = "0" 

   BAND2_SL_GAIN_CHANGE = "0" 

   BAND3_SL_GAIN_CHANGE = "0" 

   BAND4_SL_GAIN_CHANGE = "0" 

   BAND5_SL_GAIN_CHANGE = "0" 

   BAND6_SL_GAIN_CHANGE1 = "0" 

   BAND6_SL_GAIN_CHANGE2 = "0" 

   BAND7_SL_GAIN_CHANGE = "0" 

   BAND8_SL_GAIN_CHANGE = "0" 

  END_GROUP = PRODUCT_PARAMETERS  

  GROUP = CORRECTIONS_APPLIED  

   STRIPING_BAND1 = "NONE" 

   STRIPING_BAND2 = "NONE" 

   STRIPING_BAND3 = "NONE" 

   STRIPING_BAND4 = "NONE" 

   STRIPING_BAND5 = "NONE" 

   STRIPING_BAND61 = "NONE" 

   STRIPING_BAND62 = "NONE" 

   STRIPING_BAND7 = "NONE" 

   STRIPING_BAND8 = "NONE" 

   BANDING = "N" 

   COHERENT_NOISE = "N" 

   MEMORY_EFFECT = "N" 

   SCAN_CORRELATED_SHIFT = "N" 

   INOPERABLE_DETECTORS = "N" 

   DROPPED_LINES = N 

  END_GROUP = CORRECTIONS_APPLIED  

 END_GROUP = L1G_PRODUCT_METADATA  

END_GROUP = METADATA_FILE 

END 
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Appendix1.2 RapidEye Metadata 

 

 
<?xml version=”1.0” encoding=”UTF-8” standalone=”no” ?>  

- <re:EarthObservation 

xmlns:re=”http://schemas.rapideye.de/products/productMetadataGeocorrected

” re_standard_product_version=”3.0” version=”1.2.1” 

xmlns:eop=”http://earth.esa.int/eop” 

xmlns:gml=”http://www.opengis.net/gml” xmlns:opt=”http://earth.esa.int/opt” 

xmlns:xlink=”http://www.w3.org/1999/xlink” 

xmlns:xs=”http://www.w3.org/2001/XMLSchema” 

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” 

xsi:schemaLocation=”http://schemas.rapideye.de/products/productMetadataGe

ocorrected 

http://schemas.rapideye.de/products/re/3.0/RapidEye_ProductMetadata_Geo

correctedLevel.xsd”> 
- <gml:metaDataProperty> 

- <re:EarthObservationMetaData> 

  <eop:identifier>2010-12-08T233034_RE2_3A-

NAC_8169366_126793</eop:identifier>  
  <eop:acquisitionType>NOMINAL</eop:acquisitionType>  

  <eop:productType>L3A</eop:productType>  

  <eop:status>ARCHIVED</eop:status>  

- <eop:downlinkedTo> 

- <eop:DownlinkInformation> 

  <eop:acquisitionStation 

codeSpace=”urn:eop:RE:stationLocation”>Svalbard</eop:acquisitionStation>  
  <eop:acquisitionDate>2010-12-08T23:30:34.767739Z</eop:acquisitionDate>  

  </eop:DownlinkInformation> 

  </eop:downlinkedTo> 

- <eop:archivedIn> 

- <eop:ArchivingInformation> 

  <eop:archivingCenter 

codeSpace=”urn:eop:RE:stationLocation”>BRB</eop:archivingCenter>  
  <eop:archivingDate>2010-12-21T18:29:27Z</eop:archivingDate>  

  <eop:archivingIdentifier 

codeSpace=”urn:eop:RE:dmsCatalogueId”>8169366</eop:archivingIdentifier>  
  </eop:ArchivingInformation> 

  </eop:archivedIn> 

- <eop:processing> 

- <eop:ProcessingInformation> 

  <eop:processorName>DPS</eop:processorName>  

  <eop:processorVersion>3.5.1</eop:processorVersion>  

  <eop:nativeProductFormat>GeoTIFF</eop:nativeProductFormat>  

  </eop:ProcessingInformation> 

  </eop:processing> 

- <re:license> 

  <re:licenseType>Scientific</re:licenseType>  

  <re:resourceLink xlink:href=”http://info.rapideye.de/license/License_SCIENTIFIC-

2011-02-15.txt” xlink:title=”RE EULA” />  
  </re:license> 

  <re:versionIsd>3.0</re:versionIsd>  

  <re:110ilenam>126793</re:110ilenam>  

  <re:tileId>5923023</re:tileId>  

https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
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  <re:pixelFormat>16U</re:pixelFormat>  

  </re:EarthObservationMetaData> 

  </gml:metaDataProperty> 

- <gml:validTime> 

- <gml:TimePeriod> 

  <gml:beginPosition>2010-12-08T23:30:20Z</gml:beginPosition>  

  <gml:endPosition>2010-12-08T23:30:46Z</gml:endPosition>  

  </gml:TimePeriod> 

  </gml:validTime> 

- <gml:using> 

- <eop:EarthObservationEquipment> 

- <eop:platform> 

- <eop:Platform> 

  <eop:shortName>RE00</eop:shortName>  

  <eop:serialIdentifier>RE-2</eop:serialIdentifier>  

  <eop:orbitType>LEO</eop:orbitType>  

  </eop:Platform> 

  </eop:platform> 

- <eop:instrument> 

- <eop:Instrument> 

  <eop:shortName>MSI</eop:shortName>  

  </eop:Instrument> 

  </eop:instrument> 

- <eop:sensor> 

- <re:Sensor> 

  <eop:sensorType>OPTICAL</eop:sensorType>  

  <eop:resolution uom=”m”>6.5</eop:resolution>  

  <re:scanType>PUSHBROOM</re:scanType>  

  </re:Sensor> 

  </eop:sensor> 

- <eop:acquisitionParameters> 

- <re:Acquisition> 

  <eop:orbitDirection>DESCENDING</eop:orbitDirection>  

  <eop:incidenceAngle uom=”deg”>5.360000e+00</eop:incidenceAngle>  

  <opt:illuminationAzimuthAngle 

uom=”deg”>4.511494e+01</opt:illuminationAzimuthAngle>  
  <opt:illuminationElevationAngle 

uom=”deg”>7.410421e+01</opt:illuminationElevationAngle>  

  <re:azimuthAngle uom=”deg”>9.881000e+01</re:azimuthAngle>  

  <re:spaceCraftViewAngle uom=”deg”>-3.257890e+00</re:spaceCraftViewAngle>  

  <re:acquisitionDateTime>2010-12-08T23:30:34.767739Z</re:acquisitionDateTime>  

  </re:Acquisition> 

  </eop:acquisitionParameters> 

  </eop:EarthObservationEquipment> 

  </gml:using> 

- <gml:target> 

- <re:Footprint> 

- <gml:multiExtentOf> 

- <gml:MultiSurface srsName=”EPSG:4326”> 

- <gml:surfaceMembers> 

- <gml:Polygon> 

- <gml:exterior> 

- <gml:LinearRing> 

https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
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  <gml:posList>-3.467961317694210e+01 1.730903390739995e+02 -

3.467463055501177e+01 1.733629777575798e+02 -

3.489983664134533e+01 1.733694131917195e+02 -

3.490486099058384e+01 1.730960334024918e+02 -

3.467961317694210e+01 1.730903390739995e+02</gml:posList>  
  </gml:LinearRing> 

  </gml:exterior> 

  </gml:Polygon> 

  </gml:surfaceMembers> 

  </gml:MultiSurface> 

  </gml:multiExtentOf> 

- <gml:centerOf> 

- <gml:Point srsName=”EPSG:4326”> 

  <gml:pos>-3.478979e+01 1.732297e+02</gml:pos>  

  </gml:Point> 

  </gml:centerOf> 

- <re:geographicLocation> 

- <re:topLeft> 

  <re:latitude>-3.467961317694210e+01</re:latitude>  

  <re:longitude>1.730903390739995e+02</re:longitude>  

  </re:topLeft> 

- <re:topRight> 

  <re:latitude>-3.467463055501177e+01</re:latitude>  

  <re:longitude>1.733629777575798e+02</re:longitude>  

  </re:topRight> 

- <re:bottomRight> 

  <re:latitude>-3.489983664134533e+01</re:latitude>  

  <re:longitude>1.733694131917195e+02</re:longitude>  

  </re:bottomRight> 

- <re:bottomLeft> 

  <re:latitude>-3.490486099058384e+01</re:latitude>  

  <re:longitude>1.730960334024918e+02</re:longitude>  

  </re:bottomLeft> 

  </re:geographicLocation> 

  </re:Footprint> 

  </gml:target> 

- <gml:resultOf> 

- <re:EarthObservationResult> 

- <eop:browse> 

- <eop:BrowseInformation> 

  <eop:type>QUICKLOOK</eop:type>  

  <eop:referenceSystemIdentifier 

codeSpace=”EPSG”>4326</eop:referenceSystemIdentifier>  
  <eop:112ilename>2010-12-08T233034_RE2_3A-

NAC_8169366_126793_browse.tif</eop:112ilename>  
  </eop:BrowseInformation> 

  </eop:browse> 

- <eop:product> 

- <re:ProductInformation> 

  <eop:112ilename>2010-12-08T233034_RE2_3A-

NAC_8169366_126793.tif</eop:112ilename>  
  <eop:size uom=”KB”>244181</eop:size>  

  <re:productFormat>GeoTIFF</re:productFormat>  

https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
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- <re:spatialReferenceSystem> 

  <re:epsgCode>32759</re:epsgCode>  

  <re:geodeticDatum>WGS_1984</re:geodeticDatum>  

  <re:projection>WGS 84 / UTM zone 59S</re:projection>  

  <re:projectionZone>59</re:projectionZone>  

  </re:spatialReferenceSystem> 

  <re:resamplingKernel>CC</re:resamplingKernel>  

  <re:numRows>5000</re:numRows>  

  <re:numColumns>5000</re:numColumns>  

  <re:numBands>5</re:numBands>  

  <re:rowGsd>5</re:rowGsd>  

  <re:columnGsd>5</re:columnGsd>  

  <re:radiometricCorrectionApplied>true</re:radiometricCorrectionApplied>  

  <re:radiometricCalibrationVersion>v6.0</re:radiometricCalibrationVersion>  

  <re:geoCorrectionLevel>Precision Geocorrection</re:geoCorrectionLevel>  

  <re:elevationCorrectionApplied>FineDEM</re:elevationCorrectionApplied>  

  <re:atmosphericCorrectionApplied>false</re:atmosphericCorrectionApplied>  

  <re:productAccuracy>2.048382568359375e+01</re:productAccuracy>  

  </re:ProductInformation> 

  </eop:product> 

- <eop:mask> 

- <eop:MaskInformation> 

  <eop:type>UNUSABLE DATA</eop:type>  

  <eop:format>RASTER</eop:format>  

  <eop:referenceSystemIdentifier 

codeSpace=”EPSG”>32759</eop:referenceSystemIdentifier>  
  <eop:113ilename>2010-12-08T233034_RE2_3A-

NAC_8169366_126793_udm.tif</eop:113ilename>  
  </eop:MaskInformation> 

  </eop:mask> 

  <opt:cloudCoverPercentage uom=”%”>64</opt:cloudCoverPercentage>  

  <opt:cloudCoverPercentageAssessmentConfidence 

uom=”%”>70</opt:cloudCoverPercentageAssessmentConfidence>  
  

<opt:cloudCoverPercentageQuotationMode>AUTOMATIC</opt:cloudCoverPercentageQ

uotationMode>  
  <re:unusableDataPercentage uom=”%”>64</re:unusableDataPercentage>  

- <re:bandSpecificMetadata> 

  <re:bandNumber>1</re:bandNumber>  

  <re:percentMissingLines>0.000000000000000e+00</re:percentMissingLines>  

  <re:percentSuspectLines>0.000000000000000e+00</re:percentSuspectLines>  

  <re:binning>1x1</re:binning>  

  <re:shifting>1</re:shifting>  

  <re:masking>111</re:masking>  

  <re:radiometricScaleFactor>9.999999776482582e-03</re:radiometricScaleFactor>  

  </re:bandSpecificMetadata> 

- <re:bandSpecificMetadata> 

  <re:bandNumber>2</re:bandNumber>  

  <re:percentMissingLines>0.000000000000000e+00</re:percentMissingLines>  

  <re:percentSuspectLines>0.000000000000000e+00</re:percentSuspectLines>  

  <re:binning>1x1</re:binning>  

  <re:shifting>1</re:shifting>  

  <re:masking>111</re:masking>  

https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
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  <re:radiometricScaleFactor>9.999999776482582e-03</re:radiometricScaleFactor>  

  </re:bandSpecificMetadata> 

- <re:bandSpecificMetadata> 

  <re:bandNumber>3</re:bandNumber>  

  <re:percentMissingLines>0.000000000000000e+00</re:percentMissingLines>  

  <re:percentSuspectLines>0.000000000000000e+00</re:percentSuspectLines>  

  <re:binning>1x1</re:binning>  

  <re:shifting>1</re:shifting>  

  <re:masking>111</re:masking>  

  <re:radiometricScaleFactor>9.999999776482582e-03</re:radiometricScaleFactor>  

  </re:bandSpecificMetadata> 

- <re:bandSpecificMetadata> 

  <re:bandNumber>4</re:bandNumber>  

  <re:percentMissingLines>0.000000000000000e+00</re:percentMissingLines>  

  <re:percentSuspectLines>0.000000000000000e+00</re:percentSuspectLines>  

  <re:binning>1x1</re:binning>  

  <re:shifting>1</re:shifting>  

  <re:masking>111</re:masking>  

  <re:radiometricScaleFactor>9.999999776482582e-03</re:radiometricScaleFactor>  

  </re:bandSpecificMetadata> 

- <re:bandSpecificMetadata> 

  <re:bandNumber>5</re:bandNumber>  

  <re:percentMissingLines>0.000000000000000e+00</re:percentMissingLines>  

  <re:percentSuspectLines>0.000000000000000e+00</re:percentSuspectLines>  

  <re:binning>1x1</re:binning>  

  <re:shifting>1</re:shifting>  

  <re:masking>111</re:masking>  

  <re:radiometricScaleFactor>9.999999776482582e-03</re:radiometricScaleFactor>  

  </re:bandSpecificMetadata> 

  </re:EarthObservationResult> 

  </gml:resultOf> 

  </re:EarthObservation> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
https://delivery.rapideye.de/dl1/RE-5DiQ0nDW4nb5aeIzOdLh5Z/2011/12/18/2010-12-08T233034_RE2_3A-NAC_8169366_126793/2010-12-08T233034_RE2_3A-NAC_8169366_126793_metadata.xml
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Appendix 1.3 Aerial photo_Ahipara (Koordinates, n.d.) 
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Appendix 1.3 Aerial photo_Ahipara (Koordinates, n.d.) 
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Appendix 1.4 LCDB2 Data_Ahipara 
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Appendix 1.5 Ahipara region 
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Appendix 1.6 Owhata_Ahipara 

 


