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ABSTRACT 

 

Ocean waves can cause severe social and economic impacts. Therefore, 

understanding their behaviour is of paramount importance for the effective 

management of coastal and ocean hazards. This thesis thoroughly investigates four 

aspects (described below) of the wave climate around New Zealand and its 

variability by using 44 years (1958–2001) of wave hindcast data. These data were 

provided by the National Institute of Water and Atmospheric Research Ltd, and 

were produced using the WAVEWATCH III model forced with wind and ice fields 

from the ERA-40 reanalysis project. 

Relationships between mean wave parameters (significant wave height (𝐻𝑠), 

peak and mean wave periods, and peak wave direction) and several climate 

patterns were analysed. Climate indices representative of the Pacific Decadal 

Oscillation (PDO), El Niño–Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), 

Zonal Wavenumber-3 Pattern (ZW3), and Southern Annular Mode (SAM) were 

correlated with the mean wave parameters using the Pearson’s correlation 

coefficient and the wavelet spectral analysis. Moreover, mean annual and inter-

annual variabilities and trends in 𝐻𝑠  were computed for the 44-year period. In 

general, larger annual and inter-annual variabilities were found along the coastline, 

in regions dominated by local winds. An increasing trend in 𝐻𝑠 was found around 

the country, with values varying between 1 and 6 cm/decade at the shoreline. The 

largest trends in 𝐻𝑠 were detected to the south of 48ºS, suggesting a relationship 

with the trend toward a positive SAM. The wave parameters showed a strong 

connection with seasonal to decadal variabilities in the SAM throughout the period 

analysed. In addition, larger waves were observed during extreme ENSO and IOD 

events at inter-annual timescales, while they were more evident at intra-seasonal 

and seasonal timescales in the correlations with the ZW3. Negative phases of the 

ZW3 and ENSO and positive phases of the IOD, PDO, and SAM were associated 

with larger waves around most parts of New Zealand. 

A detailed climatology of extreme wave events for New Zealand waters was 

also established, and estimates of 𝐻𝑠  for up to 100-year return periods were 
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calculated. Although comparisons to buoy data at three locations around New 

Zealand showed negative biases in the hindcast data, the latter still provided a 

suitable basis for trend, spatial distribution, and frequency analyses. Results 

indicate some similarities to patterns previously shown in the mean wave climate, 

with the largest waves found in southern New Zealand, and the smallest ones 

observed in areas sheltered from southwesterly swells. The number of extreme 

events varied substantially throughout the year for the period 1958–2001, while 

their intensity was more consistent. Extreme events occurred more/less frequently 

in winter/summer months. The greatest mean annual variability of extreme 𝐻𝑠 was 

found on the north coasts of both the North and South Islands, where more locally-

generated storms drive the extremes. The inter-annual variability was largest along 

the north coast of the country and on the east coast of the South Island, suggesting 

relationships with La Niña-like effects and the SAM, respectively. Furthermore, the 

known trend for a more positive SAM may explain the increasing number of 

extreme events on the south and east coasts observed in trend analysis. 

Clusters of storm waves contribute disproportionately to coastal erosion 

hazards because the coastline has insufficient time to recover between events. The 

change in occurrence of clustered storms and its association with atmospheric 

oscillation modes were also investigated in New Zealand waters. In order to do so, 

long-term averages of cluster parameters (number of storms within the cluster, 

potential for coastal erosion, and cluster duration) were firstly assessed. Then, the 

relationships between clustering and the ENSO, IOD, ZW3, PDO, and SAM were 

explored through correlation analysis over several timescales. Clusters were more 

frequently observed to the northeast of New Zealand and on the central eastern 

coast of the South Island. The most vulnerable regions to cluster-induced coastal 

erosion were southern New Zealand and the northwestern coast, which resulted 

from steady southwesterly swells, although clusters with the longest duration 

occurred on the east coast of the South Island. Trends suggest that clusters have 

incorporated more storms, have become more hazardous, and have increased in 

duration, particularly along the South Island coastline. Although these trends may 

be sensitive to the reanalysed wind fields used to force the wave hindcast, they 
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reflect trends in the ENSO, PDO, and SAM. Stronger southwesterly winds during El 

Niño (negative ENSO) and El Niño-like conditions (positive IOD/PDO) generated 

more clustered storms mainly on the southwestern coast of New Zealand, whereas 

increases in clustering were observed on the north coast during La Niña and La 

Niña-like conditions (stronger northeasterly winds). Higher occurrence of 

clustering was also evident on the west coast during the strong atmospheric zonal 

flow associated with negative ZW3. Lastly, strengthened westerlies related to 

positive SAM led to increased clustering primarily to the south of New Zealand. 

The last aspect of the wave climate around New Zealand explored in this 

thesis was the modulation of 𝐻𝑠 variability by wind anomalies associated with the 

co-occurrence of the Madden-Julian Oscillation (MJO) and ENSO. For this purpose, 

𝐻𝑠 and wind anomalies composites were created using 23 years (1979–2002) of the 

wave hindcast data and ERA-40 winds. Composites were calculated for November–

March periods, when simultaneous ENSO-MJO phase pairs are potentially most 

active. Results showed striking features: El Niño-related wave conditions (which 

consist of increased 𝐻𝑠  along the west and south coasts of New Zealand) are 

reinforced during MJO phase 8, whereas the wave conditions associated with La 

Niña (which consist of larger 𝐻𝑠 along the north coast) are enhanced during MJO 

phase 6; Similar wave anomalies are generated during opposing ENSO phases (La 

Niña and El Niño) when these are combined with MJO phases 3 and 5, respectively; 

The majority of statistically significant 𝐻𝑠 anomalies disappear from the study area 

during El Niño-MJO phase 6 and La Niña-MJO phase 4, showing the neutralising 

nature of some phase combinations; Lastly, negative 𝐻𝑠 anomalies are experienced 

during El Niño-MJO phase 4, in contrast to the positive anomalies expected during 

El Niño events. These results clearly show the importance of remote forcing to wave 

anomalies in the New Zealand region and highlight the need to assess atmospheric 

and oceanic conditions considering multiple climate oscillations. 

This thesis has shown that the wave climate around New Zealand is affected 

by a range of atmospheric conditions, which have significantly different impacts 

along the coastline. All these conditions should be taken into account in order to 

mitigate future hazards. Therefore, the results presented here may assist coastal 
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communities and stakeholders as well as offshore activities around the country in 

better prepare for potential impacts. Additionally, these results contribute to 

enhancing the research community knowledge of wave climatology in an area with 

recognised importance for regulating climate changes. 
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CHAPTER 1: General introduction 

 

1.1 Background and introduction 

Waves are fascinating. They have attracted human attention and have 

played a significant role in human lives for centuries. Historically, being able to 

interpret meteorological conditions and relate them to forthcoming sea states were 

key factors in our ability to colonise new lands and survive long ocean crossings. 

During wars, the threshold between winning a battle and losing a lot of lives was 

also directly associated with the knowledge of wave conditions. Wave-related 

research received substantial funds during and after the Second World War, 

leading to renowned studies like those of Munk et al. (1963) and Snodgrass et al. 

(1966). Nowadays, many daily activities continue to depend on the sea state, such 

as fishing, people and goods transportation, and water sports practice. 

Furthermore, the safety of coastal and offshore structures requires understanding 

of the long-term average wave behaviour (Young et al., 2012; Godoi et al., 2016, 

2017), the so-called “wave climate”. Waves have also been found to be an 

important alternative energy source (Cruz, 2008; Reguero et al., 2015) to support 

the needs of a consistently growing population. Climate changes (Domingues et 

al., 2008; Rapp, 2008; Rind, 2008; Yamada et al., 2010) reinforce the need to update 

our understanding of atmospheric and oceanic processes continuously. Therefore, 

understanding the wave climate and its fluctuations and trends is critical to adapt 

to a climate-changing world. 

Wave climate is characterised by long-term statistics of a set of wave 

parameters (Holthuijsen, 2007). Several wave parameters (e.g., significant wave 

height, mean wave period, and mean wave direction) should be analysed in order 

to describe the wave climate satisfactorily. Nonetheless, the analysis is usually 

limited to the significant wave height (Holthuijsen, 2007). The analysis of the wave 

climate should be carried out according to the application (e.g., design of marine 

structures or assessment of wave energy potential). The latter determines whether 
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temporally averaged wave fields should be examined in terms of monthly, seasonal, 

or longer timescale means. 

Wave climate has been assessed mainly through the analysis of buoy 

measurements (e.g., Bromirski et al., 2005; Gemmrich et al., 2011; Ruggiero et al., 

2010; Rapizo et al., 2015), satellite altimetry data (e.g., Young, 1994, 1999; Chen et 

al., 2002; Woolf et al., 2002; Young et al., 2011), and wave hindcast results (e.g., Cox 

and Swail, 2001; Sterl and Caires, 2005; Hemer et al., 2010; Stopa et al., 2013), all of 

which have advantages and limitations. Buoy measurements are generally taken as 

ground truth (Hemer, 2010) because they provide the most reliable records, 

especially when dealing with extreme values (Menéndez et al., 2008). However, 

significant errors might be present in buoy data depending on the method used to 

compute wave heights. For example, Bender et al. (2010) investigated four different 

means of computing wave heights using data from a buoy in the Mississippi Sound 

recorded during Hurricane Katrina. The authors concluded that wave heights are 

overestimated by 26%, on average, and up to 56% during the hurricane peak when 

using the most widely used method for a buoy with a strapped-down 1D 

accelerometer. Moreover, the limited number of buoys precludes a spatial 

assessment of the wave climate in many regions of the globe. On the other hand, 

satellite altimetry data have satisfactory spatial coverage for many purposes, but 

the frequency with which data are collected is inadequate for establishing, for 

instance, an extreme wave climatology; a particular location is typically re-visited 

by a satellite every 10 days (Sterl and Caires, 2005). Wave hindcast results are 

alternative datasets to deal with spatial and temporal coverage difficulties, 

although they are generally less accurate than buoy and satellite data. 

In general, long-term wave hindcasts are carried out using reanalysed wind 

fields. Although more and more wind measurements have been collected and 

reanalysis datasets have improved considerably over the time, most reanalysed 

wind fields still do not account for abrupt changes in wind direction and intense 

wind speed gradients because of their relatively low space-time resolution. This 

leads to insufficient energy input by the wind in the wave modelling, resulting in 

an underestimation of the largest waves (Caires and Sterl, 2003). Additionally, the 
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quality of wave hindcast results can be impacted by the physics of the numerical 

model, especially by source term parameterisations (Stopa et al., 2016). Despite 

these issues, wave hindcast results are widely used to characterise wave climates 

all over the world (e.g., Sterl et al., 1998; Sterl and Caires, 2005; Hemer et al., 2010; 

Semedo et al., 2011) and represent a powerful tool to evaluate, in a relatively short 

timeframe, the wave dynamics at several temporal and spatial scales. 

State-of-the-art full discrete spectral models for generation, propagation, 

and dissipation of wind-generated waves (e.g., WW3DG, 2016 – first developed by 

Tolman (1991)) are governed by the random phase spectral action density balance 

equation for wavenumber-direction spectra (Mei et al., 2005; WW3DG, 2016), 

described as: 

 

𝑑𝑁

𝑑𝑡
=  

𝑆

𝜎
                                                    (1.1)                                                                         

 

where 𝑑/𝑑𝑡 (𝑡 = time) describes the total rate of change of the wave action density 

spectrum 𝑁 , which in turn is a function of the wavenumber 𝑘  and direction 𝜃 

(perpendicular to the wave crest); 𝜎 is the relative frequency, which is observed in 

a frame of reference moving with the mean current; and 𝑆 represents sources and 

sinks of energy for the spectrum. In numerical modelling, it is generally reasonable 

to consider only wind-wave interactions, nonlinear wave-wave interactions, and 

wave-ocean interactions (dissipation through whitecapping) as sources and sinks 

of energy in deep-water applications (Tolman, 1991). In shallow waters, other 

processes should be taken into account, as for example, wave-bottom interactions, 

depth-induced breaking, and triad wave-wave interactions (WW3DG, 2016). 

Although the wave model used to generate the hindcast results employed in this 

thesis parameterises shallow water wave propagation effects, the spatial resolution 

adopted in the simulation does not allow precise representation of such effects. 

Although the energy (variance) of the wave train is not conserved in the presence 

of currents, the wave action, defined as the wave energy over the relative frequency, 

is a conserved quantity (Bretherthon and Garrett, 1969). This makes the wave action 
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density spectrum suitable for describing the wave propagation within a spectral 

model. 

An Eulerian form of Equation (1.1) is needed when waves are numerically 

modelled, and this is represented, in spherical coordinates (WW3DG, 2016), as: 

 

𝜕𝑁
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+

1

cos 𝜙

𝜕
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𝜕𝑑

𝜕𝑚
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𝜕U

𝜕𝑚
)                                      (1.6) 

 

where 𝜙  and 𝜆  represent latitude and longitude, respectively; 𝑐𝑔  is the group 

velocity (velocity of the wave energy); 𝑈𝜙 and 𝑈𝜆 are components of the current 

velocity; 𝑅 is the radius of the Earth; 𝑑 is the mean water depth; 𝑚 is a coordinate 

perpendicular to 𝜃; k is the wavenumber vector (same direction as 𝜃); and U is the 

(depth- and time- averaged) current velocity. In short, Equations (1.2)–(1.6) are 

used to describe the wave propagation as a function of wavenumber, wave 

direction, position in space, and time. These equations constitute the basic set of 

formulations implemented in the numerical model used to generate the hindcast 

data employed in the present research.  

The aforementioned hindcast data were produced by Dr Richard Gorman 

(Gorman et al., 2010), from the National Institute of Water and Atmospheric 

Research Ltd (NIWA), by using version 3.14 (Tolman, 2009) of the WAVEWATCH III 

model (Tolman, 1991). The wave hindcast (henceforth 45WH) is 45 years long 

(September 1957 – August 2002) and is focused on the New Zealand region, my 

study area. A proper description of the 45WH is provided in the next section. The 

45WH differs from other well-known wave hindcasts (e.g., Chawla et al., 2013; 
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Durrant et al., 2014) in some respects (briefly listed below), but the main one is the 

spatial resolution around New Zealand (0.125º × 0.09375º (~10 km) for the 45WH). 

Chawla et al. (2013) and Durrant et al. (2014) used the same wave model as 

the one implemented in the 45WH, and generated results at spatial resolutions of 

0.5º and 0.4º, respectively, for the New Zealand region. Durrant et al. (2014), 

nevertheless, used a newer version (4.08) of the WAVEWATCH III and adopted the 

source term package of Ardhuin et al. (2010), whereas the source term package of 

Tolman and Chalikov (1996) was selected for the Chawla et al. (2013) hindcast and 

the 45WH. Both hindcasts (Chawla et al. (2013) and Durrant et al. (2014)) cover a 

shorter period (1979–2009) than the 45WH, but were forced with higher-quality 

wind fields.  On the other hand, the wave hindcast developed by the European 

Centre for Medium-Range Weather Forecasts (ECMWF) (Caires et al., 2004; Sterl 

and Caires, 2005) covers the same period as the 45WH and was forced with the 

same wind fields. The ECMWF hindcast, nonetheless, was conducted using the 

WAM model (Komen et al., 1994 – originally developed by WAMDI (1988)), which 

was implemented with a considerably coarser spatial resolution (1.5º × 1.5º) than 

the 45WH. With the exception of the ECMWF hindcast, whose results were 

generated for the common synoptic hours (00, 06, 12, 18 UTC), the other three 

hindcasts produced hourly data. 

The wind fields used to force the 45WH and the ECMWF hindcast were 

sourced from the ERA-40 reanalysis (Uppala et al., 2005), and have spatial and 

temporal resolutions of 1.125º and 6 h, respectively. One of the main limitations of 

ERA-40 wind fields is related to the data shortage in the Southern Hemisphere 

during the pre-satellite era (period before 1979). A distinct temporal 

inhomogeneity is observed in the amount of data assimilated by the atmospheric 

model used to generate the ERA-40 reanalysis with the introduction of satellite 

data (Bromwich and Fogt, 2004). This inhomogeneity can be problematic when 

assessing trends in the reanalysed winds and, consequently, in the products 

generated using these wind fields. Moreover, ERA-40 winds have been found to 

underestimate speeds above 14 m/s (Caires et al., 2004), with obvious 

consequences for the high percentile wave heights. The underprediction of the 
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largest waves by hindcasts that used ERA-40 winds as boundary conditions has 

been reported by a number of authors (e.g., Caires and Sterl, 2003; Caires et al., 

2004). The Chawla et al. (2013) and Durrant et al. (2014) hindcasts were forced with 

winds obtained from the Climate Forecast System Reanalysis (CFSR) (Saha et al., 

2010), which provides wind fields with spatial and temporal resolutions of ~0.3º 

and 1h, respectively. These winds are not free from problems either. Stronger winds 

are overpredicted in the Southern Hemisphere prior to 1994 (Chawla et al., 2013), 

which is likely related to changes in wind observations assimilated in the CFSR 

atmospheric model. Such overprediction has been shown to lead to an 

overprediction in ocean waves as well (Chawla et al., 2013). Another discontinuity 

in the CFSR wind speed over the Southern Hemisphere was observed in 2006 

(Chawla et al., 2013; Stopa et al., 2013). Therefore, both ERA-40 and CFSR wind 

fields have problems that affect the New Zealand region directly. 

Statistical comparisons between the performances of those four wave 

hindcasts have been carried out by Dr Richard Gorman (personal communication) 

and are summarised in Table 1.1. 

 

Table 1.1. Inter-comparison between the 45WH, ECMWF, Chawla et al. (2013), and Durrant 

et al. (2014) wave hindcasts. Validations were carried out using a set of buoy measurements 

from the National Data Buoy Center data archive. RMSE and SI stand for root-mean-square 

error and scatter index (= RMSE normalised by the measured mean value), respectively. 

 Significant wave height Peak wave period 

 Bias RMSE SI Bias RMSE SI 

45WH -0.22 m 0.49 m 0.25 -0.18 s 2.47 s 0.28 

ECMWF -0.19 m 0.49 m 0.21 - - - 

Chawla et al. (2013) 0.16 m 0.41 m 0.19 - - - 

Durrant et al. (2014) -0.02 m 0.37 m 0.18 0.64 s 2.53 s 0.26 

 

The values presented in Table 1.1 correspond to averages computed across 

the buoys from the National Data Buoy Center (NDBC) included in the validation 

of all four hindcasts. These buoys are all located in the Northern Hemisphere, 

mainly along the USA coastline (Figure 2.1 – chapter 2). Unfortunately, an inter-
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comparison of those hindcasts for the New Zealand region was not possible using 

buoy measurements. Differences in the validation statistics between the hindcasts 

can be chiefly attributed to the quality of wind fields used to force the wave model 

and to the source term parameterisations employed in each simulation. Further 

discussion is provided in chapter 3 for the 45WH. Additional details on the wave 

hindcasts discussed can be found in the quoted studies. More information on the 

45WH and its validation is provided throughout this thesis. Regarding wave 

hindcast datasets produced prior to the ECMWF one, Caires et al. (2004) present 

an inter-comparison of four wave reanalyses. Their findings include the 

identification of long-term trends in all reanalysis datasets and worse data quality 

in the Southern Hemisphere than in the Northern Hemisphere. The latter results 

from the lack of measurements in the Southern Hemisphere during the pre-satellite 

era. Reguero et al. (2012) briefly describe some wave reanalysis datasets developed 

in the past, and present a calibrated global wave reanalysis (GOW). According to 

the authors, GOW is supposed to provide the longest (since 1948) wave dataset for 

the analysis of global wave climate variability in addition to being updated 

periodically. 

Although Table 1.1 shows that the other hindcasts generally performed 

better than the 45WH for the specific set of locations selected (where an inter-

comparison was possible), the 45WH was chosen for three reasons: 1) the spatial 

resolution of its results around New Zealand; 2) its relatively long record; 3) and the 

possibility of collaborating with NIWA researchers, who have contributed to the 

sustainable management of New Zealand natural resources for more than 20 years. 

The 45WH data allow a thorough investigation of the New Zealand wave climate, 

which, surprisingly, has been analysed carefully in just a few studies (e.g., Laing, 

2000; Gorman et al., 2003b – Their findings are reported in the introduction of 

Chapter 2). New Zealand is located in the mid-latitudes of the Southern 

Hemisphere, about 166°–179°E and 34°–48°S, and its landmass sits in the prevailing 

westerly winds (Drost et al., 2007). Different types of atmospheric systems affect 

weather in the country, with tropical and subtropical cyclones having a greater 

impact on the northern regions, while extratropical cyclones affect the other areas 
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more. These transient atmospheric systems imply distinct wave conditions along 

the New Zealand coastline, and are components of long-term changes in the 

atmosphere (climate oscillations). 

Wave climate comprises all possible sea states, from calm to extreme 

conditions, which are strongly influenced by atmospheric fluctuations at several 

timescales. The variability of wave conditions in response to those fluctuations 

depends on the exposure of the coastline to wave generation zones. Long wave 

records, with high space-time resolution, are required to investigate this variability 

climatologically. This thesis addresses such climatological variability within the New 

Zealand context, using hindcast data as the main research tool to describe its 

nature. 

This thesis is composed of four main topics, all of which are inter-related 

through a common objective, to improve the knowledge of the wave climate 

around New Zealand. Specifically, I aim to contribute to a more detailed 

understanding of the following topics: 

- Relationships between the mean wave climate around New Zealand and climate 

patterns (Chapter 2); 

- Past and future behaviours of extreme waves around New Zealand (Chapter 3); 

- Relationships between storm wave clustering conditions around New Zealand 

and climate patterns (Chapter 4); 

- Response of the wave climate around New Zealand to wind conditions resulting 

from the interaction of two specific climate oscillations whose main variabilities 

occur at different timescales (Chapter 5). 

Chapters 2–5 describe how these objectives have been achieved and 

examine multiple aspects relevant to the full characterisation of the wave climate 

around New Zealand. Each chapter includes an introduction, methods, results and 

discussions, and conclusions. The association of the mean wave climate and storm 

clustering conditions around New Zealand with climate patterns was assessed 

using the Pearson’s correlation coefficient, cluster analysis, and wavelets. Past and 

future extreme wave conditions were analysed by establishing an extreme wave 

climatology and employing two extreme value approaches, respectively. The wave 
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climate variability due to wind conditions associated with the interaction of two 

specific climate oscillations was examined using a compositing approach. Chapter 

6 provides a summary of previous chapters and main contributions of this thesis, 

as well as suggests potential future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

Contributions of the author and co-authors to Chapter 2 

I was responsible for the data processing, data analysis, and writing. Karin R. Bryan 

and I came up with the idea of the topic addressed in this chapter. I defined the 

methodology employed. 

Richard M. Gorman produced and validated the hindcast results employed in 

Chapter 2. 

Karin R. Bryan and Richard M. Gorman reviewed Chapter 2 and made suggestions 

regarding the writing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

CHAPTER 2: Relationships between the mean wave 

climate around New Zealand and climate patterns 

 

2.1 Introduction 

Wave dynamics have a significant impact on human lives, particularly in 

island nations such as New Zealand. A wide variety of recreation, fishing and 

activities at sea require constant monitoring of the sea state. In nations with less 

established roading and rail networks, people rely on shipping trade between cities 

and depend on wave conditions to do so. Recently, waves have also been used as 

energy resource to supply power to coastal communities. Engineering 

specifications for coastal and offshore structures, for instance harbours and oil 

platforms, require a detailed understanding of wave conditions at building sites. 

The synthesis of wave conditions, based on long-term statistics, is scientifically 

known as “wave climate” (Sterl and Caires, 2005), and has been required for many 

purposes in addition to construction, such as evaluation of extreme wave heights, 

planning of naval and marine operations (Cox and Swail, 2001), wave energy 

estimation, and oil spills and sediment transport assessments. Amongst the 

information that can be extracted from a wave climatology, of particular interest is 

the relationship between atmospheric oscillation modes and the wave climate of a 

region. These modes can allow us to understand future trends in the nature of 

coastal hazards and may serve as proxies to understand potential effects of future 

climate change (Quan et al., 2013). 

Atmospheric oscillation modes can dramatically alter weather conditions 

and, as a consequence, the wave conditions. Some climate patterns have been 

shown to be influential on local scales, while others are known to impact on a wide 

range of regions (e.g., Hemer et al., 2010; Harley et al., 2010; Gorman et al., 2003b) 

through “teleconnections”. The latter can be defined as remote influences on the 

variability of large-scale atmospheric and/or oceanic features (Grimm and Ambrizzi, 

2009). Significant attention has been devoted to the impacts caused by climate 

patterns on ocean waves, especially in regions where severe storms play an 
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important role. Despite being located in a relatively isolated portion of the world, 

New Zealand is a particularly interesting case because it lies at the interface of the 

Southern and Pacific oceans and the Tasman Sea, and hence is influenced by a 

range of climatic drivers. The Southern Ocean has also been proven to be extremely 

important for regulating climate. By sinking and storing carbon dioxide and heat in 

deep waters, the Southern Ocean slows down global warming, minimising 

anthropogenic impacts (Lavergne et al., 2014; Sallée et al., 2012; Russell et al., 2006). 

Therefore, there is general interest in the impact of climate oscillations on the 

properties of the Southern Ocean, and New Zealand plays a key role in controlling 

these properties (Chiswell et al., 2015; Morris et al., 2001) by changing the ocean 

dynamics in the area (e.g., by blocking and steering the flow) and influencing waves, 

currents and sea level. As a consequence, phenomena of global scales are directly 

affected by changes in the waters surrounding New Zealand (Sasaki et al., 2008; 

Davis, 2005). 

New Zealand’s high-latitude location along with the long stretch of ocean 

lying immediately to the west of it provide a highly energetic wave environment 

(Gorman et al., 2003b). Swell waves generated in the region just south of the 

country propagate through the Pacific Ocean and impact upon the west coasts of 

South America, Central America and part of the North America (Young, 1999). The 

long period of these swells and their seasonality are different from other more well 

studied areas, such as the North Atlantic, and so a greater understanding is 

essential for hazard management along South Pacific shipping routes, oil 

exploration, coastal engineering, and wave power generation. Estimates show 

substantial wave power potential within the New Zealand region (Rusu and Guedes 

Soares, 2009). Moreover, the Trans-Pacific Partnership will have a direct impact on 

trade of goods across the Pacific (World Bank Group, 2016), which will affect not 

only the 12 countries involved in the agreement, but also their trade partners, and 

thus increase pressure on south Pacific shipping routes. 

Different methodologies have been applied to assess the wave climate 

around New Zealand. Pickrill and Mitchell (1979) used approximately 40 sources of 

data, including deep-water, mid-water and shore-based visual and buoy 

http://www.nature.com/ngeo/journal/v5/n8/full/ngeo1523.html#auth-1
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observations, covering approximately 17 years. Laing (1993) implemented a 

second-generation wave model to perform a 5-month wave hindcast for the New 

Zealand region, which covered mainly the winter of 1989. In a subsequent study, 

Laing (2000) used approximately 13 years (1985–1998) of wave data derived from 

radar altimeters to create a wave climatology for the New Zealand waters. The 

coastal wave climate was assessed again in more detail by Gorman et al. (2003a, 

2003b). The authors conducted a 20-year (1979–1998) deep-water wave hindcast 

and extracted boundary conditions from it to use as initial conditions for a shallow-

water hindcast. All these authors found similar spatial patterns of significant wave 

height (𝐻𝑠), where the south coast receives the highest energy waves, followed by 

the west, east and north coasts, respectively. Pickrill and Mitchell (1979) observed 

that the westerly air flow is responsible for generating the waves that impact on 

the south coast. Swell waves generated to the south also reach the east coast, which 

in turn, receives in addition locally-generated northerly and southerly storm waves. 

The west coast receives southerly swells and locally-generated westerly and 

southerly storm waves. Finally, the north coast is dominated by northeasterly waves. 

Some of the most intense storm conditions were observed to occur in the summer 

months as a result of tropical cyclones (Gorman et al., 2003a). Increasing wave 

heights off the northeast coast of the North Island occur during La Niña events 

(Gorman et al., 2003b). In contrast, the rest of the country experiences increasing 

wave heights during El Niño events (Gorman et al., 2003b). Laing (1993) also 

verified that monthly anomalies of mean 𝐻𝑠 seem to be associated with El Niño 

events in winter.  

Extreme wave heights in southern Pacific, especially in the New Zealand 

region, are modulated by positive phases of the Antarctic Oscillation and Indian 

Ocean Dipole (Izaguirre et al., 2011). According to Caires et al. (2006), significant 

increases of extreme 𝐻𝑠 are expected around the southern half of New Zealand in 

the austral winter. On the basis of the 20-year hindcast produced by Gorman et al. 

(2003a), Stephens and Gorman (2006) estimated extreme 𝐻𝑠 for the New Zealand 

region. The authors showed that the estimates follow the trend of the mean 𝐻𝑠, 
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although they present less spatial variation. The smallest extreme 𝐻𝑠 value (13.9 m) 

was observed in the northeast, and the largest (19.3 m) in the southwest. 

In summary, preliminary studies have shown that the wave climate in the 

southwest Pacific is influenced by the state of climatic indicators, and the response 

around New Zealand is spatially variable (Godoi et al., 2015), depending on the 

exposure of the coastline to generating regions. This chapter extends this previous 

work by describing the nature of the correlation, determining its timescale, and 

showing how the correlation depend on the local exposure of the coastline. In 

order to determine how atmospheric oscillations modulate the regional wave 

climate around New Zealand, mean wave parameters generated by a 45-year wave 

hindcast were used to conduct two main analyses. First, mean annual and inter-

annual variabilities of 𝐻𝑠 were calculated to understand which areas around the 

country are most susceptible to large variations in wave conditions, hence 

providing an indication of the most vulnerable areas to climate change. Then, time 

series of mean wave parameters were correlated with climate indices using a basic 

statistical tool, the Pearson’s correlation coefficient, and a more sophisticated 

technique based on spectral energy, the wavelet analysis. The long timeframe of 

the analysis allows us to capture some of the longer timescale patterns and how 

these differ depending on exposure to the Southern Ocean in contrast to the South 

Pacific Ocean. 

The chapter is organised as follows. The climate patterns that potentially 

influence the wave climate of New Zealand are briefly described in section 2.2. 

Details of the wave hindcast carried out to conduct the analyses are explained in 

section 2.3. Section 2.4 addresses the manipulation of the dataset used in the 

methodology of this chapter, which in turn is explained along with the discussion 

of the results in sections 2.5 and 2.6. Finally, the conclusions are presented in 

section 2.7. 

 

2.2 Atmospheric oscillation modes 

A number of atmospheric oscillation modes have been described in the 

literature, and at least five of them have been reported to somehow affect the 
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weather and/or the ocean in the southwest Pacific. These are the Pacific Decadal 

Oscillation (PDO), the El Niño–Southern Oscillation (ENSO), the Indian Ocean 

Dipole (IOD), the Zonal Wavenumber-3 Pattern (ZW3), and the Antarctic Oscillation 

(AAO), frequently called Southern Annular Mode (SAM) (Limpasuvan and 

Hartmann, 1999).  

 The PDO is an inter-decadal climate fluctuation identified by the leading 

empirical orthogonal function of monthly sea surface temperature (SST) anomalies 

over the North Pacific (Mantua et al., 1997; Taylor et al., 2009; Deser et al., 2010). 

Only two cycles have been verified within the last century, with predominantly 

negative SST anomaly between 1947 and 1976, and predominantly positive SST 

anomaly between 1925 and 1946, and after 1977 (Mantua et al., 1997). 

 Like the PDO, the ENSO is also characterised by SST anomalies (Zhang et 

al., 1997). Its signatures are primarily observed over the equatorial region of the 

Pacific Ocean with inter-annual cycles that range from 2 to 7 years (Trenberth and 

Hurrell, 1994; Cane, 2005; Stopa et al., 2013). The ENSO has been recognised by its 

influence on atmospheric and oceanic conditions all over the world as a result of 

the so-called “Atmospheric Bridge” (heat and moisture fluxes from the source 

region to remote areas – Alexander et al., 2002). The ENSO is measured by the 

Southern Oscillation Index (SOI) (Ropelewski and Jones, 1987), which is the 

difference between the Darwin and Tahiti surface air pressures. 

 An inter-annual variability with dipole-shaped signature in the SST field 

over the tropical Indian Ocean defines the IOD (Saji et al., 1999; Izumo et al., 2010). 

This oscillation is measured by the Dipole Mode Index (DMI), which describes the 

difference in SST anomaly between the tropical western Indian Ocean and the 

tropical southeastern Indian Ocean. Extreme IOD events occurred in 1961, 1994, 

and 1997 (Cai et al., 2014; Saji et al., 1999), and despite its irregular cycle, the IOD 

seems to have strong cycles with periodicities of approximately 2 and 5 years 

(Webster et al., 1999; Yuan and Cao, 2013).  

The ZW3 is a quasi-stationary planetary wavenumber-3 pattern that 

significantly impacts on daily (Kidson, 1988), seasonal (Mo and White, 1985), and 

inter-annual (Trenberth, 1980; Karoly, 1989; Cai et al., 1999) timescales at mid-
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latitudes of the Southern Hemisphere (van Loon and Jenne, 1972; Raphael, 2004). 

It is normally identified by sea ice, sea level pressure (SLP), wind (Yuan and Li, 2008), 

and geopotential height fields (Mo and White, 1985). Indices for the ZW3 have 

been computed by different authors (e.g., Mo and White, 1985; Raphael, 2004) 

using mainly SLP and geopotential height values at three selected geographical 

points, which vary in accordance with the methodology adopted by each author. 

 Zonally symmetric anomalies of opposite signs in Antarctica and the mid-

latitudes of the Southern Hemisphere define the SAM (Marshall, 2003). Such 

anomalies can be identified in several atmospheric fields, such as surface pressure 

and surface temperature, and they modulate phenomena at timescales that vary 

from high to low frequency. Noteworthy cycles of 2.7, 4.2, and 45.7 months were 

reported by Gong and Wang (1999), who defined an index to represent the SAM. 

The index is called Antarctic Oscillation Index (AOI) or Southern Annular Mode 

Index (SAMI), and measures the difference of zonal mean sea level pressure 

between 40°S and 65°S. 

 

2.3 Wave model hindcast 

 A 45-year wave hindcast (September 1957 to August 2002), hereinafter 

45WH, has been carried out using the WAVEWATCH III v. 3.14 model (Tolman, 

2009). This is a third-generation wave model that solves the wave action density 

spectrum as a function of wavenumber and direction. Parameterisations of physical 

processes include wave growth and decay by wind stress, nonlinear resonant 

interactions, bottom friction, dissipation by whitecapping, surf-breaking, and 

scattering by wave-bottom interactions (Tolman, 2009). Refraction and straining of 

the wave field due to spatial variations of the mean water depth are included in the 

shallow-water governing equation. 

In order to perform the simulation, 1-minute bathymetric results from the 

ETOPO1 1 arc-minute global relief model (Amante and Eakins, 2009) were 

implemented in the wave model to assign depths to oceans and seas, and delimit 

borders of continents, countries and islands. The ETOPO1 was developed by the 

National Geophysical Data Center (NGDC) and is aimed at supporting tsunami 
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forecasting, modelling and warning, and also ocean circulation modelling. Wind 

fields at 10 m and ice fields from the ERA-40 reanalysis dataset (Uppala et al., 2005) 

were employed as boundary conditions in the 45WH. The ERA-40 was created by 

the European Centre for Medium-Range Weather Forecasts (ECMWF) and spans 45 

years, from September 1957 to August 2002. It was produced by assimilating 

atmospheric and oceanographic observations from different sources, such as 

aircrafts, ocean buoys, ships, radiosondes, balloons, satellite-borne instruments 

and surface platforms. The ERA-40 products used in the 45WH have temporal 

resolution of 6 h and spatial resolution of 1.125°. 

 The evolution of the directional wave spectrum was computed by using two 

one-way nested numerical grids (Figure 2.1) with 25 logarithmically spaced 

frequencies and 24 equally spaced directions. The global grid covers latitudes 

81ºS–81ºN and longitudes 0ºE–358.875ºE at 1.125º resolution, while the regional 

grid has spatial resolution of 0.125º in longitude and 0.09375º in latitude, and 

covers latitudes 51.75ºS–32.625ºS and longitudes 162ºE–185.625ºE. The bottom 

friction was represented by the Joint North Sea Wave Project (JONSWAP) 

parameterisation (Hasselmann et al., 1973), and the Cavaleri and Malanotte-Rizzoli 

(1981) formulation assisted the improvement of the initial wave growth behavior 

from calm conditions. The formulation proposed by Tolman and Chalikov (1996) 

was used to compute input and dissipation terms, whereas the discrete interaction 

approximation (DIA) (Hasselmann et al., 1985) was used in modelling nonlinear 

wave-wave interactions. Wind and ice fields were input every 6 h, and the output 

parameters were generated at 3 and 1 h intervals for the global and regional 

domains, respectively. 
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Figure 2.1. Grid domains used in the 45-year wave hindcast. (Left) Global domain. The area 

delineated by the green square represents the regional domain, which is expanded in the 

right plot. AI, CI, M, and O stand for Auckland Islands, Chatham Islands, Mokau, and Ohiwa, 

respectively, mentioned later in the text. Pink (non-directional measurements obtained) and 

blue (directional measurements obtained) dots represent the sites of the buoys used for 

validating the hindcast. 

 

The 45WH has been validated with buoy and satellite measurements. Buoy 

records from the National Data Buoy Center (NDBC) and from stations around New 

Zealand (see Figure 2.1 for buoy locations) have been used to verify the accuracy 

of the hindcast. Several wave parameters were validated, including significant wave 

height, mean wave direction, directional spread, peak wave period, peak wave 

direction, and mean wave period (second moment), depending on what was 

available from each wave buoy. The statistical indices computed in the validation 

were the mean, standard deviation, bias, root-mean-square error (RMSE), scatter 

index and correlation coefficient. Satellite altimetry data in the New Zealand region 

were obtained from the TOPEX/Poseidon, ERS1 and ERS2 missions, and subject to 

a set of quality control procedures as detailed by Laing (2000) and summarised by 

Gorman et al. (2003b). First, the whole hindcast domain was divided into areas of 

2.25° × 2.25° for both satellite altimetry data and model results. Then, occurrence 

distributions of 𝐻𝑠 within each of these bins were computed and compared over 

the available time period. Additionally, comparisons between altimetry data and 

global model results were performed by calculating 𝐻𝑠 monthly means for all the 

values within each bin. 

Results of the validation of modelled data against buoy and satellite 

measurements varied according to location and sea state. As a result of the 
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reasonably low spatial-temporal resolution of wind fields, which does not account 

for significantly strong velocity gradients and sudden changes in the wind direction, 

mean wave parameters were generally underestimated during extreme events. 

Despite this, the 45WH results are suitable for the purpose of the present chapter, 

since monthly averages have been used (as described in the next section) and 

results have been generated for a considerably long time period. Due to the coarse 

spatial resolution near the coast, the global hindcast presented better results at the 

NDBC buoys than at the New Zealand buoys. The RMSE from comparisons of 

measured and modelled 𝐻𝑠 had values of 0.52 m, averaged over the NDBC buoys, 

and 0.61 m averaged over the New Zealand buoys, while the correlation coefficient 

from the same comparisons averaged 0.89 and 0.83 over the NDBC and New 

Zealand buoys, respectively. In the comparison with satellite data, the hindcast 

results underestimated 𝐻𝑠  (with up to 0.5 m of negative bias) in the western 

Tasman Sea and near the New Zealand coast, whilst overestimation (with localised 

positive bias of order 0.5 m) was seen in the Southern Ocean. The latter was 

particularly more pronounced during the austral winter. Significant improvement 

was observed in the comparisons between the regional results and New Zealand 

buoy data, with mean RMSE of 0.50 m, and mean correlation of 0.83, obtained from 

𝐻𝑠 comparisons. Comparisons of the regional hindcast with satellite data showed 

a reduction in the magnitude of negative biases in the wave height near the New 

Zealand coast seen in the global hindcast. Additional details on the 45WH and its 

validation can be found in Gorman et al. (2010). 

 

2.4 Data preparation 

An overview of the wave climate can be obtained by computing monthly 

means over a long period of time. Monthly means of significant wave height (𝐻𝑠), 

peak wave period (𝑇𝑝), mean wave period (𝑇𝑚𝑒𝑎𝑛) and peak wave direction (𝐷𝑝) 

were calculated over 44 years (1958–2001). Only the full calendar years covered by 

the 45WH were considered in the analysis, disregarding the years 1957 and 2002 

due to incomplete data coverage.  
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According to Stopa et al. (2013), atmospheric oscillations have a more 

significant impact on extreme than on average conditions. Extreme conditions have 

distinct definitions depending on the author. Storlazzi et al. (2015), for example, 

define extreme significant wave height as the mean of the top 5% 𝐻𝑠  within a 

specific period. On the other hand, Stopa et al. (2013) and Bosserelle et al. (2012) 

use the mean of the top 10% 𝐻𝑠. Young et al. (2011) assess trends in more extreme 

wave conditions considering the 90th and 99th percentiles. In this chapter, I use 

the ninetieth percentile as the threshold for determining monthly extreme 

significant wave heights (90𝑡ℎ𝐻𝑠) for the 44-year period. 

The five wave parameters used in this chapter enable a comprehensive 

understanding of the wave climate around New Zealand. The wave period and 

wave direction associated with the most energetic waves are represented by 𝑇𝑝 and 

𝐷𝑝, respectively, while 90𝑡ℎ𝐻𝑠 takes into consideration wave heights of extreme 

events (𝐻𝑠  and 𝑇𝑚𝑒𝑎𝑛  are more representative of mean wave conditions of the 

ocean). 

Monthly means of the SOI, DMI, SAMI, PDO index, and ZW3 index were 

sourced from the National Oceanic and Atmospheric Administration (NOAA), Japan 

Agency for Marine-Earth Science and Technology (JAMSTEC), British Antarctic 

Survey (BAS), Japan Meteorological Agency (JMA), and Raphael (2004), respectively. 

The ZW3 index is only available from 1979 onwards, whereas the other indices 

cover the whole hindcast period. The anomalies of the climate indices were 

computed by subtracting their climatological monthly means from their monthly 

means. The same was done for the wave parameters in order to investigate how 

they are modulated by the climate modes. 

 

2.5 Significant wave height variability 

The mean annual variability (MAV) and inter-annual variability (IAV) of 𝐻𝑠 

were computed for each grid point of the regional domain over the 44-year period 

following the methodology described in Stopa et al. (2013). The MAV (Equation 

(2.1)) is defined as the average of the annual standard deviation normalised by the 

annual average, and the IAV (Equation (2.2)) is determined by the standard 
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deviation of the annual means normalised by the overall mean (Stopa et al., 2013). 

Thus, MAV and IAV can be written as: 
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where 𝑥 is the time series of significant wave height over a period of 𝑝 years with 

𝑛 records each, and 𝑗 and 𝑟 refer to the year and record, respectively. 

Signatures of the wave climate of New Zealand can be clearly noted in the 

MAV and IAV maps (Figures 2.2a and 2.2b). Relatively large variability is observed 

in coastal areas, especially in sheltered regions dominated by locally-generated 

waves, such as to the north of both islands. This characteristic agrees with the works 

by Stopa et al. (2013) and Bosserelle et al. (2012), who conducted their studies for 

the whole globe and Western Australia, respectively. The large values in northerly-

exposed regions are a consequence of the absence of steady southerly swells. The 

northern area experiences tropical cyclones, typically in summer, which contributes 

to relatively large MAV in that region (Figure 2.2a). As reported by Laing (2000), 

there is a larger difference between the mean and 99.9 percentile values to the 

north of the country, resulting in relatively large variability. The same northern 

region as well as the areas off the west and south coasts show higher IAV than the 

region off the east coast (Figure 2.2b), suggesting a stronger association of those 

areas with atmospheric oscillations that are characterised by inter-annual cycles. As 

previously mentioned, Gorman et al. (2003b) reported increasing wave heights off 

the northeast coast of the North Island during positive phases of the ENSO, and 

around the rest of the country during negative phases, especially off the southwest 

and south regions. In contrast to the IAV, the high frequency of southwesterly 

swells with nearly constant wave height in the west coast results in smaller MAV 
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(Figure 2.2a) at this coast in comparison to the east coast. Regarding deep-water 

regions, the area to the south of 45ºS generally has larger IAV than most regions 

to the north of this parallel (Figure 2.2b), which indicates a possible relation with 

the SAM. As cited by Marshall (2003) and Kushner et al. (2001), a trend toward the 

positive phase of the SAM has been detected by several works, leading to 

strengthening of westerly winds in the Southern Ocean. Finally, the fluctuations of 

𝐻𝑠 throughout the seasons produce generally higher values in the MAV than in the 

IAV, highlighting the prevalence of high-frequency oscillations in the wave climate 

variability. 

 

 

Figure 2.2. (a) Mean annual variability (MAV) of significant wave height; (b) inter-annual 

variability (IAV) of significant wave height; (c) 44-year (1958–2001) trend in significant wave 

height (only statistically significant values at the 95% confidence level are plotted). Note 

that the colour scales are different to better represent the parameters. 

 

To complement the MAV and IAV results, the trend in 𝐻𝑠 was computed for 

the period 1958–2001 (Figure 2.2c). This was carried out by fitting a linear curve to 
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𝐻𝑠 monthly means on each grid point of the regional domain using least-squares 

regression. Only statistically significant values at the 95% confidence levels are 

displayed, which excludes the regions immediately to the north of both islands 

where the largest MAV is found. The whole regional domain presents an increasing 

trend in 𝐻𝑠. The areas adjacent to the coastline have a positive trend that varies 

from values smaller than 1 cm/decade, in more sheltered sites, to 6 cm/decade in 

the southwest coast. The greatest trends, of up to 12 cm/decade, are observed to 

the south of 48ºS, suggesting a relationship with the positive trend in the SAM. 

These results are consistent with the general trend of increasing 𝐻𝑠  found by 

Coggins et al. (2015). Nevertheless, their results are more focused on offshore 

regions due to the coarser spatial and temporal resolutions in relation to the 

present dataset. 

                                   

2.6 Relationships between the wave parameters and the climate patterns 

2.6.1 Correlation analysis 

Monthly anomalies of 𝐻𝑠, 90𝑡ℎ𝐻𝑠, 𝑇𝑚𝑒𝑎𝑛, 𝑇𝑝, and 𝐷𝑝 fields were correlated 

with monthly anomalies of the SOI, SAMI, DMI, PDO index, and ZW3 index by 

computing the Pearson’s correlation coefficient (R) for each grid point of the 45WH 

regional domain (Figures 2.3 and 2.4). The 95% confidence levels were used to 

determine statistically significant results, and are represented by shaded light grey 

in Figures 2.3 and 2.4. In view of the fact that all atmospheric oscillations assessed 

were derived from linear analyses, climate anomalies associated with cool phases 

oppose those of warm phases (Mantua and Hare, 2002). 
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Figure 2.3. Correlation coefficients (in percentage) of the (first column) SAMI and (second 

column) SOI with the wave parameters (rows) for the period 1958–2001. Correlations of the 

wave parameters with the (third column) ZW3 index comprise the period 1979–2001. 

Red/blue contours represent positive/negative correlations. Statistically significance within 

95% is represented by light grey colour. 

 

The SAM is the prevailing mode to the south of New Zealand. The 

intensification of the SAM over recent decades (a trend toward its positive phase) 
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results in the strengthening of the circumpolar westerlies (Schott et al., 2009; 

Marshall, 2003; Hemer, 2010; Gillett and Thompson, 2003), leading to larger wave 

heights (Hemer et al., 2010; Bosserelle et al., 2012) and longer wave periods (Figure 

2.3). The trend toward the SAM positive phase has been occurring since the mid-

1960s (Marshall, 2003), accompanied by a reduction in the number of cyclones 

south of 40°S, with greatest reductions near 60°S (Simmonds and Keay, 2000). 

Associated with such reductions are increases in the intensity of cyclones to the 

south of Australia, in the Tasman Sea, and in the central Pacific, in addition to 

decreases in the eastern portions of the Pacific and Indian Oceans (Simmonds and 

Keay, 2000). Moreover, a poleward shift of the extratropical cyclone storm tracks 

has also been observed as a result of the positive trend in the SAM (Gillett and 

Thompson, 2003). Hemer et al. (2010) reported a trend of counter-clockwise 

rotation in wave direction south of ~48°S during positive phases of the SAM. In 

contrast to this trend, one sees a clockwise rotation in 𝐷𝑝 associated with positive 

anomalies in the SAMI in our results (Figure 2.3), which is represented by positive 

correlations. On the other hand, a counter-clockwise rotation in 𝐷𝑝, represented by 

negative correlations, is observed along and off the west and north coasts during 

the SAM positive phase. The SAM is associated with substantial changes in the 

wave parameters. Changes in 𝐷𝑝, 𝑇𝑝, and 𝑇𝑚𝑒𝑎𝑛 are observed in most parts of the 

regional domain, in 𝐻𝑠 along most sectors of the coastline (the north coast is less 

affected), and in 90𝑡ℎ𝐻𝑠 mostly along the west coast. In the case of 𝑇𝑝 and 𝑇𝑚𝑒𝑎𝑛, 

correlations indicate that longer wave periods are associated with increasing values 

of the SAMI. 

Negative correlations of the SOI with 𝐻𝑠 and 90𝑡ℎ𝐻𝑠 are found all around 

the country’s coastline, except to the north (Figure 2.3). This is in agreement with 

the studies of Gorman et al. (2003b) and Laing (2000), who observed increased 

occurrence of southwesterly winds around New Zealand during negative ENSO 

phases (El Niño). Accompanying increasing wave heights during El Niño events are 

increasing wave periods, as illustrated by negative correlations. During La Niña 

events (positive phases of the ENSO), increased occurrence of northeasterly winds 

in the northeast coast have been noted (Gordon, 1986; Gorman et al., 2003b), 
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possibly as a result of an increasing number of cyclones in Australasia during such 

events (Sinclair et al., 1997). Larger wave heights with shorter wave periods are 

observed to the north of New Zealand as a consequence of La Niña events. Both 

𝐻𝑠 and 90𝑡ℎ𝐻𝑠 are positively correlated with the SOI in the region, while 𝑇𝑚𝑒𝑎𝑛 and 

𝑇𝑝  are negatively correlated. A possible explanation for the inverse relationship 

between increasing wave heights and decreasing wave periods would be the 

formation of shorter wave fetches resulting from storms that track more closely to 

the shore during cold ENSO conditions than during warm and neutral ENSO 

conditions. This explanation agrees with Revell and Goulter (1986), who verified 

that the origin points of tropical cyclones tend to be concentrated farther to the 

northeast with decreasing SOI. According to Hemer et al. (2010), there is a 

clockwise/counter-clockwise rotation in wave direction in the Tasman Sea and in 

the western Pacific Ocean during El Niño/La Niña events. In other words, since wave 

direction is predominantly southeasterly during both phases of the ENSO (Hemer 

et al., 2010), southerly/easterly waves are more common during El Niño/La Niña 

events. Most areas around New Zealand show no statistically significant 

relationship between SOI and 𝐷𝑝. However, the rotation in wave direction noted by 

Hemer et al. (2010) agrees with our results in two out of the four regions where 

statistically significant correlations are observed. Negative correlations are present 

in the northwestern area of the regional domain and off the southeast coast of the 

South Island. On the other hand, the regions adjacent to the west coasts of both 

the North and South Islands and around the Chatham Islands show positively 

correlated values, in opposition to the study of Hemer et al. (2010). These 

differences might be related to the products used by the authors for generating 

their results. Satellite observations are of limited application to coastal waters as a 

result of the influence of land on the return signal (Gorman et al., 2003a). In 

addition, the spatial resolutions of both satellite observations and model results 

used by Hemer et al. (2010) are coarser than the one used here, hampering a high-

quality representation of coastal areas. 

In the atmospheric circulation, the ridges of the planetary ZW3 wave have 

preferred locations of formation; these are over southern South America, southern 
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Indian Ocean, and southwest of New Zealand (Raphael, 2004; Garreaud and Battisti, 

1999; Yuan et al., 1999). Consequently, preferred locations for cyclogenesis are 

observed in the open ocean north of the ice cover (Yuan and Li, 2008). Negative 

correlations (Figure 2.3) of the ZW3 with 𝐻𝑠, 90𝑡ℎ𝐻𝑠, and 𝐷𝑝 are consistent with the 

zonal flow associated with negative phases of the ZW3. Conversely, the northward 

wind stress anomaly between southwest Australia and south of New Zealand (Cai 

et al., 1999) suggests that smaller waves with a clockwise rotation propagate into 

the study area during positive phases of the ZW3. A strong meridional flow is 

associated with positive phases of the ZW3, and is more pronounced from Australia 

to South America (Raphael, 2004) due to the troughing of the ZW3 wave 

(generated by the presence of a low-pressure system) over the south Pacific. 

Positive correlations of 𝑇𝑚𝑒𝑎𝑛 and 𝑇𝑝 with the ZW3 index indicate increasing wave 

periods as a result of stronger meridional flow, but they are statistically significant 

only along the west coast of New Zealand. 

The PDO is not the most influential mode on any wave parameter around 

New Zealand. However, statistically significant positive correlations with 𝑇𝑚𝑒𝑎𝑛 and 

𝑇𝑝  are found in most parts of the regional domain (Figure 2.4). According to 

Mantua et al. (1997), the SOI is correlated with the PDO index, such that positive 

PDO tends to coincide with El Niño-like conditions. This explains increasing wave 

periods as well as increasing wave heights around the country, excepting to the 

north, during positive PDO. However, the correlations of wave height with the PDO 

index are statistically significant only along and off the west and south coasts of 

New Zealand. Despite not being statistically significant, the negative correlations 

of wave height and wave period with the PDO index to the north of the country are 

consistent with negative phases of the PDO, in which La Niña-like conditions are 

expected to occur in the region. Regarding wave direction, statistical significance 

is found mostly to the north and northwest of the country, with wave direction 

exhibiting a clockwise rotation pattern during positive PDO. 
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Figure 2.4. Correlation coefficients (in percentage) of the PDO index and DMI (columns) 

with the wave parameters (rows) for the period 1958–2001. Red/blue contours represent 

positive/negative correlations. Statistically significance within 95% is represented by light 

grey colour. 

 

Like the PDO, the IOD does not seem to have a strong association with the 

wave parameters around New Zealand (Figure 2.4). According to Schott et al. (2009), 

the IOD can either self-generate or be externally triggered by the ENSO. The 
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opposite is also true, with the positive phase of the IOD often preceding positive 

phases of the ENSO (Izumo et al., 2010). Signals of the IOD influencing the zonal 

winds over the Pacific Ocean were described by Izumo et al. (2010). This means that 

indirect effects of the IOD can take place through the effect of the ENSO, since the 

modes are correlated. The IOD is weak in most years (Schott et al., 2009), presenting 

anti-cyclonic circulation at low levels during its positive phase (Yuan and Cao, 2013), 

easterly winds along the equator (Cai et al., 2014; Webster et al., 1999; Yuan and 

Cao, 2013), where weak westerlies normally prevail (Cai et al., 2014; Webster et al., 

1999), and westerly flow near 30°S (Cai et al., 2014). The most energetic waves of 

the world occur in the Southern Ocean between South Africa and Australia (Young, 

1999), where the influence of the IOD is rarely addressed. Such energetic waves 

arrive on the west and south coasts of New Zealand as they propagate from the 

Indian Ocean to the South Pacific Ocean. Positive correlations of the DMI with 

𝑇𝑚𝑒𝑎𝑛, 𝑇𝑝, 𝐻𝑠, and 90𝑡ℎ𝐻𝑠 are found in most parts of the regional domain (Figure 

2.4), which agrees with the study of Izaguirre et al. (2011). The authors observed 

increasing extreme wave height in the southwestern Pacific during IOD positive 

phases. Negative correlations are found to the north of New Zealand for 𝐻𝑠 and 

90𝑡ℎ𝐻𝑠, indicating decreases in the wave height during positive IOD and vice versa. 

This is consistent with the inverse relationship between the IOD and ENSO (shown 

later in Table 2.1 by the negative correlation between the DMI and SOI), in which 

conditions associated with negative IOD resemble La Niña conditions (positive 

ENSO). Lastly, a counter-clockwise rotation in 𝐷𝑝 is observed along the west coast 

of the country, whereas the opposite rotation is observed along the east coast. 

2.6.2 Cluster and wavelet analyses 

According to Bell et al. (2000) and Goring and Bell (1999), quasi-periodic 

fluctuations that vary in both the magnitude and timescale, such as those under 

consideration here, require an analysis that is different from the traditional Fourier 

spectral analysis, which assumes stationarity. The wavelet technique has been used 

as an alternative for resolving non-stationary dominant modes of variability (Goring 

and Bell, 1999; Grinsted et al., 2004). The wavelet power spectrum provides an 

indication of periods of time that most contribute to the dominant cycles, and is 
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obtained by taking the average of the square of the wavelet coefficients. The 

relationship between two variables is identified by the wavelet coherence spectrum. 

To facilitate the wavelet spectral analysis, a subset of geographical locations 

was selected for examination. The selection was based on a cluster analysis 

conducted to divide the 45WH regional domain into subregions that encompass 

areas with similar wave climate. Pickrill and Mitchell (1979) identified four main 

wave climates around New Zealand. In order to be consistent with them, four 

clusters were employed here, each one being representative of each subregion 

(wave climate). Attempts using five and more clusters were also performed, but no 

significant gain in information was obtained. Forty-four years (1958–2001) of mean 

fields of 𝐻𝑠 and 𝑇𝑚𝑒𝑎𝑛 were standardised to a Gaussian distribution (zero mean and 

unit variance) for the cluster analysis. The clustering was based on the k-means 

algorithm (Hartigan and Wong, 1979; Kanungo et al., 2002; Likas et al., 2003), which 

was executed 10 times with different initial centroid seeds using 300 iterations for 

each run.  

The results of the cluster analysis (Figure 2.5a) agree with the spatial 

distribution of the four main wave climates described by Pickrill and Mitchell (1979). 

Interesting features of the 44-year average of significant wave height (Figure 2.5b) 

can be observed in the cluster analysis results. First, areas with distinct wave 

climates are clearly demarcated by each colour, roughly representing the four 

quadrants. Southwesterly swells propagate not only along the west coast of both 

islands but also along the south coast of the South Island. The shadowing to the 

north of the northern portion of New Zealand clearly shows the obstruction caused 

by the presence of landmasses, which prevents energetic southwesterly waves from 

reaching that region and, consequently, results in a less rough wave climate. The 

same occurs to the north of the Chatham and Auckland islands, located near the 

45ºS and 50ºS parallels, respectively. Finally, the sectors immediately seaward of 

the east coast and between the North and South islands present a relatively 

moderate wave climate. 

 



31 

 

 

Figure 2.5. (a) Results of the cluster analysis. Each colour represents one cluster. The black 

dots represent the geographical coordinates where time series of the wave parameters 

were extracted to be used in the wavelet analysis; (b) 44-year (1958–2001) average of 

significant wave height. 

 

Anomalies of the wave parameters were computed for the monthly time 

series extracted from the central geographical coordinate of each cluster 

(henceforth cluster), whose positions are 181ºE/39.5ºS, 177.5ºE/34.5ºS, 168ºE/38ºS, 

and 174ºE/50ºS (Figure 2.5a). In order to identify dominant modes of variability for 

each subregion, such anomalies were correlated with monthly anomalies of the 

climate indices by computing squared wavelet coherence spectra. Unreliable and 

less significant wavelet results can be produced if the probability density function 

(PDF) of geophysical time series is far from normally distributed (Grinsted et al., 

2004). Following Grinsted et al. (2004), this lack of normality can be addressed by 

transforming the time series of anomalies of the wave parameters into time series 

of percentiles. Then, both the wave parameters and climate indices were 

normalised by their standard deviation in order to have total energy equal to one 

at all scales. Finally, the wavelet technique was applied. Power spectra were 

calculated using the Morlet function with non-dimensional frequency equal to six 

for satisfying the admissibility condition (Farge, 1992). According to Grinsted et al. 

(2004), the Morlet wavelet is generally a good choice when using wavelets for 

feature extraction purposes, since it provides a good balance between time and 

frequency localisation. The authors recommend using the Morlet wavelet unless 

there are good grounds to do otherwise. Veltcheva and Guedes Soares (2015) state, 
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in addition, that the Morlet wavelet is appropriate for the wavelet analysis of wave 

data due to its oscillatory nature and the similarity between the Morlet scale 

parameter and Fourier period. Statistically significant signals were calculated using 

the chi-squared test for power spectra, since the wavelet power spectrum is chi-

square distributed, and using 300 Monte Carlo simulations for coherence spectra. 

Significance at the 95% and 90% confidence levels were used for the power and 

coherence spectra, respectively. The cone-of-influence, where edge effects become 

important (Torrence and Compo, 1998), was computed for the purpose of dealing 

with errors at the beginning and end of the wavelet spectrum. Other studies in 

which wavelets have been used to analyse ocean waves include, for example, Liu 

(1994) and Massel (2001). 

For a given time period, anomalies result from the combination of the signal 

in all frequencies, and for this reason, it is not trivial to account for the exact 

contribution of each atmospheric oscillation mode to the amplitudes of anomalies 

of the wave parameters. 

 The squared wavelet coherence spectra of 𝐻𝑠 with the climate indices are 

displayed in Figures 2.6–2.8. Hatched areas represent the cone-of-influence, and 

90% confidence levels are represented by thick contours. In phase and anti-phase 

signals are represented by arrows pointing upward and downward, respectively, 

while arrows pointing rightward represent climate patterns preceding 𝐻𝑠, and the 

converse is true for arrows pointing leftward. The graphics related to the ZW3 index 

(Figure 2.7b) range from 1979 to 2001 due to lack of data in previous periods. 
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(a) 

 

(b) 

Figure 2.6. Squared wavelet coherence spectra of significant wave height with the: (a) DMI 

and (b) SOI. The 90% confidence levels are represented by thick contours, and hatched 

areas represent the cone-of-influence. In phase and anti-phase signals are represented by 

arrows pointing upward and downward, respectively. Arrows pointing rightward represent 

climate patterns preceding 𝐻𝑠 , whereas the converse is true for arrows pointing leftward. 

The letters N, W, E, and S, on top of each plot, stand for northern, western, eastern, and 

southern clusters, respectively. 
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𝐻𝑠 was most affected by IOD and ENSO cycles in the western cluster (Figure 

2.6). Significant correlations with the DMI (Figure 2.6a) and SOI (Figure 2.6b), at 

periodicities ranging from approximately 2 to 7 years, were observed in the western 

cluster from the late 1960s to the early 2000s. In general, positive/negative phases 

of the IOD/ENSO were accompanied by large waves (positive anomalies in 𝐻𝑠) in 

the western cluster during this period, as indicated by upward/downward arrows 

in Figures 2.6a and 2.6b. This pattern can also be noted in the southern cluster, 

corroborating the correlation coefficient analysis. Examples of the relationships 

between 𝐻𝑠 and IOD/ENSO are described as follows. It is worth mentioning that 

the opposite convention in relation to Saji et al. (1999) has been used here for 

positive and negative phases of the ENSO, since they use Niño 3 SST anomalies (El 

Niño [+]; La Niña [-]) and we use the SOI (El Niño [-]; La Niña [+]). Concomitant 

positive IOD and negative ENSO extreme events occurred in 1972 (Saji et al., 1999) 

and 1997 (Saji et al., 1999; Cai et al., 2014). In the first, the IOD was associated with 

𝐻𝑠 in the western and eastern clusters through ~3-year cycles, and in the southern 

cluster through ~2-year cycles (Figure 2.6a). The SOI and 𝐻𝑠 were correlated in the 

western cluster through signals with periodicities of ~3 years (Figure 2.6b). In the 

second concomitant extreme event (1997), 𝐻𝑠 showed correlations with the DMI in 

the western and southern clusters at periodicities of approximately 4 years (Figure 

2.6a), while 3 to 4-year cycles related to the ENSO were highlighted in the same 

clusters (Figure 2.6b). The moderate IOD event of 1982 (Cai et al. 2014) in 

combination with the extreme ENSO event in the same year (Cai et al., 2015) also 

resulted in large waves. Correlations with the DMI and SOI were observed in the 

western cluster (~4-year cycles). Additionally, 𝐻𝑠 and SOI were also correlated in 

the southern cluster (~2-year cycles). The extreme positive IOD event that occurred 

in 1994 (Cai et al., 2014; Saji et al., 1999) presented strong correlations with 𝐻𝑠 in 

the western cluster and moderate correlations in the southern cluster, both at 

periodicities of approximately 4 years (Figure 2.6a). Moderate correlations of 𝐻𝑠 

with the SOI were also noted in 1994, with cycles of approximately 4 years in the 

western and southern clusters and at the seasonal timescale in the southern cluster 

(Figure 2.6b). These might have been triggered by the IOD due to its relationship 
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with the ENSO. Another extreme IOD event took place in 1961, as reported by Saji 

et al. (1999). This had an effect on 𝐻𝑠 only in the southern cluster, at periodicities 

of approximately 3 years (Figure 2.6a). As discussed in the correlation coefficient 

subsection, positive anomalies in 𝐻𝑠 are generally seen during negative/positive 

phases of the IOD/ENSO in the northern cluster. Knowing that El Niño conditions 

prevailed during the extreme ENSO event of 1982, one observes decreases in 𝐻𝑠 in 

the northern cluster in this year, indicated by upward arrows in all timescales with 

significant correlations (Figure 2.6b). Extreme La Niña events occurred in 1988–

1989 and 1998–1999 (Cai et al., 2015). Their signatures can be clearly seen in the 

northern cluster at ~5 and ~2-year cycles, respectively (Figure 2.6b). In contrast, 

downward arrows suggest decreases in 𝐻𝑠 in the southern cluster in 1998–1999. 

The IOD negative phase was rather weak and short during 1988–1989, and stronger 

and longer during 1998-1999. However, signals with cycles of approximately four 

and two years, respectively, were still apparent in the northern cluster during both 

periods, suggesting influence of the ENSO on the IOD. 

Remarkable long-term (longer than 8 years) cycles are noted in the wavelet 

coherence spectra of 𝐻𝑠 with the SAMI in all clusters (Figure 2.7a). Although these 

features are under the influence of edge effects, which means that they should be 

treated with caution, Gong and Wang (1999) reinforce the importance of examining 

the decadal variability of the SAM. Correlations of 𝐻𝑠 with the SAMI at decadal 

timescales were strengthened from the late 1980s onward, with upward arrows 

indicating larger waves associated with positive phases of the SAM. Regarding 

shorter timescales, the strongest correlations of 𝐻𝑠 with the SAMI were found in 

the western cluster, with cycles generally shorter than approximately 4 years. 

Strong correlations at the biannual timescale occurred in the southern cluster 

around the mid-1960s, indicating that positive SAM was accompanied by positive 

anomalies in 𝐻𝑠. These correlations mark the onset of the trend toward the positive 

phase of the SAM, which has been occurring since the mid-1960s (Marshall, 2003). 

The SAMI and 𝐻𝑠  also presented strong correlations in the western cluster at 

seasonal timescale in the late 1950s and late 1960s. In the same cluster, a ~2-year 

cycle was dominant from the early 1980s until the mid-1990s, when larger waves 



36 

 

were associated with negative phases of the SAM. With respect to the ZW3, very 

distinct patterns were observed among the clusters (Figure 2.7b). According to 

Raphael (2004), significant fluctuations of the ZW3 resulted in rapid changes from 

the atmospheric meridional flow to zonal flow in 1986–1987 and 1993–1995. These 

fluctuations coincided with strong correlations of the ZW3 index with 𝐻𝑠  in the 

western cluster at intra-seasonal, seasonal, and biannual timescales. Another 

strong signal at intra-seasonal and seasonal timescales took place in 1996–1997, 

suggesting that larger waves occurred in the western cluster during the migration 

of the atmospheric zonal flow to meridional flow (Raphael, 2004). In the same 

cluster, signals of the annual cycle described by Raphael (2004) appeared in the 

mid-1990s and early 2000s. The main cycle in the eastern cluster also appeared 

around the mid-1990s at the annual timescale. The northern cluster presented 

correlations at inter-annual timescales (2–8 years), with most signals under the 

influence of edge effects. A similar pattern is observed in the southern cluster for 

cycles ranging from 2 to 4 years. 
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(a) 

 

(b) 

Figure 2.7. Squared wavelet coherence spectra of significant wave height with the: (a) SAMI 

and (b) ZW3 index. The 90% confidence levels are represented by thick contours, and 

hatched areas represent the cone-of-influence. In phase and anti-phase signals are 

represented by arrows pointing upward and downward, respectively. Arrows pointing 

rightward represent climate patterns preceding 𝐻𝑠 , whereas the converse is true for arrows 

pointing leftward. The letters N, W, E, and S, on top of each plot, stand for northern, western, 

eastern, and southern clusters, respectively. 
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The PDO index and 𝐻𝑠 were moderately correlated in all clusters (Figure 2.8). 

Despite being under the influence of edge effects, inter-annual PDO cycles (5–8 

years) were significantly correlated with 𝐻𝑠 until the mid-1960s and after the mid-

1990s. PDO cycles ranging from the intra-seasonal up to the biennial timescale 

were also associated with changes in 𝐻𝑠  throughout the period of analysis, 

especially in the western and eastern clusters. 

 

 

Figure 2.8. Squared wavelet coherence spectra of significant wave height with the PDO 

index. The 90% confidence levels are represented by thick contours, and hatched areas 

represent the cone-of-influence. In phase and anti-phase signals are represented by arrows 

pointing upward and downward, respectively. Arrows pointing rightward represent climate 

patterns preceding 𝐻𝑠 , whereas the converse is true for arrows pointing leftward. The letters 

N, W, E, and S, on top of each plot, stand for northern, western, eastern, and southern 

clusters, respectively. 

 

The squared wavelet coherence spectra of the climate indices with the other 

wave parameters (not shown) presented analogous structure to the squared 

wavelet coherence spectra of 𝐻𝑠 with the climate indices. Obviously, some cycles 

were either stronger or weaker than the ones just mentioned, and were either 

longer or shorter. Some of the strong statistically non-significant signals seen in 
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the coherence spectra of the climate indices with 𝐻𝑠  showed statistically 

significance in the squared wavelet coherence spectra of climate indices with the 

other wave parameters. In addition to that, some features noted only in certain 

clusters occasionally became apparent in others. Therefore, only noteworthy 

differences are mentioned below. 

The greatest differences relative to 𝐻𝑠  were generally found in the 

coherence spectra of 𝐷𝑝 with the climate indices. Significant correlations of the 

DMI with 𝐷𝑝 in the western cluster were mostly associated with short-lived IOD 

signals. Substantially strong correlations between the IOD and 90𝑡ℎ𝐻𝑠  in the 

eastern cluster during the 1970s indicate that larger extreme waves occurred in 

association with ~3-year cycles of positive IOD. In the western cluster, longer 𝑇𝑚𝑒𝑎𝑛 

correlated with positive IOD at inter-annual timescales (1.5–3 years) from the early 

1960s to the mid-1970s. Regarding the ENSO, strong correlations with 𝐷𝑝 were 

found in the eastern cluster at seasonal, intra-annual, and annual timescales during 

the extreme 1972 El Niño. These suggest that wave direction rotated counter-

clockwise. Additionally, an 8–14-year energy band in the western cluster spanning 

the whole hindcast period indicated counter-clockwise/clockwise rotation in 𝐷𝑝 

during El Niño/La Niña events. This band was replicated in the southern cluster for 

90𝑡ℎ𝐻𝑠, contributing to decreases in extreme waves during El Niño years. Longer 

𝑇𝑚𝑒𝑎𝑛 was correlated with inter-annual El Niño cycles (1.5–~3 years) in the eastern 

cluster from the late 1950s to the mid-1960s and from the early 1980s to the early 

2000s. Counter-clockwise rotation in 𝐷𝑝 in the northern cluster was associated with 

positive SAM (signals at inter-annual timescales up to ~8 years). Wave periods 

(𝑇𝑚𝑒𝑎𝑛 and 𝑇𝑝) were strongly correlated with the SAMI in all clusters during the 

whole hindcast period. Among all wave parameters, they were the most correlated 

with the SAMI at timescales ranging from intra-seasonal to inter-decadal. In 

general, longer wave periods were associated with positive SAM, excepting in the 

northern cluster. Clockwise rotation in 𝐷𝑝  was strongly correlated with positive 

PDO in the western cluster from the late 1950s to the late 1980s (at mainly inter-

annual timescales). Finally, longer wave periods (𝑇𝑚𝑒𝑎𝑛  and 𝑇𝑝 ) were associated 
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with positive PDO in the western and southern clusters during the 1970s (~2–6-

year cycles). 

The anomalies of wave parameters are enhanced or reduced when climate 

modes coincide in time and frequency. The climate modes have overlapped in 

several periods of time, as can be noted in Figure 2.9, which shows normalised 

anomalies (top) of the climate indices with their corresponding power spectra 

(bottom). The anomalies provide information on the climate mode phases and how 

strong they were. On the other hand, they do not explain the exact percentage of 

variance related to each cycle. As this issue is beyond the scope of this chapter, the 

variance related to each cycle is not analysed. Thus, for the purpose of 

understanding inter-relationships among the climate patterns, correlation 

coefficients (R) were computed for the monthly anomaly time series of their indices 

during the hindcast period (Table 2.1). The largest correlation occurs between the 

SOI and PDO index (R=-0.35), which strongly co-varied in the early 1970s and in 

the 1990s (Figure 2.9c and 2.9e). The negative nature of this correlation is in 

agreement with Mantua et al. (1997). A correlation of R=-0.29 between the SOI and 

DMI reinforces the studies of Schott et al. (2009) and Izumo et al. (2010), and is 

associated with cycles that co-varied at inter-annual timescales, between 

approximately 1.5 and 6 years (Figure 2.9c and 2.9d). Yuan and Li (2008) stated that 

the ZW3 is rather independent from the SAM. However, a statistically significant 

correlation of R=0.21 was found despite the little variability shared by the modes 

(Figure 2.9a and 2.9b). The SAMI and DMI presented a low but statistically 

significant correlation of R=0.09, which is related to cycles that co-varied at 

timescales between 0.5 and 4 years (Figure 2.9a and 2.9d). Raphael (2004) 

suggested a possible relationship between the ZW3 and ENSO, but a statistically 

non-significant correlation of only R=0.06 was obtained here. Correlations between 

the SOI and SAMI are positive but without statistical significance, as previously 

reported by Harley et al. (2010). However, Stammerjohn et al. (2008) showed that 

when positive/negative phases of both the ENSO and SAM occurred 

simultaneously, the high-latitude ice-atmosphere response to the ENSO was 

stronger than when they were not concurrent. 



41 

 

 

 

Figure 2.9. (top) Normalised anomalies of the climate indices with their corresponding 

(bottom) power spectra: (a) SAMI, (b) ZW3 index, (c) SOI, (d) DMI, and (e) PDO index. The 

95% confidence levels are represented by thick contours, and hatched areas represent the 

cone-of-influence. 
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Table 2.1. Correlation coefficients among the climate indices for the period 1958–2001a. 

 SAMI SOI DMI PDO index 

SOI 0.05    

DMI 0.09 -0.29   

PDO index -0.01 -0.35 -0.04  

ZW3 index 0.21 0.06 -0.04 -0.08 

aCorrelations with the ZW3 index comprise the period 1979–2001. Statistically significance 

within 95% is represented by bold font. 

 

2.7 Conclusions 

The influence of climate patterns on the wave climate around New Zealand 

and the surrounding southwest Pacific Ocean has been explored in detail in this 

chapter. The results of a 45-year (1957–2002) wave hindcast were compared to 

atmospheric oscillations over several timescales. First, the mean annual and inter-

annual variabilities of 𝐻𝑠  were computed with the purpose of verifying sites 

susceptible to large variations in relation to average wave conditions. Then, the 

PDO, ENSO, IOD, SAM, and ZW3 modes were correlated with five simulated wave 

parameters. The interactions of 𝐷𝑝 , 𝑇𝑝 , 𝑇𝑚𝑒𝑎𝑛 , 𝐻𝑠 , and 90𝑡ℎ𝐻𝑠  with the climate 

modes were assessed by correlation coefficients and squared wavelet coherence 

spectra.  

In general, low to moderate correlations between climate patterns and 

wave parameters were obtained. This suggests that many factors contribute to the 

variability of the wave climate in the region of study. Positive correlations of the 

wave parameters with the SAMI in the highest latitudes of the regional domain 

arise from the strengthening of westerly winds generated by stronger pressure 

gradients between 40ºS and 65ºS during its positive phase. The SAM is the most 

important climate pattern for wave direction, which rotates clockwise south of the 

country and counter-clockwise along and off the west and north coasts during 

positive SAM. The zonal wind stress anomaly induces larger waves along and off 

the west and south coasts of New Zealand during negative phases of the ZW3. The 

ENSO also plays a significant role, with northeasterly winds producing larger waves 
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to the north of New Zealand during La Niña phases, while southwesterly winds 

cause larger waves around the rest of the country during El Niño events. Positive 

phases of the PDO contribute to increasing wave height and wave period mainly 

along and off the west and south coasts. The influence of the IOD on the wave 

climate is also more significant during its positive phase, when wave periods and 

wave heights increase around most parts of the country (except to the north). 

Correlations of 𝐻𝑠 with the SOI using seasonally averages were also conducted (not 

shown) and presented substantially higher statistically significant values than 

monthly averages. An example that reinforces such stronger correlations is the 

warming in the tropical Indian Ocean due to the ENSO, which takes approximately 

3 to 6 months to occur (Deser et al., 2010). According to Harley et al. (2010), 

seasonally averaged SOI values are more suitable for correlations with other 

parameters than monthly averaged values, since the latter produce a non-coherent 

pattern due to the inherent noisiness of its time series at short timescales. This issue 

is beyond the scope of the present chapter, but deserves further investigation in 

future studies. 

The correlation coefficient analysis provided a good overview, in terms of 

spatial distribution, of the relationships between the wave parameters and different 

phases of the climate modes. However, information on how these relationships 

have evolved in time cannot be extracted from such analysis. Thus, this was 

accomplished by using wavelet coherence spectra. First, a cluster analysis was 

conducted to divide the regional domain into distinct wave climates. This enabled 

the assessment of the dominant modes of variability related to each climate pattern 

through wavelet coherence spectra. The latter revealed that the wave parameters 

exhibited remarkable cycles throughout the hindcast period. Strong correlations at 

inter-annual timescales were identified during ENSO and IOD extreme events. The 

SAM decadal variability showed a substantial relationship with the wave 

parameters, especially from the late 1980s to the early 2000s. A number of authors 

(e.g., Young et al., 2011, 2012; Wentz et al., 2007) have found increasing trends in 

wave height and wind speed. Whether these trends are related to either long-term 

trends or atmospheric oscillations varying at decadal timescales is an issue that 
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remains open. Our results support the relationship between increases in wave 

height and the intensification of the SAM in recent decades. Nevertheless, decadal 

timescales are in a region of the spectrum that does not allow us to make 

conclusive inferences. A longer-duration dataset is needed to further investigate 

this question. The SAM also affected the wave parameters at seasonal, annual, and 

inter-annual timescales. The western cluster was the most impacted by all climate 

patterns tested. During significant fluctuations of the ZW3, when the atmospheric 

flow rapidly changed from meridional to zonal and vice versa, strong correlations 

with the wave parameters were highlighted at seasonal and intra-seasonal 

timescales. The PDO presented the weakest correlation with the wave parameters, 

influencing more the peak wave direction with clockwise rotation during its positive 

phase. 

The MAV and IAV results revealed high variability in coastal areas, especially 

in sheltered regions where little or no significant trend in 𝐻𝑠  was identified. In 

general, an increasing trend in 𝐻𝑠 was observed around the country, with values 

varying between 1 and 6 cm/decade near the shoreline. Correlation coefficients 

confirmed that coastal areas are generally more affected by the climate modes than 

offshore regions, and consequently are more vulnerable to climate changes. These 

results suggest, for instance, that habitats such as the mangrove forests, which 

extend down to approximately 38ºS in New Zealand, might experience greater 

stress during certain phases of atmospheric oscillations, since successful seedling 

establishment is sensitive to wave energy (Balke et al., 2013). However, as shown 

by Lovelock et al. (2010), atmospheric oscillations can also favour mangrove forests 

expansion. Changes in the wave climate might impact on the physiological 

structure and survivorship of marine organisms. Kelps, for example, differ in 

morphology according to their wave exposure (Nanba et al., 2011), and 

relationships between storm waves during ENSO events and mortality of kelp 

forests have been documented by Dayton et al. (1992). In New Zealand, Schiel and 

Thompson (2012) suggested that the growth rate of kelp is associated with wave 

height and wave direction.  
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In terms of coastal engineering, beach erosion, which increasingly has been 

shown to vary around the Pacific (Barnard et al., 2015) and in New Zealand with 

wave climate variations (e.g., de Lange, 2001), represents a major problem for the 

expanding coastal population of the country. Our results also provide further 

support to the existence of climate-cycle driven temporal patterns in sand spit 

erosion and accretion, which have occurred in opposing phases between the east 

and west coasts of the upper north island of New Zealand (Bryan et al., 2008). The 

opposing cycles of erosion and accretion between the Ohiwa spit and Mokau spit 

in Bryan et al. (2008), which are located in the northern and western clusters 

(locations given in Figure 2.1), respectively, were hypothesised to be caused by the 

shift to positive PDO in the early 1980s. Our results suggest that opposing changes 

to wave heights in the western and northern clusters could more likely be driven 

by changes to the IOD and ENSO, since both showed a strengthening of the signal 

in these sectors during this time period (Figures 2.6a and 2.6b). The SOI also 

becomes more negative during this time (Figure 2.9c), which is correlated with an 

increase in wave height on the west coast and decrease on the northeast coast. The 

increase in the correlation of 𝐻𝑠 with the DMI in the west coast (Figure 2.6a), which 

occurred at the 4-year cycle at the beginning of the 1980s, might also have 

contributed to the observed increased erosion. Erosion processes are known to be 

nonlinear, with recovery timescale much longer than the accretion timescale (Yates 

et al., 2009), and so a period of severe erosion may not be balanced by a period of 

severe accretion in the same way as a period of minor erosion is compensated by 

a period of mild accretion. Therefore, a more variable wave condition could explain 

the increase in beach erosion. The PDO is not a strong driver of wave height on the 

northeast coast, but the correlation is generally opposite between the northern and 

western clusters. Spits also accrete by alongshore transport (driven by wave angle 

changes) in addition to cross-shore transport (driven by wave height changes), and 

so the northeast coast accretion during the 1980s could be associated with the shift 

to wave directions more toward the north that occur during the positive phases of 

the PDO in the northern cluster (Figure 2.4). 
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This chapter showed the importance of considering multiple climate modes 

to understand the drivers of changes in wave parameters broadly, since the modes 

superimpose and occasionally trigger each other. We recommend that more work 

be undertaken on interactions between two or more atmospheric oscillation modes 

in periods of time that modes share strong anomalies. Nevertheless, these results 

clearly show the variability of the wave climate around the diverse coastline of New 

Zealand. They can provide a proxy with which to improve our ability to predict the 

impacts of future climate change on the wave climate. 
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CHAPTER 3: The extreme wave climate around New 

Zealand 

 

3.1 Introduction 

Extreme wave events have been recognised as a major issue for safety in 

both coastal and offshore regions. With the ongoing concerns about changes in 

the frequency and magnitude of cyclones across the globe (Simmonds and Keay, 

2000), and the high vulnerability of coastal areas to wave attack as the sea level 

rises (Hannah, 2004; Hannah and Bell, 2012; Hauer et al., 2016), there is a need to 

understand and predict the behaviour of extreme wave events. 

Climatologies have generally been established for the mean state of the 

ocean, whereas the equivalent for extreme events is not as common despite the 

valuable information that these can provide for the management of coastal erosion 

and flooding (Horrillo-Caraballo et al., 2012), for example. One impediment to 

examining extreme values is that the different statistical characteristics of extreme 

and non-extreme wave events (Young et al., 2012) require them to be analysed 

separately. 

One of the most common ways to assess extreme wave events is to 

calculate return-period values for significant wave height (𝐻𝑠 ) (e.g., Alves and 

Young 2003; Guedes Soares and Scotto, 2004). The 100-year return value of 𝐻𝑠, for 

example, is the 𝐻𝑠  value exceeded, on average, once in 100 years (Carter and 

Draper, 1988). Such values are required for engineering design because extreme 

waves can have major impacts on safety, operability of shipping and structures, 

and the economics of offshore facilities (Young et al., 2012). Several studies have 

estimated return values of 𝐻𝑠 on a global spatial scale using modelled results (e.g., 

Caires and Sterl, 2005), satellite altimetry data (e.g., Izaguirre et al., 2011; Vinoth 

and Young, 2011; Young et al., 2012) and buoy measurements (e.g., Hemer, 2010). 

However, global models and satellite measurements do not generally provide 

sufficiently high-resolution data for predicting return values precisely near coastal 

areas. Although many local studies have been conducted for specific areas (e.g., 
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the Portuguese coast (Ferreira and Guedes Soares, 1998), the Persian Gulf (Moeini 

et al., 2010), the Australian region (Hemer et al., 2017), and the Kuwaiti waters 

(Neelamani et al., 2007)), several regions in the world still lack investigation, 

especially in the Southern Hemisphere (e.g., New Zealand). 

The international interest in the water bodies surrounding New Zealand has 

grown with the implementation of various trade agreements (World Bank Group, 

2016), which increase traffic along key shipping routes, and with the recognised 

importance of the Southern Ocean in regulating the Earth's climate (Lavergne et 

al., 2014). New Zealand is an island nation highly influenced by its surrounding 

oceans. The country lies at the mid-latitudes of the Southern Hemisphere and is 

affected by a range of atmospheric systems. Large waves, generated by 

extratropical cyclones, propagate without major obstacles through the Southern 

Ocean, and affect a large portion of the New Zealand coastline (Godoi et al., 2016; 

Gorman et al., 2003a, 2003b). Additionally, waves formed by tropical cyclones also 

play a significant role, especially on the north coast. A recent study (Godoi et al., 

2016) showed the influence of climatic patterns on the average wave climate 

around New Zealand in addition to an increasing trend in 𝐻𝑠 along the coast. New 

Zealand’s coastal population has been growing in the last decades (Bryan et al., 

2008), and therefore, improved predictions for coastal planning are required to 

deal with the threat posed by extreme wave events in this complex environment.  

The paucity of wave data around New Zealand has made it difficult to 

accurately provide an extreme wave climatology (synthesis of extreme wave 

conditions based on long-term statistics) and conduct extreme wave predictions 

(Stephens and Gorman, 2006). Buoy measurements are generally taken as ground 

truth (e.g., Hemer, 2010). However, short duration records and insufficient number 

of buoys preclude reliable estimates of return values in many cases. Satellite 

altimetry data can also be problematic; among the drawbacks is the temporal 

coverage of measurements: the infrequent re-visit (typically 10 days) of the satellite 

to a particular location makes it difficult to adequately capture storm peaks. 

Stephens and Gorman (2006) conducted an extreme wave analysis for six sites off 
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the New Zealand coast by using results from a 20-year hindcast, providing evidence 

of the importance of modelled results when a long dataset is required. 

The accuracy of extreme predictions depends on the accuracy and length 

of input data (Stephens and Gorman, 2006). Using results from the 45-year 

(September/1957–August/2002) high resolution wave hindcast (hereafter 45WH), 

conducted by Gorman et al. (2010), we have created an extreme wave climatology 

for the New Zealand continental shelf waters, and analysed trends and patterns in 

extreme events. In order to complement our study, the extreme estimates carried 

out by Stephens and Gorman (2006) have been extended to shallower waters. The 

45WH covers a considerably longer time period than the hindcast used by 

Stephens and Gorman (2006) and has higher space-time resolution in shallow 

waters, which make the new modelled data more suitable for predicting extreme 

events and establishing an extreme wave climatology. 

 

3.2 Dataset 

In order to conduct the extreme wave analysis, modelled time series of 𝐻𝑠 

and mean wave period (𝑇𝑚−10, hereafter 𝑇𝑚𝑒𝑎𝑛) were extracted from the regional 

grid domain (Figure 3.1) of the 45WH. 𝑇𝑚𝑒𝑎𝑛 was chosen over the peak wave period 

(𝑇𝑝) because the latter was sometimes undefined in the hindcast data because of 

missing values close to the shore. As 𝑇𝑚−10 is more weighted to lower frequencies 

than 𝑇𝑚−01 and 𝑇𝑚−02, it is more representative of swell, and so a better proxy for 

𝑇𝑝. Only the full calendar years (1958–2001) of the 45WH have been used. The 

45WH was conducted using the WAVEWATCH III v. 3.14 model (Tolman, 2009) 

forced with 1.125º spatial resolution wind and ice fields from the ERA-40 reanalysis 

project (Uppala et al., 2005) on a global grid at 1.125º × 1.125º resolution. One-

way nested within the global grid, a regional grid domain, with 0.125º × 0.09375º 

(approximately 10 km) resolution, encompassed part of the Tasman Sea and parts 

of the Southern and southwestern Pacific oceans. The regional grid provided a 

higher-resolution representation of nearshore wave processes, although the same 

ERA-40 inputs were used as for the global simulation. Mean wave parameters were 

output at 1 h and 3 h intervals for the regional and global domains, respectively. 
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These have been validated against buoy measurements, located mainly around 

New Zealand and North America, and satellite altimetry data, obtained from the 

TOPEX/Poseidon, ERS1 and ERS2 missions. A mean root-mean-square error of 0.50 

m and mean correlation of 0.83 were obtained from comparisons of 𝐻𝑠 between 

the regional results and New Zealand buoy data (Godoi et al., 2016; Gorman et al., 

2010). Comparisons to altimeter data over the regional hindcast area show positive 

bias in 𝐻𝑠, of up to +0.3 m, in offshore waters of the Tasman Sea and Southern 

Ocean, and negative bias near the coast, of down to -0.3 m. The spatial pattern of 

bias is similar to the results of Chawla et al. (2013). Additional details of the model 

simulation and its validation can be found in Gorman et al. (2010) and Godoi et al. 

(2016).  

 

 

Figure 3.1. Regional grid domain of the 45-year wave hindcast. Green dots represent the 

model grid points on the 50 m isobath, whereas crosses indicate the buoy locations. NI and 

SI stand for North Island and South Island, respectively. 

 

Large waves were generally underestimated by the model in comparison to 

buoy measurements (Gorman et al., 2010). This is consistent with the triple-

collocation study of Caires and Sterl (2003), who showed that ERA-40 tended to 

underpredict high wind speeds compared to ERS-1 and TOPEX measurements, 

while the wave model correspondingly underpredicted the upper range of 

significant wave heights from buoy and altimeter records. The underestimation of 

large waves in the 45WH may have arisen from two factors. The first is the relatively 
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low space-time resolution of the ERA-40 winds, which does not take abrupt 

changes in direction and substantial wind speed gradients into account (Godoi et 

al., 2016); and the second is the use of the formulation proposed by Tolman and 

Chalikov (1996) in the hindcast, which underestimates the energy input during 

intense storm conditions dominated by young wind-sea (Ardhuin et al., 2007). 

Uppala et al. (2005) observed that the detection of tropical cyclones in the Southern 

Hemisphere exceeded 90% in comparison to a best-track dataset (Neumann, 1993) 

for the period from 1973 onwards. However, the percentages of detection in ERA-

40 for the periods 1958–66 and 1967–72 were 75% and 82%, respectively. 

Furthermore, ERA-40 tends to underestimate wind speeds above 14 m/s (Caires et 

al., 2004). Regarding the second factor, Stopa et al. (2016) compared the 

performance of various sets of parameterisations for the same wind input. The ST4 

parameterisation (Ardhuin et al., 2010) did best across the 𝐻𝑠  range, while ST2 

(Tolman and Chalikov, 1996) had high positive bias in the lower range, decreasing 

for larger wave heights. This seems consistent with insufficient swell dissipation and 

underestimation of wind-sea, in ST2. It also shows that while ST4 is a better choice 

now that it is available, the deficiencies of ST2 are not as significant for extreme 

climate as for mean climate. In order to determine properly the individual 

contributions of the wind fields and the set of parameterisations used in the 

present work to the underestimation of extreme waves, a set of tests would be 

required. These include doing several model runs using the same set of 

parameterisations combined with wind fields from different sources (not only ERA-

40), as well as testing different sets of parameterisations forced with ERA-40 wind 

fields (similar to what was done by Stopa et al. (2016)). Then, the results should be 

compared to observed data. Another way of validating a specific set of 

parameterisations is to test them against other sets that have been validated 

already. Conducting these tests is beyond the scope of this thesis. 

Although the underestimation of large waves is acknowledged, the lack of 

long buoy records to account for extreme events in the study region forced the use 

of uncalibrated modelled data in our study. A possible solution for calibrating the 

model data would have been estimating an approximate bias for extreme 𝐻𝑠 from 
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comparisons between model and buoy data. However, implementing this solution 

in shallow waters based on just a few buoy records is likely to lead to erroneous 

calibration, especially when land-sheltering effects prevail due to buoy proximity 

to the coast and headlands. As a consequence of these effects in addition to short 

buoy records, the bias varies considerably around the coast, and so would have 

caused spurious calibrations (as shown by Stephens and Gorman (2006)). Despite 

the recognised underprediction of extreme events by the model, its results still 

allowed exploration of the spatial distribution of extreme events, their trends and 

clustering patterns. Although a calibration procedure was not performed, model 

and buoy data were compared in terms of the probability of occurrence of 

extremes at the locations where buoy data do exist and span more than 10 years 

(Figure 3.1). 

Buoy records from twelve sites around New Zealand were analysed 

regarding their suitability for extreme wave predictions (not shown), and only three 

of them (Table 3.1, Figure 3.1) were considered to be of sufficiently long duration. 

The others were short records due to either short recording periods or large gaps 

of missing data after spike removal, hence they will not be discussed further. Buoy 

data whose 𝐻𝑠 values were out of the range 0–25 m were considered spikes. 𝐻𝑠 

time series were extracted from the buoy and model data at the coordinates shown 

in Table 3.1. 
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Table 3.1. Buoy deployments. NIWA stands for National Institute of Water and 

Atmospheric Research Ltd. 

Site 
Longitude 

(º) 

Latitude 

(º) 
Recording period Source 

Baring Head 174.8467 -41.4022 
03 Aug 1998 – 19 

Dec 2013 
NIWA 

Banks 

Peninsula 
173.3348 -43.7558 

06 Feb 1999 – 28 

Feb 2014 
NIWA 

Maui 173.45 -39.55 
31 Aug 1976 – 30 

Apr 1987 

Shell, BP, Todd 

University of 

Auckland 

 

Besides the 𝐻𝑠  time series extracted at the buoy sites, two additional 

datasets from the model data have been used to assess extreme events, the annual 

maxima 𝐻𝑠 and Peaks-Over-Threshold (POT) data. The latter are defined here as 

maxima 𝐻𝑠  from independent storms, with maxima 𝐻𝑠  being considered only if 

above the 99th percentile (of the full hourly dataset) and separated by a minimum 

interval of 72 hours. The set of maxima of 𝐻𝑠 identified by the POT approach and 

the annual maxima 𝐻𝑠 are also referred to as “extreme 𝐻𝑠”. Due to computational 

costs, POT data have been produced only at 247 model grid points on the 50 m 

isobath around New Zealand (Figure 3.1). 

 

3.3 Extreme wave climatology 

Monthly and seasonal climatologies of extreme events over the 44-year 

(1958–2001) period were defined using the POT dataset on the 50 m isobath. 

Averages of extreme 𝐻𝑠 and number of extreme wave events were computed for 

the 12 months and 4 seasons over all years (summer: Dec, Jan, Feb; autumn: Mar, 

Apr, May; winter: Jun, Jul, Aug; spring: Sep, Oct, Nov). The mean annual and inter-

annual variabilities (MAV and IAV, respectively) of extreme 𝐻𝑠 were also calculated. 

The MAV of extreme 𝐻𝑠 was computed by normalizing the average of the annual 

standard deviation of extreme 𝐻𝑠 by the annual average of extreme 𝐻𝑠, while the 
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IAV was determined by the standard deviation of the annual means of extreme 𝐻𝑠 

normalised by the overall mean of extreme 𝐻𝑠 (Godoi et al., 2016; Stopa et al., 2013). 

Lastly, monotonic trends in the values of extreme 𝐻𝑠 and in the number of extreme 

events were evaluated using the Mann-Kendall test (Mann, 1945; Kendall, 1955). 

The magnitude of the trends was computed by employing the Theil-Sen estimator 

(Theil, 1950; Sen, 1968). Annual average extreme 𝐻𝑠 (using POT data) and annual 

maxima 𝐻𝑠 were used to calculate trends in the magnitude of extreme 𝐻𝑠, whilst 

trends in the number of events were computed using time series of the annual 

number of extreme 𝐻𝑠 peaks (calculated using the POT data).  

Figure 3.2 shows the 44-year (1958–2001) mean annual maxima 𝐻𝑠 and its 

corresponding 𝑇𝑚𝑒𝑎𝑛 (44-year mean annual 𝑇𝑚𝑒𝑎𝑛 associated with annual maxima 

𝐻𝑠), providing an overview of different extreme wave climates around New Zealand. 

The spatial pattern of mean annual maxima 𝐻𝑠 (Figure 3.2a) closely resembles the 

mean wave climate (Godoi et al., 2016; Laing, 2000; Pickrill and Mitchell, 1979), in 

which the roughest seas occur in southern New Zealand, associated with largest 

𝑇𝑚𝑒𝑎𝑛  (Figure 3.2b), and calmer conditions occur in regions sheltered from 

southwesterly swells. Such swells are obstructed by the landmass, creating a 

distinctive shadow zone and relatively smaller 𝑇𝑚𝑒𝑎𝑛 to the north of the country 

(Figure 3.2b). The largest waves on the north coast are generally associated with 

tropical cyclones (Gorman et al., 2003a), and are considerably less frequent than 

the steady swells, generated by extratropical cyclones, that hit most other parts of 

the New Zealand coastline. 
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Figure 3.2. Forty-four year (1958–2001) mean (a) annual maxima significant wave height; 

(b) mean wave period associated with annual maxima significant wave height. 

 

A cluster analysis was performed to thoroughly characterise extreme wave 

climates around the country (Figure 3.3) by using the 44-year mean annual maxima 

𝐻𝑠  (44𝐻𝑠 ) and its corresponding 𝑇𝑚𝑒𝑎𝑛  (44𝑇𝑚𝑒𝑎𝑛 ) (standardised to a Gaussian 

distribution – zero mean and unit variance) and the k-means algorithm (Hartigan 

and Wong, 1979; Kanungo et al., 2002). The cluster analysis jointly examines the 

input parameters and distinguishes clusters by grouping data with similar 

characteristics. Each colour of Figure 3.3 represents one cluster, and all grid points 

it comprises are considered to have similar wave climate. The red cluster (spatial 

averages of 44𝐻𝑠 and 44𝑇𝑚𝑒𝑎𝑛 equal to 8.94 m and 12.09 s, respectively – Figure 

3.3a) represents areas dominated by large swells originated in the Southern Ocean. 

A shadow zone appears as soon as the propagation of these swells begins to be 

interrupted by the New Zealand landmass (grey cluster – spatial averages of 44𝐻𝑠 

and 44𝑇𝑚𝑒𝑎𝑛  equal to 7.18 m and 11.11 s, respectively – Figure 3.3a). Further 

sheltering, associated with a lower-energy wave climate (orange cluster – spatial 

averages of 44𝐻𝑠 and 44𝑇𝑚𝑒𝑎𝑛 equal to 5.97 m and 9.87 s, respectively – Figure 

3.3a), is observed in the regions affected by a more pronounced refraction of 

southwesterly swells (on the east and west coasts), or where they are blocked by 

the landmass (to the north of the northern coast). The most sheltered zone, 
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dominated by low (or infrequent large) swells and local wind-sea waves, is 

represented by the blue cluster (spatial averages of 44𝐻𝑠 and 44𝑇𝑚𝑒𝑎𝑛 equal to 2.69 

m and 8.18 s, respectively – Figure 3.3a). The five clusters in Figure 3.3b provide 

similar information, but also show an additional low-energy wind-sea-wave-

dominated environment in sheltered embayed areas (yellow cluster - spatial 

averages of 44𝐻𝑠  and 44𝑇𝑚𝑒𝑎𝑛  equal to 1.88 m and 6.94 s, respectively). The 

patterns described can also be observed in Figure 3.2a. Taking into account both 

the cluster analysis results (Figure 3.3) and the long-term means (Figure 3.2), as well 

as the wave climate classification by Pickrill and Mitchell (1979) and Godoi et al. 

(2016), we divide the regions immediately adjacent to the coastline into four main 

extreme wave climates. These are basically demarcated by the coastline orientation, 

and can be roughly related to the four cardinal directions (north, east, south, and 

west). Thus, the analyses have been conducted focusing on these four main wave 

climates. 

 

 

Figure 3.3. Cluster analysis results using 44-year (1958–2001) averages of annual maxima 

𝐻𝑠  and corresponding mean wave periods (a) 4 clusters; (b) 5 clusters. Each colour 

represents one cluster. 

 

The annual average of extreme wave events was calculated at the model 

grid points on the 50 m isobath using POT data (Figure 3.4). Its values varied in the 

range of 2.8–6.4 events per year in the period 1958–2001, with the highest values 

found in the region between the two main islands of New Zealand. A large number 

of events also took place on the northeastern part of the country and on the central 
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western coast of the South Island, meaning that extreme events were more closely-

spaced in these regions. The frequency of extreme events is highly dependent on 

the time of the year (shown next) and coastline exposure to generating regions. 

 

 

Figure 3.4. Annual average number of extreme wave events at the model grid points on 

the 50 m isobath (calculated using POT data). 

 

Monthly climatologies of extreme wave events (magnitude of 𝐻𝑠  and 

number of events) calculated using the POT data can be found in Figure 3.5 and 

Figure 3.6. The southwestern and southern coasts received the most energetic 

waves followed by the northwestern coast. This can be associated with extratropical 

cyclones generated by the westerly air flow in mid-latitudes, which produce large 

wave events in all months. The southernmost region of the North Island also 

showed intense extreme wave activity throughout all months, which can be 

associated with southerly swells. The mildest extreme waves were generally found 

in the sheltered strait between the North and South islands, where southwesterly 

swells are blocked by the landmass. There was little variation throughout the 

seasons in the spatial pattern of extreme 𝐻𝑠 (not shown). Despite that, 47% of the 

examined sites received the largest waves in winter, 33% in autumn, 11% in summer, 

and 9% in spring. There was a remarkable contrast in the frequency of extreme 

wave events between the summer and winter months (Figure 3.6). Essentially the 
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whole country was affected by a great number of closely-spaced extreme 𝐻𝑠 in 

winter time, whereas the opposite was true for summer. In fact, the highest 

frequency of events on the west and south coasts occurred in May (an autumn 

month), while on the east and north coasts it prevailed in June and July, respectively. 

The frequency was also high in most parts of the coastline in August. On the other 

hand, extreme events were least frequent in January and February. Although the 

wave intensity did not change considerably throughout the year, extreme events 

were more commonly observed from May to August. This means that there is a 

higher chance of erosion due to sequences of storms during those months, as well 

as a higher chance of extreme events coincide with a high tide, leading to multi-

hazard effects. 
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Figure 3.5. Monthly climatology of extreme 𝐻𝑠  calculated using POT data on the 50 m 

isobath. 
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Figure 3.6. Monthly climatology of the number of extreme wave events calculated using 

POT data on the 50 m isobath. 

 

Like the MAV of mean 𝐻𝑠 (Godoi et al., 2016), the MAV of extreme 𝐻𝑠 was 

greatest in regions sheltered from southerly swells, emphasising the role played by 

locally-generated storms (Figure 3.7a). Extreme waves generated by tropical 

cyclones propagating to the north of New Zealand hit the north coast, especially 

in summer (Gorman et al., 2003a), contributing to the large variability in the region. 

The largest IAV (Figure 3.7b) was found in the central north coast, denoting a 

relationship with La Niña-like effects (stronger northeasterly winds to the north of 

New Zealand). The east coast of the South Island had also relatively large IAV, which 

might be related to the Southern Annular Mode (SAM). Positive phases of the SAM 
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result in strengthened westerly winds in the Southern Ocean (Kushner et al., 2001; 

Marshall, 2003), and a trend toward its positive phase has been detected since the 

mid-1960s (Marshall, 2003). 

 

 

Figure 3.7. (a) Mean annual variability of extreme 𝐻𝑠 ; (b) Inter-annual variability of extreme 

𝐻𝑠 . Both statistics were calculated using POT data on the 50 m isobath. 

 

Trends in extreme 𝐻𝑠 calculated from both annual maxima 𝐻𝑠 (Figure 3.8a) 

and the annual average extreme 𝐻𝑠 (computed using the POT data) (Figure 3.8b) 

showed some similarities regarding the spatial distribution along the coast. 

Notwithstanding, the ranges of magnitude of their trends presented notable 

distinction, varying from -2.09 to 3.43 cm/yr in the first (Figure 3.8a) and from -0.96 

to 0.91 cm/yr in the second (Figure 3.8b). Only statistically significant trends at the 

95% confidence level are displayed. There was no statistically significant trend in 

extreme 𝐻𝑠 at most locations around the New Zealand coast. Increasing extreme 

𝐻𝑠 occurred on the northeastern part of the South Island, while a negative trend 

was observed in part of the west coast of the South Island in both datasets. Notable 

increasing trends in annual maxima 𝐻𝑠  were also detected on the southeastern 

coast (Figure 3.8a). Such trends and the increasing extreme 𝐻𝑠 observed on the 

northeastern coast of the South Island are consistent with the positive trend in the 

SAM, which has led to the strengthening of the westerly winds in the Southern 

Ocean (Gillett and Thompson, 2003; Hemer, 2010; Marshall, 2003; Schott et al., 
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2009). Stronger westerly winds generate more intense extratropical cyclones, which 

also justify the positive trends in the number of extreme events on the south and 

east coasts (Figure 3.8c). These trends indicate that extreme events became more 

frequent over the 44 years (1958–2001) analysed. Quantitatively, 33.60% of the POT 

data showed positive trends in the annual number of extreme events, 65.59% 

presented no statistically significant trends, and only 0.81% showed negative 

trends. Regarding the trends in the annual average extreme 𝐻𝑠, 2.02% of the sites 

on the 50 m isobath had positive trends, whilst 6.48% had negative trends. Only 

increasing wave heights, varying mostly in the range of 1–6 cm/decade along the 

New Zealand coastline, were documented by Godoi et al. (2016) when the mean of 

the whole spectrum of waves was analysed. This supports the idea that extreme 

and mean wave conditions should be treated separately, as done by Ruggiero et 

al. (2010). 
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Figure 3.8. Monotonic trends in (a) annual maxima 𝐻𝑠 ; (b) the annual average extreme 𝐻𝑠 ; 

(c) the number of extreme wave events. Trends in (a) were computed for the whole regional 

domain of the 45-year wave hindcast, whereas in (b) and (c) they were calculated using POT 

data on the 50 m isobath. Only statistically significant values at the 95% confidence level 

were plotted. Significance was computed using p-value. 

 

3.4 Extreme value analysis 

Extreme value theory has been widely used for estimating return values 

from 𝐻𝑠 datasets (e.g., Caires and Sterl, 2005; Hemer, 2010; Izaguirre et al., 2011; 

Méndez et al., 2006, 2008; Menéndez et al., 2009; Vinoth and Young, 2011). 

Although several methodologies are available, there is no a universal approach that 
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suits all datasets. However, there are two commonly-accepted methods in general 

use: the generalised extreme value (GEV) model fitted to annual maxima (AM), and 

the generalised Pareto distribution (GPD) fitted to peaks-over-threshold (POT) 

(Coles, 2001). The reader is referred to the following literature for details of extreme 

value theory and the limitations and advantages of each method, Caires and Sterl 

(2005), Coles (2001), Ferreira and Guedes Soares (1998), Holthuijsen (2007), 

Mathiesen et al. (1994), Stephens and Gorman (2006), Vinoth and Young (2011), 

and Young et al. (2012).  

The main drawbacks of the two aforementioned techniques are that the 

AM-GEV method requires long datasets to provide satisfactory estimates, not 

being practical for many oceanographic purposes (Young et al., 2012), whereas the 

POT-GPD method needs arbitrary thresholds to be established, which can be 

problematic in certain circumstances (Mazas and Hamm, 2011). Firstly, identifying 

stability in the shape and scale parameters of the GPD is not always an easy task 

and requires experience. Secondly, one should ideally select the lowest threshold 

at which the GPD is valid, because higher thresholds generate fewer peaks with 

which the GPD parameters can be estimated, hence reducing the confidence in the 

return values (Caires and Sterl, 2005; Coles, 2001). By selecting a threshold lower 

than the lowest threshold at which the GPD is valid, non-extreme peaks (i.e., peaks 

that do not follow an extreme distribution) are included in the analyses, resulting 

in underestimated return values. Considering the duration (44 years) of our 

datasets, both methods seem to be reasonable candidates, hence they have been 

adopted here. In the case of the POT approach, a long dataset allows us to choose 

a high threshold in order to avoid its underestimation and ensure satisfactory 

fitting of the model cumulative distribution function (CDF) to the empirical CDF. 

Caires and Sterl (2005) state that if the GPD model is valid for peaks over a given 

threshold, it is also valid for peaks over higher thresholds with the same shape 

parameter and an adjusted scale parameter. The selected threshold (discussed 

below) provided about 3–6 𝐻𝑠  peaks per year at the 247 sites along the 50 m 

isobath, which is a typical number for extreme value analyses of environmental 

variables (e.g., Coles, 2001). 
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The use of percentiles to select thresholds is a common practice when 

dealing with several geographical locations and sufficiently long datasets. Different 

percentiles have been used in the literature, as, for example, the 90th and 97th used 

by Caires and Sterl (2005), the 90th and 93rd adopted by Vinoth and Young (2011), 

and the 99.5th used by Méndez et al. (2008). Here, the 99th percentile was selected 

to identify extreme events using the POT approach. As specified in section 3.2, the 

POT data are defined as maxima 𝐻𝑠 (above the 99th percentile) from independent 

storms separated by a minimum interval of 72 hours. The 72-hour interval ensures 

independence between events, and was based on previous work, such as Alves and 

Young (2003), Méndez et al. (2006, 2008), and Stephens and Gorman (2006). 

Shorter intervals have also been chosen in the literature, such as the 48-hour 

interval considered by Harley et al. (2010) and Swail et al. (2006). The extreme value 

theory requires identical distribution of observations, which implies that waves 

generated by different atmospheric sources (e.g., cyclone, anti-cyclone, and trade 

winds) should be treated separately (Vinoth and Young, 2011). Given the number 

of sites and the relatively long period involved in the present analysis, it was not 

possible to meet the identical distribution criterion (also the case in other studies, 

such as Alves and Young (2003) and Stephens and Gorman (2006)). Nevertheless, 

the coastline orientation facilitates, to a certain extent, that waves generated by 

different atmospheric sources be separated into different populations, since 

weather systems affect some coasts more than others. 

Finally, 𝐻𝑠  return values were estimated for return periods of up to 100 

years in the whole regional grid domain using the AM-GEV technique, and at the 

model grid points on the 50 m isobath using the POT-GPD approach. Both extreme 

models (GEV and GPD) were fitted to extreme 𝐻𝑠 (annual maxima and POT data, 

respectively) employing the maximum likelihood method. 

Very similar 100-year 𝐻𝑠 return values were estimated by the two methods 

at the model grid points on the 50 m isobath (Figure 3.9). Their estimates were 

compared using two statistical metrics, the Pearson’s correlation coefficient (R) and 

root-mean-square error (RMSE). Although the largest return values were slightly 

overestimated by the AM-GEV method in comparison to the POT-GPD method, 
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shown by the deviation of the points from the line of equivalence (1:1) at highest 

quantiles (Figure 3.9), a high degree of correlation was found (R=0.99) in addition 

to a relatively low RMSE (RMSE=0.17 m), meaning satisfactory agreement between 

the two datasets. Thus, the 100-year 𝐻𝑠 return value estimates calculated at the 

model grid points along the 50 m isobath are shown only for the POT-GPD method 

(Figure 3.10a). The largest waves were estimated on the southwestern coast, 

followed by the west coast of the North Island. The southern and northeastern 

parts of the North Island also showed large wave estimates. On the other hand, the 

lowest estimates were obtained near the coastlines surrounding the strait between 

the two main islands (Cook Strait). The spatial pattern shown by the 100-year return 

values is similar to that found for the mean conditions, as seen in Godoi et al. (2016). 

Given the satisfactory agreement between both approaches for different wave 

climates along the 50 m isobath, it is expected that the other model grid points of 

the regional domain behave likewise. Thus, 100-year 𝐻𝑠  return values were 

estimated for the whole regional domain using only the AM-GEV approach (Figure 

3.10b). 

 

 

Figure 3.9. Quantile-Quantile comparison of 𝐻𝑠 return values for 100-year return period 

estimated using both the Annual Maxima-Generalised Extreme Value Distribution (AM-GEV) 

and Peaks-Over-Threshold-Generalised Pareto Distribution (POT-GPD) approaches. Return 

values were estimated at the model grid points on the 50 m isobath. R and RMSE (m) stand 

for Pearson’s correlation coefficient and root-mean-square error, respectively. 
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Figure 3.10. Significant wave height return values for 100-year return period (a) estimated 

at the model grid points on the 50 m isobath using the Peaks-Over-Threshold-Generalised 

Pareto Distribution approach; (b) estimated for the whole regional domain using the Annual 

Maxima-Generalised Extreme Value Distribution approach. 

 

The spatial distribution of 𝐻𝑠  return values (Figure 3.10b) again showed 

similar patterns to the mean 𝐻𝑠 (Godoi et al., 2016), in which the smallest waves are 

seen in regions sheltered from southwesterly swells, and the largest ones are 

observed south of New Zealand. Stephens and Gorman (2006) obtained the same 

result, but also reported smaller spatial variation compared to the spatial variation 

in the average waves. We estimated lower 100-year 𝐻𝑠 return values than Stephens 

and Gorman (2006), with the difference being even greater to the south of New 

Zealand. Although uncalibrated modelled data have been used in both studies, it 

is important to highlight the considerably higher space-time resolution and longer 

record (more than twice as long) employed in the present analysis, both relevant 

characteristics for satisfactory return value estimation. Stephens and Gorman (2006) 

also used a different extreme value method (Mathiesen et al., 1994), which has since 

been superseded in general practice by the methods used here. However, it is also 

worth emphasising that an underprediction by the model relative to buoy 

measurements is still present. 

Three locations (Figure 3.1), where buoy records span more than 10 years, 

have been selected in order to compare 𝐻𝑠 return values estimated from both the 
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model and buoy data (Figure 3.12). Due to the lengths of the buoy records being 

relatively short (< 16 years), the AM-GEV approach was disregarded, and only the 

POT-GPD method has been implemented. As the buoy records are not as long as 

the model time series, the threshold selection was initially based on the assessment 

of the stability of the shape and scale parameters obtained from the fitting of the 

GPD across a range of different thresholds, as demonstrated in Coles (2001). 

Nevertheless, this methodology provided almost identical return value estimates 

to when thresholds were selected based on the 99th percentile of the time series 

(not shown). Thus, the latter has been adopted in order to follow the same 

procedures applied to the model data. Before estimating 𝐻𝑠 return values from the 

buoy and model data at the buoy sites, a validation of the matching peaks between 

these two datasets was carried out for overlapping periods (Figure 3.11). Again, the 

selection of 𝐻𝑠 storm peaks was made based on the 99th percentile threshold of 

the whole time series and on a minimum interval of 72 hours between consecutive 

peaks. In general, the storm peaks identified in the buoy and model data did not 

match in time. Thereby, in order to make the validation process possible, buoy and 

model peaks were considered as matching peaks when they occurred less than 24 

hours apart. Due to the relatively short overlapping periods in addition to gaps in 

the buoy data, only a few peaks could be used in the model validation. In total, 6 

(black circles), 3 (green diamonds) and 23 (grey squares) matching peaks were 

identified at Baring Head, Banks Peninsula and Maui, respectively, during the 

approximately 3.5, 3 and 11 years of overlapping periods. Although calculating 

statistics from small samples (time series with only a few data points) is not ideal, 

and we do acknowledge the non-representativeness of these samples, they 

nevertheless provide an overview of how well the model reproduced the observed 

storm peaks during these specific overlapping periods. The validation was 

performed using the formulae of basic statistics (R, bias, RMSE, and scatter index 

(SI)) applied in Durrant et al. (2009). Not surprisingly, 𝐻𝑠  peaks were generally 

underestimated by the model, as the bias values suggest (Figure 3.11). Additionally, 

the model did not present any clear trends regarding the magnitude of the 
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underestimates as the 𝐻𝑠  peaks increased. The different sample sizes preclude 

comparing statistics between these three buoy sites. 

 

 

Figure 3.11. Validation of modelled significant wave height peaks during overlapping 

periods with buoy data for Baring Head (black circles), Banks Peninsula (green diamonds) 

and Maui (grey squares). Basic statistics (Pearson’s correlation coefficient (R), bias in meters, 

root-mean-square error (RMSE) in meters, and scatter index (SI)) were calculated according 

to Durrant et al. (2009). 
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Figure 3.12. Significant wave height return values (solid lines) estimated from the buoy 

(black) and model (red) data (𝐻𝑠 peaks from independent storms above the 99th percentile) 

for (a) Baring Head; (b) Banks Peninsula; (c) Maui. Dashed lines represent confidence 

intervals at the 95% level estimated from the asymptotic covariance matrix of the maximum 

likelihood estimators. Dots represent the data plotted in their Gringorten plotting positions 

(Gringorten, 1963). 

 

As expected, 𝐻𝑠  return values estimated from the model data 

underestimated the ones calculated from the buoy data (Figure 3.12) by up to 24.12% 

for the 100-year return period (at Banks Peninsula). For the same return period, an 

average across the three sites indicates a bias correction of 18.58% for the model 

data. However, as briefly discussed in section 3.2, calibration of the model data 

based on limited buoy records is not recommended, especially when dealing with 

extreme events. Cavaleri (2009) lists several reasons why storm peaks are not 

properly captured by wave simulations. In addition to these, the hindcast was 

carried out using wind fields with relatively coarse space-time resolution and also 
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adopting a source term package (Tolman and Chalikov, 1996) that results in 

underestimation of the energy input during intense storm conditions dominated 

by young wind-sea (Ardhuin et al., 2007). Moreover, 𝐻𝑠  return values were 

computed from datasets spanning different periods of time. Lastly, as revealed by 

the trend analysis (Figure 3.8), trends in extreme 𝐻𝑠 and in the number of extreme 

events have been detected, especially on the east coast, where two of the buoys 

are located. Despite all the issues and disregarding the estimates computed for 

Banks Peninsula, one notes that the 100-year estimates calculated from both 

datasets indicate a reasonable match when the confidence intervals are taken into 

account. The largest 100-year 𝐻𝑠 return value calculated from the most reliable set 

of buoy measurements used in this work (buoy data from Maui) was 9.50 m (Figure 

3.12c). Considering the error estimates, this value increases to approximately 16 m. 

This dataset was collected near the west coast of the North Island (Figure 3.1), 

whereas the largest waves occur in southern New Zealand. Therefore, for design 

purposes, it is not unreasonable to expect waves around New Zealand with 𝐻𝑠 

larger than 16 m, especially along the southwestern coast. 

 

3.5 Discussion 

Although it is beyond the scope of the present work to investigate the 

relationship between extreme wave events and climate patterns, some evidence of 

this connection is documented here and motivates future work. 

The IAV of extreme 𝐻𝑠 found in the central north coast of New Zealand 

(Figure 3.7b) is likely associated with La Niña episodes. Larger waves on the north 

coast have been reported during La Niña conditions (Godoi et al., 2016; Gorman et 

al., 2003a) as a consequence of stronger northeasterly winds (Gordon, 1986). 

Furthermore, tropical cyclones tend to be formed closer to the country during La 

Niña episodes (Revell and Goulter, 1986), and this might favour extreme waves, 

which in turn tend to be generated by local storms (Young et al., 2011). A strong 

association between local storms and extreme waves was demonstrated by Young 

et al. (2011) through similar positive trends in wind speed and wave height for 99th 

percentile conditions. La Niña-like effects can be caused by at least three climate 
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patterns: the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation 

(PDO), and the Indian Ocean Dipole (IOD) (Godoi et al., 2016). Correlations between 

ENSO and PDO indices have been verified (Godoi et al., 2016; Mantua et al., 1997), 

suggesting that the PDO can influence the ENSO phases (La Niña and El Niño). The 

IOD can be externally triggered by the ENSO (Schott et al., 2009), and indirect 

effects of the first can take place through the second owing to the correlation 

between these two modes. The opposite is also true, meaning that the IOD is able 

to promote conditions that facilitate the formation of the ENSO (Izumo et al., 2010).  

The negative trends observed in part of the west coast of the South Island 

(Figures 3.8a and 3.8b) contradict the increase in intensity of cyclones in the 

Tasman Sea reported by Simmonds and Keay (2000). One would expect stronger 

cyclones to be associated with an increasing trend in extreme 𝐻𝑠. On the other 

hand, the negative trend on the west coast found here might be related to a 

poleward shift of extratropical cyclone storm tracks (Gillett and Thompson, 2003), 

which is more likely to favour southerly waves (those that impact the east coast) 

than westerly ones. This poleward shift, consistent with the trend for a more 

positive SAM (Marshall, 2003), results in a southward displacement of wave 

generation zones. As a consequence, waves generated more to the south affect the 

east coast more than the waters immediately adjacent to the west coast, due to 

their propagation in great circles. Godoi et al. (2016) showed that, in terms of mean 

conditions, significant wave height (𝐻𝑠) was positively correlated with the SAM on 

the south and east coasts of the country during the period 1958–2001, whereas a 

negative correlation was found on the waters immediately adjacent to the west 

coast, with both correlations being statistically significant. A similar pattern was 

found for more extreme conditions (top 10% 𝐻𝑠), although correlations with the 

SAM in the waters immediately adjacent to the South Island were not statistically 

significant. Moreover, decreasing/increasing trends in westerly/southwesterly 

waves on the west coast of New Zealand have been documented, in addition to 

increasing/decreasing trends in southerly/southeasterly waves on the east coast 

(Hemer et al., 2010). Using satellite data, Young et al. (2011) noted statistically 

significant positive trends in extreme 𝐻𝑠  in the region around New Zealand. 
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Nevertheless, the period (1985–2008) considered in their analysis was shorter than 

and different from ours, and they used a considerably coarser dataset than the 

ones employed here. It should be clear that climate trends identified in reanalysis 

datasets can be greatly influenced by temporal changes in the quality and quantity 

of the data assimilated into the model. Such changes were also introduced to the 

fields of the ERA-40 reanalysis (Bengtsson et al., 2004; Uppala et al., 2005) used to 

force the 45WH. Nonetheless, some of the trends detected here are in agreement 

with trends reported by authors (e.g., Marshall, 2003; Young et al., 2011) who used 

data from meteorological stations and satellite altimeters. Furthermore, Marshall 

(2003) stated that ERA-40 can be used with high confidence, at least as far back as 

1973, to examine the recent trend in the SAM, whose main signature occurs in the 

high latitudes of the Southern Hemisphere. High and mid-latitudes comprise the 

main wave generation zones responsible for the formation of the waves that 

consistently impact on the New Zealand coastline. 

 

3.6 Conclusion 

Based on 44 years (1958–2001) of a high resolution wave hindcast, an 

extreme wave climatology and extreme value estimates were established for New 

Zealand waters. Monthly and seasonal climatologies, mean annual and inter-

annual variabilities, and trend analyses compose the extreme wave climatology. 

Extreme predictions were carried out employing two different approaches, the 

POT-GPD and AM-GEV. Their results were compared, and the POT-GPD estimates 

were in addition compared to estimates conducted from buoy data at three specific 

locations. 

The extreme 𝐻𝑠 and mean 𝐻𝑠 (Godoi et al., 2016) spatial patterns are similar 

in both offshore and coastal areas, with the roughest seas found in southern New 

Zealand and calmer conditions observed in regions sheltered from southwesterly 

swells. This was observed not only in climatological parameters, but also in 

estimates of 𝐻𝑠  return values. Nevertheless, some differences, such as high 

energetic waves on the northwestern coast in January as well as the intensity of 

events, stress the importance of exploring extreme and mean conditions separately. 
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The time of the year and coastline exposure to generating regions are key 

factors in determining the frequency of extreme events. Except for the north coast, 

New Zealand was hit by a large number of events in May, while they were least 

frequent in January and February. Extreme 𝐻𝑠  had little seasonal variation, but 

closely-spaced extreme conditions were more/less frequent in winter/summer 

around the whole country. Regions where locally-generated storms control the 

extreme wave climate presented greatest MAV. Given that the IAV of mean wave 

conditions is correlated with La Niña-like effects on the north coast, which might 

have different sources (ENSO, IOD and PDO), and with the SAM on the east coast, 

it is likely that the IAV of extreme 𝐻𝑠 is also driven by these oscillations. Statistically 

significant negative trends in extreme 𝐻𝑠 were detected in parts of the west coast 

of the South Island, indicating a possible relationship with the poleward shift of 

extratropical cyclone storm tracks (Gillett and Thompson, 2003). Increasing trends 

detected in parts of the east coast of the same island suggest an association with 

positive trends in the SAM (Hemer, 2010; Marshall, 2003). The latter also seems to 

be related to the increasing frequency of extreme waves on the east and south 

coasts of New Zealand. These assumptions regarding relationships between 

climate patterns and the extreme wave climate around New Zealand deserve 

further investigation. 

Analogous results were obtained by the POT-GPD and AM-GEV methods 

when comparing 100-year 𝐻𝑠  return values, although the AM-GEV method 

estimated slightly larger waves at the highest quantiles. Estimates computed from 

the model data were lower than those calculated from the buoy data for Baring 

Head, Banks Peninsula and Maui as a result of several factors. These include model 

inputs with coarse space-time resolution, selection of a source term package 

(Tolman and Chalikov, 1996) that results in underestimation of the energy input 

during intense storm conditions dominated by young wind-sea (Ardhuin et al., 

2007), and datasets spanning different periods of time. 

As stated by Mathiesen et al. (1994), water level statistics become important 

in estimating extreme waves at shallow-water locations, and these were not 

considered here. Several factors can potentially threaten coastal areas in New 
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Zealand, such as land subsidence due to groundwater withdrawal, sea-level rise 

(Bell et al., 2000; Hannah, 2004), and mangrove forests degradation or removal 

(although relatively uncommon in New Zealand, mangrove forests degradation 

and/or removal have occurred in isolated episodes – Morrisey et al., 2007; Stokes 

and Harris, 2015). These combined with extreme wave events result in an increased 

risk for the expanding coastal population of the country and its associated 

industrial, residential and tourism developments. Therefore, the results presented 

here may contribute significantly to safety and economic strategies in addition to 

providing relevant information for climatological applications.  
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CHAPTER 4: Relationships between storm wave 

clustering conditions around New Zealand and 

climate patterns 

 

4.1 Introduction 

A combination of swell and locally-generated waves is frequently observed 

along open coastlines influenced by different meteorological systems (Harley et al., 

2010). Such coastlines are highly impacted by storm waves, which in turn are 

potentially more hazardous when arriving in clusters because the intervals between 

the events are not sufficiently long for the beach to recover (Lee et al., 1998; 

Senechal et al., 2017). When propagating in clusters, storms with relatively short 

return periods can cause damage equivalent to or greater than that from a single 

storm with far longer return period (Ferreira, 2005). Consequently, clustered storms 

may produce catastrophic events in populated coastal areas. Therefore, an 

improved knowledge of storm wave clusters (SWCs) and of the changes in the 

frequency and magnitude of these systems over time is needed to support coastal 

management. 

From a meteorological point of view, a cluster is characterised by unstable 

atmospheric waves that develop and move rapidly along the wake of a large low-

pressure system (Mailier et al., 2006). From an oceanographic-morphodynamic 

point of view, a storm cluster can be defined as two or more consecutive storms 

between which there is insufficient time for the beach to recover from erosion 

(Ferreira, 2006). Atmospheric serial storms have been shown to have devastating 

effects on the European economy (e.g., Mailier et al., 2006; Pinto et al., 2013; Pinto 

et al., 2014); Past work has also associated cyclone clustering (Mailier et al., 2006; 

Economou et al., 2015) and clustering of flooding events (Villarini et al., 2013) with 

climatic patterns, such as the North Atlantic Oscillation. However, SWCs have been 

explored less because of the lack of data. Therefore, both their nearshore and 

offshore characteristics are still poorly understood. Despite that, they have been 
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shown to play a role in the evolution of a number of coastal features, such as cliffs 

(Nunes et al., 2011), megarips (Loureiro et al., 2012), dunes (Benavente et al., 2013; 

Dissanayake et al., 2015a, 2015b, 2015c), and shoreline cusps (Balouin et al., 2013). 

Several techniques to identify groups of cyclones have been implemented, 

such as a Bayesian approach (Fawcett and Walshaw, 2008), a running sum of daily 

cyclone counts (Pinto et al., 2014), and the calculation of a dispersion statistic based 

on the Poisson process and cyclone counts (Mailier et al., 2006; Kvamstø et al., 2008; 

Vitolo et al., 2009). Studying cyclone clusters, however, does not necessarily provide 

useful information on the formation of SWCs. Large waves might not be generated 

if cyclones change direction continuously along their tracks, since the generation 

of large waves depends on persistent strong unidirectional winds. 

In the past, SWCs were evaluated by measuring the beach morphodynamic 

response to a sequence of storms. This has been done mainly through either beach 

profile assessments (e.g., Lee et al., 1998; Loureiro et al., 2009; Karunarathna et al., 

2014; Coco et al., 2014) or detailed numerical or empirical modelling of erosion 

(e.g., Vousdoukas et al., 2011; Splinter et al., 2014; Dissanayake et al., 2015a, 2015b, 

2015c), although other approaches have also been implemented, such as the 

analysis of ARGUS video imaging (Phillips et al., 2015) and the use of the 

convolution model of Kriebel and Dean (1993), applied by Ferreira (2002). These 

techniques either require long records of consistently-monitored beach profiles or 

are computationally-expensive and time-consuming. Most of the studies quoted 

above used beach recovery periods (i.e., the average time interval the beach takes 

to recover substantially after an erosion) to identify SWCs. Beach erosion and 

recovery are not trivial to ascertain because they require surveying before, during 

and after each storm within the cluster. The local intensity of the storm, the beach 

state, the tide conditions, and the type and availability of sediment have a strong 

influence on variability of the beach recovery period, making it highly site-

dependent. Furthermore, slightly different combinations of these parameters can 

lead to significantly different erosion and recovery responses, especially when the 

initial stage has already been disturbed (Coco et al., 2014). For these reasons, SWCs 

have been analysed only at a particular beach or, at most, at several beaches. 
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Considerable variation exists in the time thresholds that determine which storms 

belong to a single cluster. For example, Birkemeier et al. (1999) grouped storms 

that occurred up to 40 days apart at Duck (USA). Ferreira (2005) stated that either 

21 days between storm peaks or 14 days between the end of a storm and the 

beginning of the subsequent one was enough to ensure that beaches would not 

recover significantly at his study sites, in Portugal. Karunarathna et al. (2014) 

considered a 9-day cut-off to define clustered storms at Narrabeen Beach 

(Australia), whereas Almeida et al. (2012) aggregated storms that occurred less than 

10 days apart on the Portuguese coast. 

Located at the interface between the Pacific and Southern Oceans, with the 

Tasman Sea to the west, patterns of storm clustering around New Zealand are likely 

to be complex, depending on the origin of generating weather systems. As an 

island nation, New Zealand is reliant on shipping for trading goods. Moreover, the 

implementation of recent trade agreements (summarised in, e.g., World Bank 

Group, 2016) has led to increased ship traffic, and the energetic seas surrounding 

New Zealand (Gorman et al., 2003b) mean that assessing conditions and providing 

predictions for maritime safety has become increasingly important. New Zealand’s 

mid-latitude position and distance from other landmasses allow several weather 

systems to affect the country, causing frequent storms and extreme wave events 

(Godoi et al., 2017). These wave conditions have been shown to vary considerably 

in association with climate patterns (Godoi et al., 2016). Changes in the Southern 

Hemisphere atmospheric circulation related to the Southern Annular Mode (SAM) 

(Thompson and Solomon, 2002), such as a poleward shift of the westerly jet and 

associated fields (Kushner et al., 2001), affect New Zealand directly. The SAM is the 

dominant mode of atmospheric variability in the Southern Hemisphere (Marshall, 

2003) and is associated with the formation of extratropical cyclones, the main 

source of the storm waves that affect the New Zealand coastline. However, SWCs 

and their characteristics have not been investigated in the New Zealand region yet. 

The lack of high temporal resolution beach profiles and other datasets for most 

New Zealand beaches limits the ability to study clustering through erosion 
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responses. As a first step, we use our long-term (1957–2002) wave hindcast 

(Gorman et al., 2010) to investigate the drivers of storm clustering. 

Given the recognised threat posed by SWCs to coastal environments and 

infrastructure, as well as to offshore operations (e.g., oil rigs and fishery boats), this 

chapter explores the relationships of SWCs to climate patterns in New Zealand 

waters. A SWC climatology supports not only the monitoring and management of 

coastal areas in terms of flooding and sediment transport, but also the planning of 

naval and marine operations, besides assisting in the selection of sites for wave 

energy extraction. Our investigation was carried out using the results of our long-

term wave hindcast and considers how conditions might change in association with 

five climate patterns, as characterised by the El Niño–Southern Oscillation (ENSO), 

Indian Ocean Dipole (IOD), Southern Annular Mode (SAM), Pacific Decadal 

Oscillation (PDO), and Zonal Wavenumber-3 Pattern (ZW3). Firstly, duration and 

number of clusters in addition to the potential for cluster-induced coastal erosion 

were assessed through average values computed over the period 1958–2001. To 

account for changes in the frequency and magnitude of SWC generating systems 

(cyclones) and those changes that have an indirect impact on them, like changes 

in atmospheric ozone and greenhouse gases (Arblaster and Meehl, 2006), 

monotonic trends in SWC parameters (cluster duration, number of storms within 

the cluster, and cumulative storm energy) were calculated. Then, correlations of 

climate indices with clustered storms and SWC parameters were carried out at 

multiple timescales to better understand the causes of variability in clustering. 

 

4.2 Methodology 

A 45-year (September 1957 – August 2002) wave hindcast (Gorman et al., 

2010), hereafter 45WH, was conducted using version 3.14 (Tolman, 2009) of the 

WAVEWATCH III model (Tolman, 1991) forced with wind and ice fields from the 

ERA-40 reanalysis (Uppala et al., 2005). A regional domain, with 0.125º × 0.09375º 

spatial resolution, was one-way nested within a global domain at 1.125º × 1.125º 

resolution. The regional domain encompassed the waters surrounding New 

Zealand, which include part of the Tasman Sea and parts of the Southern Ocean 
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and southwestern Pacific Ocean (Figure 4.1). Results of the simulation were output 

at 1 h and 3 h intervals for the regional and global domains, respectively, and then 

validated against satellite altimetry data from the TOPEX/Poseidon, ERS1 and ERS2 

missions, and against buoy measurements from sites around New Zealand and 

North America. Details of the 45WH can be found in Gorman et al. (2010) and Godoi 

et al. (2016). 

 

 

Figure 4.1. Regional domain of the 45-year (1957–2002) wave hindcast. Filled circles 

represent the locations used in the wavelet spectral analysis. Filled squares A and B indicate 

the sites used as examples for showing time series of occurrence of clustered storms in 

Figure 4.2b and 4.2c, respectively. Grey dots illustrate the model grid points on the 200 m 

isobath, with the filled triangle marking the first point (0) of the sequence of Figure 4.2a. 

Dashed lines represent coastline delimiters, plotted here as a guide for Figure 4.2a. NI and 

SI stand for North Island and South Island, respectively. 

 

Modelled time series of significant wave height (𝐻𝑠) were extracted from 

the 45WH at the 418 model grid points on the 200 m isobath around New Zealand 

(Figure 4.1) for the 44-year period 1958–2001. A range of 𝐻𝑠 thresholds has been 

selected in the literature to define storm waves (Ferreira, 2005), usually based on 

the wave climate of the study region. As different wave climates are found along 

the New Zealand coastline (Godoi et al., 2016, 2017), 𝐻𝑠 thresholds should vary 

accordingly. A simple way of obtaining 𝐻𝑠 thresholds that match the local wave 

climate is to select them based on percentiles rather than establishing a single 
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value for the whole study region. Thus, storm wave events were identified using 

the Peaks-Over-Threshold (POT) approach considering the 95th percentile 

threshold of each site. In other words, 𝐻𝑠 maxima from independent storms were 

obtained when they were above the 95th percentile of the time series, following, 

e.g., Phillips et al. (2015) and Harley et al. (2009). A timeframe also needs to be 

considered for ensuring independence between storms, since successive 𝐻𝑠 peaks 

occurring in a short interval are likely to be part of the same event. To this end, 𝐻𝑠 

maxima were selected only when they occurred at least 72 hours apart. The 72-

hour interval was motivated by past studies where 72 hours is the time lag below 

which the storms are autocorrelated (Mathiesen et al., 1994; Lopatoukhin et al., 

2000). This is a well-established threshold in the literature, used in the identification 

of both storm and extreme waves (Alves and Young, 2003; Stephen and Gorman, 

2006; Méndez et al., 2006; Godoi et al., 2017). 

Here, we aim at understanding some general characteristics of SWCs 

around the whole coastline of New Zealand. This is unlikely to be accomplished 

with the implementation of the techniques discussed in the previous section 

because they require beach recovery periods to be defined. Therefore, a simple and 

objective criterion has been chosen to assess storm wave clustering without 

considering erosion processes and recovery periods of individual beaches. This 

criterion is based on the assessment of the index of dispersion (𝐼𝑑) of time intervals 

between storm peaks. 

The 𝐼𝑑  is a measure of the normal variability of intervals between storm 

peaks, and is the quantity (with time dimension) defined as the ratio of the variance 

〈(∆𝑇 − 〈∆𝑇〉)2〉 of the time interval ∆𝑇 between storm peaks to the mean interval 

〈∆𝑇〉. The method itself is not innovative, since it has been applied by other authors 

(Mailier et al., 2006; Kvamstø et al., 2008; Vitolo et al., 2009) in different contexts 

and using different approaches. However, the way the method has been employed 

here differs from previous work. Two assumptions were made in order to select 

appropriate values for the time interval between storm peaks used for grouping 

storms into clusters. This interval needed to be short enough to be considerably 

lower than both the 𝐼𝑑 value and the mean interval at each location analysed, and 
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long enough to allow SWCs to be identified. Values of 0.5𝐼𝑑 were found to satisfy 

both requirements for all time series of storm wave occurrence assessed, as shown 

in Figure 4.2a. Hence, they have been adopted in this work, and storms were 

grouped into clusters when the time interval between them was shorter than 0.5𝐼𝑑. 

Sensitivity tests for intervals equal to 0.4𝐼𝑑 and 0.6𝐼𝑑 were also conducted to verify 

the variability of the overall mean of the number of SWCs in the study region during 

the period 1958–2001 (not shown). The overall mean values did not change 

considerably (133.8, 140.7, and 139.9 for 0.4 𝐼𝑑 , 0.5𝐼𝑑 , and 0.6𝐼𝑑 , respectively) 

because SWCs became generally longer rather than more numerous when the 

intervals increased, whereas the number of SWCs only slightly reduced when the 

intervals were shortened. So, our original choice (0.5𝐼𝑑) was kept. Values of 0.5𝐼𝑑 

varied between 9.7 and 25.4 days, with an average of 15.1 days among all sites. 

Although the beach recovery period is not a key factor in the determination of 

SWCs in our analysis, values of 0.5𝐼𝑑 were found to be within the range of beach 

recovery periods proposed in the literature (Birkemeier et al., 1999; Ferreira, 2005; 

Almeida et al., 2012; Karunarathna et al., 2014). Figure 4.2a shows the values of 

0.5𝐼𝑑 (dashed line), the mean interval (solid line), and the standard deviation of the 

time interval (dotted line) calculated for each of the 418 model grid points on the 

200 m isobath over the period 1958–2001. The standard deviation of the time 

interval between storm peaks was plotted instead of its variance to allow better 

visualisation of the values of the other curves. One notes that the values of the 

standard deviation were generally closer to the mean values on the north coast 

than on the other coasts (Figure 4.2a). This indicates a smaller variability in storm 

occurrence (more consistent wave climate) on the north coast than on the others, 

which results from a typically low-energy wave environment on the north coast that 

is regularly disturbed by tropical cyclone-generated waves in summer (Godoi et al., 

2016). Examples of clustering at sites A and B (Figure 4.1) during the 1970s are 

displayed in Figure 4.2b and Figure 4.2c, respectively. The examples show the 

temporal distribution of clustered and non-clustered storm occurrences identified 

at the sites with the largest (site A) and smallest (site B) differences (16.6 and 5.5 

days) between the mean interval between storm peaks and 0.5𝐼𝑑. By using this 
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approach, for two sites with the same mean interval between storm peaks, the one 

with a less consistent wave climate (larger variability in the time interval between 

storm peaks) will have a higher 𝐼𝑑 value and, consequently, more clustered storms. 

In this case, a higher 𝐼𝑑 means a higher chance of erosion or any other cluster-

induced damage as well as a higher chance of multi-hazard effects, since the longer 

duration of SWCs relative to individual storms will mean that conditions will be 

more likely to coincide with a high tide. 

 

 

 

 

 

 

 

 

 

 

 



87 

 

 

Figure 4.2. (a) Statistics computed for time series of storm wave occurrence at the 418 

model grid points on the 200 m isobath: half of the index of dispersion of time intervals 

between storm peaks (dashed line), mean interval between storm peaks (solid line), and 

standard deviation of the time interval between storm peaks (dotted line). Vertical lines A 

and B mark the largest and smallest differences between the mean interval between storm 

peaks and half of the index of dispersion; the locations of the model grid points associated 

with these differences are displayed in Figure 4.1 as A and B. W, N, E, and S stand for west, 

north, east, and south, respectively, delimited according to Figure 4.1. Shaded and non-

shaded areas of the graph comprise the model grid points along each section of the 

coastline (W: 0-143; N: 144-216; E: 217-375; S: 376-417), with 0 being located on the 

southwestern coast (triangle in Figure 4.1) and the subsequent numbers follow a clockwise 

rotation; (b) Time series of occurrence of storms and clustered storms at site A; (c) Time 

series of occurrence of storms and clustered storms at site B. Grey circles represent storm 

waves, whereas black circles indicate storm waves pertaining to clusters. 
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Although the focus of this chapter is not on beach processes, such as 

erosion and sediment transport, two measures, based on offshore 𝐻𝑠 and storm 

duration (period in which 𝐻𝑠 remained above the 95th percentile), were used to 

provide an overview of the potential for coastal erosion. These were the average 

cumulative storm energy per cluster and average storm power index per cluster. 

Both the cumulative storm energy (CSE) (Mendoza and Jimenez, 2006; Harley et al., 

2009, 2010; Phillips et al., 2015) and storm power index (SPI) (Dolan and Davis, 1994; 

Karunarathna et al., 2014) were first calculated for each storm. To do so, the 

formulae presented by Harley et al. (2010) and Karunarathna et al. (2014) were 

employed here (Equations (1) and (2), respectively); where 𝜌 is the mass density of 

sea water (1025 kg/m3), 𝑔  is the gravitational acceleration (9.8 m/s2), ∆𝑡  is the 

temporal resolution of the dataset (1 h), 𝑣 is the total number of 𝐻𝑠 values 𝑖 above 

the 95th percentile during the storm, 𝐻𝑠𝑚𝑎𝑥
 is the storm peak 𝐻𝑠 value, and 𝐷 is the 

storm duration. The cumulative effect of all storms pertaining to a single cluster 

was determined by summing up their respective CSE/SPI values. Lastly, the 

cumulative energy obtained for all SWCs of each site on the 200 m isobath was 

temporally averaged over the period 1958–2001. The SPI overestimates the energy 

content of a storm because it only considers the maximum 𝐻𝑠  (Mendoza and 

Jimenez, 2006). Conversely, 𝐻𝑠 of each recording time during a storm is used in the 

computation of the CSE. Nonetheless, for the sake of the ability to compare to 

studies that have applied the SPI, this is also calculated here. 

 

𝐶𝑆𝐸 =  
1

16
 𝜌𝑔∆𝑡 ∑ 𝐻𝑠𝑖

2𝑣
𝑖=1                                    (1) 

𝑆𝑃𝐼 =  𝐻𝑠𝑚𝑎𝑥
2 𝐷                                                   (2) 

 

To verify changes in SWCs over the period 1958–2001, trends in annual 

averages of SWC parameters (number of storms within the cluster, CSE, and cluster 

duration) were calculated using the Mann-Kendall test (Mann, 1945; Kendall, 1955) 

and the Theil-Sen estimator (Theil, 1950; Sen, 1968). The Mann-Kendall test was 

employed to estimate monotonic upward/downward trends, while the Theil-Sen 

estimator was used to calculate the slope (magnitude) of the trends. Trends were 
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computed for three time periods: the pre-satellite (1958–1978) and satellite (1979–

2001) eras spanned by the dataset, and a long-term period (1958–2001). Statistical 

significance of trends was assessed using p-value. 

Storm wave clustering during different phases of the ENSO, IOD, SAM, PDO, 

and ZW3 was investigated through correlations of the climate pattern indices 

(Southern Oscillation Index (SOI), Dipole mode Index (DMI), SAMI, PDO index, and 

ZW3 index) with storm cluster indices (explained below) and SWC parameters. 

Monthly climate indices were sourced from the National Oceanic and Atmospheric 

Administration (NOAA), Japan Agency for Marine-Earth Science and Technology 

(JAMSTEC), British Antarctic Survey (BAS), Japan Meteorological Agency (JMA), and 

Raphael (2004), respectively. Except for the ZW3 index, which is available only from 

1979, all the other climate indices were collected for the period 1958–2001. In order 

to perform the correlations, a monthly storm cluster index was created for every 

location analysed by assigning weights to each month based on the number of 

clustered storms within that month. Firstly, the number of storms in each month of 

the 44-year period was found using the POT approach and the 72-h interval, and 

those that were clustered were identified using the index of dispersion (as 

described above). This resulted in two time series, a monthly time series of the 

number of storms and a monthly time series of the number of clustered storms. 

Then, the latter was divided by the former yielding a monthly storm cluster index. 

The same procedure was carried out for the 418 sites on the 200 m isobath. Then, 

correlations of monthly anomalies between the storm cluster indices and climate 

indices were performed. Additionally, seasonally-averaged monthly anomalies of 

storm cluster indices were correlated with both seasonal and lagged-seasonal (1-

season lag) averages of monthly anomalies of climate indices. Lastly, correlations 

of annually-averaged monthly anomalies between SWC parameters (number of 

storms within the cluster, CSE, and cluster duration) and climate indices were 

carried out. Correlations were performed using the Pearson’s correlation coefficient 

(R). As demonstrated by Godoi et al. (2016, 2017), and Pickrill and Mitchell (1979), 

the mean and extreme wave climates around New Zealand can be classified into 

four main wave climates according to their exposure to wave generation zones. 
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Thus, four model grid points on the 200 m isobath (48.469ºS/166.375ºE, 

39.188ºS/172.375ºE, 36.094ºS/176.000ºE, and 41.625ºS/175.375ºE), corresponding 

to the major coastline orientations (Figure 4.1), were selected so that correlations 

of monthly anomalies between their storm cluster indices and climatic indices 

could be computed at several timescales using the squared wavelet coherence 

spectra. 

 

4.3 Overview of storm wave clustering around New Zealand 

SWCs were most frequently observed to the northeast of New Zealand and 

on the central eastern coast of the South Island (Figure 4.3a), where approximately 

4 SWCs occurred per year. Karunarathna et al. (2014) identified 80 SWCs at 

Narrabeen Beach between 1981 and 2000, resulting in 4 SWCs per year on average. 

Their results are comparable to our sites with largest occurrences of SWCs (the 

authors note SWCs are fairly common at Narrabeen Beach). Interestingly, wave 

conditions at both Narrabeen Beach, on the east coast of Australia, and the 

northeast coast of New Zealand are affected by tropical cyclones. Although these 

regions have different coastline orientations and, in general, different weather 

systems control their wave climates, their equivalent annual average number of 

SWC in addition to their locations suggest important contributions from tropical 

cyclones. On the other hand, Narrabeen Beach and the central eastern coast of the 

South Island have similar coastline orientations (E/SE). Additionally, both regions 

are impacted by swells generated by extratropical cyclones propagating over the 

Southern Ocean. However, tropical cyclones rarely influence the wave climate of 

the central eastern coast of the South Island. A detailed investigation is required to 

confirm relationships between the SWCs that occur at Narrabeen Beach and those 

that arrive in New Zealand. This is necessary because of the distances from these 

regions to wave generation zones and because of the dispersion of waves as they 

propagate out of generating areas. 
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Figure 4.3. Considering the period 1958–2001: (a) annual average number of storm wave 

clusters; (b) average storm wave cluster duration. The averages were calculated at the 

model grid points on the 200 m isobath. 

 

A secondary maximum in cluster occurrence was experienced on the central 

western coast of the South Island. This agrees with the extreme wave conditions 

documented by Godoi et al. (2017), who showed that extreme waves are more 

closely-spaced in this region and on the northeastern coast than in other regions 

around the country. A common feature between these two regions is that swells 

from the south quadrant undergo considerable refraction prior to arriving at the 

coast. SWCs had generally longer durations on the east coast than on the other 

coasts (Figure 4.3b). They were least frequent (Figure 4.3a) where they lasted 

longest (Figure 4.3b), up to about 40 days on average, as can be noted to the north 

of the large peninsula on the central eastern coast of the South Island. This segment 

of the coastline is sheltered from the main swell direction (SW) and presents a 

relatively low-energy wave climate (Godoi et al., 2016, 2017). 

As expected, both the average CSE per cluster and average SPI per cluster 

(Figure 4.4) showed a similar spatial distribution of potential for cluster-induced 

coastal erosion. These results highlight the regions around the country where SWCs 

played the most critical role in terms of coastal hazards, which were southern New 

Zealand followed by the west coast of the North Island. This is directly related to 
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the intense activity of southwesterly swells generated by recurrent extratropical 

cyclones (Sinclair, 1995). Karunarathna et al. (2014) obtained values between 2.86 

and 73.83 hm2h for the SPI per cluster for events representative of the scale of 

beach profile change at Narrabeen Beach. Their range was 45.4% larger than ours 

(4.17–52.99 hm2h). Regarding the average CSE values per cluster, 59% of the sites 

we investigated were less than 1.19 MJh/m2, while 12% were in the most hazardous 

condition range (2.17–2.67 MJh/m2) (Figure 4.4b). 

 

 

Figure 4.4. Measures of the potential for cluster-induced coastal erosion: (a) average storm 

power index per cluster (in hecto m2h); (b) average cumulative storm energy per cluster (in 

mega Jh/m2). The averages were calculated using all storm wave clusters occurred during 

the period 1958–2001 for each model grid point on the 200 m isobath. 

 

The 45WH was carried out using reanalysed data from ERA-40 as boundary 

conditions. The quantity and quality of such data vary in time, and this may produce 

spurious trends. Under these circumstances, the well-known temporal 

inhomogeneity issue, concerning the introduction of satellite data to the reanalysis 

dataset (Bromwich and Fogt, 2004), was explored by evaluating trends for different 

periods. Contrasting results were obtained when trends in SWC parameters were 

calculated for the pre-satellite (1958–1978) and satellite (1979–2001) eras (Figure 

4.5 – left and middle columns, respectively). Trends were generally positive during 
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the pre-satellite period and negative during the satellite period, although only a 

low percentage of the analysed sites had statistically significant results (7.42% 

[4.31%] of the sites showed statistically significant results for trends in CSE during 

the period 1979–2001 [1958–1978], while the percentages were even lower for 

trends in the other parameters). Note that opposing trends were generally 

observed at different locations, suggesting that these can also be due to different 

climate conditions in the two periods rather than due to data inhomogeneity in the 

reanalysis. By using only satellite data over the period 1985–2008, Young et al. 

(2011) detected only positive trends in the 99th percentile 𝐻𝑠 in the region around 

New Zealand. 
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Figure 4.5. Monotonic trends in storm wave cluster parameters, calculated for the pre-

satellite period (1958–1978, left column), satellite period (1979–2001, middle column), and 

long-term period (1958–2001, right column). Top row: cumulative storm energy (in kilo 

Jh/m2); middle row: cluster duration; bottom row: number of storms within the cluster. 

Trends were calculated from annual averages of the cluster parameters using the Mann-

Kendall test and the Theil-Sen estimator. Only statistically significant values at the 95% 

confidence level (calculated using p-value) are displayed. 

 

When trends were calculated for the period 1958–2001 (Figure 4.5 – right 

column), only positive trends were identified, in which case SWCs have become 

more hazardous, have lasted longer, and have incorporated more storms. Trends 
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were mostly observed around the South Island, with only a few locations along the 

North Island (the northernmost and southernmost tips) with statistically significant 

trends for all parameters (Figure 4.5 – right column). Nevertheless, several sites off 

the central western coast of the North Island also showed notable trends in cluster 

duration and in the number of storms within the cluster. Southern New Zealand is 

not only where the highest potential for cluster-induced coastal erosion was found 

(Figure 4.4), but also where its largest trends were detected (Figure 4.5 – right 

column, first row). At some sites in this region, trends might result merely from 

increasing wave heights (Godoi et al., 2016) and/or changes in wave direction 

(Hemer et al., 2010), while at other sites, they were associated with an increasing 

number of storms within the cluster (Figure 4.5 – right column, third row). For the 

same period (1958–2001), positive trends in the mean 𝐻𝑠  were reported for 

southern New Zealand (Godoi et al., 2016), whereas no trends in extreme waves 

(maxima 𝐻𝑠 above the 99th percentile from independent storms) were observed 

(Godoi et al., 2017). On the other hand, trends in extreme waves were found along 

the southeastern coast (Godoi et al., 2017), where increasing trends in energy 

content, cluster duration, and in the number of storms within the cluster were also 

detected (Figure 4.5 – right column). Increases in intensity of cyclones in the 

Tasman Sea (Simmonds and Keay, 2000) are likely related to the trends in the SWC 

parameters observed on the west coast of the South Island (Figure 4.5 – right 

column). The latter, however, contradict the trends in directional distribution of 

waves, which indicate a reduction in northwesterly and westerly waves arriving on 

this coast (Hemer et al., 2010). The contradicting results between the pre-satellite 

and satellite eras do not allow us to provide robust detection of the long-term 

trends. Nonetheless, trends were computed using results from a wave hindcast 

forced by ERA-40 data, which in turn were found to be suitable for analysing the 

recent trend in the SAM, at least as far back as 1973 (Marshall, 2003). This provides 

additional confidence in the long-term trends, since the main signature of the SAM 

takes place in the high and mid-latitudes of the Southern Hemisphere, where the 

waves that consistently affect New Zealand are generated. 
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Trends for a negative SOI after 1976 (Trenberth and Hoar, 1996), for a 

positive SAM since the mid-1960s (Marshall, 2003), and for a positive PDO since 

mid-1970s (Pezza et al., 2007) have been documented. These were also verified 

here for the period 1958–2001 (Figure 4.6), and are in agreement with increases in 

SWC parameters (as discussed in the next section). The long-term trends identified 

in those climatic indices only explain a small portion of the variance, which is, for 

many purposes, less important than the short-term variability. However, when 

dealing with coastal hazards and flooding, even a small long-term change in storms 

and extreme events will potentially lead to increased damage. 
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Figure 4.6. Monotonic trends in normalised anomalies of climate indices: Southern Annular 

Mode index (SAMI), Zonal Wavenumber-3 Pattern (ZW3) index, Southern Oscillation Index 

(SOI), Dipole mode Index (DMI), and Pacific Decadal Oscillation (PDO) index. The anomalies 

of climate indices were normalised by the standard deviation. Trends were computed for 

the period 1979–2001 for the ZW3 index, and for the period 1958–2001 for the other indices. 

S95% and NS95% stand for statistically significant and non-significant at the 95% 

confidence level, respectively. 

 

4.4 Association between climate patterns and storm wave clustering 

Monthly and lagged-seasonal correlations between storm cluster indices 

and climate indices are presented in Figures 4.7 and 4.8. Seasonal correlations did 

not provide significant additional information in relation to the monthly and 
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lagged-seasonal ones, and therefore their results are not shown. Statistically 

significant correlations were found at many sites along the 200 m isobath around 

New Zealand, albeit clustered storms were generally weakly correlated (|R| < 0.42) 

with climate indices.  

With respect to monthly correlations (Figure 4.7), fewer clustered storms 

occurred on the west coast in association with positive SAM. The strengthening of 

the circumpolar westerlies is characteristic of a positive SAM (Marshall, 2003; Gupta 

and England, 2007), and so one would expect the opposite response in the number 

of clustered storms. Nevertheless, a poleward shift of extratropical cyclone storm 

tracks has been observed (Gillett and Thompson, 2003), accompanying the trend 

toward the positive phase of the SAM since the mid-1960s (Marshall, 2003). This 

shift results in decreases in westerly waves in the regions immediately adjacent to 

the west coast (Hemer et al., 2010) because of a southward displacement of wave 

generation zones (Godoi et al., 2017). Consequently, the wave energy coming from 

the west is reduced on the west coast when the positive phase of the SAM is more 

pronounced. On the contrary, the number of clustered storms increased on the 

same coast during negative phases of the ZW3, due to the intensification of the 

eastward atmospheric zonal flow. The latter becomes more relevant in the lower 

latitudes of the study region, as demonstrated by strengthened correlations 

northward (Figure 4.7). The west coast was also affected by SWCs generated during 

opposite phases of the PDO (positive) and ENSO (negative - El Niño events). 

Likewise, clustering was more frequent during positive IOD and negative ENSO to 

the south of New Zealand. The IOD can take place through the ENSO conditions 

because of the teleconnecting nature of these two modes (Schott et al., 2009; 

Izumo et al., 2010; Taschetto et al., 2011; Godoi et al., 2016). The signature of this 

relationship was also observed along the north coast, with enhanced clustering 

during La Niña events (positive ENSO) and negative IOD. Clustered storms occurred 

more frequently on the east coast of the North Island during positive phases of the 

SAM and ZW3, and on the east coast of the South Island during negative ENSO 

and positive PDO. During positive SAM, the refraction of westerly swells seems to 

make waves arrive on the east coast of the North Island with more intensity than 
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on the same coast of the South Island (Godoi et al., 2016, 2017). In a similar fashion, 

the waves produced by the northward wind stress anomaly to the south of New 

Zealand related to positive ZW3 (Cai et al., 1999) have a more marked effect on the 

North Island than on the South Island. Conversely, the larger southwesterly waves 

generated to the south of New Zealand during negative ENSO and positive PDO 

(Godoi et al., 2016) have a stronger influence on the east coast of the South Island. 

Given that the main signatures of the ENSO, IOD, and PDO are observed far away 

from New Zealand, their associated conditions modify the atmosphere and ocean 

around the country through teleconnections. Tropic-extratropic teleconnections 

occur through disturbances in the Hadley cell (Liu and Alexander, 2007). The latter 

modifies the subtropical atmospheric circulation by changing the moisture and 

heat sources responsible for dispersion of the Rossby waves that influence the 

extratropics (Grimm and Ambrizzi, 2009). As Rossby waves are dispersed, cyclone 

and anti-cyclone winds strengthen. Anomalously strong winds generate larger 

waves, resulting in more frequent storm waves. As the time between consecutive 

storms shortens, in this case, more clustered storms are observed. 
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Figure 4.7. Correlations of monthly anomalies between storm cluster indices and climate 

indices. Correlations were carried out at the model grid points on the 200 m isobath over 

the period 1958–2001 for the SAMI, SOI, DMI, and PDO index, and over the period 1979–

2001 for the ZW3 index. Only statistically significant values at the 95% confidence level are 

displayed. 

 

The first signature of the ENSO is generally observed in the eastern 

equatorial Pacific (Bjerknes, 1966; Wyrtki, 1975; Trenberth and Hoar, 1996), and 

therefore, the ENSO-related changes in the atmosphere and ocean around New 

Zealand are delayed. Because of the inherent noisiness of the SOI time series at 
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short timescales, seasonally-averaged SOI values have been found to be more 

suitable for correlations than monthly-averaged values (Harley et al., 2010). Hence, 

lagged-seasonal correlations are likely to be better for assessing variations in storm 

wave clustering around New Zealand related to the ENSO fluctuations. The same 

is true for the IOD and PDO conditions, which are also strongly influenced by the 

ENSO variability (Schott et al., 2009; Mantua et al., 1997). Although New Zealand is 

situated in the latitude band where the largest variabilities related to the SAM and 

ZW3 are experienced (the high and mid-latitudes of the Southern Hemisphere), 

lagged-seasonal correlations were also performed for these oscillations. Thus, 

climate patterns of a given season were correlated with clustered storms of the 

next season. Correlations with the SOI strengthened substantially along all coasts 

(Figure 4.8). A similar pattern was observed for the DMI to the south of New 

Zealand, along the southwestern coast, and in part of the north coast, and for the 

PDO index at most sites where statistically significant monthly positive correlations 

had been obtained. This enhancement relative to non-lagged correlation is due to 

the time that teleconnected phenomena take to respond to the warming and 

cooling of the Indian and Pacific Oceans’ tropical waters. An example of this 

delayed response is the warming in the tropical Indian Ocean caused by the ENSO-

related fluctuations, which takes approximately 3–6 months to occur (Deser et al., 

2010). As opposed to the results for the SOI, DMI, and PDO index, lagged-seasonal 

correlations between clustered storms and SAMI/ZW3 index either weakened or 

lost statistical significance at most sites where significant monthly correlations had 

been obtained, with the exception of the positive correlations with the SAMI found 

now to the south of New Zealand (Figure 4.8). These results demonstrate that the 

SWCs that hit New Zealand are more synchronised with the SAM and ZW3 

fluctuations than with those of the ENSO, IOD, and PDO. Seasonal correlations (not 

shown) showed slightly higher absolute values (up to |R| = 0.42) than the monthly 

and lagged-seasonal ones for the SAMI, on the west coast, and for the ZW3 index, 

at a few sites on the north and east coasts. 
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Figure 4.8. Correlations of seasonally-averaged monthly anomalies between storm cluster 

indices and climate indices lagged by one season. Correlations were carried out at the 

model grid points on the 200 m isobath over the period 1958–2001 for the SAMI, SOI, DMI, 

and PDO index, and over the period 1979–2001 for the ZW3 index. Only statistically 

significant values at the 95% confidence level are displayed. 

 

SWC parameters had a stronger connection with the ENSO and PDO than 

the other oscillations (Figures 4.9, 4.10, and 4.11). Although the north coast is 

generally impacted by relatively low-energy SWCs (Figure 4.4), their CSE was highly 

correlated (R up to 0.64) with La Niña episodes (Figure 4.9). During such episodes, 
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stronger northeasterly winds are produced to the north of New Zealand (Gorman 

et al., 2003b), leading to larger waves on the north coast (Gorman et al., 2003b; 

Godoi et al., 2016). La Niña-like effects also occur during negative PDO because of 

its inverse relationship with the ENSO (Godoi et al., 2016), and this resulted in more 

energetic SWCs along part of the north coast (Figure 4.9). Not surprisingly, El Niño-

like effects are experienced during positive PDO (Mantua et al., 1997) on the west, 

south, and east coasts, and entail increased southwesterly winds (Gordon, 1986) 

and correspondingly larger waves (Laing, 2000). This explains the strong 

correlations of CSE with the SOI and PDO index along those coasts (Figure 4.9). 

SWCs were also more energetic on the west coast of the North Island during 

negative phases of the SAM and ZW3, and to the south of New Zealand during 

positive phases of the SAM and IOD (Figure 4.9). SWCs tended to last longer along 

most of the west, south, and east coasts during positive PDO and negative ENSO, 

while their duration increased on the north coast during La Niña and La Niña-like 

(negative IOD) events (Figure 4.10). Positive phases of the SAM and IOD (stronger 

westerly and southwesterly winds, respectively) occurred when there were longer-

lasting SWCs to the south of New Zealand. A larger number of storms within the 

cluster coincided with El Niño episodes and positive PDO along the west and east 

coasts, and with La Niña events and negative IOD on the north coast (Figure 4.11). 

The number of storms was also larger on the west coast during negative SAM and 

in the presence of a more intense zonal flow during negative ZW3, while in 

southern New Zealand the number of storms increased during El Niño conditions 

and positive phases of the SAM and IOD. These annual correlations (Figures 4.9, 

4.10, and 4.11) support the assumption that trends in SWC parameters (Figure 4.5) 

are associated with trends in climate oscillations (Figure 4.6). More frequent El 

Niño-like conditions, during either negative ENSO or positive PDO phases, were 

consistent with increases in SWC parameters on the south, east, and west coasts of 

the South Island. Furthermore, strengthened circumpolar westerlies associated 

with the trend for a positive SAM (Marshall, 2003) were compatible with trends in 

SWC parameters to the south of New Zealand. 
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Figure 4.9. Correlations of annually-averaged monthly anomalies between cumulative 

storm energy per cluster and climate indices. Correlations were carried out at the model 

grid points on the 200 m isobath over the period 1958–2001 for the SAMI, SOI, DMI, and 

PDO index, and over the period 1979–2001 for the ZW3 index. Only statistically significant 

values at the 95% confidence level are displayed. 
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Figure 4.10. Correlations of annually-averaged monthly anomalies between storm cluster 

duration and climate indices. Correlations were carried out at the model grid points on the 

200 m isobath over the period 1958–2001 for the SAMI, SOI, DMI, and PDO index, and over 

the period 1979–2001 for the ZW3 index. Only statistically significant values at the 95% 

confidence level are displayed. 
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Figure 4.11. Correlations of annually-averaged monthly anomalies between the number of 

storms within the cluster and climate indices. Correlations were carried out at the model 

grid points on the 200 m isobath over the period 1958–2001 for the SAMI, SOI, DMI, and 

PDO index, and over the period 1979–2001 for the ZW3 index. Only statistically significant 

values at the 95% confidence level are displayed. 

 

Figure 4.12 is an example of the wavelet spectral analysis results obtained 

for the four model grid points (Figure 4.1) selected as representative of the major 

coastline orientations, north (N), west (W), east (E), and south (S). It illustrates the 

correlations of monthly anomalies between storm cluster indices and the SOI at 
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several timescales, and highlights the periods in which the ENSO conditions were 

presumably related to the number of clustered storms around New Zealand. The 

most relevant signals were generally observed at 2–7 year timescales. On the north 

coast, increased northeasterly winds, typical of La Niña events, were responsible for 

a more frequent clustering from the late 1960s to the late 1980s (Figure 4.12, top 

panel). Clustered storms were most correlated with positive SOI during the early 

and mid-1970s, coinciding with the 1974–1976 La Niña (Jury et al., 2002). Curiously, 

the extreme 1998–1999 La Niña (Cai et al., 2015) did not seem to have had any 

relation to storm wave clustering on the north coast, as opposed to the extreme La 

Niña of 1988–1989 (Cai et al., 2015) (upward arrows, 4-year cycle). Increases in 

clustered storms due to stronger southwesterly winds during El Niño events were 

more pronounced on the west coast, with strongest correlations in the early 1980s 

(Figure 4.12, left panel). An extreme El Niño indeed occurred in 1982–1983 (Wang 

and Cai, 2013; Cai et al., 2014). The long horizontal band of strong correlations 

during almost the whole period of analysis (Figure 4.12, left panel) also comprises 

two other extreme El Niño events, occurred in 1972–1973 (Saji et al., 1999) and 

1997–1998 (Wang and Cai, 2013; Cai et al., 2014), as well as the consecutive 1986–

1987 and 1987–1988 El Niño episodes (Cai et al., 2015), and the 1991–1992 El Niño, 

which was only short and ended abruptly (Hayward, 1993). A 2-year cycle 

associated with the early 1960s El Niño (McPhaden et al., 2015) showed a strong 

correlation with clustered storms to the south of New Zealand (Figure 4.12, bottom 

panel). El Niño was also related to clustering on the east coast from the early 1960s 

to the early 1980s (Figure 4.12, right panel - signals mostly confined between 2- 

and 4-year cycles), although such relationship was not as strong as on the other 

coasts. 
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Figure 4.12. Squared wavelet coherence spectra of monthly anomalies of storm cluster 

indices with monthly anomalies of the SOI. Thick contours represent 90% confidence levels, 

while hatched areas represent the cone-of-influence. In phase and anti-phase signals are 

represented by arrows pointing upward and downward, respectively. Arrows pointing 

rightward represent the ENSO preceding storm wave clusters, whereas the converse is true 

for arrows pointing leftward. The letters N, W, E, and S on top of each plot stand for north, 

west, east, and south coasts, respectively. 

 

Spectral analyses for the SAM, ZW3, PDO, and IOD were also performed 

(not shown), and their most noteworthy results are described as follows. The most 

striking feature of the coherence spectra obtained for the SAM appeared at 

timescales between 6 and 16 years, and resulted in a higher occurrence of clustered 

storms to the south of New Zealand during its positive phase. A large part of this 

signal is within the cone-of-influence, a region of the spectrum where edge effects 

become important (Torrence and Compo, 1998), requiring caution in the 

interpretation of the results. Despite that, considerably high statistically significant 

correlations (up to 0.9) were found at those timescales during the whole period of 

analysis, with the strongest signals appearing first in the early 1990s. This 

strengthening in the correlation on the south coast throughout the time seems to 

accompany the trend for a positive SAM. On the west coast, a prolonged negative 
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SAM (Gordon et al., 2007) was strongly correlated (up to 0.8) with increases in 

clustered storms from the late 1960s to the early 1970s, supporting the negative 

monthly and seasonal linear correlations discussed previously. Similarly to the 

spectra for the SAM, the coherence spectra of the ZW3 index with storm cluster 

indices showed strong correlations (up to 0.8) in the south at timescales longer 

than 6 years. These correlations appeared in approximately 1987, indicating that 

increases in clustered storms coincided with positive anomalies in the northward 

atmospheric flow. Again, although within the cone-of-influence, such correlations 

were statistically significant. The migration from a more zonal to a more meridional 

atmospheric flow (a transition to the ZW3 positive phase) in 1997 (Raphael, 2004) 

was highly correlated (correlation > 0.9) with a brief decrease in clustering on the 

west coast. The opposite atmospheric change (from meridional to zonal flow) in 

1986/1987 (Raphael, 2004) led to more clustered storms on the same coast. A 2-

year PDO cycle was associated with a strange and counter-intuitive clustering 

(fewer clustered storms - correlation > 0.6) to the south of New Zealand 

throughout the 1980s, when the PDO was predominantly positive (Mantua et al., 

1997). On the east coast, the same happened for the PDO decadal variability from 

the late 1980s to the early 2000s (signal within the cone-of-influence), whilst cycles 

ranging from 2 to 8 years were related to more clustering from the late 1950s to 

the early 1970s (correlation > 0.7 - signal partially within the cone-of-influence). 

Positive IOD was strongly correlated (correlation up to 0.9) with clustering on the 

west coast from the mid-1970s to the early 2000s. Since the mid-1980s, clustering 

on the west coast under El Niño-like conditions seemed more associated with 

positive IOD than negative ENSO. Two extreme positive IOD events occurred in 

1994 and 1997 (Saji et al., 1999), and were related to more clustered storms on the 

west coast owing to the intensification of southwesterly winds. From the early 

1980s to the early 1990s, decreases in clustering on the north coast occurred during 

positive IOD, whereas stronger northeasterly winds (La Niña-like conditions 

associated with negative IOD) induced more clustered storms. A short-lived 

statistically significant signal was identified in the coherence spectrum between the 

storm cluster index to the north of New Zealand and DMI during the extreme 1998–
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1999 La Niña. This signal suggests that negative IOD was associated with fewer 

clustered storms in the region during that period, which could explain the lack of 

association between clustering and the extreme 1998–1999 La Niña, as previously 

noted. However, this contradicts the expected behaviour of clustered storms during 

negative IOD and, therefore, the issue remains open. 

 

4.5 Conclusions 

Work on coastal erosion has shown that storms are more hazardous when 

occurring in clusters because the coastline has insufficient time to recover between 

storms (Lee et al., 1998; Ferreira, 2005). The reserves of sand in the beachface 

deplete during the first storm, facilitating erosion during subsequent ones. Here, 

SWCs and their characteristics in New Zealand waters were explored using results 

of a 45-year (1957–2002) wave hindcast. Cluster duration, the number of storms 

within the cluster, and the potential for cluster-induced coastal erosion were 

analysed through long-term averages and trends. The responses of clustered 

storms to near and remote atmospheric variability were also addressed, by 

computing correlation coefficients and applying the wavelet spectral analysis. 

Storm waves tended to cluster more to the northeast of New Zealand and 

on the central eastern coast of the South Island. Recurrent southwesterly swells, 

generated by extratropical cyclones, produced energetic environments to the 

south of New Zealand and on the northwestern coast, making these regions the 

most vulnerable to coastal erosion caused by SWCs. SWCs lasted longest on a 

segment of the east coast of the South Island sheltered from the prevailing 

southwesterly swell, where they were also least frequent. Trends calculated for the 

period 1958–2001 showed that SWCs have incorporated more storms, have 

become more hazardous, and have lasted longer, principally around the South 

Island. Although these trends may be affected by the ERA-40 data assimilation 

temporal inhomogeneity, it is encouraging that they agree with trends in the SAM, 

PDO, and ENSO. 

Teleconnection patterns showed strong links with storm wave clustering 

around New Zealand. These links arise in several forms, as for example, ENSO-
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related effects are experienced in the area because of the pressure seesaw between 

the Indian and Pacific Oceans (Kousky et al., 1984); the extratropical signature of 

the ENSO projects onto the SAM (L’Heureux and Thompson, 2006) in the wave 

generation zone of the primary swell that hits New Zealand; variations associated 

with the IOD are explained by Rossby wave trains, which propagate from the 

tropical Indian Ocean and induce changes to the mid-latitude westerlies across 

southern Australia (Cai et al., 2011). As a result of remote and local forcings, 

seasonal to decadal variabilities of climate patterns were found to be correlated 

with clustering around New Zealand, especially during strong phases of the modes. 

Stronger southwesterly winds during either El Niño events (negative ENSO) or 

conditions that resemble these, associated with positive phases of the IOD and 

PDO, caused increases in clustering primarily on the southwestern coast of New 

Zealand. The opposite phases of these oscillations, especially positive ENSO and 

negative IOD, affected the north coast through the predominance of increased 

northeasterly winds. Clustered storms were less synchronised with the ENSO, IOD, 

and PDO, whose main signatures take place far away from New Zealand, than with 

the SAM and ZW3 modes, which in turn show their main signatures in the water 

bodies surrounding the country. The strong eastward atmospheric zonal flow 

related to negative ZW3 led to a higher occurrence of clustered storms on the west 

coast, while enhanced westerlies associated with positive SAM had a significant 

impact on clustering to the south of New Zealand. 

As an emerging topic, the spatial and temporal variabilities of storm wave 

clustering still need further research along most coasts around the world. Due to 

the strong influence of SWCs on erosion processes, sediment transport, and coastal 

flooding, a broad understanding of the dynamics of SWCs should underpin coastal 

management. Moreover, as undoubtedly dangerous systems, SWCs have a direct 

impact on safety and, consequently, on the economy. It is still not clear how storm 

wave clustering changes with the seasons and with anomalies associated with 

concurrent phases of two or more atmospheric oscillations. Future work should 

also assess relationships between SWCs and climate patterns considering a range 

of lag periods (only 1-season lag was analysed here). Additionally, our study 
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focused on the potential effect of clustering on erosion, but has not addressed how 

this translates into the scale of erosion on a particular beach. The study of the latter 

necessitates a much wider range of local observations to provide a similarly 

generalizable outcome. Nevertheless, the results presented here should assist in 

the prediction of impacts of future climate change in addition to supporting sea-

related activities and providing a background for climatological studies.  
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CHAPTER 5: Response of the wave climate around New 

Zealand to wind conditions associated with ENSO-

MJO combined activity 

 

5.1 Introduction 

Understanding the processes that force variations to the ocean surface 

gravity wave (henceforth wave) climate is essential for a range of applications, such 

as wave energy estimation and extraction, planning of naval and marine operations 

(Cox and Swail, 2001), and coastal hazard risk management. Many studies have 

shown that wave climate variability is connected with climate pattern fluctuations 

worldwide (e.g., Woolf et al., 2002; Hemer et al., 2010; Izaguirre et al., 2011; Barnard 

et al., 2015; Marshall et al., 2015). Such connections are generally assessed by 

considering correlations with individual atmospheric oscillation modes (as, for 

instance, in Harley et al., 2010; Stopa et al., 2013; Godoi et al., 2016), although waves 

might respond very differently when active phases of two or more modes co-occur 

(Kumar et al., 2016). For example, wave parameters have been shown to relate to 

the El Niño–Southern Oscillation (ENSO) in many studies (e.g., Gorman et al., 2003b; 

Hemer et al., 2007; Harley et al., 2010; Fan et al., 2012; Shimura et al., 2013; Stopa 

et al., 2013; Stopa and Cheung, 2014; Reguero et al., 2015; Godoi et al., 2016; Kumar 

et al. 2016; Mortlock and Goodwin, 2016), while only a few have evaluated their 

links to the Madden-Julian Oscillation (MJO) (e.g., Stopa et al., 2013; Marshall et al., 

2015). 

The ENSO (Walker and Bliss, 1932, 1937; Bjerknes, 1961, 1966; Wyrtki, 1975; 

Neelin et al., 1998) is the dominant mode of inter-annual variability in the ocean-

atmosphere coupled system (Ashok et al., 2007). It is well-known for its association 

with global impacts (Collins et al., 2010) on, for example, rainfall (Ropelewski and 

Halpert, 1987), air temperature (Trenberth et al., 2002), and waves (Stopa et al., 

2013). The ENSO features most prominently in the equatorial waters of the central 

and eastern Pacific Ocean at timescales ranging principally from 2 to 7 years 
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(Trenberth and Hurrell, 1994; Cane, 2005; McPhaden et al., 2006a). The ENSO is 

composed of two active phases, La Niña (cold) and El Niño (warm), determined by 

sea surface temperature (SST) anomalies in the central and eastern Pacific Ocean 

(Chase et al., 2006). These anomalies lead to enhanced [reduced] atmospheric 

convection over the central and eastern Pacific Ocean during El Niño [La Niña] 

episodes (Trenberth, 1997). Concurrent decreases [increases] in atmospheric 

convection occur over Indonesia and the western tropical Pacific owing to changes 

in momentum, heat, and moisture fluxes associated with the Walker circulation (Dai 

and Wigley, 2000). In the tropics, the ENSO-related atmospheric circulation effects 

are manifested through the dispersion of baroclinic equatorial waves (Lin et al., 

2007), whereas in the extratropics, they take place through the propagation of 

barotropic teleconnections (Horel and Wallace, 1981; Mo and Paegle, 2001). 

The MJO (Madden and Julian, 1971, 1972, 1994) is the dominant mode of 

atmospheric sub-seasonal variability (10–90 days) (Mo and Nogues-Paegle, 2005), 

whose main signature occurs along the tropical latitude band. It is characterised by 

an eastward-propagating oscillation that primarily induces changes in the tropical 

atmospheric convection (Matthews, 2000; Matthews et al., 2004; Wheeler and 

Hendon, 2004; Zhang, 2005; Roundy and Kravitz, 2009; Seo and Son, 2012). The 

MJO phases have been defined according to their associated enhanced convection 

locations. Specifically, the MJO-related atmospheric convection is observed over 

the Indian Ocean during phases 2 and 3, over the Maritime Continent during 

phases 4 and 5, over the western Pacific Ocean during phases 6 and 7, and in the 

Western Hemisphere and over Africa during phases 8 and 1 (Wheeler and Hendon, 

2004). As the MJO propagates, convectively coupled equatorial atmospheric waves, 

such as Kelvin and Rossby waves (Matthews, 2000; Seo and Son, 2012), are 

dispersed and barotropic Rossby waves are generated (Seo and Son, 2012). The 

latter influence remote regions of the globe (Mo and Paegle, 2001; Mori and 

Watanabe, 2008). Both the MJO and ENSO have been recognised by their 

teleconnecting nature (Alexander et al., 2002; Grimm, 2003; Matthews et al., 2004; 

McPhaden et al., 2006a; Grimm and Ambrizzi, 2009; Roundy et al., 2010; Moon et 
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al., 2011; Seo and Son, 2012), meaning that their associated effects are experienced 

beyond their main regions of occurrence. 

The interactions between the MJO and ENSO have been of increasing 

interest over the last decade. The ocean-atmosphere conditions associated with 

combined activity in the MJO and ENSO have been found to modulate, for instance, 

wind patterns (Hendon et al., 2007; Roundy and Kravitz, 2009), atmospheric tropical 

convection (Roundy et al., 2010), tropical cyclone activity (Klotzbach, 2012; 

Girishkumar et al., 2015), rainfall (Shimizu and Ambrizzi, 2016), air temperature 

(Shimizu and Ambrizzi, 2016), oceanic Kelvin waves (Seiki et al., 2009), and sea 

water temperature (McPhaden et al., 2006b). To the knowledge of the authors, the 

wave climate variability associated with simultaneous fluctuations of these two 

oscillations has not yet been investigated, so providing motivation for the present 

study.  

The wave climate around New Zealand is particularly interesting because 

the country lies at the interface of the Southern Ocean with the Tasman Sea and 

the Pacific Ocean and, therefore, the waves that affect the country are strongly 

influenced by the different ocean-atmosphere conditions prevailing in its 

surrounding water bodies. The long distance from other landmasses allows long-

period swells, from all directions, to impact on the New Zealand coastline, 

especially those generated by mid-latitude storms propagating over the Southern 

Ocean. The Southern Ocean comprises the most active wave-generating zones in 

the world (Young, 1999; Chen et al., 2002). Both wind-sea and swell waves that 

propagate into New Zealand waters have been found to be related to dominant 

climate oscillations (Godoi et al., 2016). Using results of a long-term wave hindcast, 

carried out specifically for the New Zealand region, we investigate here how wind 

anomalies associated with the joint occurrence of the MJO and ENSO influence the 

wave variability in this unique environment. 

Changes in wave conditions around New Zealand were examined by 

creating significant wave height (𝐻𝑠) and wind anomalies composites according to 

simultaneous ENSO-MJO phase pairs. The latter were identified using climate 

indices representative of the ENSO and MJO states. The next section briefly 
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describes the datasets used and explains how composites were created. The 𝐻𝑠 

anomalies associated with combined activity in the ENSO and MJO are discussed 

in section 3. Finally, the conclusions are presented in section 4. 

 

5.2 Datasets and methodology 

Significant wave height fields were obtained from a 45-year (1957–2002) 

wave hindcast (hereafter 45WH) carried out using version 3.14 (Tolman, 2009) of 

the WAVEWATCH III model (Tolman, 1991). The 45WH (Gorman et al., 2010) was 

conducted by one-way nesting a regional grid domain within a global grid. Wind 

and ice fields from the ERA-40 reanalysis (Uppala et al., 2005) forced the wave 

simulation, which in turn generated 3-hourly and hourly wave parameters with 

spatial resolutions of 1.125º × 1.125º  (global grid) and 0.125º × 0.09375º 

(approximately 10 km - regional grid), respectively. These wave parameters have 

been validated against satellite altimetry data, obtained from the TOPEX/Poseidon, 

ERS1, and ERS2 missions, and against buoy measurements, sourced from the 

National Data Buoy Center (NDBC) and local buoys. The 45WH results have been 

used to assess the mean (Godoi et al., 2016) and extreme (Godoi et al., 2017) wave 

climates as well as storm wave clustering conditions around New Zealand (Godoi 

et al., in press). Additional details on the 45WH and its validation can be found in 

Gorman et al. (2010) and Godoi et al. (2016, 2017). 

The MJO activity was quantified by the real-time multivariate (RMM) daily 

index (Wheeler and Hendon, 2004), obtained from the Australian Bureau of 

Meteorology (BoM). The index results from the two leading empirical orthogonal 

functions (EOFs) of the combined spatially-averaged (15ºS–15ºN) normalised fields 

of zonal wind at 850 hPa, zonal wind at 200 hPa, and outgoing longwave radiation. 

The principal components associated with the two leading EOFs determine the 

daily amplitude and phase of the RMM index. In order to select events with 

potential impacts on the ocean, active MJO days were defined by RMM index 

amplitudes greater than 1.5 standard deviations, following Marshall et al. (2015). 

The ENSO activity was measured by the Oceanic Niño Index (ONI), sourced 

from the National Oceanic and Atmospheric Administration (NOAA). ONI values 
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represent 3-month running means of SST anomalies in the Niño 3.4 region (5ºN–

5ºS, 120ºW–170ºW). El Niño (La Niña) episodes are recognised when ONI values 

remain above (below) 0.5ºC (-0.5ºC) for at least five consecutive overlapping 

seasons. These values were converted into daily values, to match the temporal 

resolution of the RMM index, by assigning the 3-month running mean value of a 

given month to all days of that month. 

Finally, composites were created for the 23-year period 1979–2002 using 

daily anomalies of both the hourly 𝐻𝑠  fields extracted from the 45WH regional 

domain and the 6-hourly wind fields at 10 m used to force the 45WH global grid. 

The Atlantic Ocean and any other seas within the area bordered by the east coast 

of the Americas and the west coast of Africa were excluded from the wind anomaly 

composites, given that our focus is on the waves that can potentially affect the New 

Zealand coastline. As in Roundy et al. (2010), only the months in which both climate 

patterns (ENSO and MJO) are potentially most active (November–March) were used 

when creating the composites, although the inactive phases of the modes (ENSO 

and MJO neutral phases) were also analysed. Composites were established by 

averaging 𝐻𝑠 and wind daily anomalies over all days of each simultaneous ENSO-

MJO phase pair (Table 5.1). Statistical significance of composites was calculated 

using Student’s t-test (Student, 1908; Wilks, 2006). 
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Table 5.1. Number of days in each ENSO-MJO phase pair over the November–March 

season during the period 1979–2002. 

 El Niño La Niña ENSO neutral 

MJO phase 1 47 33 66 

MJO phase 2 36 53 82 

MJO phase 3 67 69 101 

MJO phase 4 51 34 74 

MJO phase 5 31 37 65 

MJO phase 6 32 54 84 

MJO phase 7 33 46 123 

MJO phase 8 50 22 63 

MJO neutral 651 529 946 

 

5.3 Results and Discussion 

The mean wind pattern is substantially modified during simultaneous 

ENSO-MJO fluctuations (Figures 5.1, 5.2, and 5.3). The wind anomalies found along 

and near the Equator result from circulation anomalies in the Walker cell ascending 

and descending branches (Grimm and Ambrizzi, 2009). Anomalous heat sources 

affect winds not only locally, but also remotely through tropic-tropic and tropic-

extratropic teleconnections (Grimm and Ambrizzi, 2009, Stan et al., 2017). 

Meridional variations in the tropical circulation are evident in some phase pairs (e.g., 

El Niño-MJO phase 8 – Figure 5.1), suggesting corresponding variations in the 

Hadley cell. Disturbances in the Hadley cell modify the subtropical atmospheric 

circulation (Liu and Alexander, 2007) and, consequently, the Rossby wave sources 

responsible for the tropic-extratropic teleconnection genesis (Grimm and Ambrizzi, 

2009; Shimizu and Cavalcanti, 2011). In some composites (e.g., El Niño with MJO 

phases 8 and 1 – Figure 5.1), tropic-extratropic teleconnection signals can be 

observed in the mid-latitudes of both hemispheres over the Pacific Ocean, 
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resembling the Pacific-South American (PSA) (Mo and Paegle, 2001) and Pacific-

North American (PNA) (Barnston and Livezey, 1987; Mori and Watanabe, 2008) 

teleconnection patterns. Although relatively weak, wind anomalies are still 

widespread when the MJO is in its neutral phase (Figures 5.1 and 5.2, bottom right 

panels), and have opposite patterns during El Niño and La Niña events. 

 

 

Figure 5.1. Wind at 10 m daily anomaly composites for El Niño with MJO phases over the 

November–March season during the period 1979–2002. Only statistically significant 

anomalies at the 95% confidence level are displayed. Statistical significance was calculated 

using Student’s t-test. 
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Figure 5.2. Wind at 10 m daily anomaly composites for La Niña with MJO phases over the 

November–March season during the period 1979–2002. Only statistically significant 

anomalies at the 95% confidence level are displayed. Statistical significance was calculated 

using Student’s t-test. 
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Figure 5.3. Wind at 10 m daily anomaly composites for ENSO neutral with MJO phases 

over the November–March season during the period 1979–2002. Only statistically 

significant anomalies at the 95% confidence level are displayed. Statistical significance was 

calculated using Student’s t-test. 

 

5.3.1 Composites for active ENSO with MJO phases 

Larger waves are normally observed along the west and south coasts of 

New Zealand during El Niño episodes (Laing, 2000; Gorman et al., 2003b; Godoi et 

al., 2016), which result from anomalously strong southwesterly winds in the vicinity 

of the country in response to negative atmospheric pressure anomalies (Gordon, 

1986). These wind and wave conditions can also be observed when El Niño occurs 

with MJO phases 8 and neutral (Figures 5.1 and 5.4). Conversely, the positive 

anomalies in wind and 𝐻𝑠 on the west and south coasts associated with El Niño are 

masked when the MJO is in phases 2, 3, 4, and 6 (Figure 5.4). Furthermore, negative 

anomalies in 𝐻𝑠 appear along and off the east coast and are reinforced off the 

north coast during El Niño-MJO phase 3 (Figure 5.4) in comparison to when the 

MJO is inactive (El Niño-MJO neutral). During El Niño-MJO phase 4, the positive 𝐻𝑠 

anomalies expected during El Niño events even reverse signs off the west coast 
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and lose statistical significance elsewhere (Figure 5.4). This reflects the negative 

wind anomalies that show up in the southern Tasman Sea (Figure 5.1, El Niño-MJO 

phase 4). An anti-cyclone is generated over New Zealand during MJO phases 3 and 

4 (Seo and Son, 2012), contributing to reducing the cyclonic circulation effects 

associated with El Niño (Gordon, 1986). 

 

 

Figure 5.4. Significant wave height daily anomaly composites for El Niño with MJO phases 

over the November–March season during the period 1979–2002. Only statistically 

significant anomalies at the 95% confidence level are displayed. Statistical significance was 

calculated using Student’s t-test. 

 

The most striking feature of the 𝐻𝑠  anomaly composites, for the 

combinations of El Niño events with MJO phases (Figure 5.4), appears during El 

Niño-MJO phase 8. The whole west and south coasts are characterised by 
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substantially-increased wave heights, which are caused by an extensive band of 

stronger westerly and southwesterly winds to the south of Australia and around 

most parts of New Zealand (Figure 5.1). The largest anomalies in 𝐻𝑠, of more than 

0.75 m, are observed along and off the southwestern coast (Figure 5.4, El Niño-

MJO phase 8). Larger waves also occur in the waters off the east coast during the 

same phase pair. The initial stage of these wind and wave conditions seems to 

occur during the previous MJO phase (El Niño-MJO phase 7), when positive wind 

anomalies over a small area of the Tasman Sea (Figure 5.1) generate southwesterly 

waves that affect the west coast of the North Island (Figure 5.4). Disregarding 

magnitude, the spatial patterns of wind composites during MJO phases 8 and 

neutral combined with El Niño (Figure 5.1) are roughly similar, especially around 

New Zealand. The same is true for the spatial patterns of wave composites (Figure 

5.4), indicating that El Niño-related atmospheric circulation effects are enhanced 

by the convective activity associated with the MJO phase 8 over the central 

equatorial Pacific. This mechanism explains the larger wind and wave anomalies 

around New Zealand during El Niño-MJO phase 8. 

Higher-intensity winds are experienced in the Tasman Sea during El Niño-

MJO phase 1 (Figure 5.1), resulting in positive anomalies in 𝐻𝑠 along and off the 

west coast of New Zealand (Figure 5.4). This seems to be the dissipative stage of 

the preceding ENSO-MJO phase pair (El Niño-MJO phase 8), with positive 𝐻𝑠 

anomalies still remaining in the area despite their weakening. The west coast of 

New Zealand is, therefore, affected considerably by more energetic waves 

throughout the MJO propagation from the western Pacific Ocean (phase 7) to the 

Western Hemisphere (phase 8) and Africa (phase 1) when El Niño is active. 

Conversely, the southern coast receives the largest waves during El Niño-MJO 

phase 8 and El Niño-MJO phase 5. Positive anomalies in the eastward atmospheric 

flow to the south of the country are produced during El Niño-MJO phase 5 (Figure 

5.1), when enhanced atmospheric convection develops over the Maritime 

Continent. This enhancement accompanies the eastward anti-cyclonic circulation 

displacement from the tropical western Pacific to the east of New Zealand (Seo and 
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Son, 2012), which contributes to intensifying the cyclonic circulation associated 

with El Niño to the south of the country. 

Previous work (e.g., Gorman et al., 2003b; Godoi et al., 2016) has shown that 

the north coast of New Zealand usually receives larger waves during La Niña events, 

when stronger northeasterly winds dominate the region (Gorman et al., 2003b). A 

similar wave pattern is noted in the absence of significant MJO activity, in addition 

to small decreases in 𝐻𝑠 on the west and southwest coasts and their seaward areas 

(Figure 5.5, La Niña-MJO neutral). Positive wind anomalies to the north of New 

Zealand are relatively weak and mostly from the east during La Niña-MJO neutral 

(Figure 5.2). Although encompassing a smaller region, these wind anomalies 

strengthen and experience a gentle counter-clockwise rotation during La Niña-

MJO phase 6, leading to stronger anomalies in 𝐻𝑠 than during La Niña-MJO neutral 

(Figure 5.5). The strengthening in wind anomalies results from the atmospheric 

convective activity reinforcement over the western tropical Pacific, which is excited 

by both La Niña and MJO phase 6 (Shimizu and Ambrizzi, 2016). The wind 

anomalies associated with La Niña events combined with MJO phases 7, 8, and 1 

cause weaker anomalies in 𝐻𝑠  than La Niña-MJO phase 6 (Figure 5.5). In 

comparison to the latter, an additional patch of positive 𝐻𝑠 anomalies is found off 

the west coast during La Niña-MJO phase 8 due to positive wind anomalies in the 

Tasman Sea (Figure 5.2). 
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Figure 5.5. Significant wave height daily anomaly composites for La Niña with MJO phases 

over the November–March season during the period 1979–2002. Only statistically 

significant anomalies at the 95% confidence level are displayed. Statistical significance was 

calculated using Student’s t-test. 

 

Part of the usual 𝐻𝑠 anomaly pattern experienced in New Zealand waters 

under El Niño conditions (Gorman et al., 2003b; Godoi et al., 2016) is also found 

during La Niña-MJO phase 3 (Figure 5.5), and resembles the 𝐻𝑠  anomalies 

observed during El Niño-MJO phase 5 (Figure 5.4). Not surprisingly, a westerly flow 

is observed to the south of the country in the wind composites for both phase pairs 

(Figure 5.1 and Figure 5.2), which is induced by an anti-cyclonic circulation (Seo 

and Son, 2012). This pattern suggests that the MJO-related conditions prevail over 

the conditions associated with the ENSO during La Niña-MJO phase 3, since 

easterly winds are generally experienced to the south of New Zealand during La 
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Niña events (Gordon, 1986). For both variables ( 𝐻𝑠  and wind), the anomalies 

associated with La Niña are weaker and occupy a smaller area than those related 

to El Niño. Another similarity between opposite ENSO phases is found during El 

Niño-MJO phase 6 (Figure 5.4) and La Niña-MJO phase 4 (Figure 5.5). These 

combinations have only a minor statistically significant influence on 𝐻𝑠 anomalies, 

which is mostly manifested in the strait between the North and South Islands. 

5.3.2 Composites for ENSO neutral with MJO phases 

There is no atmospheric convection associated with the ENSO during its 

inactive periods. Thus, such periods are generally characterised by weak anomalies 

in atmospheric convection along the equatorial Pacific Ocean, with corresponding 

little atmospheric circulation variability (Shimizu and Ambrizzi, 2016). Nonetheless, 

𝐻𝑠  anomalies around New Zealand can still be governed by the atmospheric 

variability associated with the MJO propagation (Marshall et al., 2015) during ENSO 

neutral periods. Positive 𝐻𝑠 anomalies are most prominent during ENSO neutral-

MJO phase 7, occupying a large portion of the study area (Figure 5.6). These are 

generated by stronger winds to the northeast of New Zealand and, perhaps, by 

part of the long strip of positive wind anomalies in the Southern Ocean, which 

extends from the south of Australia all the way to the Drake Passage (Figure 5.3). 

Negative 𝐻𝑠 anomalies are most pronounced during ENSO neutral-MJO phase 2 

(Figure 5.6), principally off the east coast of New Zealand, coinciding with weaker 

winds to the south and southeast of the country (Figure 5.3). Negative anomalies 

in 𝐻𝑠  also appear in a large area of the New Zealand region during the 

combinations of ENSO neutral with MJO phases 4, 5, and 8 (Figure 5.6). Curiously, 

the negative anomalies during ENSO neutral-MJO phase 5 cannot be explained by 

the wind composite for the same phase pair (Figure 5.3), unlike those found for 

ENSO neutral-MJO phase 4 and ENSO neutral-MJO phase 8. In addition to negative 

anomalies, positive 𝐻𝑠 anomalies occur to the northeast of the country and along 

some sectors immediately adjacent to the north and east coasts during ENSO 

neutral-MJO phase 8 (Figure 5.6). The wind anomalies observed during ENSO 

neutral (Figure 5.3) agree with the circulation anomaly composites obtained by Seo 

and Son (2012), who analysed the atmospheric circulation patterns associated with 



129 

 

the MJO. During ENSO neutral-MJO neutral, the wave variability associated with 

other climate oscillations results in relatively small negative 𝐻𝑠 anomalies (down to 

-0.15 m) along and off the west and south coasts of the country, whereas positive 

anomalies (up to 0.15 m) occur along part of the east coast (Figure 5.6). Such 

anomalies are a consequence of small variability in wind intensity (Figure 5.3). 

 

 

Figure 5.6. Significant wave height daily anomaly composites for ENSO neutral with MJO 

phases over the November–March season during the period 1979–2002. Only statistically 

significant anomalies at the 95% confidence level are displayed. Statistical significance was 

calculated using Student’s t-test. 

 

5.3.3 ENSO-MJO combined activity versus MJO activity 

Marshall et al. (2015) investigated the association of 𝐻𝑠 anomalies with the 

MJO all over the world. Some of the 𝐻𝑠 anomaly patterns reported here agree with 
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their results for the New Zealand region, not only when the ENSO is inactive, which 

would be expected, but also during El Niño and La Niña events. In both studies 

(during the ENSO neutral conditions assessed by us - Figure 5.6), negative 𝐻𝑠 

anomalies are noted along and off the north coast (MJO phase 3), off the west 

coast (MJO phase 4), and off the east and northeast coasts (MJO phase 5), whilst 

positive anomalies are found off the north coast (MJO phase 7 and 8). The 

predominance of the MJO-related conditions over the El Niño and La Niña ones 

are shown through nullification of the 𝐻𝑠 anomalies expected during active ENSO 

phases, through reversal of their sign, or through the emergence of statistically 

significant anomalies where they are non-existent during active ENSO phases. This 

is evident during MJO phases 4 (negative anomalies off the west coast) and 6 

(absence of 𝐻𝑠 anomalies) for El Niño episodes, and during MJO phase 5 (negative 

anomalies off the east coast) for La Niña conditions. Additionally, positive [negative] 

𝐻𝑠 anomalies along and off the north coast during the MJO phase 7 [3] (Marshall 

et al., 2015) explain why similar anomalies during La Niña-MJO neutral [El Niño-

MJO neutral] are strengthened during La Niña-MJO phase 7 [El Niño-MJO phase 

3]. All these features highlight the importance of the MJO to the modulation of 

ENSO-related low-frequency atmospheric and oceanic disturbances.  

 

5.4 Conclusions 

Anomalies in 𝐻𝑠  driven by wind anomalies associated with combined 

activity in the ENSO and MJO were investigated in New Zealand waters during the 

extended austral summer (November–March) for the period 1979–2002. In order 

to do so, the composite analysis technique was applied to 𝐻𝑠 daily anomaly fields, 

computed from modelled results sourced from a long-term wave hindcast, and to 

wind daily anomalies, calculated from the wind fields at 10 m used to force the 

hindcast simulation. 

Atmospheric convection plays a vital role in regulating the large-scale 

atmospheric circulation (Bony et al., 2015) and, consequently, the physical 

processes in the ocean. By transferring moisture and heat from the lower to the 

upper troposphere, atmospheric convection can affect remote areas through 
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teleconnections, interfering significantly in the local climate of distant regions. 

Remarkable differences in wind and wave patterns are observed for different ENSO 

phases as the sub-seasonal atmospheric convection related to the MJO propagates 

along the tropics. In general, anomalies in both wind and 𝐻𝑠 are notably stronger 

during El Niño than during La Niña in combinations with active MJO phases. This 

might be because El Niño is associated with substantial atmospheric and oceanic 

changes contrary to the climatological pattern (e.g., warm SST where cold SST is 

normally found), while the climatological pattern is strengthened during La Niña. 

Wind anomalies during the combinations El Niño-MJO phase 8 and La Niña-MJO 

phase 6 enhance the wave heights around New Zealand relative to when active 

ENSO phases occur in the absence of significant MJO activity. On the other hand, 

the combinations El Niño-MJO phase 6 and La Niña-MJO phase 4 culminate in 

cancelling effects and, therefore, have little impact on 𝐻𝑠 anomalies. The positive 

𝐻𝑠 anomalies expected during El Niño episodes show opposite sign in part of the 

study area and no statistical significance elsewhere when El Niño occurs with MJO 

phase 4. Characteristics of the 𝐻𝑠 pattern observed during El Niño-MJO phase 5 

(positive anomalies to the south of New Zealand) arise with weaker intensity when 

La Niña coexists with MJO phase 3. When no significant ENSO-related effects occur, 

the largest positive [negative] 𝐻𝑠 anomalies along the coastline occur along the 

north [south] coast (ENSO neutral-MJO phase 7 [8]). The notable differences in 𝐻𝑠 

anomalies observed in the New Zealand region between inactive and active phases 

of the ENSO and MJO demonstrate the importance of accounting for combined 

effects associated with these oscillations in atmospheric and oceanic predictions. 

The magnitude of 𝐻𝑠 anomalies obtained during periods in which the ENSO 

and MJO co-existed may also be influenced by wind anomalies associated with 

other climate oscillations not included in the present analysis. Moreover, our study 

has investigated how wind anomalies associated with combined activity in the 

ENSO and MJO affect wave anomalies around New Zealand, but has not addressed 

in detail what conditions drive these wind anomalies. Nevertheless, our results 

show that some particular combinations of the ENSO and MJO are associated with 

hazardous conditions, especially along the southwestern coastline, and future 
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hazard predictions should at least consider the co-occurrence of these two 

oscillations. 
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CHAPTER 6: Summary 

 

This thesis thoroughly assessed changes to the wave climate around New 

Zealand and their relationships with atmospheric fluctuations at several timescales. 

Such changes are of primary importance to the planning of offshore oil industry 

operations and shipping routes, to the construction and maintenance of coastal 

structures (mitigation of potential coastal hazards), and to the monitoring of 

erosion and sediment transport. New Zealand is an island nation, so malfunctioning 

of these elements might have serious implications for the safety and economics of 

several industrial and societal sectors, which would lead to New Zealand being 

critically affected on national and international scales. 

The relationships between climate oscillations and changes in several wave 

parameters and storm wave clustering conditions were evaluated through linear 

correlations and spectral and compositing analyses. An approach previously used 

to identify atmospheric clusters was modified and used to identify storm wave 

clusters. The technique provided the ability to analyse storm wave clustering 

conditions over a large area; past studies have only been able to focus on the beach 

scale. A climatology was established to assess past extreme wave events, whereas 

their expected future behaviour was estimated by employing two extreme value 

statistical methods. The mean and extreme wave climates were spatially 

characterised through cluster analyses, facilitating the understanding of the 

features associated with different wave conditions. Linear and monotonic trends in 

wave and cluster parameters were calculated to understand their long-term rates 

of change. 

The steps above were accomplished using long-term numerically-modelled 

data as the main tool. Results comprise the identification of the periods in which 

larger waves are more frequently observed, as well as of the regions around the 

country affected by these waves. Areas with greatest annual and inter-annual 

variabilities of the mean and extreme significant wave height are potentially the 

most vulnerable to uncertainties under climate changes, and these areas were also 

identified here. Regions more susceptible to cluster-induced coastal erosion were 
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also determined. Moreover, significant trends in several parameters of the mean, 

storm, and extreme wave climates related to hazardous conditions were detected, 

revealing the need to incorporate these trends in coastal planning by local and 

regional governments. 

More specifically, Chapter 2 showed that the largest mean annual and inter-

annual variabilities occur in regions along the coastline dominated by local winds, 

and that increasing wave heights are found in the great majority of the study region. 

All wave parameters assessed showed an association with the five climate 

oscillations considered, with negative phases of the ENSO and ZW3 and positive 

phases of the SAM, IOD, and PDO being associated with the most pronounced 

effects. 

Chapter 3 showed that the wave hindcast was not able to reproduce the 

largest waves. Nevertheless, the hindcast data still allowed the investigation of the 

frequency and spatial pattern of extreme waves. The frequency of extreme waves 

was shown to vary considerably in the New Zealand region throughout the year, 

whereas their monthly spatial patterns did not vary substantially. The south and 

east coasts of the country were shown to have been impacted by more frequent 

extreme waves. Similar to the mean wave climate, mean annual and inter-annual 

variabilities were identified along sectors of the coastline dominated by local 

conditions. Although not investigated, extreme waves around New Zealand seem 

to be associated with La Niña-like effects and the SAM. 

Storm clustering conditions were explored in Chapter 4. They were found 

to be more hazardous on the south and northwest coasts of New Zealand because 

of intense and recurrent southwesterly swells. Storm wave clusters have increased 

in duration besides having become more intense and having incorporated more 

storms. Strong relationships between these systems and climate patterns were also 

noted. Increases in clusters to the southwest of New Zealand occurred during El 

Niño and El Niño-like conditions (positive IOD/PDO), to the north of the country 

during La Niña and La Niña-like conditions, on the west coast during negative ZW3, 

and to the south of New Zealand during positive SAM. 
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In Chapter 5, the wind conditions associated with combined activity in the 

MJO and ENSO were shown to affect the wave climate around New Zealand 

significantly. Increases/decreases in wave height as well as an absence of its 

anomalies, compared to when the MJO is inactive, were found to occur during 

simultaneous MJO-ENSO phase combinations. 

In summary, this thesis led to new understanding of: 

 the correlation of the mean wave climate around New Zealand with 

several climate patterns, especially with the IOD and ZW3; 

 how storm wave clusters behave around New Zealand, and how they are 

affected by atmospheric fluctuations associated with the ENSO, IOD, 

PDO, SAM, and ZW3. Moreover, for the first time, a simple and objective 

method was implemented to identify storm wave clusters, and this can be 

used for any other region of the globe; 

 changes in the frequency of extreme wave events along the New Zealand 

coastline; 

 the wave variability around New Zealand in response to atmospheric 

fluctuations associated with combined activity in the MJO and ENSO. 

This thesis uncovered several future avenues of research. Links between the 

wave climate around New Zealand and atmospheric conditions associated with 

other climate oscillations should also be assessed in detail. Although the effects of 

such atmospheric conditions on the wave climate around New Zealand are likely 

to be less pronounced than the ones addressed here, they might still be significant 

and deserve investigation. Here, I selected two climate oscillations whose 

combined activity was likely to have associated conditions that would strongly 

influence the wave climate around the country. However, I have not investigated 

other potential combinations. The results presented and discussed throughout this 

work highlight the need for an extension to shallower waters, so that a more 

detailed picture of the coastal impacts can be obtained. This can be achieved by 

using datasets with higher spatial and temporal resolutions. In this case, other 

effects should also be accounted for, such as tidal variations, wave diffraction and 

reflection, and wave-current and wave-bottom interactions. In order to do so, a 
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detailed bathymetry around the whole coastline of New Zealand is required. 

Additionally, a reasonable number of buoys with long records will be necessary to 

validate the model. Although wave models have improved substantially, their 

results will always need validation. Therefore, more efforts should be put into 

collecting data. An even more realistic scenario of wave impacts on the coast 

requires the coupling of wave, hydrodynamic, and storm surge models. 

Nevertheless, this thesis provided new insights into the wave climate of a region 

not explored so much yet, but with an internationally growing recognition of its 

relevance (e.g., Rusu and Guedes Soares, 2009). 

The present contribution may assist New Zealand to better prepare for 

multi-hazard effects resultant from the combination of large waves with increases 

in sea level (Hannah, 2004; Hannah and Bell, 2012; Walsh et al., 2012) and stronger 

storms (Geng and Sugi, 2003; Emanuel, 2005; Bengtsson et al. 2006; Knutson et al., 

2010; Stephens and Ramsay, 2014). Furthermore, my results provide a background 

for climatological studies, which should be consistently updated as more data are 

made available. Lastly, the techniques used here can be applied in other studies to 

fully characterise the wave climate of other regions, especially those in the 

Southern Hemisphere, which have not been as much explored as the ones in 

Northern Hemisphere. 
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