Ecology of migrant shorebirds in New Zealand, focussing on Farewell Spit, North-West Nelson A thesis presented in partial fulfilment of the requirements for the degree of Masterate in Ecology at Massey University Philip Frank Battley 1996 ## **ABSTRACT** Migratory shorebirds are a dynamic component of New Zealand's coastal fauna, alternating between distant breeding and non-breeding grounds. The Red Knot Calidris canutus, Bar-tailed Godwit Limosa lapponica and Pied Oystercatcher Haematopus ostralegus finschi were studied on Farewell Spit, North-West Nelson. The first two species breed in the Arctic and migrate to New Zealand for the non-breeding season. Over the southern summer they experience low thermostatic costs and generally improving prey conditions over the summer. Oystercatchers are resident over autumn and winter, so experience rising costs and declining prey quality in some species. One bivalve species, Macomona liliana, shows seasonal depth changes in the sediment, and so is largely inaccessible even to a long-billed bird such as the oystercatcher. Despite this, oystercatchers feed for less time than is available, and achieve intake rates sufficient to cover estimated needs. The energy needs of the Arctic waders rise as they prepare to migrate, and they achieve at least part of this by increasing the duration of feeding. Knots during spring tides in the premigratory period feed for the entire low-water period. Godwits are apparently less stressed, underutilising nocturnal feeding opportunities over summer. They are thought to increase feeding time by using this night-time feeding. The high energy demands for migrating birds come from the need to deposit nutrients for migration, and knots around the Auckland region are estimated to increase in mass from 115 to 185 g prior to migration. Fat deposition is not the only physiological preparation, however, and a sample of knots shot from Northland (illegally, recovered by DoC) revealed complex interactions between organs. Large amounts of fat were deposited, mostly in a subcutaneous layer but also in the abdominal cavity. Muscle protein was also deposited in flight and heart muscles, presumably to prepare for the extreme effort involved in trans-oceanic flights. At the same time, digestive organs decreased in mass. This is interpreted as freeing up muscle protein which is then deposited in organs for use during flight. Knots and godwits migrated from Farewell Spit in March. Most departures occurred in the evening and on rising tides. The former probably allows for the use of multiple navigational cues, while the latter may maximise feeding opportunities immediately before the flight. Most departures occurred after the passage of a low-pressure system or with the approach of a high-pressure system. This enabled favourable winds to be gained, so that the mean wind vector was a small tailwind. Thus, while departure directions were intermediate between the expected directions for flights to either Australia or northern New Zealand, it is probable they were able to fly across the top of a high-pressure system and gain wind assistance for a direct flight to Australia. However, the variability in flight range estimates depending on assumptions of travel-speed and protein deposition makes predicting migration routes difficult. Numbers of godwits have increased on Farewell Spit over the past decade, while oystercatchers have remained static Knots have shown a slight decline. Knot numbers are independent of national census counts so are presumably determined largely by factors operating on Farewell Spit itself. A possible mechanism that could give to a slowly declining population could be if a certain sector of the population fails to deposit sufficient nutrients to successfully migrate and return. If site-fidelity is very high (as it generally is in waders) then a long-term decrease could ensue. ## TABLE OF CONTENTS | | Title page | 1 | |-----------|---|-----| | | Dedication | ii | | | Abstract | iii | | | Table of contents | v | | | Acknowledgements | ix | | | List of figures and tables | xii | | Chapter 1 | General introduction | 1 | | Chapter 2 | Study site: physical features, biological | | | | features and history | | | | Geomorphology | 8 | | | Fieldwork | 9 | | | Climate | 12 | | | Vegetation | 12 | | | Fauna | 13 | | | Status | 14 | | | Scientific research | 14 | | Chapter 3 | Prey availability | | | | Abstract | 15 | | | Introduction | 16 | | | Methods | 18 | | | Results | | | | Total biomass | 20 | | | Size relationships in bivalves | 25 | | | Sizes of shellfish | 29 | | | Size-mass relationships | 31 | | | Worms | 40 | | | Discussion | 42 | | | Approaches to studying benthic | | | | food supplies | 44 | | | | | | Chapter 4 | Behaviour, diet and energy intake | | |-----------|---|---------| | | Abstract | 47 | | | Introduction | 48 | | | Methods | 49 | | | Results | | | | Roosting areas | 52 | | | Feeding areas | 52 | | | Distances travelled during feeding | 54 | | | Site fidelity to roosting areas | 54 | | | Activity | 57 | | | Feeding method and prey type | 61 | | | Pied Oystercatcher: diet and intake rates | 63 | | | Red Knot: diet and intake rate | 68 | | | Bar-tailed Godwit: diet and intake rates | 76 | | | Discussion | | | | Use of space | 77 | | | Feeding time | 79 | | | Pied Oystercatcher: energy requirements, | | | | diet and energy intake | 81 | | | Red Knot: diet, energy requirements and | | | | energy intake | 84 | | | Bar-tailed Godwit: diet, energy demand | | | | and energy intake | 90 | | | Dietary overlap between species | 92 | | | Seasonal energy demands and intake | 92 | | Chapter 5 | Seasonal mass changes in knots in New 2 | Zealand | | | Abstract | 94 | | | Introduction | 95 | | | Methods | 95 | | | Results | 96 | | | Discussion | 99 | | | Is the juvenile mass increase adaptive? | 101 | | Chapter 6 | Body composition of Knots Calidris can northern New Zealand in the premigrator (Co-authored with Dr. Theunis Piersma, submitted) | ry period | |-----------|--|-------------------| | | Abstract | 105 | | | Introduction | 106 | | | Methods | 108 | | | Results | 109 | | | Discussion | 117 | | Chapter 7 | The northward migration of arctic wader | | | | departure behaviour, timing and possible | _ | | | of Red Knots and Bar-tailed Godwits from | om Farewell Spit, | | | North-West Nelson | | | | (Submitted to <i>Emu</i>) | | | | Abstract | 121 | | | Introduction | 122 | | | Methods | 124 | | | Results | * | | | Premigratory and migratory behaviour | 126 | | | Patterns of departures | 128 | | | Direction of departures | 130 | | | Influence of weather | 132 | | | How far might New Zealand knots be | | | | able to fly? | 135 | | | Discussion | | | | Migratory behaviour | 135 | | | Timing of departure | 136 | | | Effect of weather | 139 | | | Flight ranges | 139 | | | Do knots fly to Australia direct or via | | | | Northland? | 140 | | Chapter 8 | Population processes and wader limitation | : | |-----------|---|-----| | | a theoretical excursion | 143 | | | Carrying capacity: concepts and utility | 144 | | | Mortality and selection | 151 | | Chapter 9 | General discussion | | | | Food supply and usage | 154 | | | Migratory preparation | 155 | | | Numbers of birds on Farewell Spit: are they | | | | limited? | 156 | | | Evidence for limitation? | 161 | | | Interactions with Black Swans | 163 | | | Energetic costs: implications for wader | | | | distributions around New Zealand | 164 | | | Future research | 167 | | | References | 170 | 23 (8) ## List of Figures and Tables | <u>Figures</u> | <u> </u> | | |----------------|----------|--| | Figure | 2.1 | Location of Farewell Spit | | Figure | 2.2 | Detail of study site at the tip of Farewell Spit | | Figure | 2.3 | Mean windspeed recorded at the Farewell Spit lighthouse. | | Figure | 2.4 | Mean temperature at the Farewell Spit lighthouse. | | Figure | 3.1 | How the harvestability of a prey item depends on its ingestibility, profitability and accessibility. | | Figure | 3.2 | Biomass of main taxonomic groups of organisms at Tip1 sampling site. | | Figure | 3.3 | Biomass of main taxonomic groups of organisms at Tip2 sampling site. | | Figure | 3.4 | Biomass of main taxonomic groups of organisms at Pan and Tip1-Tip2 | | | | sampling sites. | | Figure | 3.5 | Biomass of main taxonomic groups of organisms at Flat1 and Chan1 sampling | | | | sites. | | Figure | 3.6 | Pied Oystercatcher prey biomass levels at four main sampling sites. | | Figure | 3.7 | Knot prey biomass levels at three main sampling sites. | | Figure | 3.8 | Godwit prey biomass levels at four main sampling sites. | | Figure | 3.9 | Relationship between hinge height and shell length for cockles. | | Figure | 3.10 | Relationship between hinge+top height and shell length in cockles. * | | Figure | 3.11 | Ingestibility limitation of cockles for knots. | | Figure | 3.12 | Relationship between hinge+top length and shell length in the pipi. | | Figure | 3.13 | Ingestibility limit for knots feeding in pipi. | | Figure | 3.14 | Mean cockle shell length and mean deviation by month (1994). | | Figure | 3.15 | Size distribution of cockles at Tip3 in January, June and December 1994. | | Figure | 3.16 | Size distributions of mussels present near the tip of Farewell Spit in late | | | | summer (February) and early winter (June). | | Figure | 3.17 | Seasonal changes in flesh content of 15, 25 and 35 mm cockles. | | Figure | 3.18 | Seasonal changes in density of cockles at Tip3 in 1994. | | Figure | 3.19 | Seasonal changes in total biomass in cockles at Tip3 in 1994. | | Figure | 3.20 | Seasonal changes in flesh content in Macomona of 15, 25 and 35 mm | | | | length in 1994. | | Figure | 3.21 | Average depth of 15, 25 and 35 mm <i>Macomona</i> . | | Figure | | Seasonal variation in harvestable biomass of <i>Macomona</i> to knots and | | T U | | oystercatchers. | Flesh mass as a function of shell length in pipi over summer (November-April). Figure 3.23 Ratio of predicted summer mass to winter mass for four sizes of pipi. Figure 3.24 Flesh content as a function of shell length in mussels in late summer Figure 3.25 Generalised movements of feeding waders at low tide. Figure 4.1. Counts of knots roosting near Bush end Point and the shellbanks from Figure 4.2 14-1-1994 to 8-3-1994. Counts of godwits roosting near Bush end Point and the shellbanks from 14-1-Figure 4.3 1994 to 8-3-1994. Percentage of feeding knots over all tides in the basic period, relative to tide. Figure 4.4 Percentage of feeding godwits over all tides in the basic period, relative to tide. Figure 4.5 Percentage of feeding knots over all tides in the premigratory period, relative to Figure 4.6 Figure 4.7 Percentage of feeding godwits over all tides in the premigratory period, relative to tide. Percentage of feeding oystercatchers over all tides in summer, relative to tide. Figure 4.8 Percentage of feeding oystercatchers over all tides in winter, relative to tide. Figure 4.9 Size of mussels eaten by Pied Oystercatchers at the hummocks in February and Figure 4.10 June 1994. Mussel selection by oystercatchers at the hummocks. Figure 4.11 Proportion of biomass per mm size class contributing to diet of oystercatchers Figure 4.12 feeding on mussels. Estimated daily energy intake of Pied Oystercatchers feeding on four prey types Figure 4.13 in summer and early winter. Localities used in grouping of knot faeces Figure 4.14 Size distribution of pipi recovered from knot faeces (all localities combined). Figure 4.15 Size distribution of pipi recovered from knot faeces and present in sediment for Figure 4.16 1993/94 over all sites. Size distributions of pipi taken by knots, estimated from faeces and regurgitates. Figure 4.17 Size distribution of cockles taken by knots with all localities combined, estimated Figure 4.18 from faeces. Size distribution of cockles from knot faeces and regurgitates in 1993/94. Figure 4.19 Size distribution of cockles taken by knots (estimated from faeces) and present Figure 4.20 in sediment for 1993/94 over all sites. Figure 4.21 Intake rate of knots over all sites and times. Figure 4.22 Maintenance metabolism of Pied Oystercatchers at Farewell Spit. Figure 4.23 Maintenance metabolism of Red Knots on Farewell Spit. Maintenance metabolism of Bar-tailed Godwits on Farewell Spit. Figure 4.24 Localities of knot catching operations in the Auckland region. Figure 5.1 Figure 5.2 Mass of knots though the year, separated into 3rd, 2nd and 1st-year birds. Schematic representation of how a sample of birds on a single day can Figure 6.1 approximate the "fattening" trajectory of a hypothetical individual. Relationship between body mass and total fat mass and total fat-free dry mass Figure 6.2 Relationship between the four components of total fat mass, and total fat mass Figure 6.3 in knots. Total FFDM plotted against fat mass in knots. Figure 6.4 Organ FFDM plotted against total fat mass in knots. Figure 6.5 Map of localities in Australasia mentioned in the text. Figure 7.1 Daily pattern of observed departures of knots and godwits from Farewell Spit, Figure 7.2 March 1994. Pattern of departures relative to time of day (top), and observer time in field Figure 7.3 (lower). Pattern of observed departures relative to tidal stage. Figure 7.4 Directions of departures for knot and godwit. Figure 7.5 Figure 7.6 Degree of wind drift experienced by departing flocks. Figure 7.7 Wind vectors for departing flocks. Plot of departure occurrences relative to prevailing weather systems. Figure 7.8 Figure 7.9 Estimated flight range of knots. Tidal Influence Index, plotted against tidal height. Figure 7.10 Figure 8.1 Effects of habitat loss on bird populations. Count of knots at Farewell Spit from 1983 to 1995. Figure 9.1 Figure 9.2 Counts of godwits at Farewell Spit from 1983 to 1995. Percentage deviation from three-year running mean for counts of knots on Figure 9.3 Farewell Spit Percentage deviation from three-year running mean for counts of godwits on Figure 9.4 Farewell Spit. Count of oystercatchers at Farewell Spit from 1984 to 1995. Figure 9.5 | Figure 9.6 | Percentage deviation from three-year running mean for winter counts of oystercatchers on Farewell Spit | |---------------|--| | Figure 9.7 | Maintenance metabolism for knots at the Firth of Thames, Farewell Spit and Southland. | | Figure 9.8 | Maintenance metabolism for knots at the Firth of Thames, Farewell Spit and Southland. | | <u>Tables</u> | | | Table 3.1 | Sampling dates for invertebrates. | | Table 3.2 | Intercept, exponent and explained variance for power functions relating shell length to biomass (mg AFDM) for cockles in different months. | | Table 3.3 | Intercept, exponent and explained variance for power functions relating shell length to biomass (mg AFDM) for <i>Macomona</i> in different months. | | Table 4.1 | Feeding method on main prey types for knots, godwits and oystercatchers. | | Table 4.2 | Intake, pecking/probing and pacing rates of foraging oystercatchers. | | Table 4.3 | Composition of knot diet assessed from faeces according to locality, for all years combined. | | Table 4.4 | Mean size (mm) of pipi taken by knots, summarised by locality and summer. | | Table 4.5 | Mean size (mm) of cockles taken by knots, summarised by locality and summer. | | Table 4.6 | Energy intake of godwits feeding on worms (Travisia and 'slender worms'). | | Table 6.1 | Physical and plumage details of all analysed knots, listed in order of decreasing total body mass. | | Table 6.2 | Correlations of body mass, fat mass, total FFDM, FFDM of all body parts are three structural measures, with fat mass and total FFDM for adult knots. | | Table 6.3 | Comparison of body part masses for adult and juvenile knots. | | Table 7.1 | Flock sizes, vocalisation and presence of visible sun at departures for knot an godwit, at Farewell Spit, March 1994. | | Table 7.2 | Departing flock formation and changes in knots and godwits at Farewell Spit March 1994. | | | | | | |