MARRAM GRASS (AMMOPHILA ARENARIA) AND COASTAL SAND STABILITY IN NEW ZEALAND

R. L. GADGIL

New Zealand Forest Research Institute, Private Bag 3020, Rotorua, New Zealand.

(Received for publication 23 September 2001; revision 23 August 2002)

ABSTRACT

The sand-binding plant Ammophila arenaria (L.) Link, commonly known as marram grass, has many characteristics which contribute to its usefulness in the initial stages of stabilisation of coastal sand and account for its selection for this purpose in most temperate countries. Research and experience in New Zealand have demonstrated the success of revegetation programmes based on its use in a planned vegetation succession, culminating in the permanent stabilisation of extensive sand drifts. Except on the seaward face of the current foredune, native sand-binding plants grow less vigorously than A. arenaria. For sites behind the foredune crest, use of A. arenaria offers the most reliable basis for prevention and arrest of sand mobility and the commencement of an effective vegetation succession involving native or exotic plants. Where rabbits have been eliminated from these sites and some degree of sand stability can be established and maintained, native sand dune species would be an appropriate choice for revegetation programmes. Use of A. arenaria as a temporary nurse for other dune species is currently under investigation.

Keywords: coastal sand; erosion; marram grass; revegetation; stabilisation; *Ammophila arenaria*.

INTRODUCTION

New Zealand's coastal sand dunes cover a total of 305 000 ha, 80% of which are in the North Island (van Kraayenoord 1986). They form a strip 0.1–20 km wide which is subject to wind erosion wherever the sand is exposed and allowed to dry out. In pre-human times New Zealand vegetation was not subject to the clearing, burning, trampling, grazing, browsing, and other disturbance that commenced with Polynesian settlement between A.D. 1100 and 1300 and escalated with European colonisation. In the absence of human activity it is almost certain that areas behind the current foredune would have supported a vigorous and diverse flora that minimised exposure of sand during storm events and ensured rapid regrowth across any breach in the vegetation cover. Human influence brought about the destruction and reduced effectiveness of many indigenous species. Greater areas of sand were uncovered and exposed to wind action, with the consequence that massive mobile dunes became a common coastal feature. The destructiveness of these dunes was all too apparent by the end of the nineteenth century and the New Zealand Government was

(Penzig) Penzig & Saccardo, which virtually removed lupin from the dunes (Dick 1994). The other was the passing of the 1991 Resource Management Act which sanctioned a widespread desire for land managers to preserve and restore the "natural character" of the resources under their care. This legislation accorded well with the aims of a growing conservation/preservation movement and was interpreted by many resource management agencies as a directive for replacement of exotic plants with native species wherever possible.

The urgency for preventing and arresting sand drift inland from the coastal strip is as great as ever. In sand stabilisation work, where the time factor is often crucial and setbacks can exacerbate the original erosion problem, it is essential that the consequences of changes to well-tried methods should be understood before they are attempted. The purpose of this study was to bring together information relating to A. arenaria which may have a bearing on its relative usefulness wherever the presence of unstable or drifting sand is considered to be undesirable. Practical experience over a long period of time has proved the value of the species in this context. Close examination of its attributes will be needed as part of any meaningful comparison with species proposed as alternatives.

DISTRIBUTION

Ammophila arenaria (Syn. A. arundinacea; Calamagrostis arenaria; Psamma arenaria) has been described as the world's best known and most widespread sand plant (Esler 1970). It has been present in New Zealand for at least 125 years. It was probably introduced from Australia for the purpose of sand stabilisation in the Wellington area (Crawford 1874). Ammophila arenaria is native to western Europe, where it is abundant and often dominant on mobile and semi-fixed dunes of all except Arctic coasts (Huiskes 1979). A naturally occurring sterile intergeneric hybrid, Ammocalamagrostis baltica (Fl.) P. Fourn., the product of the crossing of Ammophila arenaria and Calamagrostis epigejos (L.) Roth, is locally abundant in three isolated British coastal areas, and in western Europe from Scandinavia to France (Hubbard 1954). Cockayne (1911) reported that A. arenaria had been introduced into North America, Australia, and North and South Africa, and it is now naturalised in most temperate coastal regions. In Australia it is present in all states except the Northern Territory (Harden 1993) and Queensland (Jessop & Toelken 1986). The latitudinal range appears to be approximately 30° to 63° in the Northern Hemisphere (Breckon & Barbour 1974; Huiskes 1979) and 30° to 48° in the Southern Hemisphere (Avis 1989; Harden 1993; Edgar & Connor 2000).

In New Zealand, A. arenaria has been planted on a large scale and has spread vegetatively and occasionally by seeding (Edgar & Connor 2000). It now dominates plant communities growing on partially stabilised sand in many parts of the country with the exception of the west coast of the South Island south of the Waiho River (Wardle 1991). In South Westland and Stewart Island it exists as isolated stands in otherwise native plant communities. Ammophila arenaria has been planted on inland sand dunes near Cromwell, in Erewhon Park in the Rangitata Valley, and on drifting pumice along the Desert Road north of Waiouru (van Kraayenoord 1986; Edgar & Connor 2000).

PLANT DESCRIPTION

Edgar & Connor (2000) described Ammophila arenaria as an erect perennial grass which forms compact tussocks up to 170 cm tall. It spreads horizontally and vertically through loose

expectation of a horizontal underground extension rate of at least 0.6 m/yr. Below-ground dry matter accumulation of 2–4 t/ha (to a depth of 1 m) has been recorded at this stage (Gadgil 1971).

Ammophila arenaria is an efficient sand collector as well as a sand binder (Cockayne 1911; Hesp 2000). The upright tillers arrest wind-blown sand grains which fall and contribute to the formation of sand mounds around the base of the tussocks. A plant growing in loose sand will have a number of tillers radiating from the tips of vertical rhizomes at a point near the sand surface. If the plant becomes more deeply buried, further rhizomes will form and produce tillers near the new sand surface (Cockayne 1911). Initiation of new roots tends to be localised near the sand surface and is especially frequent in freshly-buried shoot bases (Willis 1965). Ammophila arenaria plants have been known to survive sand burial rates of 80–100 cm/yr (Huiskes 1979). This faculty is thought to be linked with ability to tolerate relatively long periods of total darkness (Sykes & Wilson 1990).

Maintenance of a net increase in biomass seems to be dependent on sand accretion rates of up to 40 cm/yr (Marshall 1965). Although gradual loss of vigour associated with increase in sand stability has received comment since the mid 1800s, the reasons remain obscure. Theories put forward include inability to tolerate a changed microenvironment, inefficiency in replacement of tissues which have a shorter lifespan than the plant as a whole, and physiological senescence. Van der Putten & Troelstra (1990) rejected suggestions that changes in soil fertility, loss of calcium carbonate, accumulation of organic matter, reduced salt spray, or increased plant competition could account for the decline on the grounds of the relatively long time period required for their influence to take effect. They produced evidence suggesting that penetration of newly-deposited sand reduces exposure to harmful soil organisms which colonise older soil. More recently, combinations of fungi and nematodes, rather than single species, were found to be associated with the decline on coastal foredunes in the Netherlands (de Rooij-van der Goes 1995). Willis (1965) observed an increase in vigour when nutrients (particularly nitrogen) were applied. The magnitude of this increase was greater under conditions of active sand accretion, indicating that nutrient addition did not compensate for the effect of fresh sand. Wallén (1980) found that the lifespan of above-ground biomass increases with time. He maintained that the decline in net biomass production does not correspond to a decline in gross production, but represents a change in the ratio of assimilating to non-assimilating tissue. This ratio change progresses towards a steady state in which annual respiration equals annual assimilation and there is no further net increase in biomass.

Tolerance to temperature dynamics and drought

Regular wind action promotes high rates of moisture loss from any material characterised by a single-grain structure and low water-storage capacity. Absence of shade means that summer air temperatures on unvegetated sand dunes are relatively high, with wide daily and hourly fluctuations. Few measurements of the physical factors affecting plant growth on coastal dunes have been reported in New Zealand. Cockayne (1911) recorded a temperature of 52°C in surface sand at Levin in summer. In black ironsand near Wanganui the temperature at a depth of 7.5 cm was 33°C when air temperature was only 19°C. At a comparable latitude in North Carolina, Oosting & Billings (1942) recorded maximum temperatures of 52°, 35°, and 32°C at sand depths of 0, 10, and 25 cm. They noted that major

A study of the relationship between A. arenaria, the leguminous species Lupinus arboreus, and Pinus radiata led Mead & Gadgil (1978) to suggest that the speed of permanent cover development in the artificial sand dune vegetation succession may be controlled by the avidity of A. arenaria for fixed nitrogen. Efficient utilisation of fixed nitrogen derived from the lupins and the later release of this nitrogen (a consequence of suppression of A. arenaria by the trees and subsequent decomposition) appear to be important process components in the early stages of nitrogen cycling in the developing ecosystem. Above-ground nitrogen content of 7-year-old A. arenaria was doubled by the presence of L. arboreus but there was little increase in dry matter production (Gadgil 1976). Plant death and decomposition after tree canopy closure would have released this nitrogen at a time when tree roots were exploiting a large proportion of the soil volume and tree nitrogen requirements were greatest (Mead & Gadgil 1978).

Vesicular-arbuscular mycorrhizal fungi (probably *Endogone* spp.) have been observed in the roots of *A. arenaria* growing on semi-stabilised dunes but are rare in plants colonising mobile sand (Nicolson 1960). The fungus is thought to enhance plant nutrition by increasing the availability of less-soluble compounds in the sand.

Palatability

In New Zealand, sand dunes and their vegetation commonly support populations of rabbits, hares, and small rodents. Coastal dunes are sometimes accessible to feral goats (Walls 1998), deer (McKelvey 1999), and wild horses (Sale 1985). Throughout the country, farm managers often use sand dunes as extensive grazing areas for cattle, sheep, horses, and goats. Browsing animals are, therefore, a common component of the sand dune environment, and have a profound effect on the continuity and nature of the vegetation cover.

Although A. arenaria seedlings are eaten by rabbits (Esler 1969), mature plants are less vulnerable to browsing by rabbits and grazing stock. Cattle, sheep, and horses will eat A. arenaria only when other fodder is unavailable (Cockayne 1911). Colonies spread mainly by vegetative reproduction, and tiller replacement from underground stems usually compensates for browsing damage. Many other sand dune species are more dependent on seedling establishment for successful colonisation and these will be more vulnerable to the effects of browsing pressure. Esler (1969) described S. sericeus as the most palatable plant on the foredune of the Manawatu coast, implying that A. arenaria and D. spiralis were less severely affected by grazing and browsing animals.

Disease

Ammophila arenaria in New Zealand is free from major diseases (van Kraayenoord 1986). Three phytopathogenic fungi occurring on A. arenaria, but not considered to be important, are ergot (Claviceps purpurea (Fries) Tulasne), recorded on 12 native and 20 introduced grass species and widespread throughout New Zealand (Dingley 1969); Uredo sp., a rust associated with A. arenaria throughout New Zealand (McKenzie & Johnston 1999); and a leaf spot (Colletotrichum graminicola (Ces.) Wilson), recorded on A. arenaria on the Coromandel Peninsula and on Great Barrier Island and known to be common on other grasses (McKenzie & Latch 1984).

In the Netherlands, Van der Putten & Troelstra (1990) noted that organisms commonly found in soil (possibly nematodes and fungi — Van der Putten et al. 1990) can be harmful

At a site behind the current foredune in Hawke's Bay, Walls' (1998) evidence that A. arenaria was "squeezing out native plants" was unconvincing since total recorded vegetation cover did not exceed 40% even where rabbits and larger animals had been excluded for 8 years. The observed decline of S. sericeus after 6 years was probably due to the fact that this species was near to its landward limit (described by Esler (1970) as "a few chains from the beach"). At this stage A. arenaria occupied only 10-16% of the available area, and cover of D. spiralis remained at about 1%. Results from unreplicated exclosures indicated that browsing by animals, particularly rabbits, had an inhibitory effect on the rate of spread of A. arenaria, Carex pumila Thunb., Coprosma acerosa A. Cunn., and S. sericeus.

Esler (1970) described the "rising ascendancy" of S. sericeus over A. arenaria and D. spiralis on the current foredune of the Manawatu coastline. From a Southland study, Smith et al. (1985) concluded that D. spiralis had been displaced by A. arenaria on mobile sand at the top of the beach. Here A. arenaria was currently the major coloniser, stabilising the substrate and facilitating the establishment of prostrate species. A mixture of herbs, grasses, shrubs, and woody species including Lagenophora pumila (Forst. F.) Cheesm., Phormium tenax J.R. et G.Forst., and Metrosideros umbellata Cav. eventually replaced A. arenaria on stabilised sites where there was no further sand supply. In Otago and Southland, Euphorbia glauca has been found to co-exist with A. arenaria (Johnson 1992).

Research on inter-species relationships in *Pinus radiata* forest, planted to complete the stabilisation of drifting sand, showed that, although *A. arenaria* does not survive complete canopy closure by an overstorey, it can account for one-third (18–24 t/ha) of the total aboveground biomass in 4- to 5-year-old tree stands (Gadgil 1971, 1976).

Control Measures

Partridge (1995) showed conclusively that hand-pulling did not remove A. arenaria unless carried out frequently and over a long period. Rhizome material left in the ground actually grew more vigorously after hand-pulling, probably because sand was disturbed and older material was removed.

Selective herbicides have been used by the Department of Conservation to control the growth of A. arenaria in Southland, where its spread is considered to threaten the development of native species (Bergin 2000). The possibility that restriction or removal of A. arenaria may compromise sand stability has to be considered before any control or eradication measures are initiated. Spraying with the grass-specific herbicide Gallant (15 ml/litre) will kill above-ground A. arenaria material, but monitoring and follow-up treatment are necessary to ensure that regrowth from underground rhizomes is also killed. Gallant does not affect D. spiralis, which is a sedge, but other grasses should be protected from contact with the herbicide spray (Bergin 2000).

Planting Methods

Details of methods used for A. arenaria establishment in successful sand stabilisation projects in New Zealand have been described by Harrison-Smith (1939), Restall (1964), Wendelken (1974), and McKelvey (1999). Planting material is taken from a "nursery" area treated with a heavy dressing of nitrogenous fertiliser 2 years before winter lifting. Roots of well-developed tussocks are cut well below sand level with a sharp spade. Tillers with roots

Partridge (1995) has shown that there are circumstances under which A. arenaria does not constitute a threat to D. spiralis. These include any situation in which marram growth is restricted by lower salt tolerance or an inadequate supply of fresh sand. Where moisture is not a growth-limiting factor, the two species can co-exist as a mixture even though A. arenaria may assume dominance.

DISCUSSION AND CONCLUSIONS

In terms of stabilisation of wind-blown sand, the effectiveness of vegetation cover will be determined by plant morphology, plant vigour, and the density, longevity, and extent of the plant community. These factors are all likely to be modified by wind energy, sand supply, and moisture availability. Since the beginning of the twentieth century it has been recognised that forest is the most effective cover for coastal sand (Cockayne 1911) because it is characterised by closely spaced, deep-rooted, long-lived plants with strong structural components. Trees do not establish readily in mobile sand under coastal conditions, and forests can develop only where some vegetation cover already exists and provides adequate shelter, shade, and organic matter. The intermediate but less permanent vegetation will in turn develop only where sand movement, wherever it occurs, has been partially arrested by sand-binding plants. Maximum sand stability can be achieved only where conditions favourable to forest development have been provided, either naturally or as a result of successional planting programmes. Inadequate shelter, shade, and organic matter will halt the vegetation succession at a stage where only the more tolerant herbaceous or shrubby plants persist. In this case the vegetation cover will be more vulnerable to disturbance and the protection afforded to the sand will be less permanent than that provided by forest. Conditions associated with the coastal strip located immediately behind the current foredune and extending inland for a variable distance are unlikely to be tolerated by forest trees. In this zone woody shrubs will represent the climax of the vegetation succession. They will form an effective plant cover only as long as they remain vigorous and undisturbed.

Current interest in restoration of the natural character of coastal sand dunes has stimulated a surge of interest in preservation of native plant species which are especially adapted to this environment. Debate continues about the methods that should be employed for their reintroduction. Due to human and animal interference, natural events, and regional climatic influences, most coastal dunes in New Zealand are now devoid of the native forest which would have been the most effective natural stabilising influence. Attempts to re-establish a native species succession should be encouraged wherever this is considered to be appropriate. On the other hand, it is important to realise that any activity resulting in wind erosion of dry sand, even on a small scale, should be avoided. Such activities include the choice of inappropriate species, since this can lead to planting failure and the escalation of blowouts. Bergin & Kimberley (1999) have pointed out that decisions to reconstruct native plant communities or to enrich remnant natural dune plant associations require justification from practical, as well as cultural, historical, and aesthetic viewpoints. This observation supports Cockayne's (1911) view that, while the general geological and botanical principles on which sand stabilisation techniques are based should never be violated, sound judgment founded on experience of local conditions also makes an important contribution to a successful outcome. Any plans for replacement of vegetation components and restoration of natural species diversity should include safeguards for preservation or enhancement of sand large drifts. Although such drifts are a component of the current natural character of coastal dunes in New Zealand (Hesp 2000), they are often regarded as undesirable and in need of urgent management if they interfere with accepted human commercial activities or sites considered to have their own desirable attributes.

The activity of human beings can be regarded as an integral part of sand dune ecosystem processes. Continuous modification of dunelands through burning, grazing, introduction of exotic animals and plants, and recreational and urban use has, in many areas, reached the point of no return to the original natural state. Unrestricted human association is likely either to destroy dunelands completely by urbanisation, or to increase the threat of sand drift onto adjacent vegetated areas, wetlands, or neighbouring property by disturbance of the vegetation cover. Unless sand movement can be tolerated, management of the human influence must recognise the importance of a continuous, effective, vegetation cover. It must also encourage positive attitudes to the preservation of relatively small native vegetation communities that already exist on New Zealand's coastal dunes (Partridge 1992; Johnson 1992). Whether these result from natural establishment or from coastal planting programmes (e.g., Dahm 1994), active care is needed to ensure their sustainability.

Until sand mobility has been arrested, the most effective sand-binder is the only one that will be appropriate. In New Zealand, as in other countries, A. arenaria is the most effective known sand-binding grass for use in areas behind the seaward face of the current foredune. Judicious substitution of other successional species should be seen as a secondary objective, to be implemented only when an adequate degree of sand stability has been achieved. A research project set up to identify native species that can co-exist with or even suppress A. arenaria at this stage, without loss of overall vigour and effectiveness of the vegetation cover, is currently in progress.

The natural physical character of the sandy substrate of New Zealand's coastal dunes cannot be changed. Dry sand will continue to be subject to wind erosion whenever it is exposed. Where coastal managers consider sand drift to be a current or a potential problem, they must acknowledge that research and experience have demonstrated effective methods for minimising any destructive effects through the establishment of a continuous, vigorous, vegetation cover. These methods depend largely on the use of A. arenaria. Except on the seaward face of the current foredune, there is no evidence to suggest that any native species is more vigorous, less demanding, or better suited in any practical respect for use as the initial sand stabiliser.

ACKNOWLEDGMENTS

I would like to thank David Bergin and other members of the New Zealand Coastal Dune Vegetation Network for their encouragement during the preparation of this manuscript. Fiona Ede, Patrick Hesp, and Colin Ogle provided suggestions and thought-provoking comment and I am most grateful for their assistance.

REFERENCES

- ABDEL WAHAB, A.M.; WAREING, P.F. 1980: Nitrogenase activity associated with the rhizosphere of *Ammophila arenaria* L. and effect of inoculation of seedlings with *Azotobacter*. New *Phytologist* 84: 711–721.
- AVIS, A.M. 1989: A review of coastal dune stabilization in the Cape Province of South Africa. Landscape and Urban Planning 18: 55-68.

- HESP, P.A. 1979: Sand trapping ability of culms of marram grass (Ammophila arenaria). Journal of the Soil Conservation Service of New South Wales 35: 156–160.
- ——2000: Coastal sand dunes form and function. New Zealand Forest Research Institute Ltd, Rotorua, Coastal Dune Vegetation Network Technical Bulletin No.4. 28 p.
- HOBBS, R.J; GIMINGHAM, C.H.; BAND, W.T. 1983: The effects of planting technique on the growth of *Ammophila arenaria* (L.) Link and *Lymus arenarius* (L.) Hochst. *Journal of Applied Ecology* 20: 659–672.
- HOLLAND, L.D. 1981: Plants and sand dune development, Ammophila arenaria versus Desmoschoenus spiralis on Kaitorete Barrier, Canterbury. M.Sc. Thesis, University of Canterbury, New Zealand.
- HUBBARD, C.E. 1954: "Grasses. A guide to Their Structure, Identification, Uses, and Distribution in the British Isles". Penguin Books Limited, Harmondsworth, Middlesex, England. 428 p.
- HUISKES, A.H.L. 1979: Biological flora of the British Isles: Ammophila arenaria (L.) Link (Psamma arenaria (L.) Roem. et Schult.; Calamagrostis arenaria (L.) Roth). Journal of Ecology 67: 363–382.
- JESSOP, J.P.; TOELKEN, H.R. (Ed.) 1986: "Flora of South Australia. Part IV". South Australian Government Printing Division, Adelaide, Australia. 2248 p.
- JOHNSON, P.N. 1992: The sand dune and beach vegetation inventory of New Zealand. II. South Island and Stewart Island. Department of Scientific and Industrial Research Land Resources, Christchurch, New Zealand, Scientific Report No.16. 278 p.
- KACHI, N.; HIROSE, T. 1983: Limiting nutrients for plant growth in coastal sand dunes. *Journal of Ecology* 71: 937–944.
- KIRKPATRICK, J.B.; HARRIS, S. 1995: The conservation of Tasmanian dry coastal vascular plant communities. Department of Environment and Land Management, Tasmania, Parks and Wildlife Service, Wildlife Scientific Report 95/1. 129 p.
- LECLERC, M.C.; ROBIN, P. 1983: Etude *in situ* de l'influence de l'humidité et de la teneur en nitrate d'un sol dunaire sur l'accumulation et la réduction du nitrate chez l'oyat (*Ammophila arenaria* L.) *Plant and Soil 70*: 229–241.
- LUX, H. 1966: Zur Ökologie des Strandhafers (Ammophila arenaria) und besonderer Berücksichtigung seiner Verwandung im Dünenbau. Beiträge zur Landespflege 2: 93–107.
- MARSHALL, J.K. 1965: Corynephorus canescens (L.) P. Beauv. as a model for the Ammophila problem. Journal of Ecology 53: 447-463.
- McKELVEY, P. 1999: "Sand Forests". Canterbury University Press, University of Canterbury, Christchurch, New Zealand. 168 p.
- McKENZIE, E.H.C.; JOHNSTON, P.R. 1999: New records of phytopathogenic fungi in the Chatham Islands, New Zealand. *Australasian Plant Pathology* 28: 131–138.
- McKENZIE, E.H.C.; LATCH, G.C.M. 1984: New plant disease records in New Zealand: Graminicolous fungi. New Zealand Journal of Agricultural Research 27: 113–123.
- MEAD, D.J.; GADGIL, R.L. 1978: Fertiliser use in established radiata pine stands in New Zealand. New Zealand Journal of Forestry Science 8: 105–134.
- NICOLSON, T.H. 1960: Mycorrhiza in the Graminae. II. Development in different habitats, particularly sand dunes. *Transactions of the British Mycological Society 43*: 132–145.
- NORTON, D.A. 1991: Scientific basis for the conservation management of New Zealand plant communities. Pp. 349–381 in Goldsmith, F.B.; Morris, M.G. (Ed.) "The Scientific Management of Temperate Communities for Conservation", the 31st Symposium of the British Ecological Society, Southampton 1989. Blackwell Scientific Publications, Oxford, England.
- OOSTING, H.J.; BILLINGS, W.D. 1942: Factors affecting vegetational zonation on coastal dunes. *Ecology 23*: 131–142.
- PARTRIDGE, T.R. 1992: The sand dune and beach vegetation inventory of New Zealand. I. North Island. Department of Scientific and Industrial Research Land Resources, Christchurch, Scientific Report No.15. 253 p.