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Abstract 

A sediment budget of Pegasus Bay is presented in order to build up a 
comprehensive account of sediment movements and potential shoreline 
behaviour of the region. The bay has been extensively researched on a local 
scale but very few works examine the bay as a entire unit. This thesis gives an 
overview of the bay as a whole as well as examining site specific areas which 
leads to the derivation of a sediment budget for Pegasus Bay. 

The principal objective is to establish and quantify the sources, sinks and 
transfers of sediment within the Pegasus Bay coastal system. This is achieved by 
establishing annual river yields, estuary and lagoon sedimentation rates; profile 
volume analysis; longshore transport calculations based on wave observations; 
and examining sedimentation on the Canterbury Continental Shelf. 

It is found that the A von-Heathcote Estuary and Brooklands Lagoon are sinks of 
sediment, storing 3,000m3.yr-l and 1,000m3.yr-1 respectively. The annual river 
sediment yields are found to be 3,005,000m3.yr-l with the Waimakariri River 
contributing 78%. A predominant southerly component of longshore transport is 
discovered in the south (281,000m3.yr-1) and mid Pegasus Bay (l,572,000m3.yr-
1) while north Pegasus Bay exhibits net northerly transport (203,000m3.yr-1). 

The onshore/offshore exchange examinations reveal that there is net onshore 
transport for the bay of 1,190,000m3.yr-1. 

The gross sediment budget for the region sums to 20,571,000 m3.yr-1. The net 
sediment budget for Pegasus Bay at 5,843,000m3.yr-1 represents 30% of the 
gross budget of which rivers are the most significant source contributing 55% to 
the net budget. The net budget exhibits a surplus of sediment for the each sector 
of the bay. This is not reflected in five sectors which are in either an erosionary 
or equilibrium state. Despite this anomaly a positive correlation between the 
state of the beach and the amount of surplus for each sector is identified. The 
relationship is represented by a critical line which marks the point at which a 
beach may change its state. 
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Chapter One 

Introduction 

1.1 Thesis Statement 

1 

Pegasus Bay is a dynamic stretch of coastline which has been subject to several 

previous studies located at different points of the shore and/or in ways directed at 

limited topics of investigation. Existing studies of the area are almost entirely 

limited to research by students and staff at the University of Canterbury. 

Relatively little is known on the scale of the whole bay system and some of the 

previous studies give conflicting indications about the overall behaviour of the 

coastal system. This lack of knowledge highlights the importance of further 

scientific research into the area. This thesis entails the calculation of a sediment 

budget for Pegasus Bay. A sediment budget identifies the inputs and outputs of 

sediment to a coastal system and in calculating one for Pegasus Bay, the sources, 

sinks and transfers of material are examined. This will build up a 

comprehensive account of sediment movements and potential shoreline 

behaviour of the bay. 

Very little research conducted within Pegasus Bay encompasses the entire 

region. Most work is site specific, for example Brown's (1976) thesis looks at 

southern Pegasus Bay south of the Waimakariri, and Siemelink's (1984) thesis 

looks at the Leithfield Beach region. Neither of these studies is representative 

for the whole of Pegasus Bay. Furthermore only specific elements are regarded 

at each location allowing for little cross referencing between the locations. 

Consequently some important elements, such as the input of river derived 

sediment to the coast and the overall progradational/erosional state of the 

beaches are unknown. 

The significance of the limitation of site specific investigations can be 

highlighted through the following scenario. Post 1935 the Waimakariri River 
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mouth shifted to its present position after which the Brooklands Spit was built up 

by natural processes from sediment derived from the Waimakariri River. At the 

same time the South Brighton Spit experienced prolonged erosion which has 

always been attributed to channel changes in the estuary. It is suggested here as 

a hypothesis, that sediment from the Waimakariri River, previously deposited on 

the South Brighton Spit was instead being used to build up Brooklands Spit. As 

a result the South Brighton Spit eroded. This hypothesis has never been tested as 

the information to do so has not been available. A sediment budget for Pegasus 

Bay will provide the information for testing such theories. Furthermore it can 

lead to informed decision making and management of the coast. 

The derivation of a sediment budget for Pegasus Bay is necessary in order to: 

1. establish the boundaries of the sediment budget within Pegasus Bay; 

2. calculate the annual contribution of coarse sediment to the coast from the 

Avon, Heathcote, Waimakariri, Ashley, Kowai and Waipara Rivers; 

3. establish any additions to or losses from the beach sediment budget; 

4. establish any contributions to or losses from the system through 

longshore transport, on and offshore transport, or through human activity; 

5. establish the state of balance or imbalance in the sediment budget and 

relate it to trends in coastal behaviour. 

This study will look at the problem of the relationship between river flow 

patterns and sediment yields, onshore/offshore cycling, littoral drift, human 

activities and the consequences of these for stability of the Pegasus Bay 

coastline. Sources and sinks of sediment will be identified, with consideration 

given to dunes, river outputs, longshore transport and onshore/offshore 

movements. Coastal managers and planners can then use this information, 

whether it be the entire budget or a specific component, in their decision making 

process. 



3 

1.2 Thesis Rationale 

The establishment of a sediment budget for Pegasus Bay is a desirable exercise 

in the present state of knowledge. There are specific deficiencies in previous 

research that could be rectified by a sediment budget analysis. The ensuing is a 

list of problems that have arisen from previous research together with how they 

can be solved with regards to a sediment budget. 

1. Predictive Models 

In order to provide a predictive model for an area, all contingencies must 

be considered. This is particularly true for modelling of future shore 

positions and form as a response to sea level rise. Hicks, (1993a), 

attempted to model long term changes of the Pegasus Bay shoreline. 

However there are many gaps in the data he used. Hicks states 'that to 

significantly improve the reliability of the model predictions, much 

better information is required.' The areas that Hicks stated as lacking in 

knowledge and that a sediment budget of Pegasus Bay can serve to 

enhance are: 

* sediment supply from rivers 

* shoreline movements 

* sand bypassing in and out of Pegasus Bay 

* changes in sedimentation of the Avon-Heathcote Estuary and 

Brooklands Lagoon 

* net longshore transport 

2. Dune Re-contouring 

The beaches of Christchurch City are backed by sand dunes with an 

average height of around 8m. Kirk, (1979) describes these dunes as a 

natural buffer which protect the adjacent residential area from 

inundation during storms or tsunami and from wind blown sand. Recent 

Christchurch City Council action, contravening Kirk's description of the 

qunes, has lowered three dune regions to only 3m to 4m above the mean 

low tide mark. This type of dune removal, now proposed on a large 
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scale, has the potential to create a huge deficit in the sediment budget. 

The budget for Pegasus Bay can be used to demonstrate how such 

removals of sand from the system can cause problems elsewhere as the 

sediment from other regions within the Bay is used to restore the 

equilibrium of the dunes. 

3. Erosion of Northern Pegasus Bay 

Within the past fifteen years the gravel shoreline of Amberley Beach has 

been eroding (D. Todd, Coastal Investigations Officer, Canterbury 

Regional Council pers. comm., 1995). The extent of the erosion is not 

well documented. The Amberley Beach residential area was flooded 

during the August 1992 snow storm by a combination of sea inundation 

and flooding of Amberley Creek. After the storm a gravel barrier was 

designed and constructed to share the natural beach characteristics and 

to protect residents from further inundation. A sediment budget for 

Pegasus Bay can provide the information to assess whether Amberley 

Beach is eroding in the long term, possibly resulting in further 

inundation and hazards, or alternatively if it was a combination of the 

high tide, high seas, high rainfall and flooding of the Amberley Creek 

that caused the episode of inundation in 1992. Furthermore the 

practicality of the gravel barrier can be assessed. 

4. Previous Views on Progradation 

Prior to 1964 the Pegasus Bay coastline was thought to be in a constant 

state of 'healthy' progradation. In southern Pegasus Bay progradation of 

12km in 4,000 - 5,000 years has occurred representing an average 

growth rate of the shoreline of over two metres per year (Kirk 1979). 

Surveys and photo analysis show that this trend has decreased 

dramatically. It has also been suggested that for the past one hundred 

years the shoreline of Pegasus Bay has been in long term equilibrium 

(Kirk 1979). However Todd (1994) shows that progradation is 

occurring in the centre of the bay, around Pines Beach and Woodend, at 

an average rate of 0.33m.yr1; and it has already been shown that the 



coast further north, at Amberley, is presently eroding. It is important to 

establish how these changes to different sectors of the bay interact. A 

sediment budget analysis of Pegasus Bay can determine the actual state 

of the shoreline and indicate possible future trends of erosion or 

progradation. 

5. Changes to Rivers 

The rivers of Pegasus Bay are the most important source of sediment to 

the coastline. A change in river catchment conditions can have major 

impacts on the shoreline through diminished or increased amounts of 

sediment supply to the coast. For example the Roxburgh dam on the 

Clutha River, Central Otago, reduced the sediment yield of the river 

from 3.44 million tonnes per year to 1.6 million tonnes per year (Carter 

et al. 1985). None of the rivers in Pegasus Bay are dammed, but just as 

importantly gravel is extracted from river beds which has impacts on the 

coastline. The extent of this impact can be realised through sediment 

budget investigation. 

1.3 Pegasus Bay Coastline 

5 

Figure 1.1 locates the coastline of this study and the place names referred to in 

the text. Pegasus Bay is situated on the east coast of the South Island of New 

Zealand. It extends for approximately 50 km from Shag Rock in the south, to 

Double Corner in the north (Figure 1.1). The southern boundary is bordered by 

Banks Peninsula which is late Tertiary and Pleistocene volcanic cones joined to 

the Southern Alps by the outwash gravels of the Canterbury Plains. The 

northern limit of the Bay ends abruptly at the Cass Range, an uplifted and folded 

Tertiary Complex. The surface geomorphology of the coastal plains is such that 

raised beaches and marine terraces are clearly visible landward of the active 

coastal area. These are indicative of coastline emergence (Jobberns, 1927). 

Evidence for Holocene progradation, (l2lan over 4,000 years), in Pegasus Bay is 

also apparent (Shulmeister and Kirk, 1993). A low cliff north of Leithfield 
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which extends to 1km north of Saltwater Creek, (Figure 1.1), is believed to be of 

marine origin and marks the m'1ximum Holocene transgression, (Shulmeister and 

Kirk, 1993). 

Waipara 
River 

Ashley 
River 

~:::::::==--

Christchurch 

Amberley Golf Course 
Amberley Beach 

Newcombes Road 

Kowai River 
Leithfield Beach 

South Bottle Lake 

Rawiti Street 
North of Rodney Street 

Beatty Street 
Caspian Street 
Plover Street 
South ofPukeko Street 
Shag Rock 

Sumner Head 

PEGASUS 

BAY 

Okm 
I 

N 

Figure 1.1 Location map of Pegasus Bay showing profile sites 

6km 
I 

The Canterbury Plains landward of Pegasus Bay are comprised of outwash 

gravels brought down from the Southern Alps by the rivers which now cut across 

them. The intersection of uplifted marine sediments with the outwash gravels 

from the rivers identifies the western boundary of the region that has been 

influenced by the sea. This boundary can be seen in Figure 1.2 which shows the 

North Canterbury post glacial marine transgression. 
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Figure 1.2 North Canterbury postglacial marine transgression 

7 

After Brown and Weeber (1992) 

Present within Pegasus Bay are relic sand dunes in the south and remnant gravel 

ridges in the north. Parts of Christchurch are built upon relic dunes. For 

example Brown & Weeber (1992) illustrate the significant relic dune upon which 

the Linwood Cemetery is located. Surficially these sand dunes are not obvious 

due to urban development of Christchurch. In parts of the region the series of 

dune ridges are interspersed with hollows which are low lying marsh areas prone 

to flooding or ponding during excessive wet periods (Blake, 1964). The series of 

dune and gravel ridges show the past coast lines and are indicative of 

geologically recent progradational episodes. 
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Pegasus Bay receives the outflow and sediment yields of six rivers. The Kowai 

and Waipara rivers are rarely open to the sea, opening episodically during high 

flow events. The lower reaches of the Kowai are often dry while the low flow of 

the Waipara ponds in a lagoon at its mouth. The mouths of these two rivers are 

usually closed by gravel beach ridges which can be up to 4m high and are 

contiguous with the adjacent beach ridges. Due to its small catchment, 

(552km2), the Kowai River mouth rarely opens while the Waipara River opens 

episodically once or twice every year. 

The Ashley and Waimakariri Rivers contribute significant amounts of sediment 

to the system, the timing and amount depending on the precipitation and/or snow 

melt within each of their catchments. In the south of Pegasus Bay feeding into 

the Avon/Heathcote Estuary, are the Avon and Heathcote Rivers. These two 

rivers flow through urban regions and so operate under different hydrological 

mechanisms to those rivers north of Christchurch. 

The beaches from South Brighton to Leithfield, (Figure 1.1) are comprised of 

sand. The heights of the foredunes vary greatly and range from five metres to 

thirteen metres. Between Ashworths and Leithfield the beach composition 

changes to mixed sand and gravel, although sand dunes are still present. The 

dunes decrease in sand content from Leithfield north until just south of the 

Kowai River, where the dunes become beach ridges and are predominantly 

comprised of gravel. 

Corresponding to the reduction in sand content is a reduction in the height of the 

beach ridge. The beach widths also decrease, while the foreshores are steeper 

than the sand counterparts. Sandy beaches in the south can extend horizontally 

for up to 300m from the dune toe to the mean low tide level whereas the mixed 

sand and gravel beaches of the north are unlikely to be more than 100m from the 

base of the gravel ridge to the mean low tide level. 



1.4 Sediment Budgets 

Kirk and Hewson, (1978) put forward the following definition of a beach: 

''Any beach can be thought of as a three dimensional body of 

unconsolidated sediment resting on some basement through which a 

constant stream of materials is passing. /I 

9 

This description illustrates the dynamic nature of coastal beaches and the 

importance of sediment to a beach. The morphology or shape of the beach and 

the position of the coastline are highly dependent on the inputs, outputs and 

transfers of sediment. An input is an addition of sediment and an output is the 

removal of sediment to any morpho dynamically defined cell. A transfer of 

sediment is the movement of material within the cell. 

Figure 1.3 illustrates a schematic sediment budget model. Contributions of 

sediment can come from cliffs, dunes, offshore sites, biogenous material, rivers, 

inlets, estuaries, lagoons and harbours or from longshore transport. 

Subsequently these features are known as sources. A loss or output of sediment 

can occur so that the material travels from the cell to the dunes, offshore, into 

inlets, lagoons, estuaries, harbours, submarine canyons or out of the cell through 

longshore transport. It follows that these features are sinks of sediment. 

The transfers of sediment can be onshore, offshore or alongshore, and are due to 

wave or wind processes. It can be seen that some landform features can be 

sources or sinks leading to the complex nature of establishing a sediment budget 

for a particular coastal region. The impact humans have on a budget is also 

pivotal to any calculation. Sediment mining, whether it be directly from the 

beach, in the nearshore zone or from a river feeding the compartment can have a 

major effect as can structures which trap sediment moving along shore. 
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Figure 1.3 Schematic sediment budget model 

Source: Miller and Zeigler (1958) p423 

In order to calculate a sediment budget, the equation as defined in the Shore 

Protection Manual (Coastal Engineering Research Centre C.E.R.C. 1984) can be 

used. This equation adds the sum of the sinks to the sum of the sources. Within 

a balanced budget the difference between the material added by sources and the 

material taken away by sinks should equal zero so that: 

Sum of sources - sum of sinks = 0 eq. 1.1 
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A sediment budget is a balance of the sources and sinks and so any unknown can 

be quantified as the remainder by re-arranging equation 1.1 to the following: 

Sum of known sources - sum of known sinks = unknown source/sink eq. 1.2 

If there is an unknown source or sink it can be quantified by establishing the 

other sources and sinks. The sediment budget equation can be more formally 

written as: 

[ eq. 1.3 

Where Qi denotes a point source and Qi* denotes a line source, both of which 

will be examined later in this chapter. The positive and negative superscripts are 

representative of sources and sinks respectively. 

If a beach has a positive budget it may prograde such that the shoreline position 

will advance seaward. The beach shape may also be altered such that the 

foreshore slope steepens and widens while dunes grow in height and width (Kirk 

& Hewson 1978). A deficit budget will show the reverse effects. The beach 

position may migrate landward as sediments are eroded. This may be evident in 

the lowering and narrowing of the foreshore and decrease in bulk of the dunes 

behind. In the case of a balanced budget the beach will maintain an equilibrium 

position and form about which it fluctuates. The equilibrium may occur over a 

period of hours to years. A storm may severely erode a beach in a few hours 

which then takes swell waves years to repair. This beach can be considered as 

an equilibrium beach so long as the /~patial\ scale encompasses both of these 

processes. l; 
(' 

To determine the loss or addition of sediment from a coastal cell, the boundary 

must be well defined. Figure 1.4 shows the coastal environment in profile and 

the terms used to describe its features. The mean low water level, mean high 

water level and the dune toe mark internal boundaries of the cell. The zone 

between mean low water level and mean high water level is the active region of 

the beach known as the foreshore. The backshore which is between mean high 
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water level and the dune toe is less active as it is not always directly acted on by 

the sea. Longshore transport and onshore/offshore cycling all occur in the 

nearshore zone which is beyond the cell boundary. However these processes 

serve to bring sediment in and out of the morphodynamically defined cell and so 

are pertinent to the sediment budget. Losses in and out of the system move 

between the beach and the dunes or nearshore zone. The dunes and the 

nearshore zone will both be included in the budget calculations as sources, sinks 

or transfers of sediment. 

~Beach/shore--, 

Offshore Nearshore Foreshore Backshore DuneIBeach Ridge 
~ -<III .. f------------f>-~ ~ ~.. ~ ~ 

Offshore -------­
Bar 

High 
Tide 
Mark 

Figure 1.4 Coastal environment nomenclature 

1.4.1 Sources, Sinks and Transfers of Sediment 

Sources of sediment are regions or points from which sediment is added to a 

morphodynamically defined cell. This can be material from the offshore or 

nearshore zones or from the dune (Figure 1.4). Alternatively, examining Figure 

1.3 demonstrates that a source could be from a lagoon, harbour, estuary or river. 

These can be broken down further into point sources or line sources. A point 

source as defined by C.E.R.C. (1984) is one which adds material across a limited 

section of the defined cell boundary, for example a river. Conversely a line 

source is one which adds material over an extended reach of the cell such as a 

dune system. Chapter Three looks at the different types of sources active within 

Pegasus Bay. 
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A sink results from any process whereby sediment is lost from the budget 

compartment. As with sources, sinks can be either points or lines depending on 

the nature of the sink and/or the compartment. Many of the sources shown in 

Figure 1.3 and Figure 1.4 can also be sinks of sediment. Examples of this are 

dune systems, lagoons, estuaries and harbours. Within Pegasus Bay several 

active sinks are operational such as the dune system, the Canterbury Continental 

Shelf, the Avon-Heathcote Estuary and Brooklands Lagoon. These are 

illustrated in Chapter Four. 

The sediments within a coastal area are not static, they are moving from sources 

to sinks and back again, and through the system. These movements are often not 

calculated in sediment budgets and can account for significant amounts of sand 

in the coastal system at anyone time. In order to transport material within the 

coastal cell it is often necessary for the material to be removed from the system 

before it can be deposited elsewhere. The transfers of sediment within and into 

or out of an area are examined in Chapter Five. 

1.4.2 Tasks Involved in Calculating a Sediment Budget 

The first stage of calculating a sediment budget is to establish the area of 

interest, in this case, Pegasus Bay. Often a problem exists which needs solving 

and the sediment budget may be employed to do so. Some of the problems 

existing in Pegasus Bay are detailed in Section 1.2. In preparing for a sediment 

budget study the individual cell boundaries must be clearly defined. Following 

this is the identification of sources, sinks and transfers which exist in the cell. 

Once each of the sources, sinks and transfers have been identified the 

quantification of these components of the sediment budget must be carried out. 

Ultimately this will lead to the establishment of the sediment budget model for 

Pegasus Bay. 

One means of establishing sources and sinks is by recourse to historical 

information. By examining past maps and aerial photographs, areas of erosion 

(sources) and areas of accretion (sinks) can be identified. Sedimentological 

investigation can also lead to the identification of possible source regions. 

Anecdotal evidence is a rich source of information that can lead to establishing 
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sources and sinks. Physical studies and measurements of the features within the 

coastal environment can also lead to the identification of sources, sinks and 

transfers of sediment. 

Quantification of sediment inputs from rivers to the coast can be made through 

direct measurement of the bedload and suspended load transportation over a 

predetermined period. The techniques available are far from precise and results 

may be inaccurate. Calculations can also be made from river flow velocity data. 

Unfortunately these calculations give the potential sediment transports rather 

than the actual sediment transport. In the case of Pegasus Bay it was not an 

option to make direct measurements of sediment load or calculations from flow 

velocities. Instead values obtained from previous works have been applied to 

this study. 

Four methods for acquiring longshore sediment drift values are outlined by 

C.E.R.C. (1984). The first is to use known values of longshore sediment drift 

from adjacent sites. Another means is to use historical data such as charts, 

surveys and dredging records. In this case charts can be used to show changes in 

topography in the littoral zone and surveys may also be consulted. Although 

these two methods give an idea of the littoral drift it is difficult to ascertain 

average annual drift volumes. 

The third method outlined by C.E.R.C. (1984) is that of using either measured or 

calculated wave conditions to compute a longshore component of wave energy 

flux which is related through an empirical curve to the longshore transport from 

mean annual breaker height. The last method is to estimate gross longshore 

transport from mean annual breaker height. Of the two calculated methods the 

last is the most unsatisfactory as it gives gross transport rates instead of the 

preferred net transport rates. Wave measurements within Pegasus Bay mean that 

method three, which will be explained fully in in Chapter Five, has been adopted 

for this study. Analysis of sediments along the coastline can also give an 

indication of the longshore transport direction. 

In order to determine rates of loss of sediment to estuaries and lagoons, rates of 

infill or loss of these features can be measured directly through comparing 

incoming sediment with outgoing sediment or alternatively by surveying the 
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feature relative to a fixed position so that any increase in the base of the feature 

can be taken as infill and subsequently worked out as an infill rate. As these 

means were not available previous research has been consulted for this study. 

Beach systems are dynamic. In order to quantify changes over short time periods 

direct measurements of beach profiles and sediment volumes can be made and 

compared to previous measurements. This has been done for Pegasus Bay to 

compare form and position of the beach and to calculate the volumes of sediment 

removed or added to the beach system over different time periods. Onshore/ 

offshore cycling is perhaps the hardest to quantify without the use of 

sophisticated equipment. Research of this type has not been attempted for the 

Pegasus Bay region and there is a void in the available knowledge. It will 

therefore be assumed that one part of the missing volume of sediment from the 

calculated budget may be the onshore/offshore component. 

Once all of the above have been identified and quantified the values can be put 

into the sediment budget model. While the eq. 1.3 itself is relatively straight 

forward the processes involved in solving it and presenting a sediment budget 

model are complex. 

'Although simple in principle, the application of this concept to 

the real situation is not straight-forward. No study has ever 

demonstrated a sediment budget which is based entirely on 

verified empirical data. Most budgets rely on a host of 

assumptions to compute sediJ11ent fluxes. I 

(Dolan et al., 1987) 

While some phenomena may be measured directly, such as the bulk of a sand 

dune, others must be calculated from assumed relationships. Foremost is the 

longshore drift component of the sediment budget which is calculated from the 

wave data which in itself is not entirely reliable. Even dune volume 

measurements are not exact as they are taken in one or several points in space 

and extrapolated for the rest of a particular coastal cell. 
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1.5 Thesis Outline 

Chapter One has introduced the nature of the research assignment. Included are 

the aims and reasons for the study. The research area is introduced and briefly 

described. The sediment budget theory and the budget itself are introduced and 

explained. The ways in which a budget can be calculated detailed. The 

importance of a sediment budget as an information base for sustainable 

management is also outlined. 

The following chapter looks at the process environment of Pegasus Bay. 

Processes within the coastal environment are the driving forces behind the 

distribution of sediment within the area. The wind, wave, nearshore and 

rivermouth processes are specifically examined. Information presented here 

includes details from past research as well as observations and recordings taken 

in the field during the research period. 

Sources of sediment for Pegasus Bay are identified in Chapter Three. 

Quantification of the river contributions to the coast are presented. A possible 

scenario for the limit of onshore/offshore exchange is also investigated. 

Pegasus Bay sinks of sediment are highlighted in Chapter Four. Deposition 

estimates for the Avon-Heathcote Estuary and Brooklands Lagoon from previous 

research are detailed. The volumes of sediment contained in the dune and gravel 

ridge systems as well as the beach system are calculated. A description of the 

beaches within Pegasus Bay is presented. 

Chapter Five details the sediment characteristics and the mechanisms which 

transport them. Longshore sediment transport directions are inferred. The 

potential longshore transport and the onshore/offshore exchange for Pegasus Bay 

are quantified. 

The culmination of the thesis is Chapter Six which outlines the sediment budget 

for Pegasus Bay. This chapter brings together the information which' has 
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previously been presented to compile a quantitative sediment budget for Pegasus 

Bay. 

Ultimately Chapter Seven produces the conclusions of the study. Included here 

are the problems encountered as well as the problems solved. Also mentioned 

are recommendations for future work that is required within Pegasus Bay in 

order to fully represent this coastal environment. 
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Chapter Two 

The rocess Environment 

2.1 Introduction 

This chapter presents and analyses the process environment of Pegasus Bay. 

These processes act to shape and mould the morphologies present along a stretch 

of coastline. Winds, tides, currents and waves all play important roles in 

transporting sediment and distributing material on the shore. It is for this reason 

that the examination of processes is important to the formulation of a sediment 

budget. 

Processes can act against or in conjunction with one another. An example of this 

can be illustrated using winds and waves. An opposing wind can decrease the 

energy of waves by causing them to steepen and break before they reach the 

shore, dissipating their energy. Conversely a wind direction similar to the wave 

approach can increase the energy of the waves. The wave height, steepness and 

period all increase resulting in a higher energy environment. The amount of 

energy in an environment is a significant determining factor in the amount of 

sediment moved and where it is moved to. 

Consequently this chapter examines the process environment of Pegasus Bay. 

Past research and fieldwork carried out in this investigation are used to describe 

each of the processes pertinent to the establishment of the sediment budget of 

Pegasus Bay. The interaction of these processes with each other and with 

sediment transport at different temporal and magnitudinal scales will also be 

detailed. 
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2.2 Wave Environment 

Waves are the principal source of energy input into the coastal environment. 

The highest proportion of waves are wind generated. Waves that are generated 

at considerable distances from the shore arrive as swell. These are regular, long 

flat waves. In contrast to this are waves generated locally by wind producing sea 

state waves, which are irregular and steep. 

Unfortunately wave records for Pegasus Bay are rather scant. There are no ports 

or rigs in Pegasus Bay from which measurements may be made. Some records 

have been taken by Masters students in both the Geography and Geology 

Departments of the University of Canterbury. None of these records have been 

measured instrumentally but instead visual observations have been made at the 

shore in various locations. While the observations taken by one observer may be 

consistent there may be differences between individual observers. This in turn 

may produce anomalies between the records. 

During the study period wave records were made from New Brighton Beach, 

Woodend Beach, Waikuku Beach, Leithfield Beach and Amberley Beach by 

residents from each area. Unfortunately, as the work was voluntary some 

discrepancies in the data have been found. Only the Amberley Beach and the 

Waikuku Beach data was consistently reliable. These measurements were made 

according to the Littoral Environment Observation (L.E.O.) data collection 

program (Schneider 1981). This program requires the observation of the 

following littoral wave variables; breaker height, wave period and wave 

direction. The data was collected from the various sites on a daily basis at a 

regular time each day so as to observe the waves during different tidal phases. 

The instruction sheet for wave and wind observations is Appendix One. 

The observed wave data for the Pegasus Bay region has been augmented by data 

obtained from the following sources: Burgess (1968) for the period December 

1967 to May 1968, Brown (1976) for the period November 1975 to August 

1976, as well as sporadic records from Spencer Park during 1994. 
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2.2.1 Wave Height 

Wave height has the potential to increase or decrease the capacity of a wave to 

transport sediment. An increase in wave height means that the wave will break 

further offshore. In turn the surf zone is widened and more material may be set 

in motion (C.E.R.C. 1984). Wave height for the study was observed to the 

nearest O.25m as the wave broke. Unfortunately wave height is the most 

subjective of all measurements taken and will therefore vary slightly depending 

on the observer. These variations are difficult to verify when the observations 

are taken from different locations by different people. No standardisation of the 

wave height records was made for this study. However it was considered that 

the variation or error range was less than O.5m. 

Burgess (1968) suggested that there is no seasonality to wave heights in Pegasus 

Bay due to the sheltering from stormy southerly swells reaching the beaches 

north of Banks Peninsula as her study was located in the south of Pegasus Bay. 

At the time of Burgess' study there was a lack of comprehensive wave records 

for northern Pegasus Bay where the sheltering effect of Banks Peninsula may be 

diminished. Alternatively Brown (1976) stated that there is a marginal 

seasonality to the wave heights in Pegasus Bay with a slight increase in winter 

wave heights. The records taken at Amberley during this study cover both 

summer and winter months and do show an increase in height from summer to 

winter, as can be seen in Figure 2.1. 

The wave records taken by Burgess (1968) were measured in feet rather than 

metres. This data has therefore been converted to metres for direct comparison 

to the 1995 data. These are displayed in (Table 2.1) along with data from 

Spencer Park, Waikuku and Amberley Beach and the average value for the 

Pegasus Bay region. This table shows that wave heights are greater in the south 

of Pegasus Bay. 
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Figure 2.1 Wave heights/or Amberley Beach from February to June 1995 

Table 2.1 Wave height percentages at various locations in Pegaslls Bay 

Wave Height Spencer Park Waikuku Amberley Burgess Average 
(m) (%) (%) (%) (%) (%) 

.25 30 7 23 
14 54 

.5 42 34 27 

.75 24 11 9 
44 23 

1 4 27 23 

1.25 0 0 4 
28 10 

1.5 0 15 12 

1.75 0 1 1 9 1 

2 0 2 1 

2.25 0 0 0 5 2 

2.5 0 3 0 

Only 1 % of waves at Ambedey Beach during the study time were over 2m 

contrasting to 5% at Waikuku and none at Spencer Park. A maximum wave 

height of 2.5m was recorded at Waikuku and these waves occur 3% of the time. 



23 

At the other end of the scale 72% of waves arriving at Spencer Park were under 

0.5m with 41 % and 50% under O.5m at Waikuku and Amberley respectively. 

The results obtained by Burgess at South Brighton show that 72% of waves 

observed at this location were between 0.75m and 1.5m. 

The average value for wave height (Table 2.1) which is quite dissimilar to site 

values illustrates the difference between the locations. This reiterates the 

concept that one site is not representative of the entire bay and highlights the 

need for comprehensive wave observation collections at various sites within 

Pegasus Bay. 

2.2.2 Wave Period 

Wave period is the average time period between consecutive wave crests passing 

a point. Changes in wave period can cause differing amounts of sediment to 

move onshore or offshore. For the purpose of this study wave period was 

measured by the following means. The number of waves breaking during a time 

interval of at least one minute and the total time period were recorded. The 

timing was stopped and started on the arrival of a wave with the initial wave 

being zero. The number of waves is then divided into the time recorded to give 

the wave period. 

During the study period there was great variability in the wave periods recorded 

(Figure 2.2). The shortest wave period for Amberley was 5.9 seconds and 6 

seconds for Waikuku. Unexpectedly extremely long wave periods of 21.7 

seconds for Amberley and 31.5 seconds for Waikuku were recorded. These 

values seem unrealistically high for the Pegasus Bay coastline and so are more 

likely to be observation errors. Brown, (1976), states that longer period waves 

coincide with the south-easterly swells of winter while short period waves are 

characteristic of north-east seas. Brown's assumption holds true for this study. 
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II1II Waikuku 

Figure 2.2 Wave periodfor Waikuku Beach and Amberley Beach 

2.2.3 "V ave Steepness 

Wave steepness relates to the shape of the wave. In turn the steepness may 

determine the extent of the energy that is applied to the beach slope. Flat waves 

have little turbidity and are likely to transport sediment onshore. Conversely 

steep waves are characteristic of a high energy environment and tend to transport 

sediment from the beach. Wave steepness is the ratio of the wave height to wave 

length. 

Wave length can be evaluated using the following equation: 

La = 1.56.T2 

where: La = deep water wave length 

T = wave period 

eq.2.1 

However this equation gives the wave length of a deep water wave which is 

different to that of a shallow water wave. Despite this an approximation to wave 
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steepness can be made by using the following equation: 

eq.2.2 

where: hb = breaker height 

C.E.R.C., (1990) established critical wave steepness values for transporting 

material on and off shore. These values are as follows: 

<0.00014 - accretion highly probable 

~ 0.00027 - accretion probable 

~ 0.00027 - erosion probable 

>0.00054 - erosion highly probable 

Source: C.E.R.C. (1990) 

These values fail to allow for an equilibrium beach where neither erosion or 

accretion occurs and assumes that the beach is continuously in a state of flux as 

there is no critical steepness at which sediment is not transported onshore or 

offshore. Furthermore the model does not allow for wave angle so the beach is 

considered as two dimensional and does not consider movement alongshore. 

Bearing the above limitations in mind, the critical steepness values can be 

applied to Pegasus Bay to give a general idea of the possible sediment 

movements. According to the critical values from C.E.R.C., erosion was highly 

probable on all but seven days of the 138 days surveyed at Amberley. Steepness 

values for the remaining seven days indicate that accretion was highly probable. 

Waikuku showed slightly different results with erosion highly probable for 76 

days of the 89 days surveyed and probable for one day, and accretion highly 

probable for 9 days and probable for 3 days. 

The predicted results from the model appear to correspond to the observed state 

of the beach. Waikuku Beach was accreting throughout the survey period 

(Appendix Three) which is reflected in the high proportion of days when the 
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critical steepness value indicates that accretion IS either highly probable or 

probable. 

The same correlation exists for the Amberley profile. Examination of the 

steepness values in conjunction with the profiles show that there is a strong 

positive correlation between the observed state and the predicted state. This 

highlights the applicability of this model. 

2.2.4 Wave Angle 

Wave direction is an important variable in determining rate and direction of 

longshore transport. The wave approach was determined according to Figure 

2.3. An observer stands on the shore as indicated and determines from which 

sector the waves are approaching. This technique is derived from the L.E.O. 

method. The use of sectors instead of compass directions allows for the 

calculation of longshore sediment transport. In the case of Pegasus Bay the 

differing shore orientations at each site are accounted for so that direct 

comparisons between the sites can be made . 

\ • I Sector 3. 

10° 
Sector 2. Sector 4. 

25° 25° 

/ 

Sector 1. Sector 5. 

• {Shoreline 
Observer 

Figure 2.3 Sextant wave angle diagram as determined by the L.E. O. method 
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Table 2.2 shows the frequency values of the wave angle approach from each 

sector for Waikuku and Amberley beaches. The highest proportion of waves 

recorded approached from sector 3 indicating a shore normal approach. Wave 

data collected by Burgess, (1968), has not been collected in the same way and 

has been described using qualitative terms such as north-east. These figures 

have been standardised to the L.E.O. method by correlating the orientation of the 

beach and the compass readings to the sectors determined by the L.E.O. method. 

Burgess' results are also displayed in Table 2.2. As can be seen on average one 

half of the waves arriving at the Pegasus Bay coastline are shore normal. 

Waikuku and Amberley exhibit similar frequencies for waves from Sector 3, 

46% and 43% respectively, (Table 2.2). The main differences between the two 

regions are for wave angles in Sectors 1, 2 and 4. 

Table 2.2 Wave angle frequencies for various locations in Pegasus Bay 

Wave 
Angle Spencer Park Waikuku Amberley Burgess Average 

Sector (%) (%) (%) (%) (%) 

1 0 7 0 0 2 

2 16 42 28 33 29 

3 62 46 43 44 50 

4 22 5 29 23 19 

5 0 0 0 0 0 

No waves for sector 1 were recorded at Amberley, while 7% of waves 

approached from this sector at Waikuku. This may be attributed to the short 

fetch north of Amberley Beach, as the cliffs at Double Corner shelter the beach 

from waves from this sector. Waikuku is less influenced by the Double Corner 

cliffs as it is further south allowing for the formation of significant waves 

approaching in sector 1. The same reasoning can be extrapolated to incorporate 

waves in sector 2 which exhibit an increase in frequency with distance from 

Double Corner until Spencer Park. Burgess' results show a similar pattern but 

with a high percentage (33%) of waves approaching from the north-east. 

The Waikuku and Amberley data show that frequencies of waves from Sector 4, 
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decrease closer to Banks Peninsula. This is likely to be due to the sheltering 

effect of Banks Peninsula limiting waves from the southerly quarter. Banks 

Peninsula is also an obstruction about which waves are refracted so that they 

approach with a more easterly component. These preliminary findings would 

indicate longshore components both to the north and the south with a net 

southerly component at Waikuku and Burgess' site and a net northerly 

component at Spencer Park and no apparent net longshore component at 

Amberley. 

2.3 Wind Environment 

Wind action is an important process in moving beach sediments in Pegasus Bay. 

Synoptic winds also have a role in the amount of rain and subsequent runoff 

from river catchments. This in tum controls the discharge rates at the mouth of 

these rivers. Apart from tsunamis all waves which reach the shore are created by 

wind. Currents are also generated by winds in the nearshore environment and 

these act to transport material within this region. Return currents can also be set 

up and are equally important in the transportation of sediment. Deep water 

waves created by wind systems several kilometres from the coast are then 

modified by winds at the shore. 

The wind environment for Pegasus Bay was established from the following 

sources: daily observations carried out by the residents conducting wave 

observations between Febmary and June 1995 at Amberley Beach and Waikuku 

Beach; similar but irregular records for Spencer Park between March and 

October 1994; records covering the period from November 1975 to August 1976 

obtained from Browns (1976) thesis, and records from June 1962 to May 1963 

from Blake's (1964) thesis. Additionally data collected from Bromley, 1967 -

1972 in McKendry's (1985) thesis has been used to establish a long term wind 

regime. Unfortunately the records for the study period are irregular and 

consequently may not be representative of the whole year due to the 

predominance of records taken over the summer months in particular. 
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2.3.1 General Wind Climate of Canterbury 

New Zealand is a mid-latitude country and is subjected to the mid latitude 

westerlies of the Southern Hemisphere. Canterbury however is sheltered from 

these airflows by the north-east / south-west orientated Southern Alps. Records 

of wind direction at Christchurch International Airport show a predominant 

north-easterly or south-westerly component (Kirk 1979, McKendry 1985). 

Canterbury winds also exhibit seasonal trends. North easterlies reach maximum 

frequencies in summer, while south westerlies are most frequent in winter 

months. North west winds are predominant in the spring (Brown 1976, McGann 

1983). Diurnal variations have also be noted by Mckendry and McGann. 

2.3.2 Wind Directions 

The wind observations for the periods 1962 - 1963, 1967 - 1972, 1994 and 1995 

have been grouped into four categories. These categories have been determined 

based on frequency of occurrence and their influence on the wave characteristics 

at the beach. Table 2.3 shows frequency values for these four wind direction 

categories for the various study periods. Very few westerly winds are felt at the 

sites within Pegasus Bay. 10% of winds at Bromley were from the west. This 

slightly higher percentage for this direction than at the other sites may be due to 

the inland location of this station. The wind records in Table 2.3 support the 

general trends as indicated in "Climate of Christchurch" (McGann 1983). Nor­

easterlies and easterlies predominate being approximately one half of the winds 

occurring followed closely by a high frequency of winds from the southern 

quarter. There appears to be no definite spatial differences between the sites 

with regard to wind direction. This variable is consistent throughout Pegasus 

Bay. 
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Table 2.3 Wind direction frequencies at various locations in Pegasus Bay 

Bromley South Shore New Brighton SpencerPark Pines Waikuku Amberley Amberley 
1967 -1972 1962 1976 1994 1963 1995 1962 1995 
McKendry Blake Brown This study Blake This study Blake This study 

Nor - west 
Northerly 11 7 8 9 12 22 22 20 

Nor - east 55 64 39 59 56 45 51 45 Easterly 

Sou - east 
Southerly 24 24 39 32 29 33 23 33 
Sou - west 

Westerly 10 0 3 0 0 0 0 2 

Onshore Winds 

Onshore winds are significant in terms of the coastal sediment budget. They are 

related to the return flow of water from the beach and therefore the transport of 

sediment from the shore. When an onshore wind is present the bottom return 

current has a greater velocity and therefore a higher propensity to transport 

sediment (Bascom 1980). From the data for the study period 58% of winds were 

onshore at Waikuku and 53% at Amberley Beach. It was found that onshore 

winds can also contribute to the swash reaching further up the beach slope and so 

more material is available to be transported. Wind blown sand is an important 

component of the coastal sediment budget. Onshore winds serve to transport 

sediment from the foreshore to the dunes and/ or from the dunes inland. 

Offshore Winds 

Equally significant to transporting sediment is the influence of offshore winds. 

Velocities of bottom return currents are dramatically reduced as too is the ability 

of that current to transport sediment (Bascom 1980). Additionally the swash 

cannot extend as far up the beach slope exposing less sediment to the erosive 

powers of the sea. During the study period only 6% of winds are offshore at 

Waikuku, and 19% of winds at Amberley Beach originated inland. Offshore 

winds also transport sand from the dunes to the beach system and to the 

nearshore. 
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Longshore Winds 

Longshore drift can be accentuated by winds travelling parallel to the shoreline. 

Conversely wave generated longshore currents could be cancelled or modified if 

an opposing local wind of sufficient velocity was present. Amberley Beach 

experienced 24% of its winds in a shore parallel direction and Waikuku 36%. 

Longshore winds at Amberley were accompanied by oblique wave angles from 

the same sector 72% of the time and 64% of the time at Waikuku. 

2.3.3 Wind Speed 

The wind speed affects the ability of either the air or the sea to transport 

sediment. The wind speed frequencies for Spencer Park, Waikuku and 

Amberley are presented in Table 2.4. The diagram illustrates that the wind 

speeds at Amberley are much greater than those at Waikuku and Spencer Park. 

By comparing these with wind direction, (Figure 2.4a and b), it can be seen that 

a significant percentage, (35%) of these high wind speeds approach from the 

northerly quarter. These high speed winds are not felt on the beach at Spencer 

Park or Waikuku due to the sheltering influence of the sand dunes and pine 

plantations in these locations. 

Table 2.4 Wind speeds at various locations in Pegasus Bay 

Wind Amberley Waikuku S-'i>encer 
Speed Beach Beach ark 
(km.hr"l) (0/0) (0/0) (0/0) 

<l 4 27 45 

1 to 5 5 45 14 

6 to 11 25 15 23 

12 to 19 22 9 0 

20 to 28 25 4 18 

29 to 38 18 0 0 

39 to 40 1 0 0 
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Figure 2.4(a) Wind speed and direction for Waikuku Beach 
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Figure 2.4(b) Wind speed and direction for Am,berley Beach 

The influence of wind direction whether it be onshore, offshore or alongshore on 

transporting sediment is exaggerated when the velocity of said wind increases 

(Pethick 1984). Frictional drag causes a zero wind velocity layer which has a 
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depth equivalent to 1/30th of the average surface grain diameter. Only sand grains 

with a diameter greater than the zero wind velocity depth are transported. 

Saltation of sand grains is the most common transportation mechanism of wind 

blown sand and occurs for average dune sands when the wind velocity is 

approximately 4m.sec-1 (Pethick 1984). This value equates to a wind velocity of 

14.3Ian.hr l which was exceeded for 7% of the study period at Waikuku and for 

58% of the study period at Amberley. It is important to note that although higher 

wind speeds are experienced more frequently at Amberley, there is less sand 

available for transportation due to the beach composition. This means that more 

sand is likely to be transported at the sandy beaches of southern and mid Pegasus 

Bay. Also evident is the stronger winds from the south at Amberley Beach, 

(22%). Waikuku and Spencer Park do not exhibit this trend. This can be 

attributed to the sheltering effects of Banks Peninsula slowing down the winds in 

southern Pegasus Bay. As has been illustrated Amberley has a much higher 

energy wind environment than southern regions of Pegasus Bay. 

2.4 Currents 

In the coastal zone, currents exhibit energetic characteristics which are pertinent 

to sediment budgets through the redistribution or transfer of sediment within and 

between cells. The velocity of the current determines the potential quantity of 

material that could be transported and the distance travelled. The following 

sections look at the different generating mechanisms behind currents active in 

the Pegasus Bay region. 

2.4.1 Shore Normal Currents 

Shore normal currents are wave induced and appear in conjunction with the 

wave disturbance. They are produced by the orbital motion of the water particles 

within the waves (Hansom,1988, Pethick, 1984). In shallow water these orbits 

are ellipses which progressively flatten as the water depth decreases so that much 
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of the water moves onshore and offshore along a line. The velocities of these 

two currents are not equal. Onshore currents have a greater intensity and a lesser 

duration than the offshore component. The result is water moving onshore and 

offshore. These currents have not been measured in the Pegasus Bay 

environment during this study period and so can not be quantified. The orbital 

velocity required to move fine sand is 10cm.sec-1 (Carter and Herzer 1979). 

From their drift card experiments the minimum velocity of the fastest card was 

10cm.sec l which suggests that excepting extreme events little sediment is 

transported by shore normal currents. 

2.4.2 Return Currents 

Return flow is often difficult to quantify. The water from waves that wash on 

the shore must return to the sea body. Much of the swash is returned through 

percolation but the rest returns through backwash. Two types of return currents 

can be identified; longshore currents and rip currents. 

Longshore currents are caused by waves which approach at oblique angles to the 

shore (Figure 2.5). The waves run up the beach at an angle corresponding to the 

wave approach angle. The water then returns under gravity normal to the shore 

resulting in a net displacement of water, sediment and energy in an alongshore 

direction. 

Longshore Transport Direction 

Breaking Waves 

~Of 
Wave Approach 

Figure 2.5 Longshore currents caused by oblique wave approach 
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Rip currents are a form of cell circulation. Such a system consists of onshore 

currents and longshore currents which then feed strong rips which extend past 

the breaker zone, as shown in Figure 2.6. The causes of these rip currents are 

areas of higher waves and subsequent build up of water on shore in these zones. 

A hydraulic gradient results between areas of low waves, (low water level on 

shore), and high waves, (high water level on shore), and alongshore movement 

of water occurs in both directions away from areas with high water levels. 

Where two opposing alongshore currents meet they then flow out to sea as a rip 

current at the point of lowest wave height. Wave height differences as 

mentioned here can be the result of an uneven sea bed or edge waves. 

Wave Crests 

Figure 2.6 Rip current circulation 

2.4.3 Tides 

Tides are created due to the gravitational pull of celestial bodies on the earth. 

Pegasus Bay exhibits semidiurnal tides. An accurate tidal range for the open 

coast of Pegasus Bay has not been determined but estimates of 1.3m to 2.4m 

have been made (Cope, 1993). The changing tidal water levels serve to 

determine the vertical extent of wave action. At high tide waves can reach 

further up the shore while swash and wave action at low tide is restricted to the 

lower foreshore. Apart from the above factor tides have little influence on 
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sediment transport. The currents generated by tides do not reach critical 

velocities capable of transporting sediment on the open coast. The main site 

where the tidal stream transports sediment is the Avon-Heathcote Estuary inlet 

and channels. Some sediment transport by tidal currents may also occur at the 

mouths of the Waimakariri and Ashley Rivers. 

2.5 Nearshore Processes 

The nearshore zone is extremely dynamic. It is the region which stretches from 

the first breaker line to the upper limit of the swash. Consequently the area 

changes in extent with tidal changes. This environment is discussed in the 

ensuing sections. 

2.5.1 Swash Zone 

Runup or swash is the movement of a wave up the beach slope once it has 

broken. The height of the runup determines the area of beach exposed to the 

depositional or erosional effects of the sea. The actual run up height can be 

influenced by a number of factors including breaker form, number of breakers, 

wave height, wave period, wave approach and the nature of the beach and 

nearshore profile. Wave height, period and approach and the beach profiles are 

discussed separately. The breaker forms for this study, (Figure 2.7), have been 

divided into the following categories: 

spilling, plunging, spilling/plunging and surging 

Spilling Beaker Plunging Breaker Surging Breaker 

F(lam ---..-~ 

~-----~ 

Nearly Horizontal Beuch 
Very Sleep Beuch 

Figure 2.7 Breaker types 

Spilling waves occur when a wave crest becomes unstable and flows down the 
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front face of the wave. Characteristic of this breaker type is an irregular foamy 

water surface. Plunging breakers are also known as dumpers. The wave crest 

curls over the front face of the wave and falls to the base of the wave. A high 

splash and foam is evident. The crest of a surging wave remains unbroken while 

the base of the front of the wave advances up the shore. Foam is present at the 

shoreline. Spilling/plunging waves are a combination of the two types (Komar 

1976). 

The type of breaker can be related to the shore slope and wave steepness. Steep 

gradient beaches characteristically have high energy plunging breakers while 

spilling breakers are more common on gently sloping shores. Surging breakers 

normally occur on medium gradient beaches. As expected the most common 

form of breaker during the study period at Waikuku, a flat sandy beach, was the 

spilling breaker, (46%). At Amberley, a steeper mixed sand and gravel beach, 

56% of breakers were observed to be of the spilling/plunging type. This 

corresponds to the theory that plunging breakers occur on steep beaches 

(Amberley) and spilling breakers are common on gently sloping beaches 

(Waikuku). 

Run up widths are indicative of the breaker type. Plunging/spilling waves have 

more energy than spilling waves and the run up widths at Amberley and 

Waikuku reflect this. A maximum swash length of 25m for Amberley Beach 

and 20m for Waikuku were recorded during the study period. Similarly the 

average runup for Amberley was 9.6m and only 6.2m for Waikuku. Therefore 

steep beaches such as those found in the north of Pegasus Bay are subject to a 

more intense swash regime than the flatter beaches in southern and mid Pegasus 

Bay. 

2.5.2 Offshore Bar 

Storage in the nearshore zone further complicates the sediment budget. When a 

beach is in deficit the sediment may not be completely lost to the system. In 
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times of erosion, beach sediment is often removed from the beach and deposited 

to form an offshore bar. This bar then tends to modify the process environment. 

Waves break when: 

Hid = 0.78 

where H is the deep water wave depth 

and d is the depth of shallow water. 

eq.2.4 

An offshore bar may build up so that waves that would normally break on the 

shore, break first in the shallow zone above the offshore bar. The wave energy 

at the shore is reduced and sediment can be moved onshore. 

2.6 Concluding Remarks 

The process environment of Pegasus Bay is not uniform throughout the entire 

region. Instead distinct divisions between the northern, middle and southern 

sectors can be made. This division is apparent in many of the process variables. 

Southern Pegasus Bay does not show a seasonal trend in wave height whereas 

heights increase during the winter months in northern Pegasus Bay. This is due 

to the southerly swells being deflected in the south by Banks Peninsula. 

Waves are steeper at Waikuku Beach than at Amberley Beach which 

corresponds to the preponderance of north-east seas in this region. The waves 

here are steeper because of the short period rather than the wave height and so 

are not indicative of the energy environment and can therefore not be used as an 

indicator of sediment transport. However there is a positive relationship between 

the steepness values and the state of the beach. 

The wave angle frequencies reflect the topography of the surrounding area. 

Banks Peninsula reduces the number of southerly swells arriving at the shores of 
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southern Pegasus Bay. Northern Pegasus Bay receives more southerly swells 

and less north-easterly seas as the propagating fetch to the north-east is 

restricted. 

The wind environments are also different at various locations of Pegasus Bay. 

Strong offshore winds are not experienced in the south to the same extent as they 

are in the north due to the barrier the high dunes in this zone create. The winds 

in the north are stronger but can not transport as much sediment as there are less 

fine grained sands available for transport. 

It is the interaction of these processes which drive the sediment budget. 

Northern Pegasus Bay has an extremely high energy environment compared with 

southern Pegasus Bay. This means that more sediment may be put into action 

although the differing sediment types (Chapter Five) must also be considered. 

Where this sediment is stored, its origins and the mechanisms by which it moves 

are discussed in the following three chapters. 
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Sources of Sediment 

3.1 Introduction 

41 

Sources of sediment serve to nourish the beaches of Pegasus Bay. It is important 

to understand the nature of these sources to be able to quantify their roles in the 

sediment budget. 

This chapter examines and quantifies two of the sources in Pegasus Bay - rivers 

and the offshore source. It is important to note that the beach system, estuaries, 

lagoons, dunes and longshore transport can also be sources of sediment. 

However these features are discussed in Chapters Four and Five, as they are also 

sinks or account for transfers of sediment. 

3.2 Rivers 

'Fluvial erosion of the continents is by far the most important source 

of coastal sediment supplying over 90% of global marine sediment.' 

(Hansom, 1988) 

Hansom's statement highlights the importance of the river source to the sediment 

budget of beaches. Rivers have great potential to transport sediments to the 

coastal system. The impact a river has on the coast is dependent on the size of 

that river. Zenkovich (1967) described three classes of river size, large rivers, 

small isolated rivers and small closely spaced rivers. On a world scale New 

Zealand has no large rivers. Large rivers transport vast quantities of sediment to 

the coast and have huge impact on the coastal area. Deltas form at the mouths of 

these rivers changing the environment such that marine processes have very little 

impact and the fluvial processes dominate (Zenkovich, 1967). 
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Small rivers have little effect on the coast. The mouths are controlled by coastal 

processes such as waves tides and the rate of littoral drift (Zenkovich, 1967). A 

small river's mouth can be deflected by longshore transport and may even be 

dammed by the beach so that the water from the river reaches the sea through 

percolation. 

'the morphology of a river mouth is not affected solely by runoff, but 

also by conditions in the sea and the size of the particles transported 

by the river. The greater the effect of marine factors, the greater must 

the load of a river be in volume or in grain size for it to leave its mark 

on the morphology of the coast.' 

(Zenkovich, 1967) 

The rivers of Pegasus Bay are small rivers. The Ashley and Waimakariri Rivers 

are the largest in the region and although they maintain their conveyance, the 

shifting nature of their mouths may be a testament to the influence of the marine 

environment. The Waipara and Kowai Rivers seldom have open access to the 

coast as the high energy coastal processes detailed in Chapter Two dominate this 

region. The Avon and Heathcote Rivers flow into an estuary and are therefore 

dominated more by tidal processes than other coastal processes. The following 

sections will examine the Pegasus Bay rivers and estimate the amount of 

sediment reaching the coastline. 

Table 3.1 presents the sediment inputs of each of the rivers within Pegasus Bay. 

These figures have been obtained from secondary sources and are originally 

expressed as tonnes per year which is then converted to cubic metres in order to 

maintain continuity with other sediment measurements. The tonnes per year 

have been divided by 1.25 (bulk density) to convert tonnes per year to cubic 

metres per year as prescribed by Gibb and Adams (1982). The suspended yield 

represents the specific annual suspended sediment yield based on values 

obtained from Griffiths and Glasby (1985). The bedload range represents 

between 2% and 20% of the suspended yield giving the upper and lower limits of 

the amount of sediment delivered to the coast by this transport mechanism. 

GritIiths (1979) established that of the suspended load reaching the open coast of 

New Zealand, only 40% of the yield is contributed to the shoreline. The 

remainder, (mud and silt) is transported to the offshore. Therefore the totals 
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present the calculated bedload and associated errors as well as the suspended 

load which reaches the coast. 

Table 3.1 Annual river yields of suspended sediment, bedload and 

total load to the coast in Pegasus Bay 

Suspended Suspended Range of Bedload Suspended Load Total Load 
Yield Yield Upper Lower to the Coast to the Coast 
(t/yr) (m 3/yr) (m 3/yr) (m 3/yr) (m 3/yr) (m3/yr ) 

Avon and 
7,100 5,680 2,272 Heathcote Rivers 2,272 

Wamakariri River 5,950,000 4,760,000 952,000 95,200 1,904,000 2,332,400"t 428,400 

Ashley River 1,160,000 928,000 185,600 18,560 371,200 454,720 "t454,720 

Kawai River 91,000 72,800 14560 1,456 29,120 35,672"±" 6,552 

Waipara River 460,000 368,000 73,600 7,360 147,200 180,320"±" 33,120 

TOTAL 7,668,100 6,128,800 1,225,760 122,576 2,453,792 3,005,384"±" 551,592 

3.2.1 A von and Heathcote Rivers 

Both the Avon and Heathcote Rivers are located in the south of Pegasus Bay and 

travel through the urban centre of Christchurch. The A von winds through a flat 

urban catchment 84km2 in area and the Heathcote River has a catchment area of 

105km2 consisting of both flat urban areas as well as developed and undeveloped 

regions of the Port Hills. Consequently the sediment load of the Heathcote is 

almost twice that of the Avon. According to Hicks (1993b) the estimated 

suspended sediment yield of the Heathcote is 4,500 tonnes per year and the 

Avon's suspended sediment yield is estimated to be 2,600 tonnes per year. 

Suspended sediment was measured using an I.S.C.O. auto-sampler programmed 

to sample regularly every hour at Gloucester Street for the Avon and Buxton 

Terrace for the Heathcote River. Manual samples were also made during peak 

flows to build up a comprehensive data set. Bedload was also measured but was 

insignificant even during peak flows and so has not been regarded. Table 3.1 

shows the suspended loads for the Avon and Heathcote Rivers. 

The 40% of suspended yield that is transported to the coast (Griffiths 1979) for 

the Avon and Heathcote Rivers amounts to 2,727m3.yr l (presented in Table 

3.1). This value is probably an over estimate due to a high proportion of silt and 

mud content reflecting the fine sediments of the catchments, and the "sink" 
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nature of the Avon-Heathcote Estuary. 

The sediment from the Avon and Heathcote Rivers is not transported directly to 

the open coast. Instead the velocities of the rivers decrease as they enter the 

Avon-Heathcote Estuary resulting in sediment deposition. This sediment then 

works its way into the estuary channels and inlet before being scoured out on ebb 

tides or during flood episodes. The net deposition rate within the estuary is 

thought to be minimal, (discussed further in Chapter Four), and so it can be 

assumed that the sediment from the Avon and Heathcote Rivers eventually 

reaches the open coast. Therefore the Avon-Heathcote Estuary can be 

considered to supply the sea off Pegasus Bay with approximately 2,300m3 of 

sediment per year. Due to the fine composition of this material very little would 

have the properties necessary to build up the beaches. 

3.2.2 The Waimakariri River 

The largest river with regards to water and sediment volume along the Pegasus 

Bay coastline is the Waimakariri River. Of all the rivers flowing into the bay 

this is also the most modified by human actions. Gravel extraction from the 

river bed affects the sediment yields while flood protection works constrain the 

river's channel. The catchment of the river is 3,564km2 and is situated mainly 

within the Southern Alps. The Waimakariri is also the only Pegasus Bay river to 

originate near the main divide of the Southern Alps. The steeper regions of the 

upper Waimakariri are highly erodable and contribute vast quantities and sizes of 

sediment. Conversely the lower reaches of the Waimakariri are gently sloping 

and unconfined and the river loses much of its carrying capacity as it becomes 

braided and the velocity lessens. Recent views state that the bulk of the 

sediment in the lower Waimakariri is supplied by local bed scour and bank 

erosion and not from the upper catchment (Griffiths, 1979; Blakely and Mosely, 

1987). The last 18km of the Waimakariri is gently sloping. The mean sediment 

size ranges from 28mm at the Gorge Bridge (the eastern edge of the Southern 

Alps), down to 9mm just east of the old Highway Bridge. These gravels are 

sub angular to slightly rounded indicating a significant period of transportation. 

The last 3 km of the Waimakariri River bed is sand (Deely 1992). The carrying 
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capacity of the river at this point has dropped to levels such that no gravels are 

transported to the coast. Table 3.1 shows the Waimakariri contribution of 

sediment to the marine environment. This figure is originally derived from 

Griffiths and Glasby, (1985), who state that the sediment yield to the coast is 

5.95 X 106t.yr1 (4,760,000m3.yr1) based on measured suspended sediment. 

After accounting for the bedload range and 60% of the suspended yield, (mud 

and silt), being lost from the system an average value of 2,332,400m3.yr1 ± 

428,400m3.yr1 is transported from the Waimakariri to the adjacent beaches. 

It is important to note here that the Waimakariri River is the major contributor of 

sediment to the coastal system of Pegasus Bay. This river has undergone 

dramatic changes over the past fifty to sixty years with the dramatic shifting of 

the river mouth. Kirk (1979) estimated that 30% of the sand fraction was being 

trapped in Brooklands Lagoon. This rate has decreased dramatically since then 

as the lagoon reaches its saturation point. If the lagoon now only receives 10% 

of the Waimakariri's suspended sediment yield then only 190,400m3.yr1 of the 

1,904,000m3.yr l (Table 3.1) would not reach the coast. This is approximately 

380,800m3.yr l more reaching the coast than when the lagoon traps 30% of the 

yield. 

3.2.3 The Ashley River 

The Ashley River is the second largest river in Pegasus Bay in terms of sediment 

yield, water volume and catchment size. The Ashley catchment covers an area 

of 1,298km2 originating in the eastern part of the Southern Alps. The upper 

reaches of the river are steep and gravels are transported. The lower reaches 

across the plains are gently sloping and the carrying capacity and size of the 

material in the river decreases coastward. However the Ashley has been known 

at times to discharge pebbles during high flow events (Little, 1991). 

The mouth of the Ashley River is narrow and velocities and potential carrying 

capacity at this point can be high. The narrow mouth may also be indicative of 

the dominance of coastal processes over fluvial processes. Griffiths and Glasby 

(1985) estimate that the Ashley River has a sediment yield of 1.16 million t.yr1 

(928,000m3.yr1). This value was established using regional prediction equations 
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for yield and mean annual runoff of the river catchment. If 60% of this yield is 

mud and silt which is then flushed from the system and bedload equates to 

between 2% and 20% of the suspended yield, then the average annual 

contribution from the river to the adjacent beaches is about 454,720m3 ± 

83,520m3 (Table 3.1). 

3.2.4 The Kowai River 

This river is the least researched river of the bay. The catchment itself is small, 

only 552km2 and originates near Mount Grey. The very size and virtual non­

existence of flood risk account for little knowledge of the Kowai River. The 

gradient of the river is very steep so that large gravels can be transported. 

However as the river bed is normally dry sediment transport rarely occurs. Only 

during high precipitation events and spring snow melt does water flow along the 

river bed. The mouth of the Kowai is enclosed by a stable gravel barrier 

highlighting the influence of the marine processes at this point. Medium flows 

result in the ponding of water in a lagoon behind the barrier and only during high 

flows, (approximately once every year) is the barrier breached (J. Austin, 

Amberley Beach resident pers. comm. 1995). An average yearly figure of 

suspended sediment for the Kowai River has been estimated from regional 

prediction equations by Griffiths and Glasby (1985) to be about 91,000t.yr-1 

(72,800m3.yr1) The total contribution to the coast is calculated to be 

35,672m3.yr1 ± 6,552m3.yr1 (Table 3.1). 

3.2.5 The Waipara River 

The Waipara River enters Pegasus Bay approximately 2km south of Double 

Corner. This river is very similar in nature to the Kowai River. It extends for 

64km from the foothills of the Southern Alps to the coastline encompassing a 

catchment of 741km2. As with the Kowai River the gradient is steep allowing 

for a greater capability to transport large sediments. An examination of flow 

velocities from January 1988 through to January 1995 (Canterbury Regional 

Council (C.R.C.) records) showed that for a significant number of days the river 

is capable of breaching the gravel barrier. However this occurs on an average of 
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only twice a year. These occasions are during high intensity rainfall events or 

spring snow melt events. The more frequent opening to the sea, larger 

catchment and steeper gradient equate to more sediment reaching the coast from 

the Waipara River than the Kowai River. Based on regional prediction equations 

for sediment yield and mean annual runoff as well as basin mean rainfall 

estimated from isohyetal maps, Griffiths and Glasby (1985) estimated that the 

suspended sediment yield to the coast for the Waipara River is 460,OOOt.yrl 

(368,OOOm3.yr1). This then corresponds to 180,320m3 ± 33,120m3 of sediment 

being contributed to adjacent beaches each year (Table 3.1). 

3.2.6 Summary 

The amount of sediment each river discharges is dependent on the catchments 

characteristics. Rainfall, vegetation, steepness and catchment size are all 

important variables. Each river contributes to its adjacent shoreline with the 

Waimakariri River having the most significant input. The Avon River and 

Heathcote have the least input into Pegasus Bay. From Table 3.1, it can be seen 

that an overall total of approximately 3,005,OOOm3.yr l ± 551,600m3.yr1 of 

material is estimated to be contributed to the beaches of Pegasus Bay from 

rivers. 

3.3 Offshore Sources 

The continental shelf is an important supply of sediment. The shelf break of 

Pegasus Bay lies between the 150m and 180m isobaths. The width of the shelf 

ranges from 40km to 85km wide (Carter and Herzer, 1979). In the south of 

Pegasus Bay at Christchurch, the shelf edge lies 85km from the coast while in 

the north of Pegasus Bay the shelf edge is only 55km from the coast (Figure 3.1). 

The Pegasus Canyon is an anomaly. It is a deep incision into the shelf. Located 

in the center of Pegasus Bay, it has significant ramifications to the sediment 

budget which will be discussed later in association with sediment sinks. 

The Canterbury Continental Shelf is mantled with modern, relict and palimpsest 

terrigenous sediments (Herzer, 1977). Terrigenous sediment is described by 
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Carter (1975) as being sediment derived from the land through river, wind and 

coastal erosion. Furthermore he described palimpsest as being relict material 

which has been reworked, and while retaining some relict characteristics it is 

approaching equilibrium with the modern environment. 

The limit of offshore and onshore sediment exchange is between a depth of 15m, 

(Kirk 1979) and 18m (R. McLean, Department of Geography and 

Oceanography, Australian Defence Force Academy, University of New South 

Wales, pers. comm. 1995). Around this depth there is a change in character of 

the bottom sediments from principally sand (> 90%) close to the shore, to 

predominantly sand (50% to 90%) with a non-calcareous mud overlay (33% to 

67%) (Carter and Herzer, 1986). It is possible that this demarcation from sand 

(>90%) to sand with a mud overlay (50% to 90% sand and 33% to 67% silt) 

mark the onshore/offshore limit of exchange (Figure 3.1). As turbulence 

decreases and current velocity drops the mud and silt are filtered out and 

deposited on the shelf. The inner shelf from the shore to a depth of 30m is 

covered with a modern sand prism. This material progresses through to relict 

sand and mud on the outer shelf. 

On the Canterbury Continental Shelf the main sediment transport is to the north­

east in conjunction with the Southland Current, (Carter and Herzer, 1979). The 

inner continental shelf however has an onshore component induced by wind 

drift. Opposing the Southland drift is the north-east wind and wave currents that 

occur in the summer. North-easterlies can reach gale force and the subsequent 

currents in conjunction with an appropriate phase of the tide and wave surges, 

shift inner shelf sediments to the south west (Carter and Herzer, 1979). 

In order for the modern sand prism material to be transported, bottom speed 

currents must reach approximately 35 cm.sec-1 (Sternberg, 1971). The relict 

sand and mud is rarely transported as currents greater than 35 cm.sec l seldom 

occur at this depth. Day to day currents rarely reach these speeds on the inner 

continental shelf and only the combination of tidal currents and storm induced 

CUlTents permit the hydraulic regime to move fine sand or even coarser 

sediments at a depth greater than 30m (Carter and Herzer, 1979). Because 

bottom currents are difficult to measure it is even more diffieult to quantify any 

possible sediment movements. 
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It is also pertinent to note that there is no sediment of unknown origin on the 

beaches of Pegasus Bay. All the sediment can be attributed to local supply. This 

means that no sediment is transported onto the Pegasus Bay beaches from the 

south or the north indicating that sediment deposited on the shelf at depth from 

other sources is not then reworked onto the Pegasus Bay shores. For these 

reasons input to the beaches from the offshore zone is taken as zero for present 

purposes. 

3.4 Concluding Remarks 

As can be seen there are relatively few sources of sediment within Pegasus Bay 

detailed here. However the next chapter looks at the sinks of sediment within 

Pegasus Bay some of which double as sources depending on the state of the 

process environment at particular times. The six rivers of Pegasus Bay all have 

varying inputs depending on their catchment and flow characteristics. The 

Waimakariri River contributes the highest proportion of sediment to the coast. 

The Kowai and Waipara, though being closed off from the sea most of the time 

still make important contributions during high energy events when coarser 

material is transported into Pegasus Bay. The Ashley River also transports 

pebbles during high energy events. The Avon and Heathcote Rivers are more 

silt dominated due to their urban nature and have smaller effective sediment 

yields. An average total of about 3 million m3 of sediment is contributed to the 

Pegasus Bay coastline each year from rivers. 

The offshore environment is extremely complex. Modern, relict and palimpsest 

terrigenous material mantles the continental shelf. The inner shelf, «30m deep), 

is mantled with a modern sand prism progressing through to relict sand and mud 

on the outer shelf. This material is available for transport onshore when bottom 

currents reach significant velocities over 35 cm.sec- I . The deeper the material, 

the less likely itis to be transp:>1ted 

The following chapter looks at the sinks of sediment within Pegasus Bay. Each 

one is discussed in detail and quantification is presented where possible. The 

relative importance of each feature to the sediment budget is also discussed. 



Chapter Four 

Sinks of Sediment 

4.1 Introduction 

51 

Sinks of sediment are regions which receive material which has been removed 

from a coastal compartment. This chapter will examine each of the sinks present 

in Pegasus Bay individually. An attempt at quantification will be made for input 

into the derivation of the quantified sediment budget model for Pegasus Bay. 

4.2 Estuaries and Lagoons 

Estuaries and lagoons can hold vast quantities of sediment for long periods of 

time. These features are located where a river meets the sea. Estuaries are 

tidally dominated and lagoons are influenced more by fluvial processes. Despite 

these sometimes nebulous distinctions the two landforms are often similar and 

for sediment purposes shall be discussed together. The major estuaries and 

lagoons in Pegasus Bay are the Avon-Heathcote Estuary at the mouth of the 

A von and Heathcote Rivers and Brooklands Lagoon at the mouth of the 

Waimakariri River. Sediment brought down from the catchment by the rivers is 

swept into the lagoon or estuary. As the flow velocity decreases below the 

sediment carrying velocity it is deposited. If the flow does not decrease below 

the threshold then the material can be flushed through or from the system. 

There are four main processes which affect the transport of sediment in, out and 

within the estuarine system as follows: 

(i) tidally induced flow into the estuary 

(ii) longshore currents 

(iii) fresh water runoff 

(iv) wave dynamics at the inlet 
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The sea upon entering an estuary on the rising tide then attempts to scour the 

sediment out on the falling tide. Consequently high seas and or spring tides can 

have a major impact on the sediment budget as more water enters and leaves at 

higher velocities. This scouring effect is generally restricted to the channels 

where flow velocities are the highest. When the depositional rate exceeds the 

scour rate then sedimentation occurs, and when this is the case an estuary is 

deemed to be a point sink of sediment. 

A lagoon is usually non-tidal and any rise and fall of water is controlled by river 

processes. These processes also control sedimentation. In this case flooding 

down the river plays an important role in calculating a sediment budget. Flood 

flows scour sediment from the feature. 

Lagoons store sediment but often this sediment is not directly from the coastal 

zone. Instead lagoons trap the sediment before it reaches the coast. In this 

regards the feature is not a sink of the coastal budget unless it is through 

overwash or wind blown sediments from the beach system. The sediments 

stored by the lagoon are transported to the coast during flood episodes in which 

case the landform is a source rather than a sink. 

4.2.1 The Avon-Heathcote Estuary 

The A von-Heathcote Estuary has two major fluvial contributors, the Avon and 

Heathcote Rivers. As recently as two thousand years ago the Estuary did not 

exist in its present form and position (Figure 4.1) (Brown and Weeber 1992). 

The Avon and Heathcote had separate mouths each with its own small estuary 

(Brown and Weeber, 1992; Owen, 1992; Hicks, 1993b). The Avon River mouth 

flowed out to the coast further north than its present site. The South Brighton 

Spit slowly grew as sediment from the Waimakariri and Ashley Rivers drifted 

south (Hicks, 1993b). It is thought that about 1,000 years before present the 

Avon's estuary occupied the area now known as Travis Swamp (Brown and 

Weeber). Approximately 500 years later the swamp had infilled and the spit 
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grown such that the A von and Heathcote mouths were both enclosed to form the 

Avon-Heathcote Estuary as it can be seen today (Figure 4.1). Since this time the 

major changes in the area have been to the spit tip which has demonstrated 

fluctuations since the 1940s (Kirk 1979). The estuary as it stands today covers 

an area of approximately 880 hectares. 
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The A von-Heathcote Estuary can be classified as a "single spit barrier enclosed 

estuary" under the Hume and Herdendorf (1988) classification of New Zealand 

estuaries. This type of estuary is characterised by the following criterion: 

1. Spit forms enclosure 

2. Unstable inlet, narrow gorge, with flood and ebb tide shoals 

3. Extensive intertidal area 

4. Small inlet width to mean width ratio 

5. Low freshwater inflow 

6. Tide dominated hydrology 

7. Well mixed except in head waters 
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The Avon-Heathcote Estuary has all of the above feature and the most 

significant of these to the sediment budget are the ebb and flood tide shoals. The 

ebb tide delta is a consistent feature at the inlet of the estuary indicating the 

propensity for sediment transport out of the estuary. 

The Avon-Heathcote Estuary is an extremely dynamic feature. It is influenced 

by two rivers, coastal processes and human activity. Its fragile nature can lead to 

dramatic responses to changes in its regUlating features. The urbanisation of the 

Avon and Heathcote catchments, in particular the urbanisation of the Port Hills 

has lead to an increase in sediment yield to the Heathcote River. Market 

gardening on the lower slopes of hill tributaries has also lead to loess being 

washed into the Heathcote River (Findlay and Kirk 1988). The Horotane Valley, 

which is an extensive market garden area, has a stream laden with sediment 

during the winter months. This stream feeds into the Heathcote River. 

At the present time the A von-Heathcote Estuary does not appear to be 

accumulating significant amounts of sediment. Between the 1920s and 1950s a 

huge amount of silt was washed from the urbanising Christchurch area to the 

estuary's contributing rivers. This silt was then built up in the rivers to such an 

extent that areas of the Avon which had been 3m to 6m deep had become only 

80mm to 100mms deep (Deely 1992). This sediment was trapped in the rivers 

and subsequently cleared by a river sweeper which in turn led to a layer of mud 

250mms deep being deposited in the Estuary. New areas of Christchurch being 

urbanised decreased in the 1960s and the rate of accumulation dropped from 

60mm to 120mms per year to only 5mms per year. Hicks (l993b) disagrees with 

Deely (1992) and contests that the 250mm layer of silt and mud was deposited 

over a longer time frame from the 1880s to the 1950s corresponding to a 

deposition rate of only 20mm to 40mms per year. This he states, agrees more 

with anecdotal evidence of the rates of deposition in the estuary. 

These significantly different rates of deposition and corresponding sediment 

yields demonstrate the importance and uncertainty of quantification for both 

factors. Since the 1960s, deposition within the estuary has decreased as have the 
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sediment yields of the Avon and Heathcote Rivers. Not only do the deposition 

rates vary with sediment yield but so too does the shape of the estuary especially 

the inlet and spit area. The spit was relatively stable until the early 1900s after 

which time it fluctuated greatly, (Figure 4.2), corresponding to the rapid 

urbanisation of Christchurch (Findlay and Kirk, 1988). 
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Figure 4.2 Changes to the South Brighton Spit 

Source: Findlay and Kirk, (1988) pl08 

Since 1962 there has been a lowering of the mud flats in the A von-Heathcote 

Estuary (Hicks 1993b). This value varies spatially over the Estuary from 2mm to 

6mm per year. Compounded with the lateral shifting of tidal channels and bars 

the result of this activity has been a barely detectable gain of sediment at a rate 

less than Imm per year. 

Current estimates of the sediment yields from the Avon and Heathcote Rivers to 

the estuary are potentially at 2,600t.yr1 (2,080m3.yr l) and 4,500t.yr1 

(3,600m3.yr1) respectively. Furthermore the city outfall drain yields 170t.yr1 

(136m3.yrl) (Hicks 1993b). These values represent a potential value for net 

sedimentation within the estuary of Imm per year. It therefore follows that 

based on a Imm per year sedimentation rate, the Avon-Heathcote Estuary is a 

sediment sink. It is trapping all the sediment from the rivers and some sediment 
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from the coastal zone to achieve this sedimentation rate. These conclusions are 

tentative, based on a <1mm which corresponds to a sedimentation rate of 

<5,800m3.yr1. 

4.2.2 Brooklands Lagoon 

Brooklands Lagoon is located to the south of the mouth of the Waimakariri 

River. It extends through the old channel of the Waimakariri when the river's 

opening was to the south of its present position. The Styx River and the 

Waimakariri River both feed into Brooklands Lagoon (Figure 4.3). Brooklands 

Lagoon is smaller than the Avon-Heathcote Estuary and covers approximately 

270 hectares. It is 4.5kms long and 0.8kms at its widest point (Owen 1992). 

Brooklands Lagoon and the Waimakariri River mouth have changed 

dramatically over the past 150 years and have in recent years attained a semi­

stable state. Flooding of the Waimakariri River, longshore drift and artificial 

flood protection works within the Waimakariri itself have led to the maintenance 

of the present day location and configuration of the Waimakariri River mouth 

and Brooklands Lagoon Spit. Before the Waimakariri River mouth shifted north 

to its present position after 1935, the now well vegetated sand dunes of 

Brooklands Spit were a series of shifting sand bars and lagoon mouths (Owen 

1992). The Styx River has in the past 25 years been constantly shifting in its 

lower course. This perhaps reflects its attempt to maintain its channel 

morphology in the face of a shallowing lagoon (Hicks and Duncan, 1993). 

The Brooklands Lagoon sand spit is eroding at its distal end which also the true 

right bank of the Waimakariri River mouth. The spit itself is approximately 

4kms long. Investigations during the study period showed that the dune at the 

north end of the spit eroded 2.1m horizontally for the two month period from the 

17th of March to the 15th of May. Hicks and Duncan (1993) and Boyle (1984), 

state the Brooklands Lagoon spit has been eroding since the 1970s on the 

Brooklands Lagoon side along its entire length. One reason for this could be the 

growth of Pinus Radiata on the spit preventing the deposition of wind blown 
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sand borne on the north-east winds common in this area. Any sand eroded from 

this shore is not replaced. Another possibility is that the Styx River is building a 

delta at its mouth and in doing so is forcing the tidal channel up against the spit. 

Tidal currents flowing along the channel are scouring the shoreward channel 

margm. 
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Figure 4.3 Brookiands Lagoon showing locations of cross-sections 

After: Hicks and Duncan (1993) pll 

Figure 4.3 locates cross-sections that have been surveyed through Brooklands 

Lagoon. Surveys have been recorded in 1932, 1969 and 1977, with partial 

surveys at the mouth of the lagoon in 1973,1978 and 1984. Data presented by 

Hicks and Duncan (1993) and Knox et ai. (1978) demonstrate the considerable 

deposition which occurred between 1932 and 1969. During this time there was 

an average of almost 1m of deposition in the old Waimakariri channel. This 

results in an estimated 1.4 million m3 of deposition over this period (Figure 4.4). 

It can be assumed that the most rapid period of deposition was shortly after the 

mouth changed position in the 1940s. However this rate of deposition has not 

continued since 1969 and in places erosion has occurred. Local migration of the 

river mouth has lead to erosion and deposition at sections Hand J, (Figure 4.3), 

which have greatly influenced the overall trend (Figure 4.4). The deposition 

trend shown in Figure 4.4 is for the entire lagoon and is significantly lower in 
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recent years due to erosion at cross sections Hand J. Despite these falls in 

sedimentation rates it is locally believed that infilling is still occurring but at a 

lesser rate (L. King, Waikuku Beach resident, pers. comm. 1995). Sediment is 

deposited into the lagoon during flood flows of the Waimakariri but is mostly a 

fine layer of mud and is easily transported out via suspension in subsequent 

moderate flow events. Kirk (1979) estimated that of the 1.3 million m3.yr-l of 

sand thought to be transported to the coast by the Waimakariri, 340,OOOm3.yrl 

was trapped in Brooklands Lagoon. 
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Source: Hicks and Duncan (1993) pll 

The rate of deposition in Brooklands has decreased dramatically in past years. 

Hicks and Duncan (1993) conclude that future average rates of deposition are 

likely to be no more than a few millimetres per year and most of this will be 

deposited at the Spencerville end (south) of the lagoon as the shallow flats are 

gradually converted to marsh. Furthermore they state that as the spit continues 

to vegetate, wind blown coastal sand and/or storm wash over will also continue 

to decrease. It therefore appears that Brooklands Lagoon has reached near 

saturation point for the amount of sediment it can store. A 5mm.yr1 deposition 



59 

rate corresponds to only 1,350m3.yr1 being deposited in the lagoon so that 

sediment from the Waimakariri is now likely to reach the coast rather than being 

deposited in Brooklands Lagoon and Spit. Kirk (1979) stated that 390,000m3 of 

the Waimakariri's sediment yield was being deposited in the lagoon. This is a 

289% reduction in the amount of sediment deposited in Brooklands Lagoon. 

The same order of reduction can be assumed for Brooklands Spit. This 

substantially alters the input to the beach system from the Waimakariri River. 

Post 1935 30% of the yield was deposited in Brooklands Lagoon (Kirk 1979). 

This figure has dropped to less than 1 % of the Waimakariri's yield. Now almost 

100% of the yield is reaching the open coast. This increase in sediment supply 

may have significant ramifications on Pegasus Bay beaches with an increase in 

deposition at adjacent sites. The Styx River contributes little sediment. Its 

present yield is 3,000 to 3,900 m3/yr of which most is trapped upstream of the 

tidal gates. It is likely that this sediment will be contained (at least in the short 

term) in Brooklands Lagoon. 

4.3 The Beach System 

As shown in Figure 1.4, the beach can divided into two regions, the foreshore 

and the backshore. The foreshore extends from mean high water springs to mean 

low water springs and is the zone where most sediment transport occurs. The 

backshore is often more stable as it is less affected by wave action. The shore 

can be both a sink and a source of sediment, although the time frame is often too 

short or transitory in budget model terms as such models normally cover time 

frames of years. A shore can build up or lose sediment over as short a period as 

one tidal cycle. Such short term fluctuations are often disregarded but play an 

important role in the dynamic movement of sediment within and through a 

coastal compartment. 

Within the field area of Pegasus Bay, twenty-four profile sites were established 

(Figure 1.1). Detailed descriptions of their locations are given in Appendix 2. Of 

the twenty-four sites, twenty-one are sites that have been established by the 
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Canterbury Regional Council (C.R.C.). Three further sites were installed for this 

study in order to provide a more detailed coverage of the more unknown 

northern sector of Pegasus Bay. The sites in southern Pegasus Bay from South 

Brighton Spit to Brooklands Lagoon were established in 1990 and have been 

surveyed twice yearly, once in summer and once in winter by staff at C.R.C. 

Profiles in the northern sector, from Pines Beach to Teviotdale have been 

surveyed once a year during summer, since November 1991 when the sites were 

established. The exceptions are South Leithfield, Newcombes Road and Double 

Corner where monitoring began this year when the profiles were established. 

An examination of these profiles was carried out to investigate the sediment 

volume and profile form and position changes that have occurred during the 

study period and since the C.R.C. began monitoring. The profiles were surveyed 

using a variety of methods depending on the availability and demands on the 

Geography Department survey equipment. During the study a total station, 

compass theodolite, quickset level and dumpy level were used at different times. 

The profile data was reduced using a computer spreadsheet and is displayed 

(Figure 4.5 to 4.13 and Appendix 2) using graphpro on the Archimedes 

computer. Distances along the horizontal axis begins at zero, representing the 

benchmark as designated by the C.R.C. Not all of the profiles displayed start at 

zero as often the benchmark is located behind the beach system. The vertical 

axis shows the height above mean low water level as determined by C.R.C. and 

is given the value of zero. This allows for ease of calculation of the beach 

volume, which is the area under the graph, as well as a clear concise display 

which is easily interpreted. Beach volumes, also presented in Figures 4.5 to 4.13 

are measured in cubic metres above the mean low water level. 

Large quantities of data have been processed such that forty-five profile graphs 

were produced. A selection of these graphs have been chosen as representative 

of each region within Pegasus Bay. The following is a brief synopsis for the 

various localities within Pegasus Bay. The bay has been divided into eight 

sectors as shown in Table 4.1. 



Table 4.1 Names ofprofiles and sector divisions of Pegasus Bay 

adapted for this study 

Sector Profile 
South of Pukeko Street 

South Brighton Spit Plover Street 
Caspian Street 
Beatty Street 

Christchurch City North of Rodney Street 
Rawiti Street 
Larnach Street 

Bottle Lake Region South Bottle Lake Forest 
Heyders Road 
Brooklands C1891 

Brooklands Spit Brooklands C 1972 
Brooklands C2070 
Pines Beach 

Mid Pegasus Bay Woodend Beach 
Waikuku Beach 
Ashworths Ponds 

Leithfield Region South Leithfield 
Leithfield Beach 
Kowai River 

Amberley Region Newcombes Road 
Amberley Beach 

Amberley Golf Club 
Waipara River Region Teviotdale 

Double Corner 
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The beach volumes from the the low tide mark to the dune toe above the mean 

low water level for each region have been calculated and are presented in Table 

4.2. Each profile site has been taken as representing one half of the distance to 

the next profile site so as a complete estimate for the total length of shore is built 

up. The volumes are also presented in unit metres per length of the coastline to 

give a comparison of the average beach volume at a specific location in a sector. 

The beach system contains a total of 18.7x106m3 of sediment. The following 

sections look at the individual sectors and their observed changes. 
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Table 4.2 Beach volumes within Pegasus Bay 

REGION Length of Region Volume of Region Volume I metre 
(Km) ( m 3 ) (m

3
/m) 

South Brighton Spit 3.3 770,170 233 

Christchurch City 4.5 1,152,700 256 

Bottle Lake Region 7.8 2,121,200 272 

Brooklands Spit 2.9 436,170 150 

Mid Pegasus Bay 13.0 9,022,000 694 

Leithfield Region 9.8 3,975,300 406 

Amberlev Region 4.0 745,600 186 

Waipara Region 4.4 480,800 109 

TOTAL 49.7 18,703,940 

4.3.1 South Brighton Spit 

The beaches on South Brighton Spit are composed of sand. The beach area 

extends for approximately 150m from the dune base to mean low water level. 

Within this area there are three profile sites which have been surveyed during the 

study period. The Caspian Street site is the most stable of all sites as it is located 

near the proximal end of the spit. This is reflected in Figure 4.5a which shows 

the volume changes for this profile. The average volume of the beach is 

288m3.m- l . The deviations from the mean which are the most significant are a 

40m3.m-1 increase in May 1995 and a 32m3.m-1 decrease in September 1992. 

The latter is probably a direct result of the storms during July and August 1992. 

Fluctuations closer to the end of the spit are much more pronounced. This can 

be seen in the volume and profile changes of South Pukeko Street (Figure 4.5b 

and c). The volumes have a range of 197m3.m-1 varying about an average 

volume of 188m3.m-I , It is also interesting to note here that the two highest 

volumes of 302m3.m-1 and 290m3.m-1 occurred in May 1990 and January 1992 

respectively. The May profile is 24m longer than the January profile which 

equates to only 12m3.m-1 difference. This is a relatively small difference in 

volumes considering the large horizontal change. Examination of the profiles 
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(Figure 4.5c and d), shows that the January 1992 profile has two pronounced 

berms characteristic of a summer profile. These features store large volumes of 

sediment and account for the apparent volume discrepancies. Furthermore the 

summer profiles at this site exhibit well defined berms. This highlights the need 

to look at the beach in three dimensions not just the two dimensions given by 

profile line graph. 
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Figure 4.5(a) Beach volumes at Caspian Street 
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Figure 4.5(b) Beach volwnes at Pukeko Street 
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Figure 4.5(c) Summ,er beach profiles at South Pukeko Street 
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Figure 4.5( d) Winter beach profiles at South Pukeko Street 

4.3.2 Christchurch City 

The Christchurch City beaches are similar to the South Brighton Spit beaches. 

The beach widths are around 100m from the dune to low water. The average 

slope of the foreshore is less than 10. These sites all exhibit reasonably 
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consistent trends and for this reason only the Beatty Street site will be illustrated 

(Figure 4.6). The changes in volume for these beaches since 1990 are slight with 

a range of 64m3.m-1 for Beatty Street (Figure 4.6a) as compared with the 

197m3.m-1 volume range for south of Pukeko Street. Figure 4.6b and c show the 

difference between the summer and winter profiles from 1990 to the present. 

The most noticeable difference between the summer and winter profiles is the 

beach widths which are more varied in the winter profiles. The beach width is 

the distance from the dune toe to the low water mark. This is also reflected in a 

greater variability from the average beach volume in the winter. The range in 

winter is 44m3.m-1 and only 25m3.m-1 in summer. 

Perhaps one of the most significant factors is that all three beaches experienced 

maximum volumes in January 1991 and a minimum in September 1992. These 

can be attributed to an accretionary phase leading up to the January 1991 survey 

which resulted in a 27m3.m-1 increase in volume above the average at Beatty 

Street. In 1992 two major storms affected the coast which lead to a 37m3.m-1 

drop in volume below the average of 362m3.m-l . The uniformity of volume 

changes indicates that the processes acting on these three sites are very similar. 
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Figure 4.6(a) Beach volumes at Beatty Street 
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Figure 4.6(b) Summer beach profiles at Beatty Street 
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Figure 4.6(c) Winter beach profiles at Beatty Street 

4.3.3 Bottle Lake 

The South Bottle Lake region IS one of the larger areas III Pegasus Bay, 

extending from Waimariri Beach north to Spencerville. However these beaches 

do not exhibit the same characteristics as the Christchurch City shores. Instead 

beach volumes in this zone fluctuate more about the mean volume of 134m3.m-1 

(Figure 4.7 a). Maximum volumes are evident in January surveys and the 

minimum is again in September 1992. For example a deficit of 52m3.m-1 below 
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the mean volume at the Heyders Road site. This is particularly significant 

compared to the beach width which varies about 80m in length (Figure 4.7b and 

c). In September 1992 the profile width was only 64m long and from Figure 

4.7b and c, it can be seen that there is a general trend, that has not shown up in 

the other profile regions, for the summer beaches to be wider and flatter than 

those in the winter. Only one winter survey, July 1993, is wider than the average 

beach width of 85m and none of the summer surveys drop below the average 

beach width. The volumes however do not follow this trend and fluctuate 

greatly about the mean with a range of 91m3.m-1 when at Heyders Road. 
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Figure 4.7(a) Beach profile volumes for Heyders Road 
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Figure 4.7(b) Summer beach profiles at Heyders Road 
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Figure 4.7 (c) Winter beach profiles at Heyders Road 

4.3.4 Brooklands Spit 

The Brooklands spit sites are the most northern of those examined in southern 

Pegasus Bay. The sites are located along Brooklands Spit (Appendix 2). Unlike 

South Brighton Spit the most variable site is not the one closest to the spit tip. 

Instead the site which exhibits the greatest fluctuations, C1972, is located in the 

middle of the spit. As with the Bottle Lake region and Christchurch City 

profiles, maximum volumes occurred in January. In this sector however the 

maximums were in 1995 although a number of accretionary phases can be 

identified, for example June 1990 to July 1991, September 1992 to July 1993 

and July 1994 to January 1995 (Figure 4.8a), The 1992 storm impact in this 

area is shown by a 43m3.m-1 deficit from the average being evident in the 

September 1992 survey. Figures 4.8b and c show that once again summer 

profiles are longer than their winter counterparts. Here it is pertinent to note the 

differences in profile form. The increased widths and therefore volumes can be 

attributed to flattening of the profile near the mean low water level mark during 

the summer. This flat low tide shelf is a response to the processes acting at this 

time coupled with the steepening of the upper foreshore. 
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Figure 4.8(c) Winter beach profiles at C1891 

4.3.5 Mid Pegasus Bay 

The three beach profile sites in the Mid Pegasus Bay region are located at the 

main access points to the beach. Subsequently they are high use areas and this 

factor is reflected in their profiles and volume data. The beaches are wider than 

those on Brooklands Spit ranging from around 100 to 200m. There is a trend for 

the beaches to become progressively shorter with distance from the Waimakariri 

River. For this reason Woodend Beach is displayed, being representative of the 

regIOn as it lies in the centre. Figure 4.9a shows the volume changes for 

Woodend. Low volumes occurred in December 1991 and in May 1995, which is 

consistent with the other two profiles in the region. Volumes vary significantly 

with a range of 94m3.m-1 varying about a mean of 328m3.m-1 at Woodend 

Beach. 

The profile of Pines Beach surveyed during 1995 (Figure 4.9b), has been 

selected to demonstrate the effects of human use. In January 1995 the dune 

adjacent to the surf club house and pictured in the profile (at 1), had been 

trampled by holiday makers. The March and May profiles indicate that the dune 

rebuilt itself. An important feature is the height of the upper foreshore in 
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January 1995 corresponding with a maXImum volume for this period, 

demonstrating that the bulk lost from the dune had been displaced to the upper 

foreshore and is not lost from the beach system. 

It is important to note that at the time of the April 1995 survey when the 

Waikuku profile volume was lower than average, pebble size gravels, 4mm to 

64mm in diameter lay exposed on the beach. This gravel is probably indicative 

of a past hydraulic regime when the Ashley River regularly supplied gravel to 

the Pegasus Bay coastline. 

Figure 4.9(a) Beach profile volumes for Woodend Beach 
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Figure 4.9(b) 1995 beach profiles at Pines Beach 
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4.3.6 Leithfield 

Present within the Leithfield region is the demarcation from sand beaches to 

mixed sand and gravel beaches. Consequently the beaches in this zone display 

differences in their characteristics. During the study period the Ashworths 

profile was predominantly sand with small pockets of gravel and shells in 

shallow lenses. In the past this beach has had a more gravel laden foreshore (H. 

Connor, University of Canterbury pers. comm. 1995). The gravel found here, as 

with the Waikuku Profile, reflects the past hydraulic regime of the Ashley River. 

The Ashworths profile is the widest of Pegasus Bay, being almost 300m from the 

base of the dune to mean low water level. The lower foreshore is the steepest 

region of the beach and extends approximately 80m (Figure 4.10a and b). 

Despite this the Ashworths profile volumes fluctuate greatly (Figure 4.1 Oc). 

Only South Pukeko Street on the South Brighton Spit has a greater range of 

volumes than Ashworths Ponds. Volumes at this site fluctuate 176m3.m-1 about 

509m3.m- l . These large variations from the mean are reflected in the profiles 

(Figure 4.10a and b). The major variation is on the long undulating flat of the 

backshore. The primary process causing these changes is wind redistribution of 

sand. An embryo dune, seen at the 170m mark on the November 1991 profile 

(Figure 4.1 Ob), is the most comprehensive example of this. Smaller scale 

embryo dune growth was observed during the study period and is visible in the 

profile graphs (Figure 4.10a and b). 
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Figure 4.10(a) 1995 beach profiles at Ashworths Ponds 
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Figure 4.10( c) Beach profile volumes for Ashworths Ponds 
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South Leithfield is approximately 2kms north of Ashworths Ponds, between 

which the barrier separating sand and mixed sand and gravel sediments lies. 

South Leithfield is characterised by a sand and gravel foreshore of which the 

sand fraction is more dominant. This site was first surveyed in 1995 and 

followed the same growth and decay patterns as Ashworths during this time and 

so is not illustrated here. However the Leithfield Beach profile is located further 



74 

away from the transition zone and is correspondingly more stable. The volume 

range is only 48 m3.m-1 about an average volume of 175m3.m-1 (Figure 4.11a). 

Despite this small range in volume for the profile, the form alters dramatically as 

is shown in Figure 4.llc. 

The lowest volume occurred in May 1992 corresponding to a short steep 

foreshore. In contrast to this is the highest volume of 192m3.m-1 in September 

1992 only four months later. This is due to human activity involving the 

bulldozing of flood protection banks and the introduction of sediment to the 

system from elsewhere. This flood protection bank is evident in subsequent 

profiles and there has not been a dramatic drop in volume since its instalment. 

The volume fluctuations, (Figure 4.1l(a» in early 1995 do not correspond to 

those at South Leithfield and Ashworths but rather reflect the changes in form 

specific to this profile (Figure 4.l1c). These changes in form could be the result 

of the development and decay of cusps characteristic of some mixed sand and 

gravel beaches including this beach (Nolan 1993). 
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Figure 4.11(a) Beach profile volwnes for Leithfield Beach 



12 

10 

4 

2 

-- NOV94 

- - - - - JAN95 
------ FEB 95 

--- MAR95 

APR 95 
.-------.. MAY 95 

~~-----­
\~~ 

o+-~----,------,------','-'-'~:':~~=,~,------, 
100 125 150 175 200 225 

Distance (m) 

Figure 4.11(b) 1995 beach profiles at Leithfield Beach 
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Figure 4.11(c) Past beach profiles at Leithfield Beach 

4.3.7 Amberley 

75 

All of the Amberley beaches have mixed sand and gravel sediments with a 

gravel ridge backing the shore instead of the sand dunes seen in southern and 

mid Pegasus Bay, The beaches in this zone are much narrower than the sandy 

southern beaches (Figure 4.12a and b), The active foreshore zone is limited to 

approximately 50m, The foreshore is also a lot steeper (4° to 8°) in this region 

and this consequently affects the processes which act on it as outlined in Chapter 
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Two. This active region exhibits different sand and gravel compositions over 

extremely short time scales .. Despite these composition changes the range of 

volume changes are small. The range for Amberley Beach (Figure 4.12c) is only 

39m3.m- i . This smaller volume range is a response of the narrow beach width. 

The Kowai River profile is located adjacent to the south bank of the river and is 

influenced by the river during major flood events. However examination of 

profile records shows that no event has impacted upon the profile since 1991 

when records began. The Amberley Beach profiles (Figure 4.12a and b) present 

changes in the form of the profile. Width and steepness of the beach are 

relatively uniform. Fluctuations in form were noted in the field as observed 

changes in the position and shape of beach cusps. The position of the cusp on 

the shore can be related to the volume. An accretionary phase results in the cusp 

being built up down the shore towards the sea. An erosionary phase corresponds 

with the cusp being eroded low on the foreshore so that it only appears further up 

the beach slope on the profile graph (Figure 12a and b). 

12 

10 

2 

__ JAN95 

- - - - - FEB 95 
______ MAR 95 

--- APR95 

---- MAY95 

o+-----~------~----~~----~----~ 
~ ~ ~ ~ ill ~ 

Distance (m) 

Figure 4.12(a) 1995 beach profiles at Amberley Beach 
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Figure 4.12(b) Past beach profiles for Amberley Beach 
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Figure 4.12( c) Beach profile volumes for Amberley Beach 

4.3.8 Waipara River 

The beaches in the Waipara River sector are mixed sand and gravel and are 

much narrower than the other mixed sand and gravel beaches in Pegasus Bay. 

The active foreshore width is less than 40m at times (Figure 4.13 a and b). The 
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steepness of the beaches in this zone is very similar to those in the Amberley 

region (between 4° and 8°) but the slope angle decreases to between 3° and 6° at 

Double Corner. 

The composition of the beaches also varies in the same manner as at Amberley. 

The main difference between the two sectors is the degree to which cusps grow 

and decay. This effect is more pronounced in this northernmost region. 

Disregarding the Kowai River site (Amberley Region) for which other 

considerations are involved, the Waipara River region exhibits greater volume 

fluctuations than the Amberley region. Figure 4.13c shows the volumes for the 

Teviotdale site. The range is 45m3.m- i oscillating about a mean of 135m3.m- i . 

From observations when a cusp is positioned high on the shore and there is a 

greater sand composition evident on the lower foreshore, the profile is in surplus. 

If the cusp is located closer to mean low water level and the lower foreshore is 

predominantly gravel then the profile is in deficit. 
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Figure 4.13(a) 1995 beach profiles at Teviotdale 
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Figure 4.13( c) Beach profile volumes for Teviotdale 

4.4 Dunes / Beach Ridges 
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Dunes are a feature that fit into both ~ources and sinks of sediment. During 

times of beach deficit, dunes become an important source of material. As a 

beach is eroded the dune supplies sand to replenish the beach system. In times 
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of shore surplus the dune becomes a sink of sediment. 

This section quantifies the amount of sediment which is present in the sand 

dunes and gravel ridges of Pegasus Bay. In order to quantify whether or not 

dune volumes are acting as a source or a sink a base volume must exist against 

which the present volume can be compared. Data for Pegasus Bay are limited to 

the past four to five years and so a comparison is not realistic. However the 

volumes presented in this section can be used as a base volume for future 

studies. 

The method of calculation of dune volumes is as follows. Using the profile 

survey data collected by the C.R.C., an average dune volume was established for 

each site. This was then extrapolated along the coastline to half the distance to 

the next profile site to give coverage for all of Pegasus Bay. Unfortunately there 

are limitations in the accuracy of the data as it does not account for any 

significant high, low, wide or narrow points. However it is probable that these 

will probably cancel each other out. For ease of interpretation the volume values 

for the sectors of the coastline are shown in Table 4.3. The final column of 

Table 4.3 gives a volume per metre length of the shoreline to give an idea of the 

average bulk of the dunes or ridges for the region. 

Table 4.3 Dune volumes within Pegasus Bay 

REGION Length of Region Volume of Region Volume I metre 
(Km) ( m 3 ) (m

3
/m) 

South Brighton Spit 3.3 1,743,395 528 

Christchurch City 4.5 1,694,905 377 

Bottle Lake Region 7.8 3,918,290 502 

Brooklands Spit 2.9 758,185 261 

Mid Pegasus Bay 13.0 7,281,900 560 

Leithfield Region 9.8 1,923,004 196 

Amberley Region 4.0 402,785 101 

Waipara Region 4.4 671,210 153 

TOTAL 49.7 18,393,674 

From these values several trends can be drawn. The South Brighton Spit, Bottle 
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Lake and Mid Pegasus Bay regions have the greatest bulk per metre of beach in 

dunes. Christchurch City is a significant low point (377m3.m-I) between South 

Brighton Spit and Bottle Lake region. This can be attributed to the close 

proximity of infrastructure behind the dunes preventing them from growing. 

South Brighton Spit is urbanised but the housing and infrastructure are set 

further back than along the Christchurch City stretch allowing dune growth. 

This is also the case for the Bottle Lake region which is largely unpopulated. 

Brooklands Spit has a low value, 261m3.m-I , which corresponds to the 

constrained width and relative age of this feature, especially considering that 

758,185m3 has been deposited above sea level since the 1940s. The mid Pegasus 

Bay region has large expansive dunes generally undisturbed by settlements 

resulting in a value of 560m3.m-I of beach. 

There is a marked drop in dune volumes in the Leithfield region corresponding 

to a change from sand dunes to gravel ridges. Amberley region experiences the 

lowest beach ridge volumes being an average of only 10Im3.m- I . This can be 

linked to the low points about the Kowai River and Amberley Beach which has 

been noted as subject to inundation through low points such as during the August 

1992 storm. The Amberley Beach settlement is close behind the gravel ridge 

and acts in a similar constraining way to that of the Christchurch City dunes 

unlike the unrestrained gravel ridges of the Waipara region which attain volumes 

of 153m3.m-I . 

Sand dunes are wider and broader and therefore have more bulk than their 

narrow gravel counterparts. A total volume of approximately 18.4 x 106 m3 has 

been calculated for the sand dunes and gravel ridges of Pegasus Bay. 

4.5 Offshore Sink 

The continental shelf and its sediment characteristics have been described in 

detail in Chapter Three. This section will look at the sediment that has been 

deposited on the shelf. The most difficult factor in calculating rates of sediment 

deposition offshore is the time span over which the sediment has been deposited. 
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As mentioned in Chapter Three there is a differentiation between modern, 

palimpsest and relict terrigenous material which represent different hydraulic 

regimes on a geological time scale beyond the scope of this budget. However 

certain interesting features can be gleaned from studying the material which has 

been deposited. 

The Canterbury Continental Shelf is mantled with a modern sand prism on the 

inner shelf and relict terrigenous sands and gravels on the middle and outer shelf 

(Carter 1975). This is indicative of a zone where modern sedimentation is low. 

Sedimentation is dependent on the hydraulic regime and sediment supply which 

are in turn dependent on climate and tectonism as well as the nature of the source 

area and coastline. The broad Canterbury Continental Shelf receives low 

volumes of sediment due to the low sediment yields carried by the rivers. 

However the Waimakariri River has one of the highest sediment yields of all 

New Zealand rivers, so the transportation of this sediment once it reaches the 

coast is important. 

The modern hydraulic regime as stated in Carter (1975) has tidal, oceanic and 

storm driven components. These influence the dispersal of modern terrigenous 

sediments. Mud is one fraction of modern terrigenous material that is relatively 

sparse on the Canterbury Continental Shelf. It is thought that the Southland 

Current may act to carry suspended sediment out into deeper water via 

submarine canyons such as the Pegasus Canyon, where it is lost from the system. 

Mud also accumulates on the down current side of large promontories such as 

Banks Peninsula. 

Carter and Herzer (1979), conclude that most of the transport of sediment on the 

Continental Shelf is in a north-east, landward direction. The lack of sediment on 

the middle and outer continental shelves would indicate that the continental shelf 

is not a significant sink of sediment. Instead it is a transitory area from which 

sediment can be worked back onshore. 



83 

4.6 Concluding Remarks 

This chapter has outlined and quantified the many sinks of sediment within 

Pegasus Bay. The history behind the Avon-Heathcote Estuary and Brooklands 

Lagoon is presented as well as a possible sedimentation rate for each. 

Following this is an introduction to the twenty-four profile sites along Pegasus 

Bay. They have been divided into eight categories and representative profile 

graphs and volume graphs are presented. The volume for each site is also 

shown. By calculating the dune volumes and beach volumes at each specific site 

and extrapolating the data, dune volumes for the length of the coastline have 

been derived. This results in a total volume of 18.7 million m3 of sediment 

located in the beach system and 18.4 million m3 of sediment being stored in the 

dune/gravel ridge systems of Pegasus Bay. Finally the offshore sink is 

examined. Despite a lack of quantifiable data it is likely that the Canterbury 

Continental Shelf is not a significant sink. 

Now that the sinks and sources within Pegasus Bay have been examined and 

quantified, transfers between the two can be looked at. The ensuing chapter 

details the movements of the sediment within Pegasus Bay and the importance of 

these transfers to the estimation of a sediment budget for Pegasus Bay. 
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Chapter Five 

Transfers of Sediment 

5 .. 1 Introduction 
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Coastal systems are usually in a state of flux. Sediment is constantly moving 

from one location to another at varying spatial scales. The sediment is moved by 

both oceanic and aeolian processes. The amount of material moved and its 

destination are determined by the sediment characteristics and the process 

environment. This chapter will first examine the sediment characteristics of the 

Pegasus Bay beaches. The two current driven mechanisms of transporting 

sediment, longshore drift and onshore/offshore cycling will also be examined. 

Despite aeolian processes being a transport mechanism, the significance of this 

sediment dispersal method in Pegasus Bay has not been investigated to date. 

Therefore no reliable quantification of this type of sediment transfer has been 

possible. 

5.2 Sediment Characteristics 

5.2.1 Sediment Analysis Methodology 

In order to study the sediment in Pegasus Bay, samples were taken from each 

profile site as well as additional sites of interest such as south of the Ashley 

River and the tip of Brooklands Spit. At each site three samples were taken, one 

each from the lower foreshore, upper foreshore and the backshore. Lower 

foreshore samples were collected at or near the low tide mark, backshore 

samples from within Sm of the dune or beach ridge and the upper foreshore 

samples at or below the high tide mark. The samples taken from the mixed sand 

and gravel beaches of northern Pegasus Bay weighed approximately 5kg and 

those from the southern sandy beaches weighed around 200g. Each sample was 

taken from the sUlface to a depth of about 10cm to reflect the most recent 
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sediment transport mechanisms. A greater depth would not be indicative of the 

current processes acting at each site. 

The sand fractions of the northern Pegasus Bay samples and the sand samples 

from southern Pegasus Bay were further analysed using a Rapid Sediment 

Analyser, (R.S.A.), in the University of Canterbury Geography Department's 

laboratory to produce sediment textural statistics. 

The R.S.A. determines the weight percentage of sand size divisions of the total 

sample weight by calculating the settling velocity of each particle size falling 

through a two metre column of water. Computer analysis of the data determines 

statistical measures of mean grain size, sorting, skewness, and kurtosis using the 

method of moments and the graphical method based on interval mid points. A 

quarter phi scale is used reSUlting in a high degree of accuracy. 

The mean grain size can be used to indicate the magnitude of the force, (water or 

wind), that is required move the beach sediment grains (Pethick 1984). The 

larger the grain size the stronger the force must be to move the sediment 

particles. The verbal classifications depicted in Table 5.1 apply to the grain sizes 

displayed in Table 5.5: 

Table 5.1 Verbal classifications of mean 

grain size para111,eters 

very fine sands 
fine sands 
medium sands 
coarse sands 

3.00~ to 4.00~ 
2.00~ to 3.00~ 
1.00~ to 2.00~ 
O.OO~ to 1.00~ 

(Folk and Ward 1957) 

Sorting is a measure of the standard deviation of the grain sizes of the sample. 

This variable signifies the range of forces that have combined to produce the 

sediment sample based on the size range of that sample. A large standard 

deviation is indicative of poor sorting which equates to minimal selection during 

the transportation and deposition of the sediments. There is also a large range of 

sediment sizes within the sample. Good sorting denotes the converse. The 

particle size range is small and selection during transportation and deposition is 



87 

high (Pethick 1984). The verbal classification for sorting identifies with the 

following parameters shown in Table 5.2. 

Table 5.2 Verbal classifications of the 

sorting co-efficient 

very well sorted 
well sorted 
moderately well sorted 
moderately sorted 
poorly sorted 

< 0.35~ 
0.35~ to 0.50~ 
0.50~ to 0.70~ 
0.70~ to 1.00~ 

> 1.00~ 

(Folk and Ward 1957) 

The history of a sample is reflected by its skewness. This is a dimensionless 

variable. Positive skewness corresponds to an excess of fine grain sizes in 

relation to the sample mean grain size. Such a skew may result from selective 

removal of coarse material or selective deposition of fines. An excess of coarse 

grains in a sample is represented by negative skewness. Symmetrical skews are 

indicative of a normal distribution with equal variation either side of the mean 

grain size (Pethick 1984). Skewness is classified into the verbal classifications 

shown in Table 5.3. 

Table 5.3 Verbal classifications of skewness 

strongly fine skewed 
fine skewed 
near symmetrical 
coarse skewed 
strongly coarse skewed 

0.30 to 1.00 
0.10 to 0.30 
-0.10 to 0.10 
-0.30 to -0.10 
-1.00 to -0.30 

(Folk and Ward 1957) 

Kurtosis reflects the distribution of the sediment sample about the mean. The 

kurtosis of a sample is indicative of the sorting (Pethick 1984) so that the verbal 

classifications apply to the kurtosis categories as depicted in Table 5.4. 
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Table 5.4 Verbal classifications of kurtosis 

extremely leptokurtic 
very leptokurtic 
leptokurtic 
mesokurtic 
platykurtic 
very platykurtic 

> 3.00 
1.50 to 3.00 
1.11 to 1.50 
0.90 to 1.11 
0.67 to 0.90 
<0.67 

(Folk and Ward 1957) 

These measures can supply a greater understanding of the sediments that form 

the beaches of Pegasus Bay through the establishment of a history of the sample. 

The bay has been divided into three sections, for ease of display, analysis and 

description, based on the coastal process environment of each discussed in 

Chapter Two. 

5.2.2 Southern Pegasus Bay 

Southern Pegasus Bay beaches are made up of fine, very well sorted sands, 

(Table 5.5) although the lower foreshore sample at the Larnach Street profile had 

a medium mean grain size with a skew towards the fine range of the sample. 

The fine well sorted sands signify that the forces at work in this region are 

selective and do not require high energy processes to transport the sediments. 

The skewness ranges from near symmetrical (18 %), through to strongly fine 

skewed (10%). The majority of samples (72%), are fine skewed. The 

predominant fine skew represents selective removal of coarse grains or more 

probably the selective deposition of fine grains. The samples' kurtosis ranges 

from mesokurtic, (87%), through to very leptokurtic, (3%), reiterating that the 

sample is well sorted. 
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Table 5.5 Summary of sediment textural analysis statistics 

where a is the foreshore sample, b is the midshore sample and 
c is the backshore sample 

Sample Location Mean size Sorting Skewness Kurtosis Sample Location Mean size Sorting Skewness 
(~) (~) (~) (~) 

Pukeko Street a 2.09 0.29 0.69 2.99 Pines Beach a 2.35 0.39 0.55 

b 2.20 0.32 -0.17 3.24 b 2.41 0.22 -0.05 

c 2.44 0.24 -0.42 3.89 c 2.45 0.29 -0.50 

Plover Street a 2.24 0.32 -0.45 4.09 Wood end Beach a 2.45 0.33 -1.43 

b 2.38 0.22 0.52 2.44 b 2.32 0.25 0.18 

c 2.37 0.34 -1.21 5.71 c 2.33 0.24 0.58 

Caspian Street a 2.29 0.34 -0.94 5.15 Waikuku Beach a 2.06 0.47 -0.39 

b 2.31 0.27 -0.69 5.12 b 2.23 0.35 -0.76 

c 2.33 0.30 -1.17 6.93 c 1.99 0.48 -2.02 

Beatty Street a 2.23 0.34 -0.26 3.53 South Ashley a 2.25 0.33 -0.59 

b 2.23 0.30 -0.28 3.59 b 1.98 0.32 -0.84 

c 2.14 0.29 0.14 4.55 c 2.44 0.30 1.22 

North Rodney a 2.16 0.32 0.25 2.80 Ashworths a 2.36 0.39 -1.30 

b 2.22 0.28 -0.33 4.21 b 2.07 0.50 -1.23 

c 2.31 0.30 -1.23 6.89 c 2.40 0.34 -1.34 

Rawiti Street a 2.12 0.34 0.18 3.02 South Leithfield a 1.97 0.84 -1.12 

b 2.20 0.27 -0.09 4.33 b 1.85 0.42 -2.20 

c 2.22 0.28 0.01 3.68 c 1.83 0.42 -0.14 

Larnach Street a 1.92 0.31 0.80 3.23 Leithfield Beach a 2.43 0.49 -2.90 

b 2.18 0.34 -1.01 5.02 b 1.74 0.30 -0.04 

c 2.17 0.31 -0.36 4.47 c 0.68 0.54 0.39 

Bottle Lake a 2.23 0.32 -0.17 3.73 Kowai River a 1.66 1.00 -1.01 

b 2.13 0.23 0.38 2.91 b 0.79 0.83 0.09 

c 2.21 0.25 0.82 4.75 c 0.72 0.68 0.45 

Heyders Road a 2.05 0.32 0.30 3.02 Newcombes Road a 0.74 0.98 0.54 

b 2.20 0.32 1.35 7.95 b 0.51 0.80 0.95 

c 2.10 0.29 -0.44 5.53 c 1.55 0.57 -0.60 

CI891 a 2.19 0.38 1.03 5.33 Amberley Beach a 1.38 0.96 -0.34 

b 2.09 0.30 1.36 7.51 b 0.82 0.82 0.19 

c 2.22 0.30 1.50 8.00 c 1.32 0.53 0.29 

C1972 a 2.23 0.28 0.39 2.88 Amberley Golf a 1.28 0.78 -0.54 

b 2.05 0.27 0.87 3.56 b 0.64 0.76 0.Q2 

c 2.24 0.24 0.43 3.33 c 0.94 0.51 -0.39 

C2070 a 2.22 0.40 -0.30 6.93 Teviotdale a 1.68 1.10 -0.58 

b 2.14 0.43 1.81 9.47 b 1.48 0.54 -0.54 

c 2.15 0.26 0.31 3.59 c 0.59 0.45 0.39 

Brookland Spit a 2.19 0.39 -0.82 6.62 Double Corner a 1.98 0.97 -1.56 

b 2.05 0.34 0.54 5.34 b 2.65 0.19 -0.38 

c 2.27 0.25 -0.34 6.06 c 1.81 0.60 -1.11 
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Kurtosis 

3.75 

3.29 

4.18 

6.67 

3.27 

2.75 

3.08 

5.20 

11.25 

4.08 

9.03 

4.08 

5.51 

4.20 

6.38 

3.22 

13.54 

3.55 

12.93 

4.29 

2.68 

5.52 

1.72 

2.09 

1.99 

2.76 

3.84 

1.87 

1.97 

3.87 

2.17 

2.34 

2.97 

1.71 

5.50 

2.51 

4.74 

2.49 

4.28 
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5.2.3 Mid Pegasus Bay 

The sands of mid Pegasus Bay, (Table 5.5), are fine and well sorted. The 

process environment and therefore the forces at work are similar to those of 

southern Pegasus Bay. The backshore sample at Pines Beach was coarse skewed 

while the other samples were near symmetrical or fine skewed except for the 

backshore south of the Ashley River which was strongly fine skewed. This 

indicates that a wide range of forces are depositing or removing the sediments. 

Once again the kurtosis ranged from mesokurtic through to very leptokurtic. 

The beaches furtherest away from a river source, Waikuku and Woodend, had 

mesokurtic samples while those closer to the Ashley and Waimakariri Rivers, 

Pines and South Ashley, exhibit leptokurtic tendencies. 

5.2.4 Northern Pegasus Bay 

The northern Pegasus Bay mixed sand and gravel beach sediment composition is 

shown in Table 5.6. Four size fractions, according to the Wentworth 

classification, of cobbles, pebbles, granules and sand, are utilised. The 

percentage make up of each category was calculated by dry sieving the total 

sample and then weighing each fraction. It is important therefore to note that 

these figures are based on weights and not volumes. The values presented in 

Table 5.6 are an average of the foreshore, midshore and backshore samples for 

each site. 

Table 5.6 Sediment composition of northern Pegasus Bay profile sites 

Sand Granules Pebbles Cobbles 
<2mm 2-4 mm 4 - 64 mm >64mm 

Location (%) (%) (%) (%) 

Ashworths 99.3 0.3 0.3 0 

South Leithfield 91 1 1 7 

Leithfield Beach 81 1 18 0 

Kowai River 29.6 11.6 58.6 0 

Newcombes Road 53 7 31 9 

Amberley Beach 24.3 40 32.3 3.3 

Amberley Golf Club 37.5 7.3 43.3 12 

Teviotdale 85 3 12 0 

Double Corner 90 1 9 0 
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The Ashworths Ponds sample is almost entirely sand (99.3%). The granules and 

pebbles reflect either the past beach make up when it was a mixed sand and 

gravel beach or they have been erratically deposited. When both the Waipara 

and Kowai Rivers actively transport material to the coast the beaches exhibit a 

mixed sediment character (Shulmeister and Kirk 1993). Since the last time this 

occurred sand has accreted and built up substantial dunes. 

South Leithfield and Leithfield beaches are near the contemporary transition 

zone from sand to mixed sand and gravel. Consequently the sand fractions are 

high, (91 % and 81 % respectively). The gravel at these locations is scattered 

across the surface and is not as well sorted as the beaches north of this area. 

The Kowai River site has one of the lowest percentages of sand and the highest 

percentage of pebbles. This site is adjacent to the Kowai River which in times of 

flood transports gravels, (granules, pebbles and cobbles), to the coastal system. 

Examination of gravels showed that those located on the foreshore were much 

smaller (4mm to 10mm), rounder and smoother than the more angular shaped 

pebbles of the backshore. This is a likely indicator of the length of time the 

sediments have been in the coastal system. The angular gravels will have been 

deposited by the river. Rounded pebbles have been in the coastal zone to have 

lost their angularity. The predominance of rounded material indicates that the 

river mouth has not been open for some time. 

Newcombes Road, Amberley Beach and Amberley Golf Club profile sites all lie 

between the Kowai and the Waipara Rivers. Interestingly the gravel fractions in 

this area are high. Of particular note is the cobbles found in each area, (9%, 

3.3% and 12% respectively). All the cobbles found were thick and angular 

representing a short time in the coastal environment. These cobbles are derived 

from the Waipara and Kowai Rivers during flood events. The pebbles from 

Amberley and Amberley Golf Course were more angular than those from 

Newcombes Road. Amberley Beach, which had the least amount of sand had 

the highest proportion of granules, (40%). These granules are round and have 

spent a significant amount of time in the coastal system. 

The sand fraction increases greatly at the Teviotdale, (85%) and Double Corner 

(90%) profile sites corresponding to the distance from the Waipara River source. 
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Angular pebbles were found at the Teviotdale site but those at Double Comer 

were round and smooth by comparison corresponding to the distance from the 

Waipara and Kowai source rivers. 

As can be expected for mixed sand and gravel beaches, the sands are not as fine 

in northern Pegasus Bay, (Table 5.5), as they are in the rest of the bay. Only the 

Ashworths Ponds samples, the lower foreshore sample of Leithfield Beach and 

the two foreshore samples from Double Comer exhibited a fine mean grain size. 

The fine sand samples, (except the lower foreshore of Double Comer), were very 

well sorted which is indicative of a dominant process environment. These 

locations are on the outsldrts of the high energy environment of the Amberley 

Beach area discussed in Chapter Two. The sand content of the beach samples 

within this high energy environment (Kowai River to Teviotdale) have a medium 

sand mean grain size, (47%), to coarse mean grain size, (53%). These were 

generally moderately sorted reflecting a greater variety of forces (magnitude of 

currents) acting on the sediment particles. The skewness tended to show no 

pattern between the samples or locations. The kurtosis of the samples however 

tended to reflect the sorting and so platykurtic samples were evident within the 

high energy zone. 

5.2.5 Summary and Concluding Remarks 

These statistical measures do not exactly explain the way in which the sample 

was formed or deposited. What is interesting to note here is that the high energy 

environment samples exhibit different statistical characteristics than those in 

lower energy environments. The northern sector of Pegasus Bay has a variety of 

processes transporting sediments unlike southern Pegasus Bay. Consequently 

the southern Pegasus Bay samples are well sorted, fine skewed and mesokurtic. 

Mid Pegasus Bay exhibits similar trends but exhibits a tendency towards 

leptokurtic samples. The northern Pegasus Bay samples have a variety of mean 

grain size, sorting , skewness and kurtosis values. This reflects the differing 

transport mechanisms based on the complexities of the process environment and 

the different agents acting on the coast. 
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5 .. 3 Longshore Transport 

The majority of waves do not approach perpendicular to the coast, but approach 

at an angle, a. The waves run up the beach on an angle equal to that of the wave 

approach and then under gravity the water returns normal to the shore. The 

result is a net displacement of wave energy, water and transported sediment 

alongshore in a direction away from the wave approach. When several waves 

run up the beach in this fashion a longshore current is set up. 

Alongshore currents in the surf zone also have the potential to transport 

sediments along the shore, a process known as littoral drjft. The direction of the 

current is dependent on the angle of approach and will vary over time 

accordingly. Gross littoral drift is the total volume of sediment that is 

transported within a given time frame, usually one year. Net littoral drift is more 

important to a sediment budget and is the difference between the volumes 

transported in each direction ie. the net displacement of sediment. For north­

south oriented shoreline the equation for net littoral drift would be as follows: 

eq.5.1 

Where Q* is the net littoral drift, Qn is the gross drift north and Qs is the gross 

drift south. It is important to note that while longshore transport is a transfer of 

sediment, it can also act as a source or a sink for individual coastal 

compartments. If the littoral drift crosses over the control boundary into a 

specified budget area and is deposited within that area, it is a source of sediment. 

Conversely if the littoral drift transports sediment out of the budget 

compartment, it is a sink of sediment. 

5.3.1 Inferred Sediment Transport Direction 

Longshore transport direction may be determined if sorting is considered at the 

same time as mean grain size using the model developed by Sunamura and 

Horikawa (1972). This theory is based.on the basic premise that both the sorting 

coefficient and the mean grain size decrease with distance from the source. 

Sunamura and Horikawa present the following criterion for the inference of 
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transport direction: 

(i) In the case of that grain size decreases and the degree of sorting 

unvaries with the increasing distance from a supply source, beach 

materials move in the direction of grain size reduction 

(ii) In the case of that both grain size and sorting coefficient decrease 

with increasing distance from the source, longshore drift predominates in 

the direction of decrease of these parameters. 

(iii) In the case of that grain size unchanges and sorting coefficient 

diminishes as the distance from the source is increased, the transport 

direction is the one in which the latter parameter decreases 

(iv) In the case of that grain size increases and sorting coefficient 

reduces with the increase of distance from a source, material movement 

prevails in that direction of decrease of the latter parameter 

(v) In the case except the above ones, the inference is the direction 

towards the source 

These controlling factors are illustrated in Figure 5.1 

A model incorporating this information for Pegasus Bay is presented in Figure 

5.2 utilising samples from the lower foreshore. The figures graphed are based on 

the method of moments obtained through the R.S.A. The method of moments 

from the RSA gives values for mean grain size and sorting co-efficient. 

This method is further enhanced by using O.25~ intervals instead of the O.5~ 

intervals used by Sunamura and Horikawa (1972). Each profile site has been 

graphed as a distance from Sumner Head and the river sources of sediment for 

the bay have also been located (Figure 5.2). 

Inferred sediment transport directions in Pegasus Bay are indicated in Figure 5.2. 

Transport on the South Brighton Spit moves alongshore towards the A von­

Heathcote Estuary. North of the estuary along the Christchurch city coastline to 

Waimariri Beach, flow is in a northern direction towards the Waimakariri. This 

apparent anomaly is difficult to explain and may be a localised phenomena. 



S 

S 

S 

Figure 5.1 Criterion for establishing longshore transport direction 

where S is the source of sediment 
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Source: Sunamura and Horikawa (1972) p62 

There is longshore transport in both directions from the Waimakariri as was 

established by Little (1991). The same is evident for the Ashley River where 

sediment is transported both north and south of the river. North of the Kowai the 

predominant direction is north. This may be attributed to the dominant high 

energy south east swells common in this area showing that coastal processes in 

/ this area dominate over riverine processes. 
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5.3.2 Longshore Transport Calculated from Wave 
Observations 
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The potential volume of sediment moved alongshore can be calculated using the 

wave observation parameters. The figures obtained are therefore subject to the 

accuracy of the wave observation and are consequently only an approximation of 

the longshore transportation of sediment. The values have been calculated using 

the following data: 

* Amberley Beach wave observations, February to June 1995 as 

detailed in Chapter Two, 

*Waikuku Beach wave observations, February to June 1995 as 

detailed in Chapter Two, 

*New Brighton Beach wave observations, August 1992 to July 1993 

(Mawson in prep). 

Further limitations to the calculations are that the Waikuku and Amberley wave 

observations do not cover a full year and may therefore not give an as accurate 

figure as the New Brighton data which does cover one full year. 

The potential longshore transport was calculated using the longshore component 

of energy flux, (Pis) as detailed in The Shore Protection Manual (C.E.R.C. 1984), 

as follows: 

where: 

P pg H 2 . 2 
Is = 16 b CgbSlll U b 

(C.E.R.C. 1984) 

p = mass density of salt water (kg.m-3) 

g = gravitational constant (m.s- i ) 

Hb = breaker height (m) 

Cgb = group velocity of breakers (m.s- i ) 

cxb = breaker angle (0) 

eq.5.2 
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The group velocity of the breakers was calculated using: 

eq.5.3 

The potential longshore volume of sediment transported (Q*), can be established 

by substituting Eq. 5.2 into the following equation: 

where: 

so that: 

k 
Q* = (Ps-p)ga' ~s 

k = constant (1290) (dimensionless) 

Ps = mass density of sediment (kg.m-3) 

eq.5.4 

(C.E.R.C. 1984) 

at = volume of solids / total volume (dimensionless) 

eq.5.5 

The volume for each wave angle has been calculated as to distinguish drift north 

from drift south (Eq. 5.1). The New Brighton value represents an entire years 

data and is expressed as such. Waikuku and Amberley volumes have also been 

presented as a yearly figure by extrapolation from the study period data. The 

volumes for net potential longshore transport are presented in Table 5.7. 

The transport rates presented in Table 5.7 are highly subjectable to errors based 

on the breaker angle. The precise breaker angles have not been recorded for this 

study and instead sectors based on the L.E.O. method (Chapter Two) have been 

used. Only 1 % of the wave angles used to calculate longshore drift did not 

arrive from sector 2 or 4. Therefore the error in the averaging of the breaker 

angle for these sectors can be applied to the longshore transport. This means that 

the maximum error of the breaker angle is 12.5° which then corresponds to a 

maximum error of 50% of the calculated potential longshore transport value (R. 

Kirk Geography Department Canterbury University pers. comm. 1995) 



Table 5.7 Potential north, south, gross and net longshore transport 

rates for three sites in Pegasus Bay 

Location Qnth Qsth Q
g 

Q
n 

(m3. yr- 1) (m3. yr-1) (m3. yr-1) (m3. yr- 1) 

New Brighton 223,923 505,351 729,274 281,428 
± 111,962 ±252,676 (south) 

Waikuku Beach 56,502 1,628,580 1,685,082 1,628,580 
± 28,251 ±814,290 (south) 

Amberley Beach 496,643 293,190 789,833 203,453 
±248,322 ± 146,595 (north) 
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The net direction of longshore transport correlates to the directions established 

using the Sunamura and Horikawa (1972) model, (Figure 5.2) at the Waikuku 

and Amberley Beach sites but not for the New Brighton site. The large 

longshore sediment transport value for Waikuku Beach can in part be explained 

by examining the gross potential longshore transport from Table 5.7. 

The Waikuku Beach value is over twice the Amberley and New Brighton values. 

This can be attributed to the higher percentage of waves arriving at oblique 

angles to the shore at this site (Chapter Two). Despite the high energy 

environment of Amberley Beach the gross longshore sediment transport is the 

lowest for the bay which is due to the large sediment sizes found at this site. 

5.4 Onshore/Offshore Transport 

When a beach is in an equilibrium state there is irregular movement of the 

material both onshore and offshore. This material does not remain in either site 

long enough to be deemed a source or a sink. Consequently the material cycling 

between the onshore and offshore regions is recognised as a transfer of sediment. 

The reason these transfers are often not calculated in a sediment budget model is 

their transitory nature and therefore the extremely difficult task of quantification. 

Further complicating the equation is the temporal factor. There are many 

occasions for beaches in Pegasus Bay when sediment cycles between the beach 

and the longshore bar. Although sediment is lost from the beach it is not lost 
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from the coastal system. Instead it is cycling in the nearshore zone. Kirk (1979) 

estimates that the periodic onshore/offshore transfer of sand amounts to at least 

1,600,000m3.yr l for the 16kms of beach from Sumner to the Waimakariri River. 

If this figure is consistent for the entire bay then 5,000,000m3.yr l is being 

transferred in the onshore/offshore zone. 

For this study onshore/offshore exchange has been calculated from short term 

beach profile data. These short term volume changes have been taken as 

indicative of the onshore/offshore cycling. These values have then been 

averaged to give an annual average volume. To give entire coverage of the 

coastline each profile site has been taken as representative of half the distance to 

the next profile site. The eight regions described in Chapter Four have again 

been utilised. The results are presented in Table 5.8. The exchange volumes of 

each region have also been expressed as a volume per metre of beach to show 

the differences between each region. 

Table 5.8 Average annual onshore 1 offshore exchange volumes 

per region (m3) and unit length of coastline (m3Im) 

Onshore Exchange Offshore Exchange Gross Exchange Net Exchange 

Location (m3) (m 3.yr-1) (m3 ) (m 3.yr-l) (m3) (m 3.yr-l) (m3) (m 3.yr-l) 

South 
Brighton 722,340 219 466,260 141 1,188,600 360 256,080 77 
Spit 

Christchurch 464,790 103 438,840 98 903,630 201 25,950 5 
City 

Bottle 
Lake 751,910 96 907,960 116 1,659,870 212 -156,050 -20 
Region 

Brooklands 
196,950 68 382,700 132 579,650 200 -185,750 -64 Spit 

Mid 
Pegasus 3,770,050 290 3,450,290 265 7,220,340 555 319,760 25 
Bay 

Leithfield 

Region 
1,107,450 113 687,530 70 1,794,980 183 419,920 43 

Amber/ey 
387,430 97 145,160 36 532,590 133 240,270 61 

Region 

Waipara 
River 190,440 43 291,980 66 482,420 109 -101,540 -21 
Region 

Total 7,591,360 153 6,770,720 136 14,362,080 289 820,640 17 
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Some interesting results are presented in Table 5.8. Net offshore exchange 

occurs in three (Bottle Lake, Brooklands Spit and Waipara River region) of the 

eight sectors and only one sector (Christchurch City) maintains a balance 

between the onshore and offshore exchange. The highest rates of exchange (3.77 

x 106 m3 onshore and 3.45 x 106 m3 offshore) occurred in the mid Pegasus Bay 

sector although the net exchange per length of region is not high (25m3.m- I). 

The three northern Pegasus Bay sectors (Leithfield region, Amberley region and 

Waipara River region) had the least gross exchange per length of sector 

(183m3.m-I , 133m3.m- I and 109m3.m-I respectively) but maintained reasonably 

high rates per length of sector (43m3.m- I , 61m3.m-I and 21m3.m- I) of net 

exchange. The South Brighton Spit has the highest net exchange per length of 

sector, 77m3.m- I and the second highest gross exchange per length of sector, 

360m3.m- 1 indicative of the changeable nature of this region. 

Overall 14.36 million m3 of sediment is involved in offshore/onshore transport 

each year for the entire bay. Of this 7.59 million m3 is onshore and 6.77 million 

m3 is offshore resulting in a net annual average onshore movement of 820,640m3 

of sediment. 

5.5 Concluding Remarks 

This chapter presented the sediment characteristics of the beaches of Pegasus 

Bay. The RSA values are statistical measures of the sediment samples taken 

from the beaches. These measures reflect the past transport mechanisms and 

indicate that less selective processes operate in the north than the south. 

Furthermore the sediments in the north are much coarser and need higher current 

velocities to be transported than currents in the south. 

Mean grain size and the sorting coefficient of .each sample were used to infer the 

longshore sediment transport direction using the Sunamura and Horikawa (1972) 

model. The predominant transport is to the south although strong contrary flows 

are apparent to the north of the Waimakariri and Ashley Rivers and in the north 

of Pegasus Bay. There is also a contrary drift to the north along the Christchurch 

City beaches. This may be related to the high human usage of the area. 
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Potential longshore transport has been calculated from the wave records of three 

sites in Pegasus Bay. The Amberley and Waikuku direction of transport 

corresponds to those predicted in Sunamura and Horikawa model. However the 

New Brighton potential net longshore transport is to the south whereas the model 

indicates it is to the north. These contrasting directions highlight the need for in 

depth research into each component of the sediment budget. 

The onshore/offshore component of the sediment budget IS examined and 

presented. 14.36 million m3 of sediment cycles in the nearshore zone of Pegasus 

Bay each year. The net movement of 821,000m3 is onshore. 

This chapter signifies the final component of the sediment budget. The sources, 

sinks and transfers of sediment have all been described, analysed and where 

possible quantified leading to the penultimate chapter - the sediment budget of 

Pegasus Bay. 
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Chapter Six 

The Sediment Budget Model for 
Pegasus Bay 

6.1 Introduction 

This chapter brings the previous chapters together to establish a specific 

sediment budget model for Pegasus Bay. Sources, sinks and transfers of 

sediment identified in the previous chapters are quantified and placed into the 

context of the sediment environment of the bay as a whole. 

6.2 Pegasus Bay- The Boundaries 

The study area has been introduced in Chapters One and Two. In presenting the 

sediment budget model for Pegasus Bay, the boundaries of the area are revisited 

here. Pegasus Bay stretches for 50kms from Shag Rock in the south up to 

Double Corner in the north. Banks Peninsula forms the southern boundary and 

the cliffs of Double Corner form the northern boundary. The seaward boundary 

lies about the 15m isobath where mud and silt begins to be deposited offshore. 

The landward boundary is the dune toe or gravel ridge base where the backshore 

meets the dune or gravel ridge. 

Sources, sinks and transfers of sediment for Pegasus Bay are listed in Table 6.1. 

As can be seen there are several overlaps with many features being sources and 

sinks or even a source, sink and transfer of sediment. The identification process 

of these features is based on the schematic sediment budget model outlined in 

Chapter One (Figure 1.3) and has been adapted to reflect Pegasus Bay as 

presented in Figure 6.1. Instead of the general components of the schematic 

sediment budget model this model identifies the specific sources, sinks and 

transfers unique to Pegasus Bay. 



Table 6.1 Sources, sinks and transfers of sediment within Pegasus Bay 

Sources 

Avon River 

Heathcote River 

Waimakariri River 

Ashley River 

Kowai River 

Waipara River 

Avon-Heathcote Estuary 

Brooklands Lagoon 

Dune Systems 

Beach Systems 

Offshore Zone 

Beach Material 

Waipara River 

Kowai River 

To Gravel Ridges W· d 
or Inland In 

Ashley River 

Onshore/Offshore Cycling 

Wind 
To Dunes or Inland 

Onshore/Offshore Cycling 

To Dunes or Inland 

Avon River 

Wind 

Sinks 

Avon-Heathcote Estuary 

Brooklands Lagoon 

Dune Systems 

Beach Systems 

Offshore Zone 

Longshore Movement 

Inshore 
Sea Bed 

Variable Movements 

Longshore Movement 

Transfers 

Longshore 

Onshore/Offshore 

Depth Limit of Two-Way 
Sand Exchange with the Shore 

Onshore ~ ••• I 

Offshore 

Pegasus 
Canyon 

Additions ... 

Losses 

Figure 6.1 Schematic sediment budget model of Pegasus Bay 
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The six rivers of the regIOn (Table 6.1) are the most dominant sources of 

sediment and have been displayed as such. The Avon-Heathcote Estuary and 

Brooklands Lagoon have been located and their ambiguous "source/sink" nature 

is demonstrated with both loss and addition arrows. The dune and gravel ridges 

are also presented in the same manner although in this case the transporting 

mechanism is air, not water. The onshore/offshore contribution or loss is also 

displayed. The final component of the budget is the longshore transport of 

sediment within or through the system. Although located at either end of the 

Pegasus Bay coastal cell, the transport in and out of the bay is taken as 

negligible and the transfers within the cell are more significant. Thus there are 

no cross-boundary flows at the ends of the system to account for. 

Other cross-boundary flows are more difficult to assess. There is a lack of 

modern sediment on the outer continental shelf (>30m deep) as outlined in 

Chapter Three. It has therefore been assumed that little sediment moves in either 

direction about the 30m isobath and so although the 30m isobath is not the 

seaward limit of the budget, it is considered that there is little cross boundary 

flow at the seaward limit of the system. Wind blown transport to the dunes 

across the landward boundary is perhaps the most complex of all to quantify and 

has not been done for Pegasus Bay. Further complications exist in that the 

availability of sand for aeolian transport decreases in the north of Pegasus Bay 

due to the mixed sand and gravel nature of these beaches. The study of aeolian 

sand movements is a complete study on its own and so has not been considered 

here. 

6.2.1 Spatial Delineation 

Pegasus Bay does not exhibit uniform characteristics throughout the whole bay 

and so it is convenient to treat it as a system of component units. Therefore the 

bay has been divided into the eight sectors shown in Figure 6.2. These sectors 

are consistent with those used in Chapters Four and Five and the following is a 

brief description of each sector. 
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Waipara 
River 

River __ _ 

Kawai River 
Leithfield Beach 

SOkm 

Sector VIII 
4S.8km 

Sector VII 
41.1km 

Sector VI 
32.6km 

Sector V 

20.1km 

Sector IV 
16.6km 

Sector III 
lO.3km 

Sector II 
4.lkm 

Sector I 
Okm 

Figure 6.2 Sediment budget boundaries for this study of Pegasus Bay 

Sector I South Brighton Spit 
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The South Brighton Spit region has been extended slightly from that first 

presented in Chapter Four to encompass the Avon-Heathcote Estuary inlet. The 

sector therefore covers the area from Shag Rock to Caspian Street (Figure 6.2). 

Sector I is 4.1kms long. The wave environment is dominated by north-easterly 

and easterly seas and is protected from the high energy southerly swells by the 

Banks Peninsula promontory. The Avon-Heathcote Estuary inlet area in 

particular is greatly affected by tidal processes as the tides ebb and flood through 

the restricted area. The beaches are. composed of fine well sorted sands 

indicative of the process regime. The longshore component, as shown by the 

Sunamura and Horikawa (1972) model for Pegasus Bay (Figure 5.2), is in a net 



107 

southern direction towards the Avon-Heathcote Estuary. The onshore/offshore 

exchange for this region is also high (77m3.yr-1.m-1 as opposed to the average of 

the bay which is 17m3.yr-1.m-1). 

Sector II Christchurch City 

The Christchurch City sector extends for 6.2kms from Caspian Street to Larnach 

Street at Waimariri Beach (Figure 6.2). The wave environment and sediment 

composition of this region is very similar to that of the South Brighton Spit. The 

sector is however more stable than the fluctuating spit area. A reverse trend of 

longshore transport was identified from the Sunamura and Horikawa model for 

Pegasus Bay (Figure 5.2). The onshore/offshore exchanges are almost in 

equilibrium (Table 5.8) resulting in a small net exchange of 5m3.yr-1.m-1 

onshore). 

Sector III Bottle Lake 

The southern limit of the Bottle Lake sector is Larnach Street and it extends 

6.3kms north to Spencerville and Heyders Road (Figure 6.2). There is little 

variation in the wave environment and beach composition from the previous two 

sectors. However this region is closer to the Waimakariri River, the major 

source of sediment for the bay and therefore receives more sediment. The net 

alongshore sediment transport direction is to the south and the region exhibits a 

net offshore movement of sediment of 20m3.yr1.m-1. 

Sector IV Brooklands Spit 

Sector IV encompasses the whole of Brooklands Spit and the Waimakariri River 

mouth a total length of 3.5kms (Figure 6.2). The beaches are again composed of 

fine well sorted sands. This landform is a new feature in the Pegasus Bay 

landscape and is less than sixty years old. The fluctuations in sediment volumes 

are greater than in other regions of the bay for example the net onshore/offshore 

exchange for the region was -64 m3.yr-1.m-1 (Table 5.8) 

Sector V Mid Pegasus Bay 

The mid Pegasus Bay sector extends from the Waimakariri River in the south to 

the Ashley River in the north covering the largest area of the bay, 12.5km 

(Figure 6.2). The beaches in this region are comprised of fine sands derived 

from the Waimakariri and Ashley Rivers. Longshore transport in this region 
/" 
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exhibits two transport directions both being away from the river sources. A great 

deal of sand cycles in the nearshore zone in Sector V but the net exchange is 

only Sm3.yrl.m-1 above the average for the bay (7m3.yr1.m-1). 

Sector VI Leithfield Region 

The Leithfield region stretches for S.5kms from the Ashley River to north of 

Leithfield Beach in the north (Figure 6.2). Within this sector is the demarcation 

from sand to mixed sand and gravel beaches. These northern beaches are not 

sheltered from southerly swells by Banks Peninsula and a higher energy wave 

environment results. The influence of the Ashley River is apparent on the sandy 

beaches and the predominant longshore transport direction is to the south The 

gravel beaches are either indicative of the past hydraulic regime of the Ashley 

River when it regularly supplied gravels to the coast or alternatively are 

influenced by the Kowai and Waipara Rivers further north which still supply 

gravels to the coast. 

Sector VII Amberley Region 

The southern limit of the Amberley region is between Leithfield Beach and the 

Kowai River and extends 4.7kms to north of Amberley Beach. The beaches 

within the region are all mixed sand and gravel and are influenced by both the 

Kowai and the Waipara Rivers. This northern Pegasus Bay sector experiences 

the high energy environment described in Chapter Two. Net longshore transport 

occurs to the south and the north of the Kowai and the gross onshore/offshore 

exchange (133m3.yr1.m-1) is the second lowest for the entire bay (Table 5.S). 

Sector VIII Waipara River Region 

The Waipara River region is the northernmost sector of Pegasus Bay. It extends 

4.2kms from south of the Amberley Golf Club to the cliffs at Double Corner, the 

northern limit of the bay. The beaches in this zone are also mixed sand and 

gravel but the sand composition increases with distance from the Waipara River. 

Sector VIn is a high energy environment with strong winds and high southerly 

swells. Net longshore transport in this region is to the north and the net onshore/ 

offshore exchange per unit length of beach is 2lm3.yr1.m-1. 
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6.2.2 Temporal ScaJe 

The temporal scale is perhaps the hardest to define for the budget. A sediment 

budget can cover many time scales. A short term sediment budget covers a time 

frame of less than one year. This type of budget in particular looks at seasonal 

variations or changes from month to month. Sediment budgets are usually 

calculated for a period of at least one year. Any short term fluctuations are 

cancelled out due to averaging of sedimentation rates and processes. This latter 

temporal scale has been used for this model. 

The model presented here considers several coastal features and many 

geomorphological events such as storms and floods. However some events are 

not included due to their time frame being to long or short in comparison to the 

budget time frame. For example, extreme storms (with return periods ,grater than 

fifty years and major shifts in river positions fall out of the time scale of the 

model). The model has been derived based on a number of different sources of 

information and consequently the time frame varies for each. The following is a 

synopsis of the components of the sediment budget as to what the temporal scale 

of each encompasses, assumes or excludes. 

River sediment outputs are average annual yields and were calculated from 

predicted mean rainfall for a year. Extreme high and low sediment yields are 

therefore not included due to averaging in producing a mean annual rainfall 

value. Drought in a river catchment could lead to a possible deficit in the coastal 

budget as the sediment yield for the river decreases. Conversely a one hundred 

year return flood in the catchment would lead to great volumes of sediment 

entering the coastal compartment. This data although excluding extreme events 

is thought to be representative of annual variations. 

The volume calculations for the beach and dune/gravel ridge systems were based 

on data for a four to five year period and are thus averages for these periods. 

While the data is representative for the budget temporal frame it cannot be 

extrapolated to include future extreme events. The sediment removed by a one 

hundred year return coastal storm and/or the rate of recovery from that storm are 

not accounted for by a budget of this time frame. Instead this budget allows for 

an average of three to four storms per year and except for low frequency extreme 
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events this average generally holds true. 

Deposition rates for the Avon-Heathcote Estuary and Brooklands Lagoon have 

been calculated over long periods (decades) and then averaged to represent a 

yearly value. This assumes a constant depositional rate uniform over the entire 

feature and therefore disregards any possible mass erosion or accretion from a 

specific area. While this is important on a site specific scale, this small scale 

localised erosion/accretion is not important on the sediment budget scale. 

Two of the potential longshore transport values have been calculated from less 

than one year of wave data. However the coverage of both winter and summer 

months to allow for any seasonal variations apparent in the wave environment 

allows for the assumption that the data is representative of an entire year. 

Furthermore it is assumed that these data are representative of consecutive years 

despite the absence of any low frequency events such as the one hundred year 

return coastal storms which can only be covered in budgets of longer temporal 

scales. 

No matter which time frame is covered not all of the coastal phenomena and 

changes can be accounted for. One hundred year return floods or coastal storms, 

tsunami and inland drought are not included in this budget nor are any 

predictions of sea level rise. This model provides an average annual sediment 

budget based on data collected over both short and long terms which has then 

been extrapolated or averaged to represent an annual average value. 

6.3 The Quantitative Model 

In order to calculate a sediment budget there must be a known or accepted 

variable against which the other variables can be calibrated. The best known 

variable for this study is the state of the beach. According to eq. 1.1 the inputs, 

outputs and throughputs of the study must sum the beach depositional, erosional 

or equilibrium state. The known states for the eight beach sectors (Chapter Four) 

have been worked out as follows and are shown in Table 6.2. 
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Table 6.2 Deposition and erosion rates for the various sectors of Pegasus Bay 

Deposition! Rates per 
REGION Erosion Rate length of coast 

(m 3 ) -(m 3.m-1) 

Sector I South Brighton Spit 0 0 
Sector II Christchurch City 0 0 
Sector III Bottle Lake Region 0 0 
Sector IV Brooklands Spit 9,550 2.4 
Sector V Mid Pegasus Bay 55,018 4.2 
Sector VI Leithfield Region 4,700 0.47 
Sector VII Amberley Region -489 -0.14 
Sector VIII Waipara Region -673 -0.14 

TOTAL 68,056 1.36 

The South Brighton Spit, Christchurch City and Bottle Lake beaches are 

determined to be in a state of equilibrium. Historical cadastral maps and aerial 

photographs (C.R.C.) show that there have been no significant shoreline changes 

within the past fifty years and so it is assumed that these beaches are not eroding 

or accreting. The inputs and outputs for these regions should therefore sum to 

zero (Table 6.2). 

The deposition rate for Brooklands Spit has been established using the volume 

data obtained from profile surveys (Chapter Four). The beach and dune volumes 

for this region equal 1,194,000m3. Furthermore it is assumed that this material 

has been deposited since 1940, amounting to an average deposition rate 

21,709m3.yr1. It is understood that most of this sediment would have been 

deposited in the first 15 to 25 years after the Waimakariri River mouth shifted 

and so the above averaged rate is not indicative of recent deposition rates. If 

however 80% of the sediment was deposited in the first 30 years after the river 

mouth migration then a deposition rate for the past 25 years of 9,550m3.yr1 

would result. The inputs and outputs for this region should therefore sum to 

9,550m3.yr1 (Table 6.2). 

The deposition/erosion rates for the remaining regions of Pegasus Bay have been 

established through measured changes of shoreline position. Todd and Little (in 

press) have established average rates of change at Pines, Woodend, Waikuku, 

Leithfield and Amberley Beaches. The most recent rates of change (1980 to 

1993) have been utilised for this study. These rates have been expressed in 
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m.yrl which equate to a horizontal change in position of mean low water level. 

For the purpose of this study a 1m horizontal change can be shown to correspond 

to a 1m3 volumetric change. The rate of change measured at each site has then 

been taken as representative of half the distance alongshore to the next site. This 

method gives deposition rates of 55,018m3.yr1 for Mid Pegasus Bay, 

4,700m3.yr1 for the Leithfield region and erosion rates of -489m3.yr l for the 

Amberley region and -673m3.yr1 for the Waipara region (Table 6.2). 

The sediment budget for Pegasus Bay is illustrated in Figure 6.3. The longshore 

transport covers three broader sections of the bay than the 8 sectors shown in 

Figure 6.2. The longshore transport sections are based on the wave observation 

sites and the probable region to which the calculated sediment transport applies. 

The net budget for each of the 8 sectors is shown in Table 6.3. The longshore 

component for the three larger sections has been divided equally between the 

corresponding sectors relative to the length of the sector. Furthermore the 

northward component (Qnth) of the longshore transport has been expressed as a 

negative value and the southward (Qsth) component as positive. This figure is 

represented by Qn in the budget of Pegasus Bay. The net onshore/offshore 

exchange has been established for the individual eight sectors and is represented 

by Bn in the budget of Pegasus Bay. The onshore component (Bon) is an addition 

to the budget and the offshore component (Boff) is a loss from the budget. The 

gross budget values are defined by the g SUbscript. 

The river input to the bay (R) has been divided into the sectors based on the 

longshore transport for each section of the bay. Cell I therefore receives 100% 

of the input from the Avon and Heathcote Rivers and 10% of the input from the 

Waimakariri River. Cell II receives a higher proportion of the Waimakariri's 

input (15%). The length of Cell III is greater and the proportion of sediment 

from the Waimakariri reaching this section increases to 30%. The largest 

proportion of sediment yield from the Waimakariri River is deposited in Cell IV 

(40%). Only 5% of the sediment yield from the Waimakariri moves north into 

Cell V but this is additional to 50% of the yield from the Ashley River. Cell VI 

also receives 50% of the yield from the Ashley River. 100% of the Kowai 

River's yield enters Cell VII and similarly 100% of the Waipara River's yield 

enters Cell VIII. 
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Table 6.3 Net budget for the cells defined in Figure 6.2 and Pegasus Bay 

including net potential longshore transport (Qn)' onshore/offshore exchange (Bn) 

and river input (R). 

Longshore (Qn ) Onshore (Bn ) River (R) Total 
(m 3.yr 1) (m 3 .yr l) (m 3 .yr l) (m 3 .yr l) 

South Brighton Spit Cell I 57,000 +256,000 236,000 549,000 

Christchurch City Cell II 87,000 +26,000 350,000 463,000 

Bottle Lake Region Cell III 88,000 -156,000 699,000 613,000 

Brooklands Spit Cell IV 49,000 -186,000 933,000 796,000 

Mid Pegasus Bay Cell V 1,572,000 +320,000 344,000 2,236,000 

Leithfield Region Cell VI -99,000 +420,000 228,000 747,000 

Amberley Region Cell VII -55,000 +240,000 36,000 331,000 

Waipara Region Cell VIII -49,000 -102,000 180,000 127,000 

Total 1,650,000 +821,000 3,003,000 5,562,000 

6.3.1 The Total Budget 

A number of interesting features can be seen by examining the total sediment 

budget for Pegasus Bay (Figure 6.3). The gross budget for Pegasus Bay, 

(L8i=IBg + L3j=lQg + L\=IR), is 20,571,000 m3.yr-1 which represents all the 

transfers within the 50kms of the beach. The beach above the mean low water 

level has a total volume of 18,704,000m3 so that the gross budget affects all of 

the beach volume in a given year. However if the dune/beach ridge volumes are 

considered then there is a total volume of 37,098,000m3 so that the gross budget 

affects 55% of this volume in a given year. The total net budget amounting to 

gains of 5,562,000 m3.yr l represents 27% of the gross exchanges. The net 

changes for a sediment budget are commonly significantly less than the sum of 

the total transfers. The net value also shows that overall, Pegasus Bay beaches 

are in a surplus budget condition. 

6.3.2 Longshore Transport 

There is significant variation in the longshore drift potentials at each of the three 

locations. South of the Waimakariri River the net direction of transport is south. 

However there is the existence of a northward counterdrift. The predominant 

drift south exhibited in mid Pegasus Bay indicates that less than 5% of the 
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sediment supply from the Waimakariri nourishes the beaches to the north. The 

dominant southward trend in the mid Pegasus Bay region also indicates that 95% 

of the sediment supply from the Ashley River supplies these beaches. Only 5% 

of the Ashley River sediments move north but this is also coupled with sediment 

from the Kowai and Waipara Rivers moving north nourishing this region of the 

bay. Gross longshore sediment transport along an open coast is typically of the 

order of 105 to 106 m3.yr1. As can be seen here the net transport is 1.65 x 106 

m3.yr l and the gross transport is 3.205 x 106 m3.yr1. The net potential 

longshore transport accounts for 30% of the net budget. A change in the 

longshore component is more likely to impact on the local scale rather than the 

entire bay. 

The overall trend of longshore transport is illustrated in Figure 6.4. The 

differing longshore directions are a product of the wave environment at each 

location. The predominant southern transport direction in southern Pegasus Bay 

can be attributed to a higher percentage of waves approaching the shoreline from 

the north-east. 'This effect is intensified in mid Pegasus Bay where due to the 

shore orientation waves approaching from the north-east form a more oblique 

angle with the shoreline. The drift north in northern Pegasus Bay is a response 

to the high perdmtage of southerly swells that are characteristic of this area. 

Figure 6.4 The longshore transport direction and magnitude for 

Pegasus Bay 
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6.3.3 Onshore/Offshore Exchange 

There is a significant amount of sediment cycling in the nearshore zone. The 

onshore/offshore exchange accounts for 70% of the gross budget. This 

highlights the dynamic nature of the Pegasus Bay coastline as 14.363 x 106 

m3.yr l cycles in the nearshore zone. The high proportion of the budget can be 

seen in the changes in beach form, particularly from swell profiles to storm 

profiles and back again. The gross onshore/offshore exchange affects 77% of 

the beach volume. The net onshore/offshore exchange amounts to 15% of the 

net budget indicating that perhaps there is internal movement from the sea bed. 

6.3.4 River Contribution 

The river inputs for Pegasus Bay are the only source of fresh material to the 

budget and collectively these sources represent 150/0 of the total gross budget. 

However more importantly the sediment yield from the rivers constitutes 55 % of 

the net budget. This shows the importance of the rivers to the region~ The 

Waimakariri River is the single largest contributor and alone represents 40% of 

the net budget. A change to the river would have dramatic affects on the coastal 

budget particularly in Pegasus Bay. Post 1935 when the Waimakariri River 

mouth shifted only 70% of its yield reached the coast. In this time (based on 

today's figures) the Waimakariri yield would have represented 32% of the net 

budget. The reduced yield equates to a 12.5% drop in the net budget. Thus, the 

growth of Brooklands Spit represented a significant diversion of sand from the 

coastal system for 25 to,35 years. 

While the other rivers do not have inputs of the same order of magnitude, any 

reduction in sediment yield would be important locally. This is probably the 

reason for erosion occurring in the north of Pegasus Bay. The coastal 

environment is unlikely to have changed dramatically and so it is more likely 

that the river contribution cannot supply enough sediment to maintain a stable 

beach state. 
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6.3.5 Discussion 

Examination of the net budget for each· cell in conjunction with the beach state 

shows some interesting trends. Table 6.4 shows the total budget and the beach 

state for each cell and the per metre length of the cell. The beach state does not 

reflect the net budget for each cell although there is a strong positive correlation 

between the surplus and the state of the beach. The two lowest net budget values 

for the eight sectors (70m3.yr1.m-1 and 30m3.yr l.m-l) belong to the Waipara 

and Amberley Regions both of which are erosionary. The highest two net 

budget values (227m3.yr1.m-1 and 179m3.yr1.m-1) correspond to the most 

progradational areas of the bay, Brooklands Spit and mid Pegasus Bay. 

Figure 6.5 shows the net budget versus the observed beach state. The line of 

best fit approximates the point at which the beach state transforms from an 

erosive to accretionary profile. This line can be used as an indicator of possible 

beach states based on a change in one or more of the sediment budget 

components. 

Table 6.4 Deposition and erosion rates and the net budgetfor the cells defined 

in Figure 6.2, per region (m3.yrl) and per length of region (ln3.yr l.m-1) 

Deposition/Erosion Rate Net Budget 
REGION 

(m 3 .yr-') (m 3 .yr-'.m') (m) .yr-') (m 3 .yr-' .m') 

Cell I South Brighton Spit 0 0 544,000 133 

Cell II Christchurch City 0 0 463,00 75 

Cell III Bottle Lake Region 0 0 613,000 97 
Cell IV Brooklands Spit 9,550 2.4 796,000 227 
Cell V Mid Pegasus Bay 55,018 4.2 2,236,000 179 
Cell VI Leithfield Region 4,700 0.47 747,000 88 

Cell VII Amberley Region -489 -0.14 331,000 70 
Cell VIII Waipara Region -673 -0.14 127,000 30 

TOTAL 68,056 1.36 5,857,000 117 

The correlation between the beach surplus and the state of the beach has been 

dampened by the differing phenomen~ in each specific sector such as beach 

composition, estuary dynamics and submarine canyons. A contributing factor to 

the beach state not precisely equalling the net budget could be that the sediment 
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is not being stored in the beach above the mean low water level and instead is 

deposited on the nearshore profile. As the nearshore has also not been profiled 

no verification of this possible sink of sediment can be made. Another sink in 

the region that has not been quantified is the Pegasus Canyon. As of yet no 

estimates of the sediment lost offshore via this feature have been calculated. The 

amount of sediment lost from the system through abrasion has not been 

calculated. The more time a sediment particle spends in the coastal zone the 

smaller it becomes through abrasion. Once particles are smaller than 4<1> they are 

generally lost from the system by wind inland or suspension offshore. 
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likely as the coastal environment is the least likely to change so dramatically. 

The means by which the sediment is being lost to the system has probably 

always existed but in recent times has come to outweigh the declining inputs into 

the coastal system. 

6.4 Concluding Remarks 

The schematic sediment budget presented in Chapter One has been modified to 

represent Pegasus Bay and has been displayed here. The model shows the 

relative importance of each of the inputs, outputs and transfers. This adaptation 

of the schematic model marks the first step in calculating a sediment budget for 

Pegasus Bay. 

The boundaries of the budget were defined. Both the spatial and temporal scales 

have been examined. The cell boundaries for the budget were defined according 

to beach type, process environment and river input. However, the spatial 

boundary was harder to define. This sediment budget for Pegasus bay is based 

on average annual values gathered from data representing periods longer and 

shorter than one year. Averaging of data and extrapolation have been necessary. 

The state of the beaches for each sector is presented. Three sectors (South 

Brighton Spit, Christchurch City, and south Bottle Lake) are in an equilibrium 

state, three (Brooklands Spit, mid Pegasus Bay and Leithfield) are 

progradational and the remaining two (Amberley and Waipara River)are in an 

erosional state. However, from the budget calculations overall, the coast of 

Pegasus Bay is in surplus. It can be seen that the amount of surplus is 

proportional to the state of the beach. Generally the erosional beaches have the 

lowest surplus of sediment and the progradational beaches the greatest amount of 

surplus although the relationship is not strictly linear and depends on individual 

site characteristics. 

Both the gross and net budgets affect a considerable percentage of the beach 

volume. The net budget for Pegasus Bay represents 27% of the gross exchanges 

within Pegasus Bay. The longshore transport i~ each of the regions affects the 

distribution of the sediment yield from the rivers. The predominant drift in the 
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Bay is to the south although it is to the north in northern Pegasus Bay. 

A great deal of sediment is transported in the nearshpre as shown by the onshore! 

offshore exchange. This illustrates the dynamic nature of the Pegasus Bay 

coastline. The onshore movement from the sea bed accounts for 15 % of the 

budget surplus and 30% can be attributed to internal transfers. 

The river contribution, especially that of the Waimakariri River, is extremely 

important to the net budget, (55%). Changes in the amount of river sediment 

supplied to the coast can play an important role in the state of the beaches. The 

Waimakariri River only supplied 32% of the net budget while its load was being 

stored in Brooklands Spit and Lagoon as opposed to 40% at present. For Cell I 

this would have meant a drop in surplus from 133 m3.yr1.m-1 to 116 m3.yr-1.m-1. 

This would have lead to an unstable beach state as compared to the present state. 

It can therefore be said that the changes in spit dynamics during this time (as 

described in Chapter Four) can in part be attributed to the decreased yield of the 

Waimakariri River. Any further decreases in yield could result in further 

migrations of the spit such that a hazard to people and property occurs. 

It appears that a decline in the river input from the Kowai and Waipara rivers in 

recent years has led to an erosive beach state in the north of Pegasus Bay. This 

theory is based on the premise that the coastal regime is unlikely to have been 

modified to such an extent as to have caused erosion at this location. 

A change in state of the ,budget can lead to a change in state of the beaches in 

Pegasus Bay. The correlation between the observed beach state and the surplus 

of the budget is strong enough to determine a critical line at which point a beach 

will change its state. This critical line does not allow for equilibrium states and 

is only an approximation to when the beach will change its state. Bearing this in 

mind the critical line serves as a useful predictor of possible shoreline behaviour 

based on a change to one of the sediment budget components. It may even be 

that this critical value is different for each section of the beach. A change in 

beach state caused by a decrease in sediment supply, through dune recontouring 

or river yields, can be approximated according to. the correlation between the 

beach state and the net budget. Furthermore this critical value can be used as a 

basis for other studies of this nature. 
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The following chapter presents the major findings and conclusions of this study. 

Also mentioned is possible future research which could enhance the sediment 

budget presented here. 



Chapter Seven 

Conclusions 
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The derivation of a sediment budget for Pegasus Bay is an important step in 

improving the state of coastal knowledge of the region. This thesis has brought 

together a wide variety of information, new and old, into one cohesive unit to be 

used for future consultation. The aims of the research were as follows: 

1. establish the boundaries of the sediment budget within Pegasus Bay; 

2. calculate the annual contribution of coarse sediment to the coast from the 

Avon, Heathcote, Waimakariri, Ashley, Kowai and Waipara Rivers; 

3. establish any additions or losses from the beach sediment budget; 

4. establish any contributions or losses from the system through longshore 

transport, onshore and offshore transport, or through human activity; 

5. establish the state of balance or imbalance in the sediment budget and 

relate it to trends in coastal behaviour. 

It was stated in Chapter One that the beaches and sediment movements of 

Pegasus Bay were not uniform nor discrete and therefore should not be treated as 

such. Thus it was necessary to establish the internal and external boundaries of 

sedimentary processes. The establishment of cell boundaries divided the bay up 

into manageable unique sectors. This was initially accomplished by examination 

of the process environment. The process environment of Pegasus Bay can be 

split into three distinct sections. These are southern Pegasus Bay, south of the 

Waimakariri River; mid Pegasus Bay, from the Waimakariri River to the 

contemporary demarcation zone between sand and mixed sand and gravel beach 

composition; and northern Pegasus Bay, north of the demarcation zone. The 

northern sector of Pegasus Bay has a much higher energy environment than that 
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of southern and mid Pegasus Bay and so these regions can not be regarded as 

uniform. The bay was divided into further sectors based on beach composition 

and the nature of the beach system itself. Eight distinct sectors with consistent 

features throughout each were identified. 

There are six rivers feeding the coast of Pegasus Bay. In order to fulfil Aim Two 

the river input for the region needed to be assessed and quantified. The Avon 

and Heathcote Rivers discharge into the estuary and so the sediment does not 

directly reach the coast. Their contribution is minimal on a regional scale, only 

3,000 m3.yr1. 

In stark contrast to this is the Waimakariri River which is the largest contributor 

of sediment to the coast, supplying 2,332,000 m3.yr1. The Waimakariri River 

has changed considerably since 1935 when the river mouth shifted north. The 

contribution to the coast has varied as Brooklands Lagoon has infilled and the 

spit has formed such that 30% of the sediment yield of the Waimakariri River 

was not reaching the open coast between 1935 and 1980. Since this time the rate 

of infill and deposition on the spit has decreased so that less than 1 % of the 

annual sediment yield is now being trapped by Brooklands Lagoon. 

The contemporary Ashley River rarely transports gravel to the coast. However, 

the annual contribution to the coast of this river is 455,000 m3.yr l and it is the 

second largest source in the bay. Sediment from the Ashley River is transported 

along the shore in both directions away from its migratory mouth. 

The Kowai River is only periodically open to the sea and so does not transport 

great volumes of sediment to the open coast. Instead sediment is transported 

during periods of high intensity flows so that a total of 36,000m3 is supplied to 

the adjacent shoreline each year. Like the Kowai River the Waipara River 

mouth is often closed by a gravel barrier. Only during high precipitation events 

and spring snow melt does the Waipara River have open access to the sea. This 

is a more regular occurrence than the Kowai River. In conjunction with the 

larger catchment than the Kowai, more sediment (180,000m3 .yr1) is supplied to 

the coast. 

The rivers of Pegasus Bay constitute the greatest sediment source to the coastal 
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system. A total of 3,005,OOOm3.yr l is supplied to the open coast. Any changes 

in the ability of the rivers to supply 'sediment would have a dramatic impact on 

the coast. The offshore zone (821,000m3.yrl) and longshore transport 

(1,650,OOOm3.yr1) are the other two important sources of the bay. 

The additions and losses of sediment to the coastal system have been examined 

and identified in accomplishing the third Aim. Many landform features are both 

sources and sinks of sediment. The A von-Heathcote Estuary has been identified 

as a sink of sediment trapping 5,000m3.yrl. Brooklands Lagoon is also a sink of 

sediment except in this case it traps the sediment before it reaches the coastal 

environment. The "source/sink" nature of the dunes/gravel ridges could not be 

determined due to the short term basis of the data. The other sources and sinks 

are discussed in conjunction with the other aims. 

Longshore transport for southern, mid and northern Pegasus Bay was established 

in order to achieve Aim Four. It was found that a net amount of 281,000 m3.yr l 

is transported south in southern Pegasus Bay. The predominant direction in mid 

Pegasus Bay is also to the south although here the magnitude increases to 

1,629,000 m3.yr l as there are more oblique waves approaching the shore at this 

site. Net longshore transport in northern Pegasus Bay is to the north as this 

region is dominated by high energy southerly swells. 

Aim Four also addresses the onshore/offshore exchange for the region. Each of 

the eight sectors were examined in order to establish the onshore/offshore 

exchange. Three of the eight sectors exhibited a net offshore movement of 

sediment while the other sectors experienced onshore movement of sediment. 

The overall result for all of Pegasus Bay was a net onshore movement of 

sediment of the order of 831 ,000m3 each year. The onshore/offshore transport 

accounts for 70% of the gross sediment budget. This signifies a very active part 

of the coastal system. 

The calculated budget of Pegasus Bay reflects the state of the coastal system and 

in doing so fulfils Aim Five. It was found that all regions of Pegasus Bay were 

in sediment surplus with a net surplus for the bay of 5,843,000m3.yr-1. However 

this does not coincide with recorded rates of shoreline movement such as 

accretion or erosion. Therefore material must be lost or stored elsewhere, not 
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identified by this present analysis. The southern three sectors were determined 

to be in an equilibrium state. The Brooklands Spit, mid Pegasus Bay and 

Leithfield sectors are all in a depositional state while the two northern sectors are 

erosional. Although these findings do not match the net budget figures there is a 

strong correlation between the state of the beach and the net budget. A critical 

line has been drawn as a flip point about which a shore changes from erosionary 

to accretionary based on the status of the net budget. This line shows that the net 

budget can exhibit a sediment surplus and at the same time have an erosionary 

beach state. The amount of surplus in the particular cell determines the state of 

the shore. The net budget indicates that all beaches have a surplus of sediment 

that should therefore be reflected in an accretionary beach state. This is not the 

case for northern Pegasus Bay which has been found to be erosional. The 

surplus identified by the net budget is not sufficient to maintain a stable beach 

state. Any further decrease to the inputs will result in further erosion of the 

coastline. Only an increased supply of sediment will restore the pre-erosionary 

beach state. 

The sediment budget model highlights the importance of the river input to the 

Pegasus Bay coastal system. River inputs constitute 55% of the net budget. A 

change in the input, particularly that of the Waimakariri which supplies 40% of 

the net budget, would have significant ramifications on the budget. The South 

Brighton Spit fluctuations since the river mouth shifted can in part be attributed 

to the decreased sediment supply to the open coast. 

This sediment budget analysis was conducted in part as an attempt to create new 

knowledge about the regasus Bay region as a whole. It can be seen from the 

above that what has been presented here as a sediment budget for Pegasus Bay is 

a platform from which further research can be undertaken. With this platform a 

more precise sediment budget for Pegasus Bay can be calculated. The final 

results of this work have shown that despite the addition of information gained 

through this study of Pegasus Bay there is still a void in the knowledge of the 

sedimentary processes. The accuracy of this sediment budget has been 

hampered by a number of factors and the following summarises the necessary 

steps to derive greater accuracy. 

The major anomaly of the sediment budget is the surplus sediment of the budget 
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which is not reflected in the beach state. Profiling of the nearshore zone would 

give an indication of what is going on under the sea surface. It is quite possible 

that much of the surplus sediment of the budget is being stored offshore or lost 

from the system to deeper water. This type of profiling is normally difficult and 

subject to errors and so is not often carried out. Changes in the bottom surface 

would need to be carried out on a regular basis (monthly) to establish any rates 

of deposition or erosion within this zone. 

The values that have been calculated for this budget could have been enhanced 

by more accurate and plentiful data. Foremost is the longshore component of the 

sediment budget. The accuracy of this component is limited by the wave 

observations that it is based on. The problem however is not just confined to the 

wave data that has been collected but also to a lack of more comprehensive 

records. Daily records of wave observations at several sites along the Pegasus 

Bay coastline (particularly at the transition between cells) could then be used to 

obtain the longshore component for each of the cells in this budget. Some 

uniformity between the records at each site is also of importance. 

The river inputs into the Pegasus Bay coastal system are based on 1985 data. 

This is the most recent data source for the region and yet several changes in the 

hydrological regime may have occurred since then. This is partiCUlarly true for 

the northern section of the bay and may account for the erosion despite it being 

in apparent sediment surplus. 

Abrasion of sediment has not been widely researched and even less so in the 

Pegasus Bay region. Particles that spend a long time in the coastal system are 

worn such that their size diminishes to less than 4~. These particles are then lost 

from the system via wind inland or suspension offshore. The quantity of 

sediment lost from the system each year through these mechanisms is not 

known. Such an investigation would be an appropriate input to the model. 

A combination of the above mentioned research problems and the data that is 

presented here would lead to a comprehensive sediment budget of Pegasus Bay. 

This study has provided the basis from.which other studies can develop. 
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Appendix One 

Wave and Wind Observation 
Recording Sheet Instructions 

TIME 

(a) Record time to the nearest quarter-hour at which the obserbation is make. 

(b) Use the 24-hour clock system to avoid confusion between a.m. and p.m. 

(e.g. 2.00a.m. is 0200, 1.00p.m. is 1300, and 3.15p.m. is 1515). 

(c) Use NZST, hence during daylight saving I-hour must be subtracted from 

actual time to get NZST. 

NEAREST TIDE 

(a) Record whether the nearest tide is high (H) or low (L). 

(b) Record time to nearest tide to the nearest half-hour (e.g. 2.5br). 

(c) Record whether tide is rising or falling. 

WAVE HEIGHT 

This observation of based solely on the judgement of the observer. 
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(a) Mean: Estimate the average breaking wave height to the nearest 0.25 metre. 

(b) Max: Estimate the highest breaking wave height to the nearest 0.25 metre. 

WAVE PERIOD 

This is the average time period between waves arriving at the shore. Record 

both the number of waves arriving during a time interval of greater than 1 

minute, and the total time period in seconds, (e.g. 8 waves in 65 seconds). Note 

that must start and stop timing on a wave, with the initial one being wave zero. 

WAVE ANGLE 

Record whether the wave is ARRIVING from 1,2,3,4 or 5 as shown in diagram 

below. 
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BREAKER TYPE 

• 
Observer 

/ 

Shoreline 

Circle one of the following 4 types of breakers (see diagram for help) 

(a) Spilling (Sp): occurs when the wave crest becomes unstable and flows down 

the front face of the wave, producing an irregular foamy water surface. 

Often happens in large seas and with strong winds blowing off the sea. 

These waves are sometimes referred to as "rollers". 

(b) Plunging (PI): occurs when the wave crest curls over the front face of the 

wave and falls into the base of the wave, producing a high splash and much 

foam. This wave is sometimes referred to as a "Dumper". 
) 

(c) Plunging/Spilling (Ps): occurs when there is a combination of spilling and 

plunging waves. 

(d) Surging (Su): occurs when the wave crest remains unbroken while the base 

of the front of the wave advances up the beach. 

Spilling Beaker Plunging Breaker Surging Breaker 

~--~ 
Nearly Horizontal Beach 

NUMBER OF BREAKERS 

Record the number of rows of breakers e.g. in nomial conditions there would be 

one, in storms there may be several. 
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RUN - UP WIDTH 

This observation is based on the judgement of the observer. 

(a) Estimate the distance, to the nearest metre, from the most landward row of 

breakers to the position where waves stop running up the beach. 

(b) Record whether the run-up position is to the; lower foreshore (LF), mid 

foreshore (MF), upper foreshore (UF), dune toe (DT). 

WIND 

(a) Speed: estimate from accompanying chart. 

(b) Direction: estimate from direction of beach orientation. 

WIND FORCE (Beaufort Scale) 

No. Wind Effect on Land km/hr 

0 Calm Smoke rises vertically <1 

1 Light air Direction shown by smoke but not by wind 
vanes 1-5 

2 Light Breeze Wind felt on face; leaves rustle; wind vanes 
move 6-11 

3 Gentle Breeze Leaves and twigs in motion; wind extends 
light flags 12-19 

4 Moderate Breeze Raises dust, loose paper and small branches 20-28 

5 Fresh Breeze Small trees in leaf begin to sway 29-38 

6 Strong Breeze Large branches in motion; whistling in 
telegraph wires; difficulty with umbrellas 39-49 

7 Near Gale Whole trees in motion; difficult to walk 
against wind 50-61 

8 Gale Twigs break off trees; progress impeded 62-47 

9 Strong Gale Slight structural damage occurs; chimney 
pots and slates blown off 75-88 

10 Storm Trees uprooted and considerable structural 
damage 89-102 

11 Violent Storm Widespread damage 103-117 

12 Hurricane Winds of this force only encountered in 
tropical revolving storms above 117 
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Site Descriptions 
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Each profile is measured as a distance from Sumner Head and are to the north of 

this locale. This number is displayed adjacent to the profile name. 

South of Pukeko Street 3.00km 

This profile is situated at the end of Rocking Horse on the South Brighton Spit to 

the south of Pukeko Street. The benchmark is a terrier located on the curb 

approximately 150m from the dune edge. A house is sited to the north of the 

profile but to the south of the profile is uninhabited. 

Plover Street 3.96km 

The benchmark for the Plover Street profile is located at the intersection of 

Rocking Horse Road and Plover Street. The profile extends through a 

playground behind the dune system. 

Caspian Street 5.13km 

This profile is at the distal end of the South Brighton Spit at the junction of 

Marine Parade and Caspian Street. The benchmark is located in the middle of 

Caspian Street some 75m from the dune fences which the profile encompasses. 

Beatty Street 6.50km 

The benchmark for the Beatty Street profile is located on the northern footpath 

of Beatty Street. The profile extends through the dune system where a series of 

fences is apparent. 

North of Rodney Street 8.15km 

This profile is located outside house no.264 of Marine Parade. The benchmark 

is located on the footpath in front of a fire hydrant marker. The dunes of this 

profile are backed by Marine Parade. 
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Rawiti Street 9.52km 

The Rawiti Street profile benchmark is situated at the intersection of Marine 

Parade and Rawiti Street. The dunes are backed by Marine Parade 

Larnach Street 11.30km 

Larnach Street profile is located north of the Waimariri Beach surf club. The 

dune system is more extensive and the benchmark is a tanalized post adjacent to 

a car parking area. 

South of Bottle Lake 14.00km 

This profile is located at the south end of the Bottle Lake Forest Park. The 

profile benchmark is located in the dune system and is a tanalized post over a 

pIpe. 

Heyders Road 17.55km 

The Heyders Road profile is located to the north of Heyders Road. The 

benchmark is an iron tube located in the dune system and crosses across a fence 

at the base of the dune. 

Brooklands C1891 18.91km 

This profile is located on Brooklands Spit. The benchmark is and iron tube 

behind the dune system. A tanalized post is located SOm from this in the dune 

system. 

Brooklands C1972 19.72km 

An iron pipe marks the benchmark behind the dunes at this profile site on 

Brooklands Spit. A tanalized post 37m from the benchmark is located in the 

dunes and is clearly visible from the beach. 

Brooklands C2070 20.70km 

This is the last profile section on Brooklands Spit. It is adjacent to a dune 

blowout. The benchmark is a pipe behind the dune system 91m from the 

tanalized post in the dunes. 
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Pines Beach 23.00km 

The Pines Beach Profile IS to the north of the Waimakariri River. The 

benchmark is the floor level of the Pines Beach surf club house. There is a 

carpark behind the surf club. 

Woodend Beach 27.55km 

A camping ground exists behind the dunes of this profile. The benchmark is a 

waratah between the camping ground and the sand dunes. An access track 

crosses the profile at the landward dune edge. A surf life saving lookout is 

located on the beach. 

Waikuku Beach 33.40km 

The benchmark for the Waikuku Beach profile is the floor level of the Waikuku 

Beach surf life saving club house. There is a parking area behind the club house. 

Ashworths 39.80km 

The benchmark for this profile is a railway iron 13m from the dunes and just 

seaward of a four wheel drive track. The profile is south of the main access 

track. 

South Leithfield 41.19km 

This profile is marked by pink fluorescent stakes to the south of the Leithfield 

Beach settlement. A four wheel drive track behind the dunes crosses the profile 

cross section. 

Leithfield Beach 42.00km 

The Leithfield Beach profile is backed by the settlement's camping ground. A 

corrugated iron fence is the benchmark and the profile extends out to the beach 

to the north of a water tank. 

Kowai River 44.22km 

Adjacent to the true right bank of the Kowai River is the Kowai River profile. 

The benchmark is the comer post of a fence and the site is north of a four wheel 

drive track that leads to Leithfield Beach settlement. 
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Newcombes Road 44.50km 

The Newcombes Road profile is situated through the farming property at the end 

of N ewcombes Road. This site is marked by two fluorescent stakes in the gravel 

ridge. 

Amberley Beach 46.82km 

South of the Amberley Beach Carpark lies the Amberley Beach profile. The 

benchmark is a red and white post which stretches across the artificial gravel 

ridge to the second red and white post. 

Amberley Golf Club 48.59km 

This profile site is seaward of the Amberley Golf Course Club House. The 

corner post of the Golf Club's fence is the benchmark of the profile. It extends to 

a red and white post located behind the gravel ridge. 

Teviotdale 51.25km 

North of the Waipara River is the Teviotdale profile. A red and white post is 

situated seaward of the concrete benchmark located behind the gravel ridge. 

Double Corner 52.50km 

The most northern profile is located to the south of the cliffs of Double Corner. 

Two fluorescent stakes define the profile which runs to the north of the four 

wheel drive track which extends from the Waipara River to the end of the bay. 
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Appendix Three 

Beach Profiles and Volumes 
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