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Current research has emphasized the need to identify and quantify the effects of 

positive and negative interactions (both direct and indirect) between species, taking 

into account the influence of abiotic conditions and spatial scales. In this research it 

is particularly challenging to adequately assess and predict the impact of introduced 

species on native communities. This study examined interactions of introduced and 

native species on coastal sand dunes in New Zealand. Substantial areas of this habitat 

have become dominated by the highly competitive exotic sand-binder marram grass 

(Ammophila arenaria) and other exotic weeds, replacing native species, including the 

native eco-engineering spinifex (Spinifex sericeus).  

First, I examined direct interactions (competition and facilitation) between marram 

and spinifex along an abiotic stress gradient where experimental plots were subject 

to different restoration management techniques. In my large-scale dune experiment I 

planted 2475 spinifex seedlings in three different treatments (bare sand, live marram, 

dead marram) including an unplanted control, and monitored the plots for one year 

along exposed marram grass-dominated dune fields near Whanganui, West Coast, North 

Island/New Zealand. The stress gradient hypothesis predicts facilitation will be greatest 

where stress is most severe. I hypothesized facilitation of spinifex plantings and other 

self-colonizing plants in dead sprayed marram compared to live marram and a change of 

interaction between spinifex and marram grass along an abiotic stress gradient. Spinifex 

survival was not significantly different across treatments, but the interaction between 

treatment and location from the sea as well as pre-existing marram cover were 

significant predictors of plant growth in a linear mixed effect model. Exotic weeds such 

as Senecio elegans, Conyza canadensis, dandelions and legumes were facilitated by 

sprayed marram grass relative to abundances in live marram grass, while grasses other 

than marram grass and spinifex performed best in bare sand, in the absence of 

competitors. For S. elegans, abundances were higher closer to the sea. Spinifex growth 

was greatest in plots closest to the sea. Comparing spinifex growth in live marram grass 

and dead marram showed similar patterns at the fore, mid and back dune, but sprayed 

maram showed better facilitation of spinifex. For restoration plantings it is only 

recommended to plant into dead marram if the site is not weed prone as weeds were 

facilitated in the same way as spinifex and in some instances appeared to hinder spinifex 
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growth. Crucial for a successful conversion from marram to spinifex is that the initial 

marram cover is not too high prior to spraying- lower densities allow for better spinifex 

growth. 

Second, I examined indirect competition with a survey of natural populations and a 

common garden experiment at a shingle beach. I was interested in determining the 

influence of plant density at different spatial scales as well as plant morphology on 

insect abundances. I studied indirect interactions by choosing native and introduced 

Senecio spp. as host plants for insect colonization and incorporated fine scale plant 

density (50cm radius circle, area = 0.8 m²) and coarse scale plant density (6m quadrat 

annulus, area = 32 m²) as predictors for insect colonization in addition to plant 

morphology. I surveyed Senecio spp. over a period of three growth seasons and 

conducted an experiment where I manipulated densities of pairs of species of either 

introduced Senecio elegans, S. skirrhodon and native S. lautus. My survey of natural 

populations and the manipulative field experiment show a negative impact of high 

conspecific and heterospecific plant density on the colonization of the seed head 

predator fly Sphenella fascigera. Along with plant density, plant size was a significant 

predictor of insect abundances. Higher densities of introduced S. elegans indirectly 

facilitated S. lautus at fine spatial scales by reducing the incidence of S. fascigera. This 

supports the resource dilution hypothesis which predicts higher insect herbivore 

numbers on isolated resource patches. Thus, my results provide empirical evidence 

for apparent facilitation of a native plant by an introduced plant via a shared 

herbivore.  

For future assessments of the impacts of invasive species it will be important to consider 

the net-outcome of direct and indirect competitive and facilitative interactions. In 

particular, for restoration purposes in stressful environments removal of invasive species 

may have to occur in a carefully controlled manner taking into account the abiotic 

conditions and spatial scales at which interactions occur.  
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1.1 Competition as a force structuring communities 

One of the major goals within ecology is to identify and understand how members of a 

community are structured and interact, more specifically to identify and explain the 

occurring patterns. Darwin recognized the importance of competition when he wrote 

the ‘Origin of species’ and ‘the survival of the fittest’ (Darwin 1859). Competition is 

probably the most important structuring force in nature that we know of, driving 

adaptation by competitive exclusion and ultimately evolution within and between 

species (Martin and Harding 1981).  

Ecological theory acknowledges several different types of competition. Competition can 

be divided by species identity and then further by the mechanism of competition. 

Individuals can compete with each others of their own species (intraspecific 

competition) or against individuals of other species (interspecific competition). 

Intraspecific competition includes for example, paternal plants that compete with their 

offspring for resources as is the case for forest trees with low dispersal rates (Duncan 

1991); individuals that compete for mates such as male deer defending territory for 

females (Clutton-Brock et al. 1988); chicks within the nest competing for food from their 

parents (Kacelnik et al. 1995); and where there is a limited food source within a defined 

territory (Assem 1967). Examples of interspecific competition include for example, 

competition for the same food source as e.g. Hawaiian forest birds compete for insects 

(Mountainspring and Scott 1985) and competition between blue tits (Parus caeruleus) 

and great tits (Parus major) (Minot 1981). This interspecific competitive interaction is 

particularly common between native and introduced species (Mountainspring and Scott 

1985).  

My thesis focusses on competition between species, i.e. interspecific competition. 

Directly competing species contest with one another for resources. Examples of 

resource competition are evident in all ecosystems and can be further separated into 

exploitative competition for resources and interference competition.  Exploitative 

competitions is defined as a type of competition where one individual has a negative 

effect on the fitness of another individual because it exploits or depletes a resource that 

the other individual would otherwise use: e.g. plants compete for light with prominent 

examples such as trees growing to enormous heights (50 m or more) to be the first to 
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intercept light allowing this plant to increase photosynthesis rates due crowns exposed 

to sunlight above the surrounding forest canopy (e.g. in New Zealand emergent trees 

such as the indigenous rimu (Dacrydium cupressinum) (Norton et al. 1988) and kauri 

(Agathis australis) (Ahmed and Ogden 1987)). However, Jones and Callaway (2007) 

stated that they believe that competition between plants for abiotic resources cannot 

be called direct competition as no material or information is directly transferred from 

one species to the other. Instead competition for abiotic resources between plants is to 

them the sum of direct effects of the target species on to the resource pool. Exploitation 

competition (Brown et al. 1979) may occur without two individuals ever coming into 

direct physical contact with one another, because it is mediated via access to a common 

resource pool. 

In contrast to exploitation competition, active involvement of one competitor is required 

for interference competition. For plants this may occur via plant volatiles or via 

allolopathy where one plant species has a negative effect over another species due to its 

chemical warfare. Walnut trees (Juglans spp.) are a typical example: growth underneath 

walnut trees is very sparse compared to undergrowth under different tree species, 

hence shading is only a partial explanation. Walnut trees produce juglone, a chemical 

compound stored in the leaves but released and activated via soil organisms which 

prevents seedling establishment in the vicinity of the parent tree (Terzi 2008). Centaurea 

maculosa, (spotted knapweed) releases toxins that stunt plant growth in close 

proximity. The allelochemicals ((-)-catechin) of spotted knapweed gives it a competitive 

advantage over native plants in its introduced ranges (e.g. North America), while as in its 

home ranges some neighbouring species developed an immunity and unlike unadapted 

plants they do not suffer from acidification of their cytoplasma due to the knapweeds’ 

chemical warfare (Weir et al. 2003). Interference competition can be expressed via 

behavioural competition in animals, (e.g. fights). Similar to plants, animals also compete 

for space e.g. for territories: predators defend  territories as the first step toward 

ensuring access to more ultimate resources such as prey (e.g. Short-eared owls (Asio 

flammeus) and wolves (Canus vulpus) (Rich et al. 2012)). Competition between animals 

for food can be dependent on hunting behaviour but also on physical features such as 

body size - Cheetahs are very successful hunters, but due to their light weight, (an 
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adaptation for high-speed running), they lose some of their prey to lions and other 

bigger predators as they are inferior competitors in a direct fight with them (Hayward et 

al. 2006). Competition for shelter follows a similar pattern as competition for territory 

e.g. the introduced North American crayfish (Pacifastacus leniusculus) competes with 

native crayfish (Astacus astacus) and (Austropotamobius pallipes) in Europe (Vorburger 

and Ribi 1999). Nguyen-Ngoc et al. (2012) showed that plants which have an equal 

amount of chemical warfare and adaptation to their environment often succeed over 

the competing species via their dispersal mechanism (e.g. the species with better 

dispersal rates is able to colonize a free space quicker and more comprehensively and 

therefore is able to secure this spot). The various types of competition are the drivers of 

niche theory, where different competitive abilities of a species define its ecological niche 

(Case and Gilpin 1974).  

 

1.2 Facilitation in communities 

Competitive interactions between organisms can vary according to a range of factors 

such as availability of resources and type of environment (Davis 2011). In favourable 

environments, competition between and within species can be a major driving force 

(Brooker 2006, Eränen and Kozlov 2008). However, in physically stressful environments, 

the presence of one individual may in fact be beneficial to at least one if not all other 

participants, referred to as facilitation (Bertness and Callaway 1994). In contrast to the 

negative interactions of competition, facilitation focusses on the positive interactions of 

species (Bruno et al. 2003). Facilitation has received less attention in the scientific 

literature than competition (McIntire and Fajardo 2013).  

Stressful environments can only be colonised by pioneer species which are fully adapted 

and/or tolerant to the harsh conditions of that particular habitat (Parolin et al. 2002). 

Often the first colonizers ameliorate local site factors such as providing shelter on 

exposed sites to allow other species to become established (Franks 2003). The classic 

‘nurse plant effect’ was first recognized by Shreve (1931), who found evidence for large 

desert trees supporting the establishment of small seedlings of other species, nearby. 

Another example occurs in intertidal zones where Spartina alterniflora alters habitat 



GENERAL INTRODUCTION 

5 

conditions so that other species can establish (Bruno 2000). In New Zealand, pioneer 

species such as manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides) 

provide shade and shelter for a host of later successional tree species such as as kauri, 

rimu, tawa and kohekohe that benefit from shelter provided on open sites (Allen and 

Partridge 1992). There are even cases where introduced species such as gorse (Ulex 

europaeus) which are a major plant pest in many areas of New Zealand (Hill et al. 2000), 

can be effective nurse covers for eventual establishment of indigenous forest species, 

albeit the species composition differs compared to native facilitators (Sullivan et al. 

2007). Hence, where stress is most severe, facilitative interactions are more common 

than competitive interactions.  

 

1.3 The stress gradient hypothesis  

The idea that the environment can determine the balance between competition verses 

facilitation was first identified by Bertness and Callaway (1994) who consequently 

formulated the ‘stress gradient hypothesis’ (SGH hereafter). Their hypothesis predicts 

that along an abiotic stress gradient facilitative interactions will be most common where 

stress is severe and more competitive interactions will occur where abiotic stress 

lessens. The SGH has been tested for a range of different ecosystems: e.g. Armas et al. 

(2011) found support for the SGH in arid areas of the Iberian Peninsula for facilitation by 

the shrub Retama sphaerocarpa, Eränen and Kozlov (2008) for Betula pubescens subsp. 

czerepanovii on the Kola Peninsula in north-western Russia and Poulter et al. (2008) 

found support for the hypothesis in examining the interaction between sawgrass 

(Cladium jamaicense) and coastal trees in Japan. Although the SGH has been supported 

by a range of studies, evidence in its favour is not universal, and debate is on-going 

about what species should be included and what general conclusions can be drawn 

(Maestre et al. 2005, 2006, 2009, Lortie and Callaway 2006, Brooker et al. 2007).  

One of the practical questions within plant-community research is: How should 

competition be measured? Is it survival? Early authors believed that competing species 

will either eventually adapt to the situation or one will die out (Jaeger 1970). Maestre et 

al. (2009) refined the SGH by proposing that the situation is likely to be more complex 
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when the stronger competitor (under “good” conditions) is kept below full dominance 

where stress is severe, thus allowing for a positive interaction that is only existing 

because of the stress. Depending on species identity and adaptation to the abiotic 

conditions along a stress gradient, survival might not be a good indicator, as plants may 

persist, but are not necessarily thriving compared to other species. Hence, biomass (to 

account for growth) has been suggested as a better indicator of plant performance 

(Maltez-Mouro et al. 2010). Plant size as the result of growth has also been 

acknowledged as an important result of competitive ability (Picoli et al. 2012). In 

addition, the importance of specific species’ traits (i.e. their adaptation to a certain 

stressor) can be important factors when evaluating the interactions between different 

community members (van Veen et al. 2006). Furthermore, it has been argued that 

facilitative interactions might only occur where stress is not above a certain species 

specific threshold and thus at the most stressful ends of the stress gradient growth may 

not be possible at all and hence facilitation will also be absent (Malkinson and Tielbörger 

2010). When studying the SGH it is recommended to research community interactions 

along the full extent of the stress gradient (Maestre et al. 2009, Maltez-Mouro et al. 

2010). 

Recent studies have examined the influence of specific species and their ability to cope 

with altered abiotic conditions especially in combination with invading species. Mason et 

al. (2012) researched the competitive effects of native plant species versus the 

introduced bitou (Chrysanthemoides monilifera subsp. rotundata) in the face of water 

shortage in a coastal ecosystem in New South Wales, Australia, and found evidence for 

increased competitive ability of the invader under stressful situations. Santoro et al. 

(2012) were able to show that invasive species can skew patterns of zonation predicted 

by the SGH and a random distribution can occur if the ecosystem is altered too 

fundamentally as natural zonation is changed and species occur random. The measured 

spatial extent of the abiotic stress gradient determines whether or not the species 

identity dependent interactions are identified (Forey et al. 2009, Maltez-Mouro et al. 

2010).  

 



GENERAL INTRODUCTION 

7 

1.4 Apparent competition  

While direct competition is widely acknowledged, apparent competition is a less 

documented phenomenon (Menge 1995). Apparent competition is indirect competition 

between two species on the same trophic level that is mediated by interactions with a 

shared host or enemy on a different trophic level (Holt 1977). For example, the presence 

of the plant A might increase the abundance of the insect herbivore (C) which spills over 

and has a detrimental effect on the plant species B as shown in Fig. 1.1: 

   

Figure 1.1: Hypothetical apparent competition is shown for two congeneric plants: Plant A has a positive 

influence (solid pink arrow) on the insect herbivore (C), which has minor negative influences on A as its 

host, but shows strong negative impacts (solid blue arrow) on B, and thus B is indirectly negatively 

impacted by A (blue-dotted arrow) and consequently facilitates indirectly (dotted pink arrow) A. 

 

Albeit still underrepresented in current research, apparent competition has been widely 

accepted as a mechanism in nature (e.g. Noonburg and Byers 2005) and has been 

demonstrated for different ecosystems (e.g. Settle and Wilson 1990). For example, 

Morris et al. (2004) describe how competition between  different types of leafhoppers 

are mediated via a shared parasitoid. In another example, the endangered lupin (Lupinus 

tidestromii) in California experiences more seed predation by the native rodent 

Peromyscus maniculatus when growing in close proximity to the exotic marram grass 

(Ammophila arenaria) and thus apparent competition is escalating its extinction in 

coastal dune systems (Dangremond et al. 2010). Orrock et al. (2008) were able to find 

evidence for the importance of spatial scale for apparent competition when researching 

the impact of small native mammals that were attracted to the exotic Brassica nigra and 

exhibited increasing negative indirect effects on native Nassella pulchra populations 

near B. nigra in a study in California. The native Lotus wrangelianus in California was 

indirectly negatively impacted by the introduced Medicago polymorpha which increased 
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densities of exotic Egyptian alfalfa weevil (Hypera bruneeipennis) on Lotus wrangelianus 

(Lau and Strauss 2005).  

Apparent competition is also influenced by the resources available to the species which 

are competing indirectly: The resource concentration hypothesis (RCH), which was first 

posed by Root (1973) is an important hypothesis. It predicts larger quantities of insect 

herbivores in areas with high host plant concentrations. Despite the general recognition 

of this principle, some studies showed contrasting effects with less insect herbivores per 

plant in concentrated areas (Thompson 1978, Price 1997), whereas in areas with low 

host plant density insects were more abundant on isolated plants (Karban and Courtney 

1987). In contrast to the RCH, the resource dilution hypothesis (Otway et al. 2005), 

predicts that isolated plants experience a higher insect herbivore load than plants within 

dense patches. More examples from the literature are given in Chapter 5.  

Despite its recognition, apparent competition is an important, often unpredictable force 

when an organism is introduced to an established food web (Dangremond et al. 2010). 

In order to understand and predict the consequences of species introduction, more 

research is needed. The identification of food web-interactions is a crucial step towards 

recognizing patterns of apparent competition between species. For insect herbivores 

this includes identifying the degree of host specificity that is exhibited by the herbivore 

and how it chooses its host (Price et al. 1980).  

Some basic ecological questions on how a host is chosen remain. Indirect facilitative 

effects i.e. ‘apparent facilitation’ are a possible outcome, when two species, not directly 

interacting, are positively influenced by a third species. For instance, two plant species 

are visited by a shared pollinator, an increase in the abundance of one plant can 

increase the population of the pollinator and thereby increase fitness of the other plant, 

as the case for lizards being attracted by Pandanus plants to pollinate nearby threatened 

Trochetia blackburniana in Mauritius (Hansen et al. 2007). Helms and Vinson (2003) 

provide an example of an invasive mealybug indirectly facilitated by the invasive ant 

species Solenopsis invicta that uses native mealybugs in the USA.  
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1.5 Spatial scale in ecological interactions 

The integration of different spatial scales into ecological research is a relatively new 

phenomenon which has resulted in a new branch of ecology - spatial ecology - which 

together with landscape ecology uses a multi-scale perspective to explain food web 

dynamics (Tilman and Kareiva 1997). Hence, the spatial scales (of grain and extent) 

chosen for a study are an important consideration for most ecological questions 

including sampling of vegetation. The size of the sampling unit, for example, is an 

expression of spatial grain. For mapping moss a 10 x 10 cm quadrat might have the 

appropriate scale (grain), for grasses most ecologists recommend at least a 1 x 1 metre 

quadrat, and in forests a standard size is at least 10 x 10 metres (20 x 20 m in high 

forest) (Allen et al. 1951, Peet et al. 1998). Quadrat sizes, and their dispersion in space, 

will effect perceptions of alpha, beta and gamma diversity (Kwiatkowska and Symonides 

1986).  

The relation between extent (the entire study area), grain size (sampling unit) and lag 

(the distance between the sampling unit) determines the appropriateness of data 

collection for a given hypothesis (Wiens 1989). Wrong conclusions can be drawn if 

assumptions are made beyond the investigated scales as patterns and processes are 

rarely uniform across scales (Turner et al. 1989b, 1989a). Nevertheless understanding 

relationships between fine and coarse scale processes could help to improve the 

accuracy of predictions across scales (Kunin et al. 2000, Gao et al. 2001, Thuiller et al. 

2003). If grain is increased in size, the heterogeneity evident in smaller grain is lost and 

incorporated in the sampling unit and lost for detection. Depending on the mapping 

techniques of species, a change of grain also changes the perception of rare species 

(depending on coverage thresholds and the natural aggregation of species). If the extent 

is increased and grain held constant, more vegetation types are covered and 

heterogeneous samples are the result. However, if the distance (i.e. lag) between the 

sampling unit is changed, the perceived aggregation is also changed as terms such as 

‘isolated’ or ‘concentrated’ change in their meaning.  

Edge effects ( e.g. species adapted better to more sunexposure at forest edges (Matlack 

1994) and predators having better access at river riparian planting edges and corridors 

(Haegen and Degraaf 1996), are effects that take place at different spatial scales. Stream 
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water quality and even shore water quality is dependent on processes further upstream 

and runoff on farms far away might still influence the food webs further downstream 

(Alexander et al. 2007). Depending on the interactive processes within a community the 

local scale is either very dominant (i.e. for interactive communities) or the community 

might be more influenced by regional recruitment processes (Lawton 2000). Additionally 

to spatial scales, historical land use has been identified as a structuring factor for today’s 

species assemblages as shown for remnants of traditionally managed semi natural 

grasslands in Sweden (Lindborg and Eriksson 2004). Whether or not an equilibrium of 

species is identified is largely depend on the size of the mapping unit - smaller units will 

identify more different patches such as forest clearings and other forms of disturbance 

despite being embedded into a larger unit that appears to be relatively homogenous 

(Crawley and Harral 2001).  

The importance of spatial scales has also impacted on statistical methods available: with 

modern hierarchical linear models (HLMs) or also referred to as linear mixed effect 

models (LMEs) it is possible to account for nestedness of data (Raudenbush and Bryk 

2002). For example, if samples were taken from several beaches and samples from each 

beach were at two different scales such as a large block with smaller quadrats within, 

then quadrats within the same block would be less independent than quadrats from 

separate blocks. However, all quadrats on one beach would also have some 

characteristics in common as they are situated at the same field site which most likely 

differentiates them from quadrats at another beach (Zuur et al. 2009). 

 

1.6 Invasive species  

Human-induced modification of habitat through the introduction of exotic species (both 

flora and fauna) is considered by many as the number one threat to global biodiversity 

(e.g. Pimm et al. 1995, Didham et al. 2007). The management of invasive species is a 

very costly enterprise when economic losses and control measures are taken into 

account. In New Zealand alone pest animal and plant management amounts to over       

$ 840 Million NZD (Pimentel 2002, Pimentel et al. 2005). The flora and fauna of New 

Zealand has been dramatically altered with human settlement over the last nearly 1000 
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years (e.g. McGlone (1989). Although food webs were altered permanently with the 

arrival of Maori (e.g. the extinction of the moa (McGlone 1989)), large scale modification 

started with the arrival of European settlers about 160 years ago (Quinn 2000). Native 

vegetation was regarded as wilderness that needed ‘taming’ and acclimatisation 

societies intentionally introduced European species and contaminated seeds 

unintentionally brought more alien species (Green 1997). Birds such as blackbirds were 

introduced to modify the bird song chorus to remind people of their European homes 

(Green 1997). More than 60 % of New Zealand’s land area has been modified for purely 

economic reasons in the creation ofpastures, farmland, forestry and settlements (Glasby 

1991). The original indigenous vegetation cover on lowlands in most regions especially 

has been substantially reduced by human habitation and use (McGlone 1989). 

Consequently, most of the least modified wilderness areas within New Zealand today 

are in upland regions. Introduced species can have various consequences for the native 

communities and one of the major challenges for conservation management is to 

predict the consequences of pest introduction and spread on local biodiversity. An 

introduced plant can alter the native communities by directly or indirectly competing 

with native species for resources or facilitating some species but not others.  

 

Invasive exotic species can alter the balance of competition and facilitation mechanisms 

within indigenous habitats including the relationships between species along 

environmental stress gradients. Introduced plants can also alter food webs and the 

abundance of a competing species indirectly through a second trophic level via a shared 

herbivore inapparent competition (Orrock et al. 2008). Introduced species can severely 

impact native species by hybridising with them, and therefore leading to major changes 

in native genetic pools (Huxel 1999). Additionally there is potential to affect indirectly 

without a direct trophic link other community members as shown by Watling et al. 

(2011) for American tadpoles (Anaxyrus americanus) found developing in close proximity 

to an invasive shrub (Lonicera maackii).  

 

The spatial scale at which processes occur can be altered with the introduction of 

species as shown for the interactions between plants and native as well as introduced 

pollinators in temperate understory forests (Sugiura and Taki 2012). Additionally to 
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altering the spatial scale of ecological processes, certain invasive plants are impacting 

human health as is the case with the invasive ragwort (Ambrosia artemisiifolia), which is 

believed to be a trigger for allergies such as hay fever (Ziska and Caulfield 2000). Trophic 

cascades and invasion meltdowns are feared consequences of introduced species, as 

shown for example by the introduction of yellow crazy ants (Anoplolepis gracilipes) to 

Christmas Island resulting in the depletion of the island’s rich fauna, including, but not 

limited to, red crabs (Gecarcoidea natalis) (O’Dowd et al. 2003).  

 

The success of an introduced species is dependent on its adaptation to its new home 

range. An introduced species needs to reach a critical population size to be successful, 

therefore several (independent) introduction events might be necessary for a species to 

establish (Wilson et al. 2009). There have been numerous studies aimed at identifying 

the factors that result in introduced species becoming invasive such as the spread of 

wilding pines in the high country of the South Island of New Zealand (Rejmanek and 

Richardson 1996), or Bellingham et al. (2004), who found no evidence for a predictability 

of invasiveness by seedling growth rate and survival of naturalized woody plants in New 

Zealand. However, it is often difficult to determine the key factors that make species 

invasive (Alpert et al. 2000) and triggers the rapid expansion of such species in various 

landscapes and habitats. There may often be a time-lag between when an introduced 

species is present, sometimes for many decades, before it rapidly expands and causes 

problems to native species. The reasons for this are the subject of much continued 

debate (Richardson and Pyšek 2006). Some authors have argued that species, which are 

adapted to disturbance regimes (pioneer species) are more likely to establish and 

become invasive, especially if they have sufficient dispersal capabilities (Daehler 2003). 

Furthermore, the way species were introduced is a crucial factor for invasion success 

(reviewed by Wilson et al. 2009).  
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1.7 Coastal habitats in New Zealand 

Coastal areas are no exception to the permanent alteration of landscapes and are now 

regarded as one of the most threatened habitats in New Zealand (Konlechner and Hilton 

2010). About 60 % of the world’s population live in coastal areas (Vitousek et al. 1997). 

In New Zealand the top three cities which already account for 50 % of the population are 

located on the coast (Cousins 2004) and a large proportion of New Zealanders live within 

10 km of the coast (Hesp 2002, Spence et al. 2007). The demand for properties in 

proximity to the sea led to major modification of natural dunes for residential 

properties. The introduction of grazing and browsing animals over a century ago 

increased the occurrence of bare sand areas (Gadgil 2006a). Newly de-vegetated dunes 

and naturally highly dynamic dune fields were regarded as a threat to residential 

properties, forestry and farmland so effective methods for stabilisation of mobile sand 

dunes were sought (Cockayne 1911). New Zealand’s native major sand-binding species 

spinifex (Spinifex sericeus) and pingao (Ficinia spiralis) were particularly vulnerable to 

these human-induced pressures.  

 

The European settlers were familiar with marram grass (Ammophila arenaria) as a very 

effective sand binder (Gadgil 2006a). Marram grass has been introduced on a large scale 

to many countries. In the United States of America for example, it developed invasive 

characteristics and suppressed native plant growth directly and indirectly (Dangremond 

et al. 2010). In New Zealand, marram grass was introduced to stabilize the sand to allow 

for pine plantations; making marram grass an important step for forestry development 

(Gadgil and Ede 1998, Hilton et al. 2000). Therefore marram grass was systematically 

distributed with heavy machinery and a lot of manpower and promoted extensively as 

the solution to migrating sand. Extensive cover of marram grass and dune development 

altered natural geomorphological sand relocation processes in New Zealand (Hilton et al. 

2005, 2006). For instance, in some areas, seaward facing fore dune slopes were changed 

from gently sloping spinifex and pingao dunes to taller steeper marram grass-dominated 

fore dunes (Hilton et al. 2005). Early surveys of Cockayne (1911) compared with recent 

surveys show a total loss of over 70 % of former dune areas (Hilton et al. 2000, 2006). 

The changes in habitat quality for native biota are unaccounted for within this figure. 
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However, marram grass was not the only alien plant that was extensively planted in 

coastal dune areas and developed invasive properties: yellow tree lupin (Lupinus 

arboreus) was used for back dune stabilisation to support forestry (McQueen 1993) - as 

legume it can fix nitrogen and permanently change soil properties (Fowler et al. 2000). 

The intentionally planted alien species further promoted plant growth of accidently 

introduced garden and farmland weeds.  

 

Over the last two decades, there has been increasing interest in restoration of sand 

dunes with a focus on restoration of indigenous plant and animal communities. This has 

involved local communities, in particular Coast Care groups, working in collaboration 

with regional, district and city councils, and the Department of Conservation throughout 

New Zealand (Bergin and FitzSimons 1997, Bergin and Herbert 1997, Bergin and 

Kimberley 1999). The impetus for dune restoration has increased over the last decade 

with the predicted impacts of climate change including likely sea level rise and increased 

severity of storms (Dahm et al. 2005). Substantial applied research and technology 

transfer has been carried out over this period and is currently underway by councils, 

tertiary institutes and by the Dune Restoration Trust of New Zealand (e.g. Spence et al. 

2007, Bergin 2008). However, there is more research needed to identify the best 

restoration options for different local conditions. Unfortunately, the majority of 

restoration projects were not monitored, leaving impressions of what worked and what 

did not very subjective.  

 

More research is needed to further reduce the detrimental impacts of introduced 

marram grass on native sand binders such as spinifex and pingao. Restoration aims to be 

more effective at restoring dunes dominated by non-native species - which is important 

for coastal protection, especially in the face of climate change and rising sea levels.  

 

Another area that has not been researched intensively is apparent competition in 

coastal areas. There is scope for more research, especially where introduced congeners 

are growing in close proximity to natives. Little is known about the original food web 

interactions in native dunes prior to human settlement in New Zealand. Plant-insect 

interactions, in particular, remain largely unknown, as well as the interactions of other 
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invertebrate species. More knowledge about these food web interactions could be very 

beneficial for restoration as they would help to predict the risk posed by introduced 

species, as well as to provide a better picture of historical food webs.  

 

1.8 The synthesis of approaches in this thesis 

The overall aim of my thesis was to identify and quantify the major impacts and driving 

forces of species interactions within coastal habitats. I choose to look at both direct and 

indirect interactions between plants. To investigate direct interactions (both positive 

and negative) I studied the key architectural plant species which form the physical 

habitat (the dunes) and how direct competition structures the species growth and 

diversity of naturally colonizing species. More specifically, I chose to look at the 

interactions between exotic marram grass (Ammophila arenaria) and native spinifex 

(Spinifex sericeus). As an applied goal I was interested in investigating the best 

restoration options to restore alien marram grass-dominated dunes back to native 

spinifex-dominated dunes. The stress gradient hypothesis (SGH) was in the centre of this 

research as I considered different distances from the sea (the stressor) to my 

experimental plots and researched how that affected colonization and competitive 

interactions represented by species cover and by species numbers (Direct competition 

and research concerning the SGH are represented in Chapters 2 and 3).  

Indirect interactions (mediated by herbivores) are more likely to occur between closely 

related species; therefore I was interested in investigating the influences of different 

spatial scales and plant densities between closely related native and introduced species 

and their associated insect herbivores. For this study I chose coastal Senecio spp. as a 

focal plant genus as there are native and introduced species growing in close proximity 

to each other in either shingle beaches but also in sand dunes. I investigated the 

strength and direction of interaction between the insect herbivores and their plant 

hosts. Chapter 4 sets the scene by reviewing the current literature and knowledge about 

senecio food webs within the New Zealand context and comparing them with others 

elsewhere, before displaying results of my own field surveys that were conducted to 

detect natural patterns of interactions and backed up with a manipulative field 

experiment in Chapter 5. 
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Chapter 6 is intended as an overall discussion where all chapters are discussed and a 

general synopsis is made. Chapters are written as mostly independent papers - Hence 

there is some overlap in the introductions. Further information is displayed in the 

appendix additionally to an extra data chapter which examines the interaction between 

a parasitoid wasp and its tephretid host on Senecio spp.  

 

1.9 Thesis overview 

1.9.1 Direct competition versus facilitation along a stress gradient  

Chapter 2:  

The effect of dead and live marram (Ammophila arenaria) on spinifex (Spinifex 

sericeus) restoration plantings: a test of the stress gradient hypothesis.  

This chapter aims to investigate how direct competition versus facilitation structures the 

plant community that builds the dunes as physical structures for a whole food web. I 

examined the interaction between the introduced marram grass and the native spinifex 

along a stress gradient running from the seaward to landward zones of the dune system. 

Moreover, as there is intense interest in ecological restoration of marram-dominated 

dunes back to a more natural condition dominated by native species, I also investigated 

whether dead Marram stems and roots (the result of herbicide spraying) act as a 

physical impediment or facilitator to new plantings. I anticipated the research outcomes 

on this interaction to give direct conservation management recommendations to 

improve survival of costly native plantings by testing if:  

i) Is the survival/growth of spinifex (i.e. native sand binder) facilitated by dead 

marram grass structures (i.e. introduced sand binder) compared to plantings 

in bare sand as traditionally used for restoration? 

ii) Does the balance between facilitation and competition change along an 

abiotic stress gradient?  

iii) Is live marram is a better facilitator than dead marram grass in dune systems? 

iv) Does the surrounding type of plant cover change spinifex plant survival 

and/or growth? 
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I researched these research questions by conducting a large scale field experiment close 

to Wanganui (lower South-West North Island of New Zealand).  

 

Chapter 3: Species abundances of self-colonizing native and introduced plants and the 

role of the stress gradient hypothesis in coastal dune systems  

This chapter focusses on all plants naturally occurring at the field sites used for research 

in chapter 2. Similarly to chapter 2 the stress gradient hypothesis is also in the focus of 

my research aims. My research here focuses on the interactions between the occurring 

assemblage of introduced and native plants and how they may impact restoration 

attempts in coastal dunes. Thereby, I particularly focused on wide-spread weeds within 

the dune system to test these hypotheses:  

i. Bare sand is more likely to be colonized by plants than plots of live marram or 

plots of recently dead (herbicide-sprayed) marram.  

ii. Live marram is a less effective facilitator of self-colonizing plants compared to 

dead (herbicide-sprayed) marram.  

iii. Planted spinifex will reduce the number of self-colonizing plants in herbicide-

sprayed marram plots compared to unplanted plots 

 

1.9.2 Indirect competition  

The second part of my PhD focuses on researching indirect competition between coastal 

Senecio spp.(i.e. Senecio lautus, S. elegans, S. skirrhodon, S. sterquilinus). I choose 

Senecio spp.as they are one of the largest genera within the Asteracea (Jeffrey et al. 

1977). Furthermore, New Zealand’s shores show a mixture of beaches with some 

exclusively inhabited by the native S .lautus while others are only inhabited by alien 

Senecio spp., and others harbour both, which allows for good research opportunities as 

there is still a controversy on how closely related introduced congenerics respond to the 

food web interactions in their new range. I was particularly interested in identifying the 

species of the food web and quantifying the interactions with regards to spatial scale 

and species identity.  
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Chapter 4: Review of the current knowledge about Senecio spp. food webs in New 

Zealand 

The aim of this chapter is to review the current knowledge about Senecio spp.-food 

webs in New Zealand. A reasonable amount of information has begun to be 

accumulated, but it is dispersed across many disparate sources, including much “grey 

literature” not immediately accessible to interested parties. My aim therefore was to 

bring the current information together in one place and review general trends in host 

specificity, feeding guilds, host overlap and the degree of food web integration between 

native and introduced species as a preliminary step towards a better understanding of 

the direct and indirect effects of introduced species (both plants and insects). Therefore 

I compared the trends found for food web interactions between New Zealand’s Senecio 

spp. and their associated insect herbivores to trends for feeding guilds and species 

relatedness to other studies elsewhere.  

 

Chapter 5: The importance of plant morphology and different spatial scales of plant 

density for plant- insect herbivore host choice and interaction strengths 

The densities of resources as well as the importance of scale and size of resource units 

and their interaction with resource consumers are the focus of this chapter. More 

specifically, I researched the influence of plant density (of introduced and native coastal 

senecios) as well as plant properties and other insects on insect herbivore density to 

quantify species linkage strengths. The tephretid stemborer and seed head fly Sphenella 

fascigera was my main focal insect herbivore. I conducted natural surveys of native and 

introduced coastal Senecio spp. in Wellington and additionally set up a manipulative 

field experiment to verify the research outcomes from our natural surveys. I was 

particularly interested in the effects of close congeners on insect distributions. I 

expected more native insects ‘spilling over’ to introduced plants when native Senecio 

spp. where in larger abundances. 
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1.9.3 Overall discussion of the PhD-thesis 

Chapter 6: Discussion 

The final chapter of my PhD-thesis brings all results together and discusses them 

collectively in the wider research context and relates back to my original aims and the 

research literature displayed in the introductory chapter. I particularly aimed to relate 

my research back to the questions evolving around invasive species and competitive 

ability along a stress gradient. Furthermore I aimed to discuss apparent competition and 

facilitation between closely related native and introduced plant species and their 

associated insect herbivores, which relates back to my research questions for Chapters 4 

and 5. For the latter research approach I researched the importance of spatial scale 

which will be discussed in the overall discussion with respect to the current literature.  

 

1.9.4 Additional chapter  

Chapter 7: Tri-trophic interactions and the minimal effect of host microsite, plant 

properties and plant density on parasitism of Sphenella fascigera (Diptera) 

Throughout rearing flies for Chapter 5 I found evidence for a parasitoid wasp-insect 

herbivore relationship for which previously only a single record existed (Sullivan, pers. 

comm, 2010). Together with the help of a summer intern Clara Maloines, we were able 

to collect a robust data set about Pteromalus spp., an undescribed parasitoid wasp that 

parasitizes Sphenella fascigera. We were interested in the effects of plant density and S. 

fascigera densities on parasitation at different spatial scales (50 cm, 2 m and 6 m). 

Furthermore, we were especially interested in determining whether or not a distinctive 

host search strategy was apparent in Pteromalus spp. Since a different approach was 

used for data collection here and the questions are diverting from the core PhD-thesis 

hypothesis and research questions I have placed this chapter into the appendix.  
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CHAPTER 2 
CHAPTER 2 The effect of dead and live marram (Ammophila arenaria) on spinifex (Spinifex sericeus) restoration plantings: a test of 

the stress gradient hypothesis. 

 

The effect of dead and live marram (Ammophila arenaria) 

on spinifex (Spinifex sericeus) restoration plantings: a test 

of the stress gradient hypothesis. 

 

 

 
 

A plot of herbicide-treated marram grass (mostly dead and dispersed) planted with spinifex (tagged with 
blue flagging tape). Photo taken 9 months after planting. 
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2.1 Introduction 

Coastal habitats are highly dynamic ecosystems, both spatially and temporally (Koch et 

al. 2009). Despite a high rate of natural disturbance caused by repeating cycles of 

erosion and reclamation of dunes, plant communities have distinct zonation of spatially 

defined species assemblages (Sykes and Wilson 1991). However, invasive species can 

displace native species through pre-emption of space (Sakai et al. 2001), and can alter 

the spatial structure of coastal plant communities (Santoro et al. 2012).  

Invasive species are considered one of the major threats to biodiversity and are also 

economically costly. For example invasive species cost the US economy in excess of        $ 

120 billion annually (Pimentel et al. 2005). Introduced species can impact native 

communities via altering food web linkages and linkage strengths: alien plants are 

predicted to lower insect productivity by 67 % on the Azores (Heleno et al. 2009) and on 

Christmas Island the introduction of yellow crazy ants altered several trophic levels 

(O’Dowd et al. 2003). The potentially far-reaching consequences of invasive species on 

native communities are still not entirely understood and conservation managers are 

struggling to mitigate the impacts of invasive species, especially when the native 

ecosystem engineers are replaced by invaders.  

In coastal dunes, survival rates of planted native sand-binders are relatively low, around 

40 %, as opposed to 80 % or more in forest ecosystems (Otsamo et al. 1997), which 

exhibit a more stable environment in comparison. Often it is necessary to eradicate the 

invasive species to restore ecosystem services with native species. Native species are 

often  less competitive than introduced species, and thus more research is needed to 

overcome this challenge (Pywell et al. 2003). Invasive pest plants can exhibit a higher 

stress tolerance compared to native species due to their population biology (Sakai et al. 

2001).  

Plantings at the coast are exposed to a stressful environment: wind that desiccates 

plants and mobile sand (potentially leading to lethal sand burial of photosynthetic 

structures or exposure of roots). There are high salinity levels, and low levels of soil 

development (Wilson and Sykes 1999). Additionally, (introduced) herbivores threaten 

plant survival. Planting trials on several New Zealand dune sites indicate native sand 
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binders fertilised with slow release fertilizer tablets have improved establishment 

compared to non-fertilised plants (Bergin and Kimberley 1999). 

The stress gradient hypothesis (SGH hereafter), first formulated by Bertness & Callaway, 

(1994) predicts that along an abiotic stress gradient facilitative plant-plant interactions 

will occur where environmental stress is severe, but more competitive interactions will 

occur where environmental stress lessens. The SGH has been tested for a range of 

habitats, including some examples from salt marshes and coastal dune systems (e.g. salt 

marshes in Spain (Alvarez-Rogel et al. 2006) and sand dunes in west Portugal (Maltez-

Mouro et al. 2010). However, results have been mixed.  Some studies found support, as 

shown for coastal trees and their interaction with sawgrass (Cladium jamaicense) in 

Japan (Poulter et al. 2008) and for native and introduced plants in northern Italy 

(Santoro et al. 2012).  However, others did not find conclusive evidence supporting the 

SGH and thus the debate is on-going (Maestre et al. 2005, 2006, 2009, Lortie and 

Callaway 2006). Recently, there is growing interest investigating whether the SGH 

distinguishes the type of stress experienced by a plant community. Two types of abiotic 

stress can be distinguished, which can occur simultaneously, but not necessarily in the 

same direction (Emery et al. 2001): 

1) Resource stress - this stressor affects the access of community members to 

biomass-increasing resources such as nutrient, water and light (Maestre et al. 

2009, Mason et al. 2012) and;  

2) Non-resource related stress posed by e.g. altered temperature, salinity, wind 

exposure and soil structure (Grime 1977, Maestre et al. 2009).  

In their refinement of the SGH, Maestre et al. (2009) pointed out the importance of 

identifying potentially annihilating mechanisms in stressful environments. Consequently, 

it was recommended (Emery et al. 2001, Maestre et al. 2009) to take into consideration 

the plant species’ adaptations to stress and its relative position on the stress gradient 

when testing the SGH where it has been previously rejected.  

The classic facilitative effect of nurse plants, which describes facilitation by a mature 

plant of one species on establishing plants of another species, was the foundation for 

the SGH. Nurse plant facilitation has been demonstrated for a wide range of habitats 

and plant communities: e.g. the facilitation of Agave deserti seedlings under Hilaria 
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rigida canopies (Franco and Nobel 1988); facilitation of a range of species under Bolax 

gummifera cushion plants in the Chilean Patagonian Andes (Cavieres et al. 2002); and 

the facilitation of Quercus douglasii seedlings by shrubs (Callaway 1992). Moreover, 

facilitation of plants can have widespread consequences: plants can expand their range 

which leads to an increase in species diversity in habitats that would otherwise be 

unsuitable for the facilitated species (Hacker and Gaines 1997). Plant-plant interactions 

are thought to be able to mitigate or escalate impacts (facilitation of invasive species) of 

environmental change and be one of the drivers of successional processes and 

evolutionary selection (review in Brooker, 2006). They are thought to act at different 

spatial scales (Forey et al. 2008). Plant-plant interactions play an important role in 

conservation and restoration: e.g. a meta-analysis of forest restoration with the help of 

shrubs as nurse plants (Gómez-Aparicio and Zamora 2004); and the use of the moss 

Polytrichum strictum as nurse plant to facilitate sphagnum moss in peat land restoration 

(Rochefort et al. 2007).  

Stress is an important driver for plant strategies and one of the structuring forces of the 

CSR triangle. The CSR triangle distinguishes between plants with adaptations to tolerate 

stress over long periods of time (S), ruderal selected species (R) and plants which 

evolved strong competitive abilities in relatively undisturbed conditions (C) (Grime 

1977). Competition is expected to dominate where stress lessens (Bertness and Callaway 

1994). Competition can be separated into types of competition either via species 

involved (i.e. interspecific competition and intraspecific competition) (Kaplan and Denno 

2007, Rich et al. 2012) or by mechanisms; i.e. interference competition  (Case and Gilpin 

1974, Human and Gordon 1996, Allstadt et al. 2012), exploitative competition (Brown et 

al. 1979) where species indirectly compete through a limiting resource, or apparent 

competition (Holt 1977), where another higher trophic level mitigates survival and/or 

growth of two otherwise not directly competing species. A typical example of apparent 

competition is the mitigation of fitness/growth of two plants by a shared enemy. 

Apparent competition is the focus of the third experimental chapter of my PhD-thesis 

(Chapter 5).  

To my knowledge interactions used for restoration have been mostly investigated 

between two or more live species, albeit there are some rare examples of documented 
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benefits of dead plants for insects in coastal dune systems (Cereto et al. 2011). The 

management of competitively superior invasive species to facilitate native plant 

recovery often results in dead invasive plants at the site of restoration and there is little 

knowledge if those dead structures can be used to a restoration advantage e.g. by 

providing shelter from sand burial and salt spray. Invasive species management is a very 

costly operation and options can include mechanical removal, biological control, 

chemical eradication or a combination of these methods (D’Antonio and Meyerson 

2002). Chemical treatment leaves dead plant structures at the site of restoration for at 

least a short period of time, unless mechanical removal follows.  

Coastal habitats rank as one of the most threatened habitats within New Zealand (Sykes 

and Wilson 1991, Konlechner and Hilton 2010). More recently, the ecosystem services 

provided by coastal sand dunes such as protection from storm surges, has received 

some attention (Koch et al. 2009). A detailed knowledge of the species and local 

condition is crucial to appropriately manage the ecosystem services, as well as for 

restoration purposes (see appendix with detailed species description).  

A substantial proportion of New Zealand’s dunes are dominated by introduced species  

(e.g. Gadgil and Ede 1998 and personal observation). Little remains of the original 

species compositions and vegetation sequences, as the introduction of marram grass 

(Ammophila arenaria) was very comprehensive and changed the dune landscape 

dramatically (Hilton et al. 2000). Gently sloping dunes with native sand binding grass 

spinifex (Spinifex sericeus) and pingao (Ficinia spiralis) that had become degraded by 

early human use and exploitation (e.g. grazing), were replaced by large scale exotic 

forestry plantations. This involved the planting of marram grass aimed at stabilising vast 

areas of mobile dunes systems in many regions (Gadgil 1983).  

 The aim of this chapter is to investigate whether it is possible to use the remaining dead 

plant structures of invasive marram grass, to assist in restoration of the native sand 

binding species, spinifex. The herbicide sprayed plant structures of marram grass are 

expected to persist for a limited time due to the high rate of sand movement and 

breakdown of plant material on such exposed dune sites. The exact period of time that 

dead material will persist is dependent on the initial cover thickness, rates of natural 

disturbance as well as the chemical formulation used. Coast care groups report longer 
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breakdown times for plants killed with the broad spectrum herbicide glyphosate (e.g. 

Roundup©) as opposed to the grass-specific herbicide haloxyfop (e.g. Gallant©) (Harley 

Spence, Dune Restoration Trust of NZ, pers comm.). Comparing spinifex planted within 

the live marram, with spinifex planted within dead plant structures of marram (i.e. killed 

by spraying with haloxyfop) will provide the opportunity to distinguish between 

competition and facilitation along an environmental stress gradient from fore dunes to 

back dunes.  It will also provide the opportunity to test the prediction of the stress 

gradient hypothesis which states along an abiotic stress gradient facilitative plant-plant 

interactions will occur where environmental stress is severe, but more competitive 

interactions will occur where environmental stress lessens (Bertness and Callaway 

1994).  

More specifically, I asked the following questions:  

I. Is the survival/growth of spinifex facilitated by dead marram grass structures when 

compared to plantings in bare sand which are traditionally used for restoration? 

II. Is live marram a facilitator or competitor of spinifex plantings? 

III. Does the balance between facilitation and competition change along an abiotic 

stress gradient?  

IV.  Does the surrounding type of plant cover change spinifex plant survival and/or 

growth? 
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2.2 Materials and Methods 

2.2.1 Study species 

Marram grass (Ammophila arenaria) 

 

Figure 2.1: Dense stand with flowering marram. 

 

 

Figure 2.2: Profiles of different sand dunes: a = marram dune, b = spinifex dune, c = pingao dune (Esler 

1970), adapted by (Jamieson 2010). 

 

Marram (Fig. 2.1) was deliberately introduced to New Zealand where it was used 

extensively to stabilise substantial areas of eroding sand dunes in many regions (Gadgil 

2006a). In fact, one of New Zealand’s foremost  botanists, Leonard Cockayne, advocated 

the use of marram grass to control drifting sands particularly along the dynamic parts of 

the west coast of the North Island (Cockayne 1911). While erosion of sand dunes is often 

natural and can be on a large scale, such as the transgressive dune fields of the 

Manawatu (Hesp 2001) and parts of the western coast of Stewart Island (Hart et al. 
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2012), human-induced factors such as pre-European burning of dune vegetation and the 

introduction of rabbits and grazing by early settlers, has resulted in significant loss of 

natural dune form and function and loss of indigenous biodiversity wherever marram 

grass has become established (see Appendix II). The pros and cons of the use of marram 

grass on New Zealand dunes has been reviewed by Gadgil (2006a).  

Marram grass inhabits both the fore dunes and back dunes of many dune systems in 

New Zealand (Gadgil 2006b). It is often the dominant sand binding species in the cooler 

regions from the middle North Island southwards, but it also persists as substantial 

stands on more dynamic coastlines along the west coast of the North Island where there 

are persisting onshore winds and a ready supply of sand (Bergin and FitzSimons 1997). 

Tall marram grass-induced fore dunes (Fig. 2.2) can be erosion prone and collapse 

depending on the local conditions and thus hinder native back dune development. 

Marram grass is known to form effective seed banks on Stewart Island (Konlechner and 

Hilton 2010). Furthermore, there is evidence that some marram stands can prevail for 

several decades (pers. communication, with DoC-staff in Christchurch). These stands are 

hard to control for conservation purposes, as densities are often too high, preventing 

spray from reaching all rhizomes when applied once. Hence a continuous management 

approach is necessary (Konlechner and Hilton 2010).  

Ecological management and conversion of marram-dominated dunes typically consists 

of the following: entire dunes can be reshaped with bulldozers - depending on the 

degradation of the coastal habitat. Thereby, the upper soil-containing layer is either so 

deeply buried that re-sprouting of alien species is prevented or it is completely removed, 

to allow plantings to grow in fresh, seed-free sand. The former method is a mechanical 

removal method. However, a very widely used method amongst land managers is to 

spray marram grass with herbicides. Two herbicides are commonly used for this 

management approach: Gallant (haloxyfop) (Dow AgroSciences 2000), which is a grass-

specific herbicide and can be advantageous if managing a pingao dune where marram 

grass has encroached, (pingao is a sedge and will not be affected). In contrast, Roundup 

(glyphosate) (Nufarm 2013), is a broad-spectrum herbicide that kills a wider range of 

plants, including most dicotyledonous plants. Anecdotally, the speed of breakdown of 

marram grass plant tissues after spraying can vary depending on which herbicide is used. 
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Spence (2011 pers. comm.) reported a longer period for marram grass tissue to 

breakdown when Gallant is used. He compared Gallant to Roundup when he used 

marram grass plantings to stabilize a mobile sand area on Great Barrier Island to allow 

later planting of spinifex on the dune that had been semi-stabilised by marram grass. For 

a few restoration areas around the Wellington South Coast, marram grass was sprayed 

and the dead structures were subsequently removed (i.e. chopped and left to wind 

deportation). To my knowledge, spraying and planting into sprayed marram grass has 

only been used for small experimental trials, but was not quantified before this 

experiment.  

 

Spinifex (Spinifex sericeus)  

 

Figure 2.3: Spinifex seedheads and spinifex plants (photo by Stephen Hartley). 

Spinifex is a sand-binder native to New Zealand and Australia (Fig. 2.3). In New Zealand 

the distribution is limited by temperature as spinifex does not tolerate frost very well 

(Bergin 2008b). Hence, natural distribution of spinifex only extends southward to 

Christchurch (Simpson 1974). Spinifex is more salt tolerant than marram grass, allowing 

it to grow closer to the sea (Esler 1970). It reproduces sexually, with separate male and 

female plants, and vegetatively via stolons. Unlike marram rhizomes, spinifex stolons are 

better at repairing front dune faces by outreaching stolons. Although yet to be 

researched, spinifex may have local varieties which are especially adapted to local 

conditions. Therefore nurseries try to source seeds locally. In the past one of the reasons 

why marram grass was chosen over spinifex is the latter’s tendency to grow less quickly 

(Wendelken 1974). Spinifex is also more vulnerable to human-induced disturbance than 
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marram grass. This includes browsing by pest animals such as rabbits, grazing and 

trampling by domestic stock, disturbance from both pedestrian and beach users, and 

competition from aggressive exotic species (Bergin 2011). Spinifex dunes are 

intermediate in height when compared to marram and pingao dunes (Esler 1970). 

Occasionally, land managers face problems in areas where only one sex of the plant is 

present (pers. comm. with DOC-staff and Coast Care Groups). To my knowledge the 

reason for this sex bias remains unknown.  

 

2.2.2 Field sites 

The large manipulative field experiment comprised a total of 11 transects across two 

field sites (Fig. 2.4) on the West Coast of the North Island, New Zealand. At both field 

sites, a mixture of introduced marram grass (Ammophila arenaria), the native sand 

binding grass spinifex (Spinifex sericeus) and the endemic sedge pingao (Ficinia spiralis) 

form the dune landscape. Both sites are of special value for conservation due to their 

inland nature and their specialised dune slack flora. Comprehensive monitoring data is 

not available for either of the two field sites. Different land use schemes have resulted in 

different weed pressures for both sites: Tapuarau (Fig. 2.5) has similar weed species as 

Whitiau, but with lower abundance, since all hinterland areas are actively managed by 

the owners of an adjacent dairy farm.while Whitiau (Fig. 2.6) is relatively weedy with 

Senecio elegans and acacias (Acacia longifolia) as problem species. This is due to large 

seed sources from the forest understory and logged areas that are currently out of use 

for forestry. Senecio glastifolius is a potential invader of the Whitiau dunes due to 

massive stands further inland. However, there are working bees to remove S. glastifolius 

at Whitiau to mitigate this invasion risk.  

Tapuraus’ beach is accreting while Whitiau has an eroding coastline (pers. comm. 

Campell, 2012). Both sites are exposed to strong south-westerly winds, but in 

comparison to Whitiau, Tapuarau is slightly more exposed to wind and has more and 

larger bare sand areas between vegetated dunes. 
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Figure 2.4: Both field sites are in relatively close proximity to Wanganui along the south western coast 

of NZ. Five transects were placed at Tapuarau and six at Whitiau. Data sourced from LINZ, Crown 

Copyright Reserved. 
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Figure 2.5: Transects (=T) and stations (=S) are displaced for Tapuarau. Sourced from LINZ. Crown 

Copyright Reserved. 



MARRAM A FACILITATOR OR COMPETITOR OF SPINIFEX? 

33 

 

Figure 2.6: Transects (=T) and stations (=S) at Whitiau. Sourced from LINZ Crown Copyright Reserved. 
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Dune classification used for this study:  

Fore dunes are defined as the first prominent dunes (hence also referred to as first 

dune) coming from the intertidal section of the beach going inland. Within the context 

of this experiment I refer to fore dunes as ‘station 1’. Fore dunes are typically species-

poor in comparison to dunes further landward. Fore dunes (station 1) are typically 

vegetated with a mixture of marram grass, spinifex and pingao and the occasional sand 

convolvulus (Calystegia soldanella). Contrasting to Tapuarau some areas at Whitiau also 

have herbaceous weeds such as S. elegans and dandelions at fore dunes (station 1), 

which typically appear on the second big dune (station 2) at Tapuarau. This difference in 

species occurrence is likely due to Whitiau’s eroding coast line. Mid dunes (also referred 

to as ‘station 2’ within this thesis), are defined as the second major dunes after the fore 

dunes. Second dunes are covered in a mixture of marram, spinifex, pingao and 

herbaceous weeds such as S. elegans, dandelions (Crepis capillaris, Leontodon 

taraxacoides and Taraxacum officinale), Sonchus oleraceus, Conyza canadensis), Fabacea 

spp. and rarely woody species at low densities. Occasionally, mid dunes at Tapuarau and 

Whitiau are lower than the fore dune (station 1) and third dune (back dune (= station 

3)). Back dunes at Whitiau and Tapuarau are defined as third dunes (= station 3) and 

typically vegetated with a mixture of marram grass, herbaceous species, other grasses 

and the first woody species including, but not limited to, species such as Muehlenbeckia 

complexa and Ozothamnus leptophyllus. Both field sites (Fig. 2.7 and Fig. 2.8) have 

prominent fore/mid and back dunes. Further details of the biotic and abiotic 

environment are presented in the Results (and Chapter 3 with regards to plant 

community composition).  
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Figure 2.7: Tapuarau: fore dune dominated by 

marram 

 

Figure 2.8: Whitiau: mid dune dominated by 

marram with occassional pingao 

 

2.2.3 Experimental setup 

Eleven transects were established along exposed dune fields near Wanganui’s west 

coast, lower North Island/New Zealand (six transects at Whitiau (Fig. 2.5) and five at 

Tapuarau (Fig. 2.6)). Each transect (Fig. 2.9) consisted of three stations (located on the 

first, second and third major dunes respectively). At each station six plots were 

established: three to receive spinifex plantings and three as unplanted controls - two of 

the three plots in each set were located within existing stands of marram while the third 

plot was located in bare sand (<10% vegetation cover). One of the marram-dominated 

plots was sprayed with the herbicide Gallant in late April/May 2011 while the other was 

left untreated (Table 2.1). Subsequently half of the plots were planted in late September 

2011 with 25 spinifex plants each (in total 2475 spinifex plants across 99 plots) (Fig. 2.10 

and Fig. 2.11). The distance between stations was set in an adaptive manner dependent 

on dune geomorphology and vegetation.    

Each plot consisted of a 3 x 3m square (9 m2), but only a 2 x 2 m (4 m2) quadrat nested 

within the plot was planted and used for the vegetation surveys, leaving a 50cm buffer 

to minimize any possible edge effects as vegetation patches varied in size. The size of     

2 x 2 m is commonly used to estimate cover in dune habitats (e.g. Pemadasa et al.1974) 

and was therefore deemed appropriate for this experiment, especially given that even at 

the third station shrubs consisted of smaller specimens and thus no larger plot size was 

needed.   

Tapuarau Whitiau 
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Spinifex plants used for planting were sourced from two different nurseries (Kii Tahi 

Nursery and Naturally Native). Although there appeared to be some initial differences in 

size of the plants from the two different nurseries, these differences were insignificant 

at the time of first monitoring (5-6 months after planting, see Appendix II). As a further 

precaution, the plants of one nursery were concentrated in the central nine planting 

positions to allow for a sufficient sample size in case differences between nurseries had 

persisted and plants on the outside would have not survived. Those from the other 

nursery were planted in the outer 16, so that each quadrat received the same ratio of 

plants (±1 plant) from the two different nurseries. Most measurements were 

aggregated across the quadrat prior to analysis. One slow release fertilizer tablet was 

buried with each plant for all 25 plantings for each plot, as is standard practice in New 

Zealand (Bergin and Kimberley 1999). 

 

 

Figure 2.9: The stress gradient hypothesis is shown within the context of my field experiment setup: “+” 

indicates an increase in environmental stress (also emphasized by an increasingly red colour). 

Consequently, “-“indicates lesser stress and would therefore be associated with more competition, if 

the SGH is true for coastal dunes in New Zealand. The stations displayed represent the stations that 

were chosen for representing the expected environmental abiotic stress gradient, which is closely tied 

with the vegetation present as shown in the pictures. 

 



MARRAM A FACILITATOR OR COMPETITOR OF SPINIFEX? 

37 

Table 2.1: List of plot-level treatments (six plots per station) and associated abbreviations. 

Bare sand (B) Live marram (M) Sprayed marram (S) 

Control (no plantings) (BN) Control (no spraying & no plantings) (MN) Control (no plantings) (SN) 

Spinifex plantings (BP) Spinifex plantings (MP) Spinifex plantings (SP) 

 

 

 

Figure 2.10: Schematic drawing showing one 3 x 3 m quadrat plot with the inner 2 x 2 m quadrat with 25 

plants. 

 

 

Figure 2.11: Planting examples at fore dune plots for all treatments at the time of planting in late 

September 2011. 
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Environmental gradients 

Climate 

Both field sites experience a similar climate and are exposed to strong winds, especially 

in winter, where storms can reshape the dunes significantly over short time periods (Fig. 

2.11 for monthly rainfall and min and max temperature averages ).  

 

Figure 2.12: Mean monthly rainfall, minimum and maximum temperature for Wanganui. Graph based on 
statistics provided by NIWA (2013). 

 

Soil measurements 

Sand samples were collected from four out of five transects at Tapuarau from 10 cm 

depth for bare sand and for marram grass covered areas at each station. Samples were 

taken three times, but only the last dataset was used in the analysis due to a failure of 

the first conductivity meter that was used. Samples were taken from live marram, not 

sprayed marram plots. These samples were used for conductivity and organic matter 

determination. I used 20 g of soil and filled the volume of a 70 ml pottle (small 

container) up with distilled water, stirring the contents with a spatula for 30 seconds 

prior to measuring conductivity (conductivity meter model iIQ350, SIEMENS).  

The percent of organic matter in the soil was estimated by the combustion method, 

comparing dry weights of samples before and after combustion in a muffle oven for 24 

hours at 400 degree Celsius.  
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Sand movement (burial and erosion) was measured with bamboo sticks. The bamboo 

sticks were used to mark experimental plots. The height of the sticks was measured 

when the plots were established. It was re-measured to determine sand burial regularly. 

For a monitoring schedule see Table 2.2.   

Topography:  

Dune profiles reflect the wind and sand dynamics of a beach, and the interactive effects 

of vegetation and geomorphological processes (Baas 2002). I was interested in relating 

my ‘station’ to the overall dune profiles and thus recorded the dune profiles with 

differential GPS from Trimble along several transects.  

Slope and orientation of plots could potentially influence plant growth due to different 

exposure to salt spray and wind. Therefore I chose plots facing the same direction 

(seaward). The slope however, varies and is naturally lower at bare plots due to sand 

movements (personal observation). Therefore the slope was measured in each plot at 

the steepest point and in the middle of the plot, and the average was used for the 

analysis.  

 

Assessment of vegetation: 

Spinifex plantings: 

Vegetation cover percentages were estimated for all plots before planting at the time of 

planting. Spinifex plants were planted in the last week of September 2011, 4-5 months 

after spraying of marram plots. Spinifex plants were randomly allocated to transects and 

stations. A more detailed vegetation survey was conducted for all plots at at Whitiau 

shortly after planting. For transect No 6 at Whitiau all planted spinifex plants were 

measured to provide an exemplary sample. The measures were: vigour (a subjective 

health score ranging from 1-5, with 1 = plant barely alive and 5 = plant in perfect health), 

number of leaves, height (only up to live parts of leaves) and the number of stems.  

These were recorded to determine the characteristics of the plantings as a base line for 

determining growth. There were no significant differences between treatments at the 

time of planting. Survival checks of plantings were first conducted in early November 
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2011, about a month after planting. In late February 2012 the five transects at Tapuarau 

were monitored and the six transects at Whitiau in March 2012.  

Survival was recorded by counting all plants with at least one partially green leaf out of 

25. Photos were taken of each plot. The number of surviving spinifex plants was counted 

for all planted plots, and measurements of individual plants were taken for up to 10 

spinifex plants per planted plot (less only if fewer than 10 plants out of 25 survived). For 

the statistical analysis the data set from June 2012 was used as it was the oldest data set 

available prior to the large destructive winter storm which eroded the front stations of a 

couple of transects at Whitiau.  

Survival is not always a sensitive measure of stress (Maestre et al. 2005), hence growth 

measurements were also incorporated in the research design: plant height, minimum 

and maximum width, presence/absence of stolons, stolon length (if present) and stolon 

direction. For each plant I estimated the number of leaves by counting bunches of 

approximately 10 leaves. If the plant showed dieback, browsing or insect attacks this 

was also noted and distinguished in three different units of severity from being present, 

medium and high. The basal circumference (also referred to as breadth interchangeably) 

of the plant stems and leaves above sand cover was recorded using a measuring string. I 

incorporated this measure of growth as as I felt it gave a more reliable representation of 

plant size compared to breadth higher up the plant (Fig 2.13). Plant circumference 

included stolons which were rooted.  

 

 
Figure 2.13: Difference between size measurements (width shown as height at the end of the 

experiment did not vary much due to the species height constraints). With size, plants with few leaves 

could achieve similar size dimensions as plants with the same width but a lot more leaves. 

Circumference measured at the bottom of the plants takes this into consideration as well as stolon 

growth. 
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Survival, vegetation cover and sand burial were monitored in June. The last 

comprehensive monitoring trip (wind, survival, vegetation cover and plant counts, sand 

burial, dune profiles) was conducted in November 2012 (Tapuarau) and December 2012 

(Whitiau). An overview of the monitoring times and what was monitored is given in 

Table 2.2.  
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Table 2.2: Monitoring schedule for Whitiau and Tapuarau. Monitoring times are given for spinifex plant 

survival, spinifex plant growth, sand burial, vegetation cover, plant counts, dune profiling, soil samples 

and wind measurements. X = was measured, - = not measured.  

 

Field site Date Survival Growth  Sand 

burial 

Vegetation 

cover 

Plant 

counts 

Dune 

profiles 

Soil 

samples 

Tapuarau Apr '11  NA NA x x - - - 

Sep '11 NA NA x x - - - 

Nov '11 X - x - - - - 

Feb '12 X x x x x - x 

Jun '12 X - x x - - - 

  Nov '12 X x x x x x x 

Whitiau Apr'11  NA NA x x - - - 

Sep '11 NA NA x x - - - 

Nov '11 X - x - - - - 

Mar '12 X x x x x - x 

Jun '12 X - x x - - x 

  Dec '12 X x x x x x x 

 

Vegetation surveys:  

In order to avoid variation due to observer biases, I estimated vegetation cover for all 

plants on all plots (rounding to the nearest 5 %) and counted the individuals for each 

species where possible (excluding rhizome reproducing species such as grasses).  I used 

5% as a lower bound i.e. if there was one specimen, it would account for five per cent 

cover even if the actual cover was presumably less than 5 %. Due to time constraints in 

the field and a lack of reproductive traits for identification, it was not always possible to 

identify taxa to species level. Hence vegetation was estimated for the 

dandelion/hawkbeard species collectively as well as for introduced legumes. For those 

species groups, relative dominance of the different contributing taxa was estimated for 

each field site.  
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2.2.4 Data analysis 

I used ordination via Principal Coordinate Analysis (PcoA), also known as metric 

multidimensional scaling (Zuur et al. 2007) to illustrate differences for transects and 

stations regarding the stress gradient abiotic measurements. The field experiment was 

carried out over two field sites, resulting in transects at one field sites being more 

closely related than their counterparts at the other field site. Therefore, a modeling 

approach that takes spatial nestedness into consideration was necessary for each 

transect. Hierachical linear models (HLMs), also called mixed effects models, were used 

to examine the effects of the treatments and the effects of the assumed stress gradient 

represented by the three stations. I used the functions ‘lme’ and ‘lmer’ from the R-

packages “nlme” (Pinheiro et al., 2012) and “lme4” (Bates et al., 2012) respectively, 

which were used for modeling the results. LMEs assume a near normal distribution of 

residuals for valid inference (Zuur et al. 2009). Therefore, original data were tested for 

normal distribution split by factor levels. Where data were non-normal a ‘square root 

transformation’ was used for counts, the arcsin-squareroot transformation for percent 

cover estimates and a log transformation for other measured variables (Osborne 2002). 

Where data after transformation still failed to meet criteria of normal distribution the 

model was still applied, and residuals were tested for normality with the Shapiro-Wilk 

test. If another distribution could be recognized graphically, models were built using the 

‘lmer’ function (GLMER), where it is possible to incorporate a non-normal distribution of 

data and residuals by choosing the distribution family accordingly. However, some 

models failed to show a normal distribution despite transformation. Nevertheless, linear 

models are known to be relatively robust to deviations from normal distribution and 

minor deviations from normality are frequently ignored in research (Sengupta 

2012).Thus the models were still used if the departure from normality was not 

considered severe. I used June 2012 survival for the LME, as I lost entire stations later on 

in a winter storm. The storm caused erosion which was well beyond normal erosion and 

therefore would have skewed the data unreasonably. I illustrate survival over the course 

of the experiment to give some indication of how plants developed in the different 

treatments. Plant size was calculated using a volume-based size formula converted back 

to a linear dimension and log-transformed to normalise the values:  



CHAPTER 2 

44 

(���(ℎ���ℎ� ∗ ((
����
�ℎ + 
����
�ℎ)/2)²) �/�).  

Initial models were applied to test for an interaction between the predictors and field 

site. If any of the interaction terms with field site were significant, the two field sites 

were analysed separately. If none of the interaction terms were significant, data from 

both field sites were analysed together in a single model, with field site as a main effect 

only. In theory “site” could have been used as a random factor, but it would not have 

saved any degrees of freedom and would have added to the complexity of the nested 

random factors already included – which can create problems in model fitting when 

three or more levels are being fitted. A complete overview of all final LMEs is shown in 

Table 2.3. Models were fitted using maximum likelihood and F-ratios examined to 

determine the significance of each predictor variable. The amount of live pre-existing 

marram grass cover and other vegetative cover were used as covariates. My a priori 

interest was a test of the stress gradient hypothesis (SGH) and for that to be proven I 

require a significant interaction between station and treatment. Underwood (2000) 

commented on the necessity carefully constructed a priori tests of null hypotheses 

opposed to solely relying on statistical tests only. Underwood (1997) also emphasized 

the need to use logic when interpreting ANOVA results. For the SGH this means if 

significance of the interaction is found, examination of graphs is then sufficient to tell 

whether or not the pattern is in accordance with the SGH. While post hoc tests can 

increase the understanding of significant main effects their use for exploring significant 

interaction effects is considered controversial and highly context dependent (Martinez 

2013). My experiments exhibit a level of complexity in the interaction of treatments (e.g. 

nine interaction combinations for Chapter 2) which make the use of newly developed 

post hoc tests for LMEs inadequate.  

All statistical analyses was performed using the open source program ‘R 2.15.1’ (R Core 

Team, 2012). Where boxplots were used, boxes and whiskers are by R default (boxes 

encompass the interquartile range (IQR). Whiskers extend to the end of the range 

except for the outliers (>1.5 times the range). A user defined function was applied to 

create graphs comparing the treatments relative to bare sand (see Appendix II).  
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Table 2.3: Models used in this chapter. LME= linear mixed effect model, GLMER= generalized linear 

mixed-effects Models. T and W indicate the field sites Tapuarau and Whitiau respectively where the 

models were used separately for each field site.  

Field sites  model  response variable  unit predictors random factors 

T, W LME sand movement 
change in 
% treatment*station transect 

T, W LME conductivity  m/Si treatment*station transect 

T, W 
LME June inner plant 

survival 
counts treatment*station transect\plotID 

T, W 
LME June outer plant 

survival 
counts treatment*station transect\plotID 

T, W 
LME November outer 

plant survival 
counts treatment*station transect\plotID 

T, W 
LME Nov inner plant 

survival 
counts treatment*station transect\plotID 

T, W GLMER June plant size cm treatment*station transect\plotID 

both GLMER Nov plant size cm treatment*station transect\plotID 

T, W LME Feb circumference cm treatment*station transect\plotID 

T, W LME Nov circumference cm treatment*station transect\plotID 

T, W LME Nov stolons counts treatment*station transect\plotID 

T, W 

 

LME Nov circumference cm treatment*station  

covariable: Marram 
grass from April 
(%cover estimates) 

transect\plotID 
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2.3 Results 

Dune profiles 

Dune profiles are displayed in Figure 2.14. Profiles for Whitiau typically started on top of 

the front cliff (Transect 6 - 10).  

 

Figure 2.14: Dune profiles of transect 1, 3, 4 and 5 at Tapuarau and transect 6, 7, 8 and 10. Red dots 

above dune profiles indicate approximate station locations.  
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Differences between spinifex nurseries 

At the time of the first monitoring there were no significant differences for height and 

largest leaf between the nurseries. Therefore nursery origin was not included as a factor 

in subsequent models. 

 

2.3.1 Stress gradient measurements 

A PCoA of conductivity, sand movement and organic matter showed differences 

between stations (Appendix, Fig. A 11.3). 

Sand movement and organic matter showed significant interactions between field site 

and a covariate and therefore both response variables were analysed separately per 

field site. Both sites were analysed together for conductivity and slope as these did not 

show any interaction between field site and any of the predictors.  

Conductivity 

Conductivity was significantly different between stations (Table 2.4, Figure 2.15) but did 

not differ significantly between treatments, field sites nor the interaction between 

treatment and station.  

Table 2.4: Summary of a LME for conductivity (data from both field sites combined). The two levels of 

treatment were marram and bare sand. Transect was included as a random effect. 

Response variable Predictor numDF denDF F-value p-value 

conductivity ( µS/m) field site 1 5 5.123 0.073 

treatment 1 32 0.372 0.547 

station 1 32 8.885 0.006 

  treatment:station 1 32 0.185 0.670 
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Figure 2.15: Conductivity (μS/m) as a function of station (from fore dune to back dune) and vegetation 

cover treatment (Marram or Bare sand). N = 24 plots per treatment combination combined across both 

field sites for marram and bare plots. Whiskers extend to the end of the range except when there are 

outliers (where outliers are values > 1.5 times the IQR beyond the box). 

 

Organic matter 

Distance to the sea (station) was a significant predictor of organic matter at Whitiau (Table 2.5). 

Organic matter increased with distance to the sea (Fig 2.16, Table 2.5).  

Table 2.5: Summary of LME for organic matter in % (data separated by field site). Transect was included 

as a random effect. 

 

Field site Response variable Predictor numDF denDF F-value p-value 

Tapuarau organic matter treatment 1 17 1.424 0.249 

 (%) station 1 17 0.856 0.368 

  treatment:station 1 17 1.078 0.314 

Whitiau  treatment 1 17 0.206 0.656 

station 1 17 15.717 0.001 

    treatment:station 1 17 0.994 0.333 

A similar trend (non-significant) was also evident across the bare plots at Tapuarau, but 

not among the marram plots (Figure 2.16 and Table 2.5).  
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Figure 2.16: Organic matter from sand samples from bare sand plots (left graph) and from marram plots 

(right graph) per station (station 1 = closest to the sea, station 2 = intermediate distance to the sea, 

station 3 = furthest away from the sea). Samples are split up by field site (upper graph Tapuarau, lower 

graph Whitiau). Note the difference in scale for the y-axis.  
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Sand movement 

Tapuarau 

Sand movement at Tapuarau showed significant effects of the predictor variables 

‘treatment’ and ‘station’ (Table 2.6) but not for the interaction between both (Table 

2.6). Sand movement varied between field sites: for Tapuarau sand movements were 

most variable at second sprayed plots, followed by first bare plots (Fig. 2.17).  

Whitiau 

No significant effects of ‘treatment’ or ‘station’ were found for sand movement at 

Whitiau. 

Table 2.6: Summary of a LME with sand movement change in % between February 2012 and November 

2012. Transect was included as a random factor. Both planted and unplanted plots were used for this 

LME. Treatment had six levels (i.e. planted marram, unplanted marram, planted sprayed marram and 

unplanted sprayed marram, planted bare sand and unplanted bare sand).  

Field site response variable predictor numDF denDF F-value p-value 

Tapuarau sand change in % treatment 5 64 3.202 0.012 

  station 1 64 4.689 0.034 

  treatment×station 5 64 1.357 0.252 

Whitiau sand change in % treatment 5 40 1.039 0.408 

  station 1 40 2.142 0.151 

  treatment:station 5 40 0.370 0.866 
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Figure 2.17: Sand movement for station 1, 2, 3 (from left to right) for each treatment (B = bare sand, M = 

marram, S = Sprayed marram) for plots at Tapuarau (upper graph) and Whitiau (lower graph) between 

February 2012 and November 2012. Movement change is given in % and comprises planted and 

unplanted plots. 

 

Slope 

Slope was significantly predicted by the location of the plot (station), the type of 

treatment and the interaction between the two. (Table 2.7). There was no significant 

effect of field sites (Table 2.7). 

Table 2.7: Summary of LME for slope in cm (data from both field sites combined). Transect was included 

as a random effect. 

 

Response variable predictor numDF denDF F-value p-value 

Slope in cm field site 1 9 2.437 0.153 

treatment 2 931 188.360 < 0.001 

station 1 931 151.045 < 0.001 

  treatment:station 2 931 22.062 < 0.001 

Dune slope varied greatly among plots (Fig. 2.18 and Fig. 2.19). The steepest slopes were 

measured on live marram plots, in particular at the front station (i.e. station 1). The 

second steepest slopes were measured on sprayed marram plots followed by bare plots 

(Fig. 2.19).  
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Figure 2.18: Slope in cm/m from the sand plot per 

station in Nov/Dec 2012 (station 1 = closest to the 

sea, station 2 = intermediate distance to the sea, 

station 3 = furthest away from the sea).  

 

Figure 2.19: Slope in cm/m from the sand plot per 

station in Nov/Dec 2012 for marram and sprayed 

plots relative to bare sand. Station 1 = closest to 

sea, station 2 = intermediate, station 3 = furthest 

away from the sea). Errorbars are +/-SE. 
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Erosion and accretion  

Signs of erosion and accretion were visible throughout the experiment at Whitiau and 

Tapuarau respectively (Fig. 2.20). While the accretion was not very visible on photos, 

Figure 2.20 shows the erosion of a cliff of station one (transect 6) at Whitiau and the 

gradual burial of one public sign (E-F).  

 

  

Figure 2.20: Erosion at Whitiau. Picture A shows the first station of transect 6 at Whitiau before winter 

2012 and picture B shows the same location after the winter storms in December 2012. Picture C and D 

show the cliff face of the eroded first station at transect 6. Picture E and F show a public sign, which was 

at the time of construction clearly above the sand layer. The sand blocking the sign is from a nearby 

eroding cliff. 

 

A B 

F E 

D C 
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2.3.2 Spinifex measurements 

In the following analyses there are only three levels of ‘treatment’ (planting of spinifex 

into (i) herbicide-sprayed, dead marram (ii) live marram and (iii) bare sand). For obvious 

reasons, spinifex survival and growth could not be measured in plots that did not receive 

spinifex plantings. 

Spinifex survival  

Spinifex survival differed significantly between the two field sites and with the location 

of the plot within each field site. However ‘treatment’ had no significant effect on 

survival and none of the interaction terms were significant (Table 2.8). Sites were 

combined for analysis (as there was no significant interaction between site and the 

other variables) but have been plotted separately because there is a main effect of site 

survival results for Tapuarau and Whitiau respectively (Fig. 2.21, Fig. 2.22 and Fig. 2.23).     

Table 2.8: Summary of LME for June inner plant survival (data from both field sites combined). Transect 

and plot ID were included as random effects. 

 

Response variable Predictor numDF denDF F-value p-value 

Survival  Fieldsite 1 9 8.9947 0.015 

(out of 9) treatment 2 71 0.2238 0.8 

station 1 71 6.7032 0.0117 

  treatment:station 2 71 0.8115 0.4483 

 

Survival decreased over time (Fig. 2.21, Fig. 2.22 and Fig. 2.23) and was generally higher 

at stations further away from the sea.  
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Figure 2.21: Survival out of the nine inner plants is shown for Tapuarau one month after planting 

(October 2011), five months after planting (February 2012), nine months after planting (June 2012) and 

thirteen months after planting (November 2013). The boxplots are split up between the different 

treatments (B = bare sand, M = live marram, S = sprayed marram). Station 1 is closest to the sea (fore 

dune), station 2 = intermediate distance to the sea (mid-dunes) and station 3 is furthest away from the 

sea (back-dune). 
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Figure 2.22: Survival out of the nine inner plants is shown for Whitiau one month after planting 

(October 2011), six months after planting (March 2012), nine months after planting (June 2012) and 14 

months after planting (December 2013). The boxplots are split up between the different treatments (B = 

bare sand, M = live marram, S = sprayed marram). Station 1 is closest to the sea (fore dune), station 2 = 

intermediate distance to the sea (mid-dunes) and station 3 is furthest away from the sea (back-dune). 

 

 

Figure 2.23: Shows inner plant survival (out of 9) for live marram and sprayed dead marram plots 

relative to bare sand. Error bars indicate +/- SE. Station refers to the location in reference to the sea 

(Station 1 = closest to sea, station 2 = intermediate, station 3 = furthest away from the sea). Plant 

counts are from June 2012, 9 months after planting. 
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Spinifex growth 

Examples of spinifex growth are shown in Figure 2.24.  

 

Figure 2.24: Photos of typical plots along the three different stations along a transect. First row shows 

plantings in bare sand (BP), in live marram (MP) and in sprayed marram (SP). The same order of plot 

treatment is shown for the second station in the second row and the third station in the third row 

respectively. 

  

1st station BP 2nd station BP 3rd station BP 

1st station MP 2nd station MP 3rd station MP 

1st station SP 2nd station SP 3rd station SP 
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Size comparison within and among stations  

Plant size showed a poisson distribution therefore, a GLMER was used as a model 

instead of a LME. The Nov/Dec dataset showed treatment as the only significant 

predictors for spinifex plant size (Table2.9). Station showed a trend, but it was not 

significant (Table 2.9). 

Table 2.9: Summary of a GLMER for log-transformed plant size (data from both field sites combined). 

Transect and plot ID were included as random factors, and a poisson distribution of errors was assumed. 

 

Response variable Predictor Chisq Df Pr(>Chisq) 

Plant size treatment 10.268 2 0.006 

November station 2.821 1 0.093 

 treatment:station 0.631 2 0.729 

 

Plant size differed significantly between treatments: in general growth was greater in 

bare sand than in live or dead marram. Growth was also generally greater closer to the 

sea (Fig. 2.25 and Fig. 2.26).  

 

 

Figure 2.25: Log-transformed plant size is shown per 

station (station 1 = closest to the sea, station 2 = 

intermediate distance to the sea, station 3 = furthest away 

from the sea) for both field sites split up by treatment (B = 

bare sand, M = live marram, S = sprayed marram). 

 

Figure 2.26: Plant size is shown for marram and sprayed 

plots relative to bare sand. Station 1 = closest to sea, 

station 2 = intermediate, station 3 = furthest away from 

the sea). Plant size measurements are from November 

2012. Error bars indicate +/- SE. 
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Spinifex growth and the influence of pre-existing marram grass cover 

LME model results:  

Spinifex growth, also referred to as breadth (as measured by log-basal circumference 12 

months after planting), was significantly affected by the interaction of treatment with 

station and pre-existing marram grass cover for both field sites. At Tapuarau all tested 

explanatory variables were significant apart from station were a trend was evident with 

p < 0.1 (Table 2.10). The interaction between pre-exisiting marram grass cover and 

station was significant (Table 2.10). ‘Slope’ did not improve the overall model where 

spinifex growth and survival parameters were accounted for. Hence it was deleted from 

the model.  

Table 2.10: ANOVA summary of a LME for log-transformed breadth in cm (data analysed separately per 

field site). Transect and plot ID were included as random effects. 

 

Field site 
Response 

variable 
Predictor numDF denDF F-value 

p-

value 

Tapuarau breadth  initial marram cover 1 29 26.023 <.0001 

 log  treatment 2 29 6.208 0.006 

 transformed  station 1 29 3.477 0.072 

Cm initial marram cover:station 1 29 5.556 0.025 

treatment:station 2 29 3.804 0.034 

Whitiau " " initial marram cover 1 27 34.904 <.0001 

treatment 2 27 12.887 0.000 

station 1 27 0.887 0.355 

initial marram cover:station 1 27 2.135 0.156 

    treatment:station 2 27 6.152 0.006 
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Tapuarau 

The sprayed planted plots at the first station showed the highest overall circumference 

values for Tapuarau and the lowest for first and second station marram plots (Fig. 2.27). 

Bare sand plots showed higher absolute values for the November measurements 

compared to the February monitoring results. In both monitoring rounds, plants in bare 

sand in first and second station plots had similar circumferences (Fig 2.27 and Fig 2.28).  

Whitiau 

Spinifex plants in the bare sand second station plots had the largest circumference 

values compared to all other treatments and stations in both monitoring rounds (March 

and December 2012) (Fig. 2.27). Values for the bare sand planted plots remained similar 

between monitoring rounds except that the number of plots available for the first 

station bare sand plots dropped due to erosion and thus some planted plots were lost 

(Fig. 2.27). While marram planted plots showed the lowest circumference values for 

both monitoring rounds compared to the other treatments, they were relatively 

homogenous between station during the March 2012 monitoring (Fig. 2.27). Sprayed 

planted plots showed no significant differences between stations for March and values 

for first station sprayed plots were lower than second and third station circumferences 

in Nov/Dec2012. The third station showed the highest values for sprayed planted plots 

in December.  

Relative log circumference differences compared to bare plots 

Only first station sprayed plots showed higher relative mean values compared to bare 

sand plots for circumference in February/March 2012 (Fig. 2.28). All marram plots 

regardless of the station showed lower values compared to sprayed plots. However, the 

pattern was different in November/December 2012: sprayed first stations showed 

higher values than bare plots. Second sprayed and marram plots showed similar low 

values for circumference in comparison to bare sand (Fig. 2.28).  

All marram and sprayed plots at Whitiau showed lower mean values for circumference 

of spinifex plants compared to bare sand regardless of the station in March 2012 (Fig. 

2.28). All marram circumference means were lower compared to bare sand. Sprayed 

plots showed lower values for breadth in comparison to bare sand (Figure 2.28).  
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Figure 2.27: Log-circumference of spinifex plants is shown for Tapuarau in (a) February 2012 , (b) 

November 2012, (c) Whitiau in March 2012 and (d) December 2012 for bare sand, marram and sprayed 

plots across all stations. Station 1 = closest to sea, station 2 = intermediate, station 3 = furthest away 

from sea. 
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Figure 2.28: Relative difference for growth (circumference) is plotted for planted marram and planted 

sprayed plots versus planted bare plots. Error bars show +/- SE. Station 1 = closest to sea, station 2 = 

intermediate, station 3 = furthest away from sea.    

 

Spinifex circumference and the correlation with pre-existing marram grass cover was 

examined: a negative correlation was found for all treatments at Tapuarau and Whitiau 

(Fig. 2.29).  

  
Figure 2.29: Log-stransformed circumference of spinifex plants in November is shown against initial 

marram cover in April (when plots were chosen). Graph a) shows values for Tapuarau and b) for 

Whitiau. All plots are shown. 
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The relationship between log-transformed circumference and pre-existing marram grass 

cover (transformed with the arcsine square root fuction) was further split up between 

live and sprayed marram grass (Fig. 2.30). The negative correlation between between 

log-transformed circumference and pre-existing marram grass cover (transformed with 

the arcsine square root fuction) was stronger at Tapuarau compared to Whitiau (Fig. 

2.30). For sprayed marram grass as the treatment the LM-curve was steeper compared 

to live marram: higher values for log circumference were found (Fig. 2.30) for lower 

arcsine transformed marram but also remained higher for highest marram values at 

Tapuarau compared to data collected at Whitiau (Fig 2.30). 

 

 
Figure 2.30: Log (circumference) of planted spinifex versus pre-existing marram grass (April 2011). 

Spinifex circumference was measured in Nov/Dec 2012 and marram cover in April 2011. Graph a) shows 

live marram plots for Tapuarau and b) for Whitiau while sprayed marram is shown for Tapuarau in 

graph c) and Whitiau in graph d). 
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Other growth and health records of spinifex plantings  

The number of stolons showed differing response patterns for each field site and was 

thus analysed separately. The LME showed no significant effects of station or the 

interaction between treatment and station for stolon counts. However, the effect of 

treatment was extremely close to statistical significance and may warrant further 

investigation (Table 2.11 and Figure 2.31). In general, the number of stolons was higher 

in sprayed marram and bare sand plots compared to live marram plots (Figure 2.31).  

Table 2.11: Summary of a LME for stolon counts Nov/Dec 2012. Transect and plot ID were included as 

random effects. 

 

Field site Response variable predictor numDF denDF F-value p-value 

Tapuarau stolon counts treatment 2 28 3.335 0.050 

Nov/Dec'12 station 2 28 1.845 0.177 
 treatment:station 4 28 0.856 0.502 

Whitiau treatment 2 27 3.256 0.054 

station 2 27 1.596 0.221 

    treatment:station 4 27 1.938 0.133 

 
Figure 2.31: Square root transformed counts of stolons of spinifex plants per station is shown for the 

different treatments (i.e. B = bare sand, M = marram and S = sprayed marram) seperately for Tapuarau 

(upper graph) and Whitiau (lower graph). 
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The stolon length data was too sparse for parametric testing. The longest stolons had 

grown 3-5 metres in 12 months, but for those it was not possible to distinguish between 

plant specimens anymore. No stolons were recorded for spinifex planted among live 

marram.  

2.3.2.5 Spinifex flowers 

Only a few flowers were found across treatments across field sites. Most flowers 

(highest single value was 18 flowers per plot) were recorded for second bare stations at 

Tapuarau. All other stations and treatments at Whitiau only showed a few outliers.  

2.3.2.6 Browsing, dieback and insect damage 

Browsing 

Browsing was only observed at Whitiau and only twice at second station sprayed plots 

with medium browsing score.  

Dieback 

Spinifex plant dieback showed a significant effect for station, with no significant 

interaction between the two in the LME (Table 2.12).  

Table 2.12: Summary of a LME for dieback scores in Nov/Dec 2012. Transect and plot ID were used as 

random effects. 

 

Response variable predictor numDF denDF F-value p-value 

Dieback  Field site 1 9 0.768 0.404 

score treatment 2 63 3.084 0.053 

station 2 63 5.877 0.005 

  treatment:station 4 63 0.844 0.503 

 

Dieback medians were generally higher at back stations (Fig. 2.32). Dieback varied across 

field sites and between stations (Fig. 2.32 and 2.33): Dieback was higher among live and 

sprayed marram grass compared to bare sand (Fig. 2.33 and Table 2.12).  
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Figure 2.32: Dieback scores ranging from 1 - 3  (1 = 

present, 2 = medium, 3 = high) are shown per field 

site (a= Tapuarau in Nov’12 and b = Whitiau in 

Dec’12) per station and treatment (B = bare sand, 

M = marram, S = sprayed). 

 
Figure 2.33: Relative dieback scores in comparison 

to bare plots. Graph c shows relative dieback 

scores +/- SE for Tapuarau Nov’12. Graph d shows 

relative dieback scores +/- SE for Whitiau Dec’12. 
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Insect damage  

There was hardly any insect damage on plots at either field site (Table 2.13).  

Table 2.13: Insect damage is shown with insect damage scores (1= present, 2 = medium, 3 =high) for 

both field sites (Tapuarau and Whitiau) separated by station and treatment. 

 

Location and treatment Station 1 Station 2 Station 3 

Tapuarau 0 0 0 

Bare 1 0 0 

Marram  0 0 0 

Sprayed 2 2x1 2 

Whitiau       

Bare 0 0 1 

Marram  1 0 0 

Sprayed 0 1 0 

 

Overview of all LMEs and GLMERS 

Despite some significant results of either treatment or station only a few models showed 

significant results for the interaction between treatment and station: Slope***; 

breadth* (Table 2.14 and Table 2.15).  

 

Table 2.14: An overview of all model results used for stress gradient measurements.  

 

Model Response variable field site 

in model 

field 

site 

treatment station treatment*station 

LME sand change in % Tapuarau NA * * ns 

" " Whitiau NA ns ns ns 

LME conductivity µ/S both <0.1 ** ns ns 

LME organic matter in % Tapuarau NA ns ns ns 

" " Whitiau NA ns ** ns 

LME slope in cm both ns *** *** *** 
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Table 2.15: An overview of all model results used for spinifex measurements. Table 2.3 on page 50 

shows the detailed model terms. 

 

Model Response 

variable 

field site 

in model 

field 

site 

treatment station treatment*station pre-

existing 

marram 

LME June inner 
survival 

both * ns ** ns NA 

LME Nov inner 
survival 

both ns ns ns ns ns 

GLMER plant size 
Nov/Dec'12 

 ns ** ns ns NA 

LME breadth log-
transformed 

Tapuarau NA ** * * * 

" " Whitiau NA *** ns * ns 

LME dieback 
scores  

both ns <0.1 ** ns NA 
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2.4 Discussion 

This chapter investigated the interactions between native and introduced dune-building 

grasses along an environmental stress gradient. The results showed that growth 

(including circumference, number of stolons and plant size) was dependent on plant 

treatment and frequently showed higher values for sprayed plots compared to; live 

marram plots at all stations and bare marram plots at first stations. Measurements of 

plant growth showed greater sensitivity to treatment effects than did survival. Spinifex 

planted into bare sand plots tended to have better growth rates further away from the 

sea, while spinifex planted in sprayed plots close to the sea showed better growth 

compared to sprayed plots further back. More plots were lost due to erosion at Whitiau 

compared to Tapuarau. The pre-existing cover of marram grass was shown to have a 

great influence on the interaction between dead marram grass and spinifex plantings 

and the magnitude of the effect altered with distance from the sea. This was in line with 

predictions of the SGH i.e. growth was more likely to be facilitated by the presence of 

marram in stations close to the sea and more likely to be inhibited by the presence of 

marram further from the sea. High initial marram grass cover exhibited a negative 

influence on spinifex growth at all stations.  

 

2.4.1 Stress gradient  

Dune profiles display a momentary state of the height of dunes, which can change 

overnight with a large storm event (Edelman 1972). However, the general pattern with 

highest disturbance at the seaside, more soil development further inland and fluctuating 

values for second stations depending on relative dune height in comparison to station 1, 

was confirmed with the dune profiles. Therefore a reasonable level of confidence seems 

justified for assuming the stress gradient measurements are indeed following a gradient. 

The stress gradient measurements are important for providing for the context as to why  

the SGH might be relevant to dune plants. Moreover, from a conservation perspective 

the stress gradient is one of the major challenges for survival of planting during 

restoration (Bergin and Kimberley 1999).  
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Dune profiling with a differential GPS, as well as personal observations, suggests the 

middle dunes to be the smallest dune most often (out of the three dunes where we 

placed the three stations). Frequently the back dune (i.e. oldest dune), which is also 

furthest away from the sea was significantly higher than all the other dunes (fore and 

mid-dunes). There was no opportunity to mitigate for this effect, it is a natural 

development that reflects the dune succession on New Zealand’s West Coast of the 

lower North Island (personal observation). Dunes within New Zealand have been shown 

to be very dynamic. Historically New Zealand had a significant proportion of very mobile 

sand dunes (Gadgil and Ede 1998). Blowouts have been shown to alter dune dynamics in 

terms of the remaining soil and the vegetation patterns in close proximity (Jungerius and 

Meulen 1988). Consequently, I avoided selecting dunes that were in a direct line with a 

big blowout, so that wind funnels would not impact on the comparability of the 

transects. According to Department of Conservation staff the prevailing wind direction 

for storms in winter is often North to South, which is not directly from the sea going 

inland. Wind patterns have been shown to be the major force in stabilizing or mobilizing 

dunes along with vegetation cover (Baas 2002, Yizhaq et al. 2007). 

The sand movement largely follows the expectations of higher movements seaward 

compared to landward plots. However, the graphs of sand movement do not reflect the 

loss/build up of sand at the cliff/the very edge of vegetation towards the seaside. Some 

of the cliff-faces have eroded to an extend that an entire first station was lost at transect 

no 8 and another first station at transect no 6 was almost completely lost with parts of 

the first station at transect 7 also missing. These are processes which are only partly 

reflected by the sand-bamboo stick measurement. However, the stress gradient was 

reflected by the selected ‘stations’ at fore, mid and back dunes as only fore dunes 

eroded and or collapsed.  

Plants at fore and mid dunes experienced higher salinity concentrations within the root-

soil zone than their conspecifics in the back dunes. The pattern of conductivity is in 

accordance with sand burial measurements, which was expected, since the main 

distribution of sea spray and therefore of salt is via wind, which is reflected by sand 

movements. The figures illustrate that there was a strong difference between fore dunes 

(first station plots) and the other two stations (i.e. mid and back dunes). Consequently, 



MARRAM A FACILITATOR OR COMPETITOR OF SPINIFEX? 

71 

plants at fore dunes experienced higher salinity concentration within the root-soil zone 

than their conspecifics further back.  

Salinity and hence salt exposure is one of the main stressors in the coastal environment 

(Wilson and Sykes 1999) - allowing only specially adapted plants to grow. Many plants 

have evolved salt secreting mechanisms such as storing salt in their leaves and shedding 

them (i.e. Suaeda maritima), secreting salt, thick succulent cuticules, special closing 

mechanisms to avoid desiccation (e.g. Greenway & Munns, 1980). The zonation of plants 

is therefore determined by their adaptation to salt exposure in areas where this is the 

main stressor (Crain et al. 2004). The zonation of plants in accordance to their special 

adaptation to localised conditions is widely acknowledged (Olff et al. 1993, Poulter et al. 

2008).  

The build-up of organic matter in the soil is a much slower progress in comparison to 

salinity increases and sand movements involving several different stages of (mostly) 

plant material break down (Sollins et al. 1996). Since the majority of higher terrestrial 

plants are dependent on nutrient uptake from the soil (excluding e.g. parasitic plants 

and epiphytes), the paucity of organic matter does represent a stressor in the coastal 

environment. The absolute values for organic matter differed between the two field 

sites (Whitiau had higher rates of organic matter compared to Tapuarau), which is likely 

to be a result of the eroding coastline at Whitiau: Areas that are ‘older’ in direct 

comparison to the ones at Tapuarau are closer to the sea. The development of soils from 

pure sand is strongly related to colonisation patch age (Berendse et al. 1998) . 

 

2.4.2 Spinifex measurements 

Spinifex survival differed significantly according to the distance from the sea, but not 

between different treatments of marram and thus did not provide support for the SGH.  

The later survival counts at Whitiau were impacted by the loss of several plots due to 

massive erosion removing the most seaward plots. The kind of erosion that these plots 

experienced was too severe for any type of restoration planting and thus represent 

losses due to the force of nature but not due to the restoration planting techniques 

which were employed. In contrast, at Tapuarau, mortality of spinifex tended to increase 



CHAPTER 2 

72 

when moving inland, perhaps reflecting a more competitive interaction and dominance 

of other species as expected by the stress gradient hypothesis (Bertness and Callaway 

1994). The refined definition of SGH by Maestre et al. (2009) emphasized that survival 

responses are dependant on the relative strength of the stressor and consequently 

survival responses might not differ between species, as could be the case for the 

interaction between marram and spinifex at seaward stations. Spinifex and marram 

grass, which were the focus of the interaction, are both Poaceae that are especially 

adapted to coastal conditions and function as clonal dune-engineering keystone species. 

Therefore, it seems justified to assume they compete in a similar manner for resourses. 

Moreover, it was proposed that such ‘treatment’ changes might be soley recognizable 

for more sensitive parameters such as growth (Maestre et al. 2009). Especially for 

architecturally important clonal plants, growth has been suggested as one of the major 

traits responsible for maintaining plant diversity and competitive ability (Wildová et al. 

2012).  

Usually growth measurements and/or estimates of plant cover in the field are 

surrogates for estimating biomass if direct biomass measurements are not possible 

(Montès 2009). Despite due consideration it was deemed impractical to attempt 

measuring a gain in biomass directly. Spinifex is known to be able to grow up to several 

meters a year with extensive root and stolon development and trap large masses of 

sand. Occasionally it was not even possible to distinguish between individual plants due 

to intensive growth and cover was used for those plots. However, a range of different 

spinifex growth parameters (i.e. number of leaves, circumference, size dimensions) and 

indicators of plant performance (health, damage due to dieback, insects and browsing as 

well as reproductive development, stolon presence and length) were measured. Spinifex 

size was included as it is a common surrogate for growth. Similar measurements such as 

plant spread have been used to assess spinifex performance i.e. square root of plant 

length x width (Bergin and Kimberley 1999). However, the error for smaller plants 

seemed relatively high and thus basal circumference seemed to be a more reliable 

representation of plant growth and biomass compared to  size determined from aerial 

measurements.  
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The number of stolons showed a trend towards higher counts at sprayed plots 

compared to the other treatments, thus showing facilitated growth but not dependent 

or following the stress gradient as expected. Stolons are crucial for stabilizing dunes and 

hence their growth is one of the restoration goals to enhance plant capability to repair 

storm damage on fore dunes (Bergin 2011).  

 

2.4.3 Spinifex growth and the influence of pre-existing marram grass cover 

Spinifex survival did not provide support for the SGH and neither did plant size, but plant 

circumference, which was the growth measurement which was found to be most 

accurate, showed some support: together with initial marram grass cover as a covariate 

an interaction between the treatment and station was evident. At Tapuarau the 

observed pattern supported the SGH and showed more faciliatation at high stress front 

dunes. At Whitiau the pattern was different and showed higher facilitation at back 

sprayed marram plots compared to bare sand.  

Additionally, pre-existing marram cover and spinifex growth showed a strong negative 

correlation. Consequently, the LMEs with spinifex circumference as response variable 

and the interaction between treatment and station and pre-existing marram cover (April 

2011 when plots were chosen) as predictors, were most appropriate to explain the 

interactions between treatments and location of plantings. Data shows that a pre-

existing marram cover over 70 % impedes spinifex growth significantly once the marram 

grass is killed via spraying. Interestingly, this interaction is not so strong when marram 

grass is still alive. This seems to be because a cover of complete marram grass cover is 

equally “bad” for spinifex whether it is dead or alive, but at at lower, intermediate levels 

of initial marram cover spinifex did significantly better compared to live marram.  

It is believed that spinifex and (live) marram can co-exist at the first seaward dunes 

where spinifex is more salt tolerant than marram and thus competitive interactions 

counteract (Esler 1970). It is possible however, that within our experiment the plots 

were already too far away from the very edge, since at least two metres were left 

between a plot and the most seaward vegetation to allow for potential erosion. Another 

possible reason could be the choice of plots: marram plots with less than 40 % cover 
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were not chosen. Hence this cover threshold might already be above the cover where 

spinifex and live marram can co-exist. My research found only limited support for the 

SGH. However, it is possible that some of the variables that might have had an important 

influence were not measured and hence some of the underlying gradients might not 

have been observed. Additionally, Santoro et al. (2012) found that invaded coastal plant 

communities showed an altered distribution compared to uninvaded communities. 

Therefore it could be possible, that the modern day native and non-native plant 

communities in New Zealand behave in a different way. The debate over whether or not 

invaded plants should be included in research regarding the SGH is controversial: Lortie 

& Callaway (2006) criticised Maestre et al. (2005) for including introduced species in 

their meta-analysis. However, Maestre et al. (2006) argued that in an earlier study, 

Bertness & Callaway (1994) did not confine the SGH in their initial proposal to a species 

geographic origin and thus concluded exotic species should be included in SGH-testing. 

My study is a step towards closing this gap in current knowledge.  

 

In comparison to other studies, my research also considered the influence of a dead 

invader, which is not widely considered in current literature. But as my results for 

‘treatment’ and facilitation of spinifex plantings show facilitation, in the form of 

providing shelter by dead invaders, can be supportive of restoration plantings.  

 

2.4.4 Practical relervance for conservation 

The results have shown that survival was not significantly higher in sprayed vs. live 

marram grass and bare sand. However, the results have also shown that the likelihood 

of losing entire plots is higher on bare sand compared to within live marram and sprayed 

marram. Furthermore my results suggest that restoration managers should carefully 

assess the local conditions, especially pre-existing marram cover and consider planting 

into dead marram only if intermediate cover of marram is present initially.  

As a consequence careful consideration has to be given to the nature of the restoration 

site, as the extra effort of planting (volunteers claimed it was a lot harder to plant within 

dead marram vs. bare sand) might not be worth the effort unless it is a very exposed 

site, where plant growth is a critical variable in keeping sand stabilized.  
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At steeper plots with high vertical erosion the newly planted spinifex were not able to 

halt the erosion process, but they probably slowed it down, as not all plantings were 

lost, as the case for bare plots in a similar scenario. Only spinifex was planted at our field 

sites, as it is the major sand binding grass within New Zealand. However, in areas with 

high marram-reinvasion potential, several consecutive sprayings, potentially over a 

period of around 5 years might be necessary to ensure marram grass eradication on a 

long-term basis (Konlechner and Hilton 2010). A time intensive, and therefore only 

practical for small areas solution, would be to spot-spray reinvading and/or surviving 

marram plants, which allows for spinifex plantings to survive herbicide application. One 

possibility in larger areas with high re-invasion potential or difficulties in eradicating 

thick marram covers, could be the planting of the endemic sedge pingao (Ficinus 

spiralis), as it is not affected by gallant spraying.  

 

2.5 Conclusions 

The dependance of interactions between species on a stress gradient (i.e. salt exposure, 

wind, sand movement) was the focus of this chapter. Hence, concerning my research 

aims, the experiment showed: 

i) Spinifex growth was facilitated by dead marram grass structures. Treatment 

was however not a significant predictor of survival.  

ii) The interaction between station and treatment was significant for 

circumference of spinifex, which was found to be the most accurate 

measurement of plant growth compared to more conventional methods as 

explained in the methods, and thus provided some support for the SGH.  

iii) Live marram was frequently a poorer facilitator of spinifex plantings than was 

live marram.  

iv) Pre-existing marram grass cover exhibited a significant influence on planting 

growth performance - if cover was above 70 % sprayed marram did not break 

down quickly enough to allow for optimal spinifex growth.  

v) A careful evaluation of the local conditions, including pre-existing cover, is 

necessary for adequate management decisions. 
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CHAPTER 3 
CHAPTER 3 Species abundances of self-colonizing native and introduced plants and the role of the stress gradient hypothesis in 

coastal dune systems 

 

Species abundances of self-colonizing native and 

introduced plants and the role of the stress gradient 

hypothesis in coastal dune systems  

 

 

 
 

Self-colonizing plants in a sprayed marram plot. 
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3.1 Introduction 

Births, deaths, immigration and emigration are the four fundamental processes 

structuring population dynamics, local abundance and ultimately multi-species 

ecological patterns. Individual members of a community are constantly replaced and 

new habitat patches, as well as the patches where parental plants are located at the 

time of seed dispersal, are colonized (Howe and Smallwood 1982). Colonization by seed 

is often linked to disturbance, and therefore frequently disturbed sites are especially 

prone to invasion by introduced plants (Daehler 2003). Metapopulation theory predicts 

the re-colonization of patches with suitable habitat if there is sufficient connectivity for 

individuals to reach the habitat patches were extinction occurred (Opdam 1991, Hanski 

2001). If other species of plants or animals are able to occupy the space of the locally 

extinct specimen, they exhibit a competitive advantage (a priority effect) over the re-

colonizing species that might arrive later (Bolker and Pacala 1999, Seabloom et al. 2003). 

Local soil disturbance promotes the establishment of therophytes (i.e. annual plants, 

including some facultative perennial plants which survive unfavourable conditions as 

seeds) compared to other life forms(McIntyre et al. 1995). Annual plants in temperate 

regions die off during the winter months and their space is partly taken by their 

offspring or biennial plants where they are able to germinate and flower (Werner 1977).  

 Local interactions between species or individuals sharing the same “patch” can be both 

positive (facilitative) and negative (competitive). Where dispersal is not limiting, these 

interactions may play a more predictable role than with dispersal restrictions in the 

assembly of plant communities. After a long history of studies investigating competition 

(e.g (Bleasdale 1960, McGilchrist and Trenbath 1971), the facilitation of plants has now 

become the focus of numerous studies and is thought to be a key foundation for 

community structure (Bruno et al. 2003).  

Current research acknowledges several different aspects of facilitation, which apply for 

colonizing plants as to where their survival likelihood is greatest:  
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1. The classic nurse plant effect (Turner et al. 1966, Franco et al. 1989) describes 

facilitation between one plant and another; e.g. the natural facilitation of the 

cactus Neobuxbaumia tetetzo by the nurse plant Mimosa luisana (Valiente-

Banuet and Ezcurra 1991). Instances of plants facilitating each other occur not 

only in nature but the concept is also used in applied commercial horticulture, 

e.g. the facilitation of Juglans nigra by Elaeagnus umbellata (Funk et al. 1979) 

and for habitat restoration (e.g. reviewed by (Padilla and Pugnaire 2006).   

2. The patchy distribution of plants in harsh environments is sometimes attributed 

to facilitative effects. The nucleation hypothesis predicts an accumulation of 

more seeds and consequently more plants after the first seedling’s establishment 

(Franks 2003). According to this hypothesis, colonization radiates from the first 

plant establishment, resulting in a clumped distribution versus a random 

distribution.    

3. The interactions around facilitation and competition are thought to be complex, 

and not based on a singular mechanism such as resource (Kawai and Tokeshi 

2007). Additionally benefactor size and life stage play an important role 

(Callaway and Walker 1997). Hence, the stress gradient hypothesis (SGH) 

(Bertness and Callaway 1994) predicts the facilitative interaction between plants 

similar to the classic nurse-plant-effect, but which vary along an abiotic stress 

gradient. The interactions would be more facilitative at stressful habitat 

locations, and become more competitive when stress reduces.  

The stress gradient hypothesis has been tested in a number of habitats. Support for the 

SGH was found along an aridity gradient on the Iberian Peninsula where Retama 

sphaerocarpa was found to facilitate shrubs and increased species diversity at the arid 

end of a gradient (Armas et al. 2011) and in a subarctic forest (Eränen and Kozlov 2008). 

Direct facilitative effects were found in a New England salt marsh for increasing species 

composition (Hacker and Gaines 1997) as well as for a salt marsh experiment under 

laboratory settings (La Peyre et al. 2001). In French coastal dunes sand burial was 

identified as the main stress regulating community composition at local scales, with 

plants facilitating each other were stress prevails (Forey et al. 2008). Examples for and 

against the SGH have been studied in different ecosystems with differences in the 
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number of species included in the study as well as the abiotic stress surrogates 

measured on varying stress gradient lengths (see reviews in Brooker et al. 2007, Eränen 

and Kozlov 2008, Martinez and Garcia-Frankco 2008, Maltez-Mouro et al. 2010). 

Due to differing results, the SGH was modified by Maestre et al. (2009) who pointed out 

that a careful consideration of the habitat requirements of the species in the study 

system is crucial to untie the net-effects of facilitation and competition which occur 

simultaneously. They proposed the benefits of recording growth, rather than only 

survival and emphasised the advantages of experimental settings.  

The validity of the stress gradient hypothesis has been the subject of on-going debate: 

Maestre, Valladares, & Reynolds (2005) conducted a meta-analysis that included studies 

testing the hypothesis in arid habitats to test the predictability of the SGH and found no 

support for it in arid environments. Lortie & Callaway (2006) criticised Maestre et al.’s 

approach, finding that the study inclusion criteria were not strict enough, included non-

peer reviewed studies, studies that did not identify/quantify a stress gradient and some 

that included invasive species. Maestre et al. (2006) replied that the SGH does not 

include any restrictions on a species geographic origin, but they did agree that when 

testing of the stress gradient including a sufficient stress gradient length is necessary for 

appropriate conclusions. More recently, research has emphasized temporal aspects for 

facilitation and competition, as facilitation is more frequently found in early stages of 

plant interactions, which with increased plant age leads to more competitive 

interactions (Malkinson and Tielbörger 2010). Moreover, the latter authors showed that 

despite the expectation of a linear relationship between stress and 

facilitation/competition, the relationship could be curved due to infrequent interactions 

at extreme stress levels and the minimum survival requirements of specific species 

curtailing their distributions (Malkinson and Tielbörger 2010). It has been argued that 

the severity interaction relationship, stress on one end of the spectrum and little stress 

on the other, is unimodal (le Roux and McGeoch 2010). Several authors (e.g. (Kawai and 

Tokeshi 2007, Eränen and Kozlov 2008) have noted the need for more studies 

considering multiple species along multiple stress gradients.  

Restoration efforts are most likely to succeed if they understand and accommodate the 

interactions along abiotic stress gradients (Padilla and Pugnaire 2006) and one important 
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step for the management of modern day communities is the inclusion of introduced 

species in these studies. This is not in contradiction of the assumptions of the SGH 

(Maestre et al. 2006), as the original SGH (Bertness and Callaway 1994) does not make 

any restrictions regarding a species geographic origin.  

 

Coastal habitats are highly dynamic habitats, with erosion and reclamation of dunes 

taking place in re-occurring cycles and constantly providing disturbed bare patches for 

colonization of native and introduced species. Research into the coastal habitats of New 

Zealand is a priority as these are amongst the most threatened habitats in the country 

(Lange et al. 1999, Department of Conservation 2010), with the main threats being 

habitat loss and encroachment by invasive species such as marram (Ammophila 

arenaria). Native and introduced plants on coastal dunes are exposed to multiple 

stressors that lessen with distance from the sea: salt exposure, thought to be the most 

influential stressor in New Zealand, sand burial and wind (Wilson and Sykes 1999). In the 

more recent past, a call for more research involving multiple species while investigating 

the SGH has been made (Brooker et al. 2007, Maestre et al. 2009).  

Marram and spinifex are the major structural components on sand dunes and represent 

potential competitors or facilitators for the colonisation and growth of other species. 

The stress gradient hypothesis predicts an interaction between the factors relating to 

the presence of structural plants (marram or spinifex) and location along the 

environmental stress gradient, with abundance greater in marram-occupied plots 

relative to bare plots closer to the sea (especially in dead sprayed marram plot), and 

abundance greater in bare plots relative to marram-occupied plots further inland. 

Similarly, the stress gradient hypothesis predicts facilitation of self-colonizing species in 

spinifex- planted plots closer to the sea relative to planted plots further inland.  

The research focus of this chapter is on the interactions between the assemblage of 

exotic and native coastal plants and how they may impact the restoration of coastal 

dunes while testing whether self-colonizing plants in this dune system follow the 

predictions of the SGH. In particular I focused on widespread weeds within the dune 

system and their response to different management techniques involving the two most 
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common grasses: (exotic) marram grass (Ammophila arenaria) and the native spinifex 

(Spinifex sericeus).   

 

More specifically I hypothesized:  

In accordance with the SGH the balance of interactions between plant species changes 

from net facilitation toward net competition along an abiotic stress gradient (i.e. species 

less sensitive to salt exposure, wind and thus sand movements) when stress lessens (i.e. 

further away from the sea). Within the context of the experimental design, I specifically 

tested whether: 

I. Self-colonizing plants follow the predictions of the SGH and are therefore more 

likely to be facilitated in stressful environments close to the sea.  

II. Live marram is a worse facilitator of self-colonizing plants compared to dead 

(herbicide-sprayed) marram.  

III. Planted spinifex will reduce the number of self-colonizing plants in herbicide-

sprayed marram plots compared to unplanted plots. 
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3.2 Materials and Methods 

3.2.1 Study species  

A detailed description of the focal study species including background information on 

conservation issues can be found in Appendix III (and photos of S. elegans in Appendix V 

(Fig. A V.1)). 

Changes in local abundance (i.e. end result of seed dispersal in the face of colonization 

vs. extinction as well as competition vs. facilitation) were measured by individual plant 

counts and plant cover estimates.  

 

3.2.2 Field sites 

To test my research hypotheses, the same field sites from Chapter 2 were used (i.e. 

Tapuarau, close to Waitotera, and Whitiau, close to Whanganui, both on the North 

Island of New Zealand (see Fig. 2.4-2.6 in Chapter 2 for location maps and station 

locations). Both are relatively rare examples of well-established dunes with a large back-

dune area with high value for conservation (pers. comm. La Cock and Campell, 2011).  

 

3.2.3 Experimental setup 

I began a large scale field experiment involving 198 plots over two field sites (Whitiau 

and Tapuarau) in late September 2011 Each plot was 3 x 3 m in size, with measurements 

taken from the central 2 x 2 m zone. Three different management treatments were 

applied (bare sand, live marram and herbicide-sprayed dead marram) with one replicate 

per treatment per station planted with 25 spinifex plants paired with one unplanted 

replicate. The plots with dead marram were sprayed approximately five months prior to 

planting. The plots were distributed over three locations from the sea going inland 

(station 1, station 2 and station 3, respectively). This was done to capture the expected 

stress gradient, with the station closest to the sea expected to exert the greatest 

environmental stress due to salt spray exposure, wind, (including sand burial), and poor 

soil nutrients (sand with very little organic matter). A detailed account of the experiment 
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setup and environmental measurements (i.e. wind speed measurements, slope, sand 

burial, and organic matter and conductivity), can be found in the previous chapter. For 

this chapter both spinifex-planted and unplanted plots (n = 198) were considered for 

analysis.  

Vegetation cover was estimated for each plant species. I applied a 5 % threshold for all 

vegetation cover estimates; i.e. if a plant existed in a plot it automatically reached 5% 

cover even though the specimen might have covered less. Therefore vegetation cover 

estimates summed across species could occasionally exceed 100 % per plot. Vegetation 

was assessed looking at the plot from above, hence multiple layers were not accounted 

for separately. Vegetation height was always below chest height (i.e. < 1.35 m above 

ground).  

To assess species abundances, individuals of each species were counted and frequently 

occurring species were used in the analysis; i.e. Sonchus oleraceus, Senecio elegans, 

Conyza canadensis, Orobranche minor and Lagurus ovatus (for species descriptions see 

Appendix 1). It was often not possible to identify specimens to species level when they 

lacked reproductive traits, therefore it was necessary to group these species. The 

grouped species comprised included Leontodon taraxacoides, Taraxacum officinale, 

Hypochaeris radicata and Crepis capillaris which were thereafter referred to as 

‘dandelions and hawksbeards’. For the latter species each rosette of leaves was counted 

as an individual plant.  

Similarly, it was not always possible to distinguish between individuals for grasses with 

stoloniferous growth and (creeping) legumes (such as Lotus pedunculatus, Trifolium 

repens, Trifolium pratense and Trifolium arvense), therefore these species were removed 

from the individual analysis and/or grouped for the vegetation cover estimates and are 

consequently referred to as ‘legumes” from here onwards. For Lagurus ovatus (hares 

tail) the number of flowers was used as a surrogate for counting individuals to give an 

estimate of plant density.  
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3.2.4 Statistical analysis 

I used ordination via Principal Coordinate Analysis (PcoA), also known as metric 

multidimensional scaling (Zuur et al. 2007) to compare species composition between 

stations for each field site respectively to confirm differences in species composition 

along the abiotic stress gradient. All empty plots and species with a rare occurrence (less 

than 5 plots with the species) and outliers were removed from the analysis prior to 

applying the PcoA. I calculated a dissimilarity (distance) matrix using presence/absence 

data and the Bray-Curtis distance measure and then plotted the proportion of variance 

explained by the first two dimensions (or eigenvectors). I used the R-packages “labdsv” 

(Roberts, 2012) and “ape” (Paradis et al., 2004) to apply and visualize the PcoA. 

For each species or taxonomic group tested I used boxplots of abundance (counts or 

percent cover) to show the differences per treatment split by location along the stress 

gradient (with station 1 most exposed, station 2 intermediate and station 3 least 

exposed). Where boxplots were used, boxes and whiskers are by R default (boxes 

encompass the interquartile range (IQR). Whiskers extend to the end of the range 

except for the outliers (>1.5 times the range).Alongside boxplots, graphs of the 

difference in plant counts/cover between the average level in a marram plot (live 

marram and sprayed marram) and its corresponding bare sand plot are displayed for 

ease of comparison. I generated graphs from a user-defined R function for calculating 

and plotting mean values and their standard errors (Appendix II). I used linear mixed 

effects (LME) models (also known as hierachical linear models) to test for effects of 

marram management, spinifex planting and environment upon the next season’s 

abundance of other plant species or taxa. Marram management had three “treatment” 

levels (presence of live marram, herbicide-sprayed dead marram, or no marram i.e. bare 

sand), spinifex “planting” had two levels (planted or not) and “environment” was a 

continuous variable sampled at three locations (stations) along a transect as it was 

assumed that the three stations represent locations of decreasing stress along an abiotic 

stress gradient.  

The eleven transects used in this study were split across two field sites. Although the 

sites are conceptually considered to be coarse-scale replicates, they have a number of 

differences in their history, exposure and geomorphology that might lead one to expect 
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different responses at each site. Therefore as a preliminary step I added a term for “site” 

to each LME as well as site×treatment, site×planting and site×environment terms. If any 

of the interactions of field site were significant, a model including both field sites was 

rejected and data were analyzed separately for each field site. If there were no 

significant interactions with site the data were not split per field site, but ‘site’ was was 

included in the single two-site model as a fixed effect. Transect was included as a 

random effect in all models.  

Where significant interactions were detected in the LME, I elucidated the nature of the 

interaction by examing the aforementioned boxplots and graphs of relative growth.  

I measured population dynamics by counting individual plants in each permanently 

marked quadrat with repeated measures over time (5-6 months after planting, 8-9 

months after planting and 13-14 months after planting). The data set with the most 

pronounced differences between treatments (which had developed slowly over time) 

was from the last monitoring trip in November and December 2012 and this was used 

for the analysis. I used the recommended squareroot transformation to improve the 

normality of residuals for counts where they did not initially meet criteria of normal 

distribution (Osborne 2002). For some variables a log transformation or fourth-root 

(double-squareroot) transformation proved to be more effective. The recommended 

arcsine transformation for proportional data (Osborne 2002) was used for percentage 

cover estimates. If the residuals departed more than acceptable (i.e. clear gaps between 

distribution gaps or unidentifiable type of distribution, very strong skewness and 

departing kurtosis) from normal distribution after visual inspection of the residual 

histogram the model was rejected and consequently only the field site displayed where 

data assumptions were adequately met. Table 3.1 shows an overview over all applied 

models. LME models were fitted using maximum likelihood (ML). I used the statistical 

program R for all statistical analysis and graphs (R-core Team, 2012). 
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Table 3.1: Overview over all LMEs applied. 

 

Response variable field site in LME 
field site as 

predictor 
predictors 

random 

factors 

Calystegia. soldanella Both yes 

station, treatment, 
planted, 
treatment*station, 
planted*station transect 

Sonchus. oleraceus Both yes "" "" 

Senecio elegans Whitiau NA "" "" 

"" Tapuarau NA "" "" 

Lagurus. ovatus Both yes "" "" 

Orobranche minor Whitiau NA "" "" 

Conyza. canadensis Both yes "" "" 

dandelions Both yes "" "" 

legumes Both yes "" "" 

grass cover Whitiau NA "" "" 

"" Tapuarau NA "" "" 

herb cover Whitiau NA "" "" 

"" Tapuarau NA "" "" 

woody plant cover Whitiau NA 
"" "" 
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3.3 Results 

3.3.1 Species diversity  

A total of 32 species were recorded from 13 families. Refer to Appendix III (Fig. A III.2) 

for a complete species list with information on species occurrence according to station 

and treatment for both field sites.  

3.3.2 Species composition 

At Tapuarau the PCoA ordination demonstrated a gradation in community composition 

moving from station 1 to 2 to 3. The community compositions recorded across station 3 

appear to be a subset of those found across station 2 whereas there is much less overlap 

in composition between first and second station plots (Fig. 3.1a). The pattern was less 

distinct at Whitiau, where an overlap between all stations was visible (Fig. 3.1 b). Species 

occurring for all stations at both field sites included dandelions, S. elegans and S. 

oleraceus. A list of the species considered in the PcoA can be found  in the Appendix III 

(Table A III.1).  

 

 

 

 
Figure 3.1: Graph shows principal coordinate analysis of all plants of all plots classified by station (1= 

closest to the sea, 2 = intermediate distance and 3 = furthest away from the sea) at a) Tapuarau and b) 

Whitiau. 
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3.3.3 Changes in species abundance along an abiotic gradient and in response to 

existing vegetation structure 

Calystegia soldanella (sand convolulus) native 

Counts of C. soldanella showed significant differences between sites and highly 

significant differences across stations, but no effect of marram treatment or spinifex 

planting (Table 3.2). Overall abundances were higher at Tapuarau compared to Whitiau. 

Counts were lowest at the first station regardless of the treatment, and generally 

increased towards the back dune (station 3) (Fig. 3.2 and Fig. 3.3).  

 

Table 3.2: Summary of a linear mixed effect model for abundance of Calystegia soldanella (data from 

both field sites combined). Transect was included as a random effect. 

 

Response variable Predictor numDF denDF F-value  p-value 

Calystegia soldanella field site 1 8 7.051 0.029 

(individual counts) spinifex planting 1 150 0.156 0.694 

marram treatment 2 150 1.029 0.360 

station 1 150 15.306 <0.001 

planting×station 1 150 0.662 0.417 

treatment×station 2 150 0.006 0.994 

 

   
Figure 3.2: Boxplots show individual counts of 

Calystegia soldanella (Con sol) for all treatments 

(B = bare sand, M = live marram, S = sprayed 

marram) for both field sites. Treatments are split 

up by station (1 = closest to sea, 2 = intermediate 

and 3 = furthest away). 

Figure 3.3: Mean values for relative counts of 

Calystegia soldanella (Con sol) compared to bare 

sand (dotted line) are displayed for live marram 

and sprayed marram plots for both sites. Errorbars 

= +- SE. 
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Sonchus oleraceus (Puha) introduced 

The initial model selection showed no significant effect of interactions between field site 

and any of the predictors. Therefore both sites were used for the analysis and field site 

employed as a predictor. Counts for S. oleraceus showed significant differences across 

stations and between field sites, but no significant effect of marram treatment or 

spinifex planting (Table 3.3). Nonetheless, plots planted with spinifex showed slightly 

higher counts of S. oleraceus (P = 0.051) and better facilitation by marram (dead and 

alive) at the second station. Lowest overall counts were evident for first station plots 

(Fig. 3.4 and Fig. 3.5). At the third station, presence of marram (dead and alive) 

appeared to inhibit abundance of S. oleraceus relative to the abundances achieved 

through colonisation of bare sand. This hump-backed response to the 

treatment×environment (station) interaction may not have been picked-up as significant 

by the LME in which station was treated as a continuous variable without any quadratic 

terms included in the model (Table 3.3). 

 
Table 3.3: Summary of a linear mixed effect model for abundance of Sonchus oleraceus (data from both 

field sites combined). Transect was included as a random effect. 

 

Response variable Predictor numDF denDF F-value  p-value 

Sonchus oleraceus field site 1 8 9.847 0.014 

(individual counts) spinifex planting 1 149 3.857 0.051 

marram treatment 2 149 2.377 0.096 

station 1 149 6.514 0.012 

planted×station 1 149 0.111 0.739 

  treatment×station 2 149 1.475 0.232 
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Figure 3.4: Boxplots show individual counts of S. 

oleraceus in Nov/Dec 2012 for all treatments (B = 

bare sand, M = live marram, S = sprayed marram) 

split up by unplanted plots (only treatment without 

spinifex plantings upper graph) and planted plots 

(i.e. planted with spinifex = lower graph). 

Treatments are split up by station (1 = closest to 

sea, 2 = intermediate and  3= furthest away). 

Figure 3.5: Mean values for relative counts of S. 

oleraceus compared to bare sand (dotted line) 

are displayed for live marram and sprayed 

marram plots for unplanted plots (i.e. no spinifex 

planted = upper right graph) and planted plots 

(i.e. planted with spinifex = lower rightgraph. 

Errorbars = +- SE. 
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Senecio elegans (purple groundsel) 

“Treatment” was a significant predictor of S. elegans counts at Tapuarau, with highest 

counts in sprayed marram plots compared to the other treatments (upper graph Fig. 

3.7). At Taparuau, the treatment×station interaction was not significant (P = 0.25). The 

effect of planting spinifex only had a significant effect on S. elegans at Whitiau (Fig. 3.6 

and Fig. 3.7, Table 3.4). 

Table 3.4: Summary of a linear mixed effect model for abundance of Senecio elegans (data were 

analysed separately per field site). Transect was included as a random effect. 

 

Field site Response variable Predictor numDF denDF F-value p-value 

Whitiau Senecio elegans 

(individual counts) planted 1 66 5.393 0.023 

treatment 2 66 2.934 0.060 

station 1 66 11.361 0.001 

planted×station 1 66 0.002 0.963 

treatment×station 2 66 3.892 0.025 

Tapuarau  planted 1 76 0.034 0.854 

treatment 2 76 10.123 <0.001 

station 1 76 39.759 <0.001 

planted×station 1 76 0.085 0.772 

    treatment×station 2 76 1.412 0.250 
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At both sites the abundance of S. elegans was strongly linked to station and increased 

towards the back dune (Fig. 3.6). At Whitiau there was a significant interaction between 

‘station’, and “treatment”, where the presence of marram (dead or alive) was facilitative 

at the first station and inhibitory (or competitive) at the third station (Fig. 3.7). The 

highest counts of S. elegans, relative to bare sand plots, were observed at the second 

station amongst sprayed-dead marram on unplanted and planted plots at Tapuarau and 

on unplanted plots at Whitiau (Fig 3.7). 
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Figure 3.6: Boxplots show individual counts of S. elegans in Nov/Dec 2012 for all treatments (B = bare 

sand, M = live marram, S = sprayed marram) split up by unplanted plots (only treatment without 

spinifex plantings left graphs) and planted plots (i.e. planted with spinifex = right graphs). Treatments 

are split up by station (1= closest to sea, 2 = intermediate and 3 = furthest away). 

 

 

 

 
Figure 3.7: Mean values for relative counts of S. elegans compared to bare sand (dotted line) are 

displayed for marram and sprayed marram plots for Tapuarau (upper graphs) and Whitiau (lower 

graphs) respectively. Left hand site graphs show plots planted with spinifex and right hand side plots 

show unplanted plots. Treatments are also split up by station (with 1 = closest to sea, 2 = intermediate 

and 3 = furthest away). Errorbars = +- SE. 
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Lagurus ovatus (hares tail) 

Initial model selection showed no significant effect of the interaction between ‘field site’ 

and any of the other predictors (i.e. ‘station’, ‘treatment’ and ‘planted’) (Table 3.5). 

Hence, both sites were analysed together. Plant counts varied significantly between 

stations (Table 3.5): no specimens were recorded at first stations, a few at second 

station plots but the majority of recorded plants were counted at third station plots (Fig. 

3.8 and Fig. 3.9).  

Table 3.5: Summary of a linear mixed effect model for abundance of Lagurus ovatus (data from both 

field sites combined). Transect was included as a random effect. 

 

Field site Response variable Predictor numDF denDF F-value  p-value 

Both Lagurus ovatus 

(individual counts) field site 1 8 0.035 0.857 

spinifex planting 1 149 1.892 0.171 

marram treatment 2 149 0.198 0.821 

station 1 149 62.300 <.001 

planted:station 1 149 0.431 0.512 

treatment:station 2 149 0.225 0.799 

 

 
Figure 3.8: Boxplots show individual counts of Lagurus 

ovatus in Nov/Dec 2012 for both field sites for all 

treatments (B = bare sand, M = live marram, S = sprayed 

marram). Treatments are split up by station (1 = closest 

to sea, 2 = intermediate and 3 = furthest away). 

Figure 3.9: Mean values for relative counts 

of Lagurus ovatus compared to bare sand 

(dotted line) are displayed for marram and 

sprayed marram plots both field sites. 

Treatments are also split up by station 

(with 1 = closest to sea, 2 = intermediate 

and 3 = furthest away). Errorbars = +- SE. 
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Orobranche minor (broomrape) exotic hemiparasite 

The interaction between ‘planted’ and station was the only significant predictor-

interaction of O. minor counts (Table 3.6). Plots planted  with spinifex usually showed 

higher counts of O. minor, though this varied with station, hence the significant 

intreaction between “planted” and “station”. Whether or not a plot was planted with 

spinifex, and station (the location) were both significant predictors on their own in the 

LME (Table 3.6).  

Table 3.6: Linear mixed effect model anova values for O. minor at Whitiau. Transect was included as 

random effect. 

 

Field site Response variable Predictor numDF denDF F-value  p-value 

Whitiau Orobranche minor 

(individual counts) spinifex planting 1 66 5.787 0.019 

marram treatment 2 66 2.071 0.134 

station 1 66 6.567 0.013 

planted×station 1 66 6.287 0.015 

    treatment×station 2 66 1.158 0.321 

 

At Whitiau the abundance of O. minor was strongly linked to station and increased 

towards the back dune (Fig. 3.10 and Fig. 3.11). No individuals were counted on 

unplanted bare plots (Fig. 3.10).  
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Figure 3.10: Boxplots show individual counts of O. 

minor in Nov/Dec 2012 for Whitiau for all 

treatments (B = bare sand, M = live marram, S = 

sprayed marram). Treatments are split up by 

station (1 = closest to sea, 2 = intermediate and 3 = 

furthest away) and whether they are planted or 

not (lower and upper graph respectively). 

Figure 3.11: Mean values for relative counts of O. 

minor compared to bare sand (dotted line) are 

displayed for marram and sprayed marram plots 

for Whitiau (right graph) respectively. The upper 

graph shows unplanted plots, while the lower 

graph shows planted plots. Errorbars = +- SE. 
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Conyza canadensis (fleabean, exotic) 

There was no significant interaction between ‘planted’ and ‘station’ and between 

‘treatment’ and ‘station’ (Table 3.7 and Figure 3.12 and Figure 3.13). However, there 

was a trend for the interaction between ‘treatment’ and ‘station’. The predictors 

‘marram treatment’ as well as ‘station’. were significant in the LME (Table 3.7 and Figure 

3.12 and Figure 3.13). Overall abundances were higher at Whitiau compared to 

Tapuarau. Higher counts of C. canadensis were found in sprayed marram compared to 

all other treatments and third stations showed the highest abundances compared to 

station 1 and 2 (Figure 3.12 and Figure 3.13). 

 Occurrence on second and first stations was to low for errorbars for the relative 

comparison (Figure 3.13).  

Table 3.7: Linear mixed effect model for Conyza canadensis (data from both sites is combined)  Transect 

was included as random effect. 

 

Field site Response variable Predictor numDF denDF F-value  p-value 

Both sites Conyza canadensis 

(individual counts) field site 1 8 5.569 0.046 

spinifex planting 1 149 0.983 0.323 

marram treatment 2 149 11.200 <.001 

station 1 149 18.317 <.001 

planted:station 1 149 0.051 0.822 

    treatment:station 2 149 2.492 0.086 

 
Figure 3.12: Boxplots show individual counts of C. 

canadensis  in November 2012 both sites for all 

treatments (B = bare sand, M = live marram, S = 

sprayed marram). Treatments are split up by 

station (1 = closest to sea, 2 = intermediate and 3= 

furthest away). 

Figure 3.13: Mean values for relative counts of C. 

canadensis compared to bare sand (dotted line) 

are displayed for marram and sprayed marram 

plots for Whitiau (right graph) respectively. 

Treatments are also split up by station (with 1 = 

closest to sea, 2 = intermediate and 3 = furthest 

away). Errorbars = +- SE. 
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 Dandelions 

Both predictors treatment and station were significant in the LME, but not the 

interaction between them (Table 3.8). The planting of spinifex had no significant effect 

on densities of dandelion. 

Table 3.8: Linear mixed effect model summary for dandelion individual counts (data from both field 

sites was combined). Transect was included as a random effect. 

 

Field site Response variable Predictor numDF denDF F-value  p-value 

Both dandelions 

(individual counts) field site 1 8 0.010 0.923 

spinifex planting 1 149 0.071 0.790 

marram treatment 2 149 9.316 <.001 

station 1 149 101.414 <.001 
spinifex 
planting:station 1 149 0.066 0.798 

    
marram 
treatment:station 2 149 1.360 0.260 

Dandelions were rarely recorded on first station plots, intermediate counts were 

recorded on second station plots and highest overall counts were observed on third 

station plots (Fig 3.14). Sprayed and live marram grass were facilitators of dandelions 

compared to bare sand (Fig 3.15).  

 
Figure 3.14: Boxplots show individual counts of 

dandelions in November 2012 for both sites for all 

treatments (B = bare sand, M = live marram, S = 

sprayed marram). Treatments are split up by 

station (1 = closest to sea, 2 = intermediate and 3 = 

furthest away). 

Figure 3.15: Mean values for relative counts of 

dandelions compared to bare sand (dotted line) 

are displayed for marram and sprayed marram 

plots for both sites respectively. Errorbars = +- 

SE. 

 

0

50

100

150

1 2 3 1 2 3 1 2 3

D
an

de
lio

n 
co

un
ts

 p
er

 p
lo

t

B
M
S

         

Both sites Nov/Dec'12

Station

-10

0

10

20

30

40

Station

In
d.

 c
ou

nt
s 

of
 d

an
de

lio
ns

 re
l. 

to
 b

ar
e

1 2 3 1 2 3

Live marram Sprayed marram



CHAPTER 3  

100 

 Legumes 

There was a significant interaction between station and whether or not a plot was 

planted, (Table 3.9), where third station sprayed marram plots showed highest overall 

counts of legumes (Fig 3.16 and Fig. 3.17). In the LME treatment and station were 

significant predictors (Table 3.9).Third station plots of sprayed marram that had been 

planted with spinifex facilitated the greatest growth of legumes relative to plots of bare 

sand (Fig. 3.17).  

Live marram and herbicide-sprayed dead marram showed higher counts of legumes 

compared to bare sand (Fig 3.16 and Fig. 3.17). In plots planted with spinifex, sprayed 

marram had higher counts of legumes at second and third stations compared to the 

other two treatments (Fig 3.16 and Fig. 3.17). Counts of legumes were highest at third 

stations, followed by second and lowest on first stations regardless if planted or not (Fig 

3.16 and Fig. 3.17).  

Table 3.9: Linear mixed effect summary for legumes (data from both sites was combined). Transect was 

included as a random effect. 

 

Field site Response variable Predictor numDF denDF F-value p-value 

Both Legumes  field site 1 8 0.058 0.816 

 (counts) spinifex planting 1 149 1.930 0.167 

marram treatment 2 149 3.392 0.036 

station 1 149 71.876 <.001 

spinifex planting:station 1 149 8.777 0.004 

    marram treatment:station 2 149 1.142 0.322 
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Figure 3.16: Boxplots show individual counts of 

legumes in November 2012 for both sites for all 

treatments (B = bare sand, M = live marram, S = 

sprayed marram). Treatments are split up by station 

(1 = closest to sea, 2 = intermediate and 3 = furthest 

away). The upper graph shows uplanted and 

planted plots and the lower shows only planted 

plots. 

Figure 3.17: Mean values for relative counts of 

legumes compared to bare sand (dotted line) 

are displayed for marram and sprayed marram 

plots for both sites. Errorbars = +- SE. 

 

3.3.4 Cover changes of functional groups 

Grasses, sedges and rushes (hereafter referred to as ‘monocots’) 

The initial selection model showed significant effects for interactions between field site 

and the other predictors (i.e. station, treatment and planted), so I analysed both field 

sites separately.  

Tapuarau 

The interaction between treatment and station showed a non-significant trend (P = 
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sprayed marram levels of competition increased with distance from the sea (Fig 3.19, 

Table 3.10).  

Whitiau 

Station (=distance for sea) was the only signficant predictor in the LME (Table 3.10). 

Table 3.10: Linear mixed effect model summary  for monocot cover (data from each field site was 

analysed separately). Transect was included as a random effect. 

 

Field site Response variable Predictor for monocot cover numDF denDF F-value p-value 

Tapuarau  

monocot  spinifex planting 1 78 0.022 0.881 
cover in % marram treatment 2 78 3.817 <.001 
 station 1 78 13.491 <.001 
 spinifex planting:station 1 78 2.054 0.156 
 marram treatment:station 2 78 2.771 0.069 

Whitiau  spinifex planting 1 76 0.069 0.793 

monocot  marram treatment 2 76 0.041 0.960 
cover in % station 1 76 50.498 <.001 
 spinifex planting:station 1 76 0.160 0.690 

   marram treatment:station 2 76 0.349 0.707 

At the Tapuarau field site the highest monocot cover was recorded on marram plots, 

followed by bare plots, and was lowest on sprayed plots (Fig 3.18). Third station plots 

showed highest grass cover followed by second and first station plots (Fig. 3.18).  
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Figure 3.18: Boxplots show cover in % for 

monocots  in November 2012 for Tapuarau and 

Whitiau for all treatments (B = bare sand, M = live 

marram, S = sprayed marram). Treatments are split 

up by station (1 = closest to sea, 2 = intermediate 

and 3 = furthest away). 

Figure 3.19: Mean values for relative cover in % 

for monocots compared to bare sand (dotted line) 

are displayed for marram and sprayed marram 

plots at Tapuarau and Whitiau. Errorbars = +- SE. 

 

At Whitiau, similar to Tapuarau, there was a clear significant increase for monocot cover 

across all treatments with increasing distance from the sea (Fig. 3.18 and Fig. 3.19).  

 

Herbaceous plants 

Tapuarau 

Treatment and station separateley were significant predictors in the LME (Table 3.11) 

for herbaceoaus plant cover as response variable. The interactions beween planting and 

station and between treatment and station however, were not significant.  

Whitiau 

Treatment and station were significant predictors for the aboundance of herbaceous 

plants in the LME (Table 3.11). However, there was no significant interaction between 

these variables and no effect of planting Spinifex. 
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Table 3.11: Linear mixed effect model anova values for herb cover in % as response variable and field 

site, planted as well as treatment, station the interaction between planted and station and the 

interaction between treatment and station were used as predictors. The dataset from each field site 

was used separately as field site was a significant factor in the selection model. Transect was used as 

random effect. 

 

Field site Response variable Predictor for herb cover  numDF denDF F-value p-value 

Tapuarau Herbs 

(cover in %) spinifex planting 1 78 1.027 0.314 

marram treatment 2 78 6.715 0.002 

station 1 78 49.670 <.001 

spinifex planting:station 1 78 0.098 0.755 

marram treatment:station 2 78 0.110 0.896 

Whitiau spinifex planting 1 75 1.749 0.190 

marram treatment 2 75 13.292 <.001 

station 1 75 54.783 <.001 

spinifex planting:station 1 75 0.183 0.670 

    marram treatment:station 2 75 1.073 0.347 

 

At Tapuarau, cover values for herbaceous plants were higher for both live and sprayed 

marram compared to bare sand (Fig 3.20 and Fig. 3.21). Highest overall cover values 

were recorded on second and third stations compared to first station plots.  

  
Figure 3.20: Boxplots show cover in % for herbs  in 

November 2012 for Tapuarau and Whitiau for all 

treatments (B = bare sand, M = live marram, S = 

sprayed marram). Treatments are split up by 

station (1 = closest to sea, 2 = intermediate and 3 = 

furthest away). 

Figure 3.21: Mean values for relative cover in % 

for herbs compared to bare sand (dotted line) are 

displayed for marram and sprayed marram plots 

for Tapuarau and Whitiau respectively. Errorbars = 

+- SE. 
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Similar patterns were evident at Whitiau; higher herb cover values were recorded 

further from the sea and on live marram and sprayed marram plots compared to bare 

sand (Fig. 3.20 and Fig. 3.21).  
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 Woody plants 

Only the dataset from Whitiau had enough records and is displayed (Fig 3.22 and Fig 

3.23). Station significantly affected woody plant cover at Whitiau (Table 3.12). Planting 

of spinifex, treatment and their interaction with station was non-significant (Table 3.12).  

Table 3.12: Linear mixed effect model anova values for woody plant cover at Whitiau in % as response 

variable and planted (i.e. planted or unplanted with spinifex) as well as treatment, station the 

interaction between planted and station and the interaction between treatment and station were used 

as predictors. Transect was used as random effect. 

 

Field site 
Response 

variable 
Predictor numDF denDF F-value p-value 

Whitiau 
Woody plant 
cover spinifex planting 1 76 <0.001 0.994 

in % marram treatment 2 76 0.658 0.521 

Station 1 76 11.735 0.001 

spinifex planting:station 1 76 0.134 0.716 

    marram treatment:station 2 76 0.971 0.384 

Highest cover values were observed on third station plots compared to all other stations 

(Fig. 3.22 and Fig. 3.23).  

  

Figure 3.22: Boxplots show cover in % for woody 

plants  in December 2012 for Whitiau for all 

treatments (B = bare sand, M = live marram, S = 

sprayed marram). Treatments are split up by 

station (1 = closest to sea, 2 = intermediate and 3 = 

furthest away). 

Figure 3.23: Mean values for relative cover in % 

for woody plants compared to bare sand (dotted 

line) are displayed for marram and sprayed 

marram plots for Whitiau (right graph) 

respectively. Treatments are also split up by 

station (with 1 = closest to sea, 2 = intermediate 

and 3 = furthest away). 
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3.3.5 Overview across species and functional groups 

Despite frequent significance of either treatment or station or both of them as main 

effects, the interaction between treatment and station was only significant for S. elegans 

counts and close to significant (0.1 > P > 0.05) for C. canadensis and grass cover (Table 

3.13). Planting spinifex only affected the abundance of a taxon in two of fourteen tests 

and the interaction between planting and station was significant for O. minor (p= 0.015) 

and for legume-cover (p = 0.004).  

 

Table 3.13: Overview over LMEs per response variable. Significance values: + =  0.1 > P > 0.05, *= p 

<0.05, **= p <0.01, ***= p < 0.001, ns = non-significant (P>0.1), NA = not applciable as field sites tested 

separately. 

 

Response variable 
field site 

in LME 

field 

site 
station Treatment planted 

treatment*

station 

planted

*station 

Calystegia. soldanella Both * ** ns ns ns ns 

Sonchus oleraceus Both * * + + ns ns 

Senecio elegans Whitiau NA ** + * * ns 

"" Tapuarau NA *** *** ns ns ns 

Lagurus. ovatus Both ns *** ns ns ns ns 

Orobranche minor Whitiau NA * ns * ns * 

Conyza canadensis Both * *** *** ns + ns 

dandelions Both ns *** *** ns ns ns 

legumes Both ns *** * ns ns *** 

grass cover Whitiau NA *** *** ns + ns 

"" Tapuarau NA *** ns ns ns ns 

herb cover Whitiau NA ns  *** ns ns ns 

"" Tapuarau NA *** *** ns ns ns 

woody plant cover Whitiau NA *** ns ns ns ns 
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3.4 Discussion 

This chapter examined the abundance and distribution of self-colonizing plants across 

three different treatments (i.e. bare plots, marram plots and sprayed marram plots) with 

or without planted spinifex at three different distances from the sea. Both field sites 

showed a differentiation for most species at the first station plots compared to the more 

landward second and third station plots. The interactions between the colonising 

species and marram changed depending on species identity, location and treatment. 

However, only one interaction was significant where there was higher facilitation by 

dead sprayed marram at front stations for S. elegans compared to landward stations. A 

trend for an interaction change with distance to the sea was evident for C. canadensis 

and monocot cover. The interaction between planting of spinifex (i.e. either planted or 

unplanted) and station was significant for O. minor, a hemiparasitic plantand for legume-

cover. Overall, results provide little support for the SGH from these data, especially as for 

two of the groups the effect was in the opposite direction as expected. 

The results of the PCoA showed an overlap of species composition between stations 

which was focused around the second station, but infiltrated into the first and third 

station. As mentioned in the results, this overlap was due to a few species (i.e. 

dandelions mostly), which were able to persist occasionally at the first, but more 

prominently at the second and third stations. Therefore, the study indicates an apparent  

environmental gradient that is influencing species distribution and abundance and 

therefore zonation according to position with regards to the sea within the study sites. 

Poulter, Qian, & Christensen, (2008) describe the interaction between sawgrass and pine 

regeneration along a salinity gradient. Similarly, the zonation in estuarine marshes was 

found to be related to salinity and the interactions among the neighbouring species 

(Crain et al. 2004). This has been shown for salt marshes (Alvarez-Rogel et al. 2006) and 

in the succession of sand dunes (Olff et al. 1993). Furthermore the  zonation and plant 

distribution is also related to salinity and the neighbouring species (Moreno-Casasola 

1984, 1988, Honrado et al. 2010). The importance of biotic interactions in addition to 

abiotic ones has been emphasized for biodiversity studies (Maestre et al. 2009, 

Tomasetto et al. 2013). While the effects of browsing and insect infestations were 
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discussed in Chapter 2, other biotic effects of animals on self-colonizing species were not 

accounted for.  

Most species showed either significant effects for ‘station’ (i.e. the location in reference 

to the sea); ‘treatment’ (i.e. whether planted in bare sand, live marram or sprayed 

marram) or ‘planted’ (i.e. whether additionally to the treatments mentioned before 

spinifex was planted or not). However, S. elegans counts at Whitiau, O. minor and 

legume cover were the exceptional species (groups) where the interaction between 

plants and treatment or whether a plot was planted or not with spinifex were 

significant. I expected higher facilitative (i.e. more positive) interactions where stress 

was most severe to support the SGH. Only S. elegans at Whitiau followed this pattern, 

showing better facilitation at the first station, then a decline at further distant stations (2 

and 3) as the interactions presumably became more competitive and less facilitative (i.e. 

negative). In contrast, facilitation of O. minor was better at the back stations (i.e. station 

2 and 3) compared to station 1. This result is not suprising considering that this parasitic 

species is dependent on species which occurred more frequently at the back stations (O. 

minor favours Asteraceae, and Fabaceae, but is also able to survive on Poaceae, see 

appendix for a more comprehensive description). Similar to O. minor, facilitation of 

legumes was better at the back stations compared to the ones at the front. Legumes fix 

nitrogen through symbiotic nitrogen fixing bacteria in their root nodules (Crews 1999). 

Soil pathogens increase with soil development (which increases with distance from the 

sea) and can cause damage to early successional species (i.e. very salt and sand burial 

tolerant plants) (Putten 2003) and could hence influence species abundances.  

Both support and no support have been shown for studies of coastal communities- 

These studies mostly looked at pairwise interactions (e.g. recent review in Callaway 

(2007). There has been a call for studies focussing on the entire community (Maestre et 

al. 2009, Honrado et al. 2010, Maltez-Mouro et al. 2010). I considered all species as far 

as it was possible to distinguish between them and as long as they exhibited sufficient 

counts for further analysis (see species list Appendix III (Fig. A III.2)) for all the other 

species that were encountered less frequently and thus did not provide enough data 

points for further analysis). My focus was on the colonisation of unplanted species. 

Therefore I counted/estimated percent covers for each species. Although my approach 
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was to consider all species, the actual interaction (whether it was competitive or 

facilitative) was tested between the focal species and the eco-engineering species: i.e. 

the introduced, self-established marram and the planted native spinifex. Eco-

engineering species are thought to exhibit both positive and negative impacts on other 

(facilitated) species, even though a general positive effect is expected on larger (i.e. 

regional) scales (Jones et al. 1997). Although the strongest interactive effects were 

expected between the eco-engineering species and self-colonizing plants, it is possible 

that some weaker, but yet potentially biologically and statistically significant interactions 

were not detected. However, for support of the SGH I would have expected significant 

interactions between species abundances and the location. There was only support for 

this assumption for the coastal Senecio elegans.  

New Zealand’s coastal sand dunes are one of the most threatened habitats within the 

country as they have been largely modified (Pegman and Rapson 2005). Intact native 

vegetation sequences on dunes are now rare (Sykes and Wilson 1991). Therefore an 

experiment that takes introduced species into consideration is the best model to reflect 

the current situation around beaches in New Zealand. Therefore experimental 

manipulation in this study involving herbicide spraying was restricted to the major exotic 

sand binding species marram to reflect the current situation around beaches in New 

Zealand. Using introduced species when testing the SGH has been controversial. For 

example Lortie & Callaway (2006) criticised Maestre et al. (2005) for including 

introduced species in their meta-analysis. However, Maestre et al. (2006) argued that in 

an earlier study, Bertness & Callaway (1994) did not confine the SGH in their initial 

proposal to a species’ geographic origin and thus concluded exotic species should be 

included in SGH-testing. Santoro et al. (2012) showed that invaded communities are less 

likely to show zonation mirroring the stress gradient. Moreover, when coastal 

communites were invaded plant species showed a random distribution. Unfortunately, 

in my study there was no reference site for comparing a similar invaded and non-

invaded site as the climatic conditions change along the latitudal gradient of New 

Zealand’s coastline. Both Whitiau and Tapuarau are relatively rare dune systems (pers. 

comm. with DOC staff in Wanganui) along the West Coast of the lower North Island. 
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There are few dune systems with an extensive inland dune complex remaining that have 

not been converted to productive pasture or pine forests.  

One explanation for the variable pattern of species support for the SGH could be an 

underlying random distribution due to invasion patterns of exotic species. The 

differences in results between the two field sites could be based on their different levels 

of weediness. Whitiau was the weedier site largely due to substantial weed propagule 

sources on adjacent forestry wasteland while the backdunes of the Tapuarau site border 

a dairy farm where there is less weed propagule sources. Furthermore, physical dune 

proceses differ at each sites the dunes at Whitiau are eroding while the situation is 

opposite at Tapuarau, where the dunes are accreting. Consequently, the stations at 

Whitiau could be much older compared to the newly established ones at Tapuarau.  

With the exception of the cosmopolitan native C. soldanella, all species considered for 

separate analysis of this chapter were introduced species. Most of the introduced 

species that were recorded at Whitiau and Tapuarau were facilitated by vegetation both 

live marram but to an even larger extent by sprayed, dead marram or by planted 

spinifex at stations further landward. This is opposed to the expected facilitation where 

stress is more severe closer to the sea. However, it has been argued that a species’ 

ecological adaptations are crucial to identifying where the stress gradient is potentially 

affecting its abundance and establishment with or without facilitators (Maestre et al. 

2009). The species considered here are mostly pasture weeds from Europe (e.g. 

dandelions and legumes, or associated with them (e.g. O. minor) and are not especially 

adapted to very exposed coastal conditions (see appendix for more detailed species 

descriptions and references therein). Consequently, the stressful conditions at their 

survival limit could be just starting at the second and third stations rather than at the 

first stations. Sonchus oleraceus and the herbaceous plants show a pattern which might 

be interpreted thus, i.e. unable to survive well at all at the first station, facilitated by 

marram and at the second station, and then more inhibited by marram at the third 

station. Monocots showed higher abundances on bare plots compared to live and 

sprayed marram. It is also possible that the spraying impaired the self colonizing 

monocots on sprayed plots. Several studies failed to provide support for facilitation in 

locations with very high stress levels (see discussions in Maestre et al., 2009; Malkinson 
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& Tielbörger, 2010). The latter authors argued that multiple stress gradients exist 

silmultaneously and thus are able to affect species differently according to species 

identity. They suggested measuring and identifying the different stressors as opposed to 

assuming a certain stress gradient is present. In chapter 2 I showed my results 

measuring the stress gradient. Some of the abiotic stress gradient measurements did not 

completely follow our expectations, which is most likely due to the shelter from wind 

provided by second dunes (where the second stations were located) compared to first or 

third stations. In a previous study, salinity and sand burial were identified as the most 

important structuring environmental forces in New Zealand’s coastal dune systems 

(Wilson and Sykes 1999).  

The summer of 2012/13 was a record summer with much lower precipitation than usual 

(Turner and Chapell 2013), even for the exposed west coast. This study did not directly 

consider a water availability gradient, but Mason, French, & Russell (2012) showed a 

competitive advantage for the introduced bitou-bush over native plants in the presence 

of water shortage and argued this could yield conservation problems for future droughts 

as predicted with climate change.  

 

3.5 Conclusions 

As may be expected in a study of a range of exotic and native species that occur across a 

highly variable environmental gradient evident on the dunes sites studied here, support 

for the SGH varies depending on the species considered and the treatments and sites in 

proximity to the sea evaluated. Only S. elegans as a truly coastal species fitted the 

pattern described by the SGH with higher facilitation at the seaward stations compared 

to the landward sites and where marram had been sprayed. Most species (with S. 

oleraceus as an exception and dandelions at third stations) were better facilitated by 

sprayed marram grass compared to live marram grass regardless of station. Station was 

a significant effect and thus shows differences in stress levels.  

Careful consideration must be given to the current vegetation composition at coastal 

dune sites prior to spraying marram grass and leaving it, as this also facilitates weeds. 

This scenario is especially relevant for sites where there is a major source of weed 
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propagules (eg. seeds) nearby. For very weedy sites management strategies other than 

planting into sprayed (and thus killed) marram may be required. For instance,  one 

option may be to completely reshape the dune, removing or burying the sprayed weed 

cover, and start with clean sand that does not have a vibrant seedbank of weedy species 

that can then be planted with appropriate coastal native species. This has been 

successfully carried out at several weedy sites in the Coromandel (Jim Dahm, Coastal 

Scientist, pers comm., 2013).  

Further plant community studies that consider both invaded and uninvaded sites at 

stressful locations are needed to test the SGH and confirm whether exotic species 

influence natural zonation patterns as may have occurred in this study.  
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Larvae of Sphenella fascigera in a flower head of Senecio lautus. 
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4.1 Introduction 

Communities are spatially structured by the abiotic environment and their constituent 

populations interact via trophic connections (e.g. predation and herbivory) or via direct 

and indirect competition and facilitation if on the same trophic level (Dayton 1971, 

Menge and Sutherland 1987). To understand the ecological interactions within a 

community it is important to identify and quantify linkages between members of the 

community- the food web. Herbivorous insects are the most diverse terrestrial group 

and consequently influence food webs in various ways (reviewed in Schoonhoven et al. 

2007). The evolution of host specificity among herbivorous insects is thought to be an 

important step in understanding processes towards species formation (Dethier 1954). 

Information on species host specificity is therefore crucial to identifying comprehensive 

linkages and potential interactions between species within a community (van Veen et al. 

2006) and thus improve the understanding of food webs in general.  

Modern day communities are often composed of sets of species that co-evolved over 

tens of thousands to tens of millions of years and species that were introduced more 

recently deliberately or unintentionally (Minor et al. 2009). As a consequence, the land 

use and the introduced species used for it often determines modern day food webs and 

the interactions between their members (Tylianakis et al. 2007, Didham et al. 2007, de 

Visser et al. 2011). When species are removed via extinction or added through invasions 

to food webs, the interactions are changed (Niemelä and Mattson 1996, Pearson and 

Callaway 2003, 2008); often with unpredictable consequences (e.g. McCann 2000). 

Evidence for different effects of introduced species has been demonstrated in previous 

studies: Results ranging from filling a previously unoccupied niche with an introduced 

invader to extinctions have been documented (Sakai et al. 2001, Drossel and McKane 

2002, Yoshida 2008). Altered food webs especially illustrate the need to understand 

interactions among different species and trophic levels within a food web, raising 

questions such as: How do introduced species insert themselves into a food web? Are 

they more likely to be generalist rather than specialist feeders? Are external feeders 

more often successful in adapting to novel hosts compared to internal feeders? When 

considering the primary producer level, are plants that are closely related to host plants 
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in the introduced species’ home range more prone to become novel hosts? Are 

particular taxonomic orders of herbivores more successful in adapting to novel host 

plants? What are the consequences for the invaded food webs?  

Understanding the impacts of introduced species both plants and herbivores on an 

invaded food web enhances the knowledge of species interactions in general it also 

benefits the management of introduced species through improved risk assessments and 

appropriate use of biocontrol agent. More effective management in turn will reduce the 

costs of biosecurity (Henneman and Memmott 2001). Currently invasive species are 

considered to be one of the highest risks to biodiversity, second only to habitat 

destruction and modification (Kareiva et al. 2008). Approximately 42 % of all threatened 

species in the US are linked to invasive species (Pimentel et al. 2005) and the effects of 

invasive species on food webs carries important implications for restoration 

management and weed control.  

Several types of general host specificity are acknowledged in ecological research:  

i.) monophagous species, as defined where herbivores feed only on one species 

by Symons and Beccaloni 1999as shown for the sphingid Manduca 

quinquemaculata feeding on Nicotiana noctiflora (Cates 1980);   

ii.) oligophagous species, where herbivores feed on species within one genus or 

plant family. This is often related to herbivore accumulation if plant volatiles 

for their own advantage as is the case for the lepidopteran Nyctemera 

annulata feeding on Senecio spp. and retaining their pyrrolizidine alkaloids 

(Benn et al. 1979), and  

iii.) polyphagous species, where insect herbivores are known to feed on several 

genera across several plant families (Schoonhoven et al. 2007).  

Depending on their host specialization and spatial abundance, a population of insect 

herbivores can potentially increase plant diversity (Pacala and Crawley 1992).  

Introduced insect herbivores can impact host plants’ fitness directly as the case forAsian 

black twig borer (Xylosandrus compactus Eichhoff 1875) on native koa is (Acacia koa) on 

Hawaii (Daehler and Dudley 2002), or indirectly via apparent competition where two 
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species are mediated indirectly via a higher trophic species (reviewedby Kenis et al. 

2008). The way an insect herbivore feeds on its host plant can have an important 

influence on its impact on the host plant. Often seed-predating insect herbivores 

damage their host plants more compared to foliage feeders (McArt et al. 2012).  

Phylogenetic distance of host plants was found to be one of the most important 

predictors of insect herbivore assemblage in a New Guinea rain forest with congeneric 

host plants being more likely to have a great overlap in herbivore composition (Weiblen 

et al. 2006). Current research is starting to explain the evolutionary origins of host plant 

use by specific insect groups as shown for leaf mining sawflies (Leppänen et al. 2012). 

Escape and radiation co-evolution can be one of the drivers of host expansion (Winkler 

et al. 2009). Similarly climate changes in the past are expected to have shaped long term 

host plant evolution over millennia (Winkler et al. 2009). While related host plants often 

share similar insect herbivores, related insect herbivores are often found on very 

different host plants as demonstrated for coleopterans in woodlands (Baker et al. 2012). 

Often it remains impossible to incorporate all taxa at the species level in food webs due 

to complex situations, especially within species rich communities (Williams and Martinez 

2000).  

Several types of food webs are acknowledged in the literature e.g. community webs, 

where a selected set of interacting species is considered (Drossel and McKane 2002), 

also often referred to as trophic food webs. The latter term is used when trophic levels 

are identified. Consequently trophic food webs are a type of hierarchical food web (Polis 

1991, Power and Dietrich 2002). Hierarchical sink webs rely on keystone species 

identification (Jordán et al. 1999). In contrast to these hierarchical food webs, niche 

webs take all possible prey into consideration. Early niche webs were one dimensional 

which was revised later on to account for nested interactions (Allesina et al. 2008). 

There are many different food web reviews (e.g. Polis and Strong 1996, Polis et al. 1997, 

Dunne et al. 2002). However, the majority focus on specific habitat types or geographic 

regions, but less often on particular taxonomic groups. Example include Steinmetz et al. 

(2003) for aquatic food webs, Murakami and Nakano (2000) for bird functions in a 

forest-canopy food web, and Bruno and O’Connor (2005) for a marine food web. One 
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example of research within one insect subfamily (Tephretidae) on Veronica spp. showed 

high specialization between the different phytophagous tephretids as well as a tendency 

for higher overlap of associated herbivore communities between closely related hosts 

(Prado and Lewinsohn 2004). The importance of phylogenetically closely related hosts 

was also emphasized in a recent review by Bertheau et al. (2010). 

Senecio (Asteraceae) is one of the worlds’ most species rich plant genera (Jeffrey et al. 

1977, phylogeny review in Pelser et al. 2007. The approximately 1250-1500 species of 

Senecio (Pelser et al. 2007, Hamzaoğlu et al. 2009) are globally distributed and comprise 

several functional types including vines, trees and succulents (Webb et al. 1988)  and are 

thus are a representative plant genus.The majority of Senecio spp., however, are short-

lived herbaceous plants adapted to a range of different environments, particularly 

disturbed environments (Lawrence 1985). Senecio spp. range from weedy problem 

species such as Senecio inaquidens in Europe (Heger and Böhmer 2005) to critically 

endangered species such as S. scaberulus (NZPC Network, 2013). Senecio spp. pose a 

taxonomic challenge to researchers as they are known to hybridize amongst each other 

and taxonomic revisions such as the placement of J. vulgaris (formerly known as Senecio 

jacobaea) in the genus Jacobaea instead of Senecio spp. are not uncommon (Pelser et al. 

2012). Hybridisation could be important for insect herbivore host plant choice as hybrids 

show different plant volatile combinations: Senecio vulgaris is known to hybridize with S. 

vernalis, resulting in intermediate alkaloid concentrations for hybrids (von Borstel et al. 

1989).  

The effects of introduced Senecio spp. on herbivore communities and congeneric plants 

remain largely unknown in New Zealand. Amongst the 2146 naturalized species in New 

Zealand (Diez et al. 2009) are S. vulgaris and S. glastifolius (Webb et al. 1988). Both are 

problematic weed species. Senecio glastifolius is spreading rapidly throughout New 

Zealand, it was introduced in 1969 from South Africa to Wellington,New Zealand (Webb 

et al. 1988, Williams et al. 1999) and current research is trying to predict its potential 

future distribution (pers. Comm. Beautrais, 2012). Particularly, S. vulgaris is a prominent 

example which has caused problems for farming elsewhere, even in Europe, its home 

range (Frantzen and Müller-Schärer 2006). Senecio spp. exhibit species specific profiles 
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of plant volatiles, i.e. pyrrolizidine alkaloids, which can be toxic to lifestock (Meijden 

1996, Scherber et al. 2003, Hol 2011).  

Despite its placement in the genus Jacobaea, J. vulgaris (formerly known as Senecio 

jacobaea) is still considered to be a close relative to other Senecio spp. and has therefore 

been continued to be used as a model species for other Senecio spp. for insect herbivore 

research (Jacquemart et al. 2013). Within farming, J. vulgaris is known to be toxic to 

livestock and can cause hepatic failure and death. Similarly, S. vulgaris is also toxic to 

stock but usually not as problematic as J. vulgaris (Stegelmeier et al. 1999). Furthermore, 

J. vulgaris has been shown to compete with other pasture plants, facilitating some 

temporarily and decreasing growth of others (Wardle et al. 1995). Jacobaea vulgaris 

shows a great overlap with other Senecio spp. in terms of its well-studied insect 

herbivores (Jacquemart et al. 2013). According to Cameron (1935) a total of 75 insect 

herbivores from Europe are known to use J. vulgaris. 

A study from Belgium showed that S. inaquidens was more prone to generalist 

herbivores in its introduced range compared to the related J. vulgaris, which was more 

susceptible to herbivory by specialist feeders (Jacquemart et al. 2013). Introduced plants 

are suggested to be able to exhibit adaptations for increased generalist defence 

compared to their native conspecifics as shown for J. vulgaris populations in their 

introduced range (i.e. USA, Australia and New Zealand) compared with their native 

relatives from Europe (Joshi and Vrieling 2005). Whether or not New Zealand’s 

introduced Senecio spp are experiencing higher pressure from generalist feeders 

compared to their native congenerics is currently unknown.  

Aim: My aim for this chapter is to review the current knowledge about Senecio spp.-food 

webs in New Zealand. A reasonable amount of information has begun to be 

accumulated but it is recorded across many disparate sources, including much “grey 

literature” that is not immediately accessible. Therefore my objectives were to 

I. Bring the current information together in one place and review general trends in 

host specificity, feeding guilds, host overlap  
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II. Investigate whether introduced species are more frequently encountered by 

generalist feeders compared to native ones.  

III. Assess the degree of food web integration between native and introduced species 

as a preliminary step towards a better understanding and prediction of the potential 

direct and indirect effects of introduced species (both plants and insects) entering 

this food web.  
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4.2 Methods 

4.2.1 Data collection 

For this chapter I searched the databases displayed in Table 4.1 additionally to a general 

web search which included Google Scholar. Furthermore I used my own field research 

involving Senecio spp. and their insect herbivores (Chapter 5 elaborates on the methods 

used to obtain association records).  

Table 4.1: Databases searched for records of insect feeding associations with Senecio species in New 

Zealand.  

Database/sources  years covered 

ISI Web of Knowledge using CrossSearch including the 
following data bases:                                                                                                        1981-present 

ISI Web of Science  1990-present 
Web of Knowledge 

Science Direct - Agricultural and Biological Sciences  1823-present 
JSTOR  
AGRICOLA 
Index to Theses 1970-2003 
UMI ProQuest Digital Dissertations 1950-2003 

COPAC - database of the 24 main British and Irish university 
libraries and the British Library and National Library of 
Scotland 
Natural History Museum Library 1980-present + 80 % prior 
Online Public Access Catalogue (books) 
Journal Article Citation Index (journals) 
SCIRUS - Scientific Search Engine 
Crop and Food/Landcare Research data base Martin 2013 
Spiller and Wise publication 1982 
own field work 2010-2013 

Consequently, I evaluated all references and any reference that added to the knowledge 

about linkages between New Zealand’s Senecio spp. and their insect herbivores was 

used for further analysis.  

I classified Senecio spp. into different categories: endemic (only occurring naturally in 

New Zealand), native (non-endemic natives), and exotic (introduced and naturalized or 

cultivated but thought at risk of naturalizing). With the exception of S. sterquilinus, 
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which is regarded as part of the Senecio lautus complex (Ornduff 1964, Webb 1988), 

only 20 species are represented here (i.e. Senecio angulatus, S. banksii, S. 

bipinnatisectus, S. biserratus, S. diaschides, S. elegans, S. esleri, S. glastifolius, S. 

glomeratus, S. hispidulus, S. lautus, S. minimus, S. quadridentatus, S. radiolatus, S. 

rufiglandulosus, S. skirrhodon, S. sterquilinus, S. sylvaticus, S. vulgaris and S. wairauensis,  

instead of the 33 species that Sullivan et al. (2008) mention. Senecio spp. without 

reported associations or revised taxonomy and/or subspecies status were not further 

considered and hence are not part of the species list S. aquaticus, S. cineraria, S. 

linearifolius, S. mikanioides, S. petatsitis, S. carnoosulus, S. dunedensis, S. glaucophyllus, 

S. hauwai, S. kermadecensis, S. marotiri and S. scaberulus,). Senecio sterquilinus was 

included solely from records based on my own surveys, as to my knowledge no other 

records exist about its food web associations. A detailed table of all Senecio spp. 

included can be found in Appendix IV.  

I included only herbivores that were reared on a Senecio plant. Where it was unclear 

what Senecio sp. it was I distinguished those records from those with clear host species 

identification. Host specificity was classified according to the literature/database 

information. I identified insect herbivores, as monophagous, oliphagous, or polyphagous 

as defined earlier. Where other host plant species are known for the insect herbivore 

but no information was available in terms of its host specialization I used the term 

‘unknown’.  

In order to compare the parts of the Senecio spp. that were used by the insect herbivore 

I distinguished between different feeding types: flower feeders, leaf miners, stem 

borers, nectar feeders, foliage feeders, insects that suck on plant sap, insect herbivores 

feeding on roots and leaves. Included were all records that showed evidence of rearing 

the insect herbivore on that particular plant or a Senecio sp within New Zealand in 

general (without species reference). 
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4.2.2 Data analysis 

All data obtained from the literature was consolidated into one data file for further 

analysis. The graphs displayed to compare the biostatus of the Senecio spp. host plant 

and the biostatus of insect herbivores may contain multiple species associations per 

species.  

Fischer’s exact tests were used to compare the distributions of various aspects of the 

associations between native, endemic and introduced herbivores, plants and their host 

specificity. Significance was assumed at p < 0.05. For food web association graphs I used 

bipartite food web association graphs generated with the package bipartite (Dormann et 

al. 2008) using the statistical program R (R Core Team 2012). Where boxplots were used, 

boxes and whiskers are by R default (boxes encompass the interquartile range (IQR). 

Whiskers extend to the end of the range except for the outliers (>1.5 times the range). 
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4.3 Results 

A total of 97 unique Senecio-spp. insect herbivore associations was retrieved from the 

databases. Twenty-eight insect herbivore species were found on the 20 Senecio taxa 

investigated (See Fig. 4.1 and 4.2 for all associations). A detailed list with species 

descriptions of all Senecio spp considered in this study is available in Appendix IV with 

photos for coastal Senecio spp and some of the major insect herbivores (Fig. A V.1-6). 

The majority of reports for insect herbivores on Senecio spp. were for naturalized 

Senecio spp followed by non-endemic natives and endemics (Fig. 4.3). All records are 

either based on my own records which were validated against voucher specimens or are 

based on records with a reliability score that ensures that the herbivore was raised on 

the plant (higher than score “8”).  
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Figure 4.1: Single species associations are shown for plant species vs. insect herbivores. Digits after species names indicate plant status: 1= endemic, 2=native, 3= 

introduced. Where no digit is given, status was unclear. Insect herbivores are grouped by order (black box). Associations highlighted with red are based on my own 

records. 
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Figure 4.2: Species interactions between Senecio spp.  and insect herbivores are shown. Each connection represents a herbivore-Senecio spp association. 
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Figure 4.3: Frequency of Senecio spp. biostatus for which insects were reported. Each record represents 

a unique host plant-insect herbivore association. NA = Associations where the Senecio spp. was not 

identified to species level. 

 

The frequency of host specificity of insect herbivores on Senecio spp. showed higher 

numbers for insect herbivores recorded which are known to only feed on Senecio spp. 

(Fig. 4.4) compared to oligophagous or polyphagous. However, the proportion of 

unknown host specificity was second highest.  

 

 

Figure 4.4: Frequency of host specificity for which insects were reported: Each record refers to one 

specific host plant-insect herbivore association. 
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The top five insect herbivores are shown in Fig. 4.5. Naturalized Chromatomyia 

syngenesiae (Diptera: Agromyzidae) was the species with the most Senecio spp.-feeding 

associations, closely followed by the endemic Nyctemera annulata (Lepidoptera: 

Arctiidae).  

 

 

Figure 4.5: Number of host plants for the top five insect herbivores with more than two host plant 

Senecio spp. in New Zealand. Herbivore status is given via colour coding: White= endemic and black= 

exotic. 

 

Lepidoptera were the most frequently reported (44 associations) order of insect 

herbivores on all Senecio spp., followed by Diptera (28 associations), Hemiptera (20 

associations), Coleoptera, Hymenoptera and Nematocera, which had between one and 

two associations each (Fig. 4.6).  
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Figure 4.6: Number of associations per insect herbivore order reported: Coleoptera, Diptera, Hemiptera, 

Hymenoptera, Lepidoptera and Nematocera. 

 

Fisher’s exact test showed no significant differences between associations regarding 

their host specificity and geographic origin (p = 0.861) (Table 4.1). However, the number 

of associations between native Senecio spp. and Senecio spp.-specific insect herbivores 

was highest together with introduced Senecio spp. and Senecio spp. specific herbivores. 

Less than half the values as reported for the latter were found for all other combinations 

(Table 4.1). 

Table 4.2: Cross tabulation of associations for plant status and feeding type of insect herbivore. Rows 

represent Senecio spp. biogeographic status and columns the specificity of the insect herbivore feeding 

relationships. Fisher’s exact test: p = 0.861. 

 

  monophagous oligophagous polyphagous total 

endemic 10 3 4 22 

native 19 5 3 33 

naturalized 19 5 4 33 

 

Fisher’s exact test (p-value = 0.861) provided no evidence that non-native insects are 

more or less likely to associate with non-native plants. Naturalized plants and endemic 

herbivores showed the highest number of plant-insect feeding associations, followed by 

native plants and endemic insect herbivores. There were no records for native plants 

and native herbivores as well as for endemic plants and native herbivores. More than 

half of all feeding associations involved either naturalized plants or insects (Table 4.2).  
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Table 4.3: Frequency of records between plants and insect herbivores in relation to their biogeographic 

status. Fisher’s exact test:p-value = 0.391. 

 

endemic herbivore naturalized herbivore 

endemic plants (5 species) 12 7 

native plants (6 species) 18 13 

naturalized plants (9) 21 7 

 

The different feeding guilds were most frequently represented by foliage feeders and 

leaf miners followed by sucking insects, flower and stem feeders, shoot and root 

feeders, and insects feeding on roots and leaves (Fig. 4.7). 

 

 

Figure 4.7: Frequency of trophic guilds for insect herbivores on Senecio spp.-hosts. Each record 

represents a unique feeding association. 
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4.4 Discussion 

This chapter collates current knowledge about New Zealand’s Senecio spp.-food webs 

and reviews general trends in host specificity, feeding guilds, host overlap and the 

degree of food web integration between native and introduced species. The results 

showed more herbivore-plant associations for naturalized plants. However, the 

proportion of native plant records was high and herbivores were mostly monophagous 

(Senecio spp.-specific). Most associations were found for Lepidoptera and leaf miners 

(either Lepidoptera or Diptera).  

Despite the economic importance of introduced Senecio spp. and closely related 

senicioids as weeds in New Zealand (e.g.J. vulgaris Wardle et al. 1995), there is 

surprisingly little knowledge about food webs of Senecio spp. plants and their food web 

interactions in New Zealand. More than half of the recorded plant-insect associations I 

found were for insect herbivores on exotic plants. Given the geographic distribution and 

the close proximity of introduced and native Senecio spp. within the New Zealand 

context this was to be expected: In particular, native and introduced Senecio spp. grow 

very close together in coastal habitats, possibly directly competing for resources 

(personal observation) or indirectly competing via shared enemies. According to the 

Enemy-release hypothesis (Maron and Vila 2001, Keane and Crawley 2002, Vilà et al. 

2005) introduced plants escape their natural enemies in their introduced new home 

ranges. When comparing the seed predating insect herbivores of native and introduced 

Asteraceae in New Zealand and their British home range, only one record of the 

endemic Senecio spp.-specific tephretid fly Sphenella fascigera was found colonizing the 

introduced species in New Zealand (Fenner and Lee 2001), while up to 48 % of 

Asteraceae were infested by seed head predators in the UK.  

Typically, introduced plants are thought to be more readily colonized by generalist 

phytophagous insects compared to specialists (reviewed by Liu & Stiling 2006). The 

results of this chapter do not support the assumption that introduced plants have fewer 

records of insect herbivores compared to natives. However, the proportion of native 

species records was high and despite the assumption that more polyphagous insects 

should be found on naturalized plants my results show that both native and naturalized 
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Senecio spp. are dominated by records of Senecio spp.-specific insect herbivores. Senecio 

spp. are a chemically well defended plant genus with pyrrolizidine alkaloids as defence 

that possibly deter generalist herbivores, as these tend to focus on plants with lower 

chemical defence capability (Meijden 1996). However, Macel et al. (2005) showed that 

pyrrolizidine alkaloid mixtures can affect generalist herbivores while single compounds 

may not. It is possible that agriculturalists as well as scientists are biased and record 

more frequently insects feeding on economically important introduced weeds such as J. 

vulgaris compared to less conspicuous introduced and native Senecio spp. and thus 

these results could be skewed towards such species. Naturally uncommon or relict 

species such as Senecio sterquilinus had few or no known insect-herbivore plant- 

associations prior to my own field work (chapter 5). There is also the natural sampling 

effort of more common and widespread species being more likely to pick up enemies 

than rare and restricted species. 

Tosh et al. (2011) argue that the phylogeny of host plants plays a crucial role in the 

development of novel host associations with introduced hosts: congeneric, closely 

related plants, as researched in this chapter, appear to have more similar insects 

compared to hosts of the same family (Novotny and Basset 2005). This dataset supports 

this research finding, as I found a great overlap in alien-plant-endemic herbivore and 

native/endemic plant-endemic herbivore associations. It has been hypothesized that 

insect herbivore richness on alien plants often reaches similar numbers to those on 

native/endemic plants (Yela and Lawton 1997).  

However, species identity is only one criterion to describe insect -plant associations. 

Feeding guilds may differ between introduced and native congeneric plants as 

documented for the introduced Solidago altissima and the native S. virgaurea in Japan 

(Ando et al. 2010). They found a much higher proportion of introduced sap-feeding 

insect herbivores on the introduced plant compared to the native, suggesting that insect 

herbivores with less adaptations and shorter times to co-evolve with introduced plants 

are more likely to be external feeders. Depending on the feeding guild, leaf structure 

might be more important than plant nutrient levels in influencing which associations 

form (Peeters 2002). A few papers look at the distribution of feeding guilds on plants: It 
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appears that feeding guilds are evenly distributed across continents but do differ 

between plant species (examples in Lewinsohn et al., 2005). In addition to a plant’s 

geographic range, as well as its plant architecture, plant size was identified as important 

in determining the number of insect herbivores a plant can host (e.g. review in Lawton 

(1983)).  

Nevertheless, Senecio spp. are well known for their pyrrolizidine alkaloids, which in their 

concentration and composition are species specific and thus could potentially determine 

insect distributions. This was shown for several generalist feeders by Macel et al. (2005). 

They demonstrated various responses: plant sucking species were susceptible to higher 

pyrrolizidine concentrations in the vital plant parts such as the young leaves or flower 

heads while caterpillars of very polyphagous species remained unaffected. According to 

Wilcox (2012) it is possible that even the geographic origin of plants of the same species 

could influence its alkaloid composition and concentration which in return might be 

influencing insect herbivore abundances. Apart from his thesis however, there is 

currently no further information available on New Zealand’s Senecio spp. and their 

pyrrolizidine alkaloid concentrations and the influences on insect herbivores. 

Nevertheless, a phytochemical review by Hol (2011) emphasized the importance of 

pyrrolizidine alkaloid concentrations for senecio-insect herbivores. Apparently, alkaloid 

concentration is correlated with nutrient status of the host plant and thus varies within 

the season, allowing different herbivores to colonize at different times within the season 

as shown for nitrogen levels in J. vulgaris (Hol 2011). It was not clear from the references 

if plants were observed throughout all seasons- It seems more likely that records were 

single observations rather than detailed systematic studies across all seasons. Food 

quality for generalist insect herbivores can be impacted by the consumption of plant 

volatiles, but they might act as a defence against parasitoids and hence the trade-off 

between food quality and protection can be worthwhile as documented for Estigmene 

acrea caterpillar development with Senecio longilobus and Viguiera dentata as host 

plants (Singer et al. 2004).  

The majority of insects on New Zealand’s Senecio spp. were those with clear visual 

impacts to the host plants- such as leaf miners and foliage feeders and hence 
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conspicuous to recording. Foliage feeding insects such as coleopterans (not very much 

represented in the Senecio spp. records displayed here) and lepidopterans are thought 

to comprise about two thirds of all known insect herbivores (Howe and Jander 2008). 

However, it is very possible that a range of Senecio spp.-insect interactions records in 

New Zealand are not formally recorded yet or remain undiscovered, especially given the 

numbers of insects that have been recorded elsewhere on closely related plants e.g. 75 

herbivores are documented on J. vulgaris (Harrison and Thomas 1991). It was beyond 

the scope of this study to investigate latitudinal effects on insect herbivore assemblages, 

which can influence plant-insect associations as shown by Fagundes & Fernandes (2011), 

which due to New Zealand’s a range of different latitudes could potentially impact 

distributions via different climate conditions.  

Except for the coastal Senecio spp. of my own field work ((see chapter 5); and Waring 

(2010) I was unable to find quantitative data on Senecio spp. food webs in the New 

Zealand context and thus unable to quantify linkage strengths. Higher trophic levels such 

as parasitoid wasps are also not very well recorded, as is often the case with parasitoids 

due to high sample sizes and other logistic challenges (Paynter et al. 2010). -Although 

there is some information about some of the species links, there was not enough 

information on parasitoid links to the plants of their insect herbivore hosts. How exotic 

plants impact native Senecio spp. food web associations is currently unclear, although 

some examples show that exotic Senecio spp. can increase insect herbivore overall 

abundances and indirectly impact native Senecio spp. via apparent competition (Waring 

2010). 

However, I suspect one of the most important difficulties with determining insect 

associations for Senecio spp. are taxonomic difficulties with the host plants, which make 

Senecio spp. a challenging study subject. Throughout my own food web research 

regarding coastal Senecio spp. I frequently encountered Coast Care Groups and residents 

who accidently mistook exotic S. skirrhodon for native S. lautus and only weeded for S. 

elegans, giving S. skirrhodon a competitive advantage over the more easily identified 

purple flowering S. elegans. The number of associations that were recorded for Senecio 

spp. without Senecio species identification further supports my opinion that taxonomy 
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plays a vital role in the paucity of specific associations reported. Even for invaders, that 

have recently received some attention through to their expanding range and striking 

appearance such as S. glastifolius, information on food web linkages remain scarce and 

an accurate assessment of the impacts of such expanding exotics remains difficult to 

assess due to the lack of information. The feeding guilds of mostly generalist insect 

herbivores (and some very specialised species) make Senecio spp. very interesting focal 

species to assess the impacts of closely related invaders. Comparing the habitat-types of 

New Zealand Senecio spp. it is apparent that most species occur on wastelands or other 

disturbed sites such as riverbanks, coastal sites or forest margins/clearings. Therefore 

there is a high overlap of some introduced species and native species in these habitats, 

creating great opportunities to study the introduced-native-plant-insect interactions 

which will further enhance our understanding of how introduced species integrate 

themselves into established food webs.  

 

4.5 Conclusions 

My Senecio spp. food web review showed no significant effect of plant and insect 

herbivore bio status and the number of recorded associations. Most records were for 

Lepidoptera and leaf miners (regardless whether lepidopteron or dipteran), which were 

Senecio spp.-host specific. Furthermore, I found a similar number of insect herbivore 

records for naturalized and native Senecio spp., probably indicating a bias of recording. 

Consequently, more information on New Zealand’s insect herbivores on food webs is 

required to construct quantitative food webs, as data were mostly based on non-

quantitative records.  
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CHAPTER 5 
CHAPTER 5 The importance of plant morphology and different spatial scales of plant density for plant-insect herbivore host choice 

and interaction strengths 

 

The importance of plant morphology and different spatial 

scales of plant density for plant-insect herbivore host 

choice and interaction strengths 

 

 

 
 

Two specimens of native Senecio lautus at shingle beach in Eastbourne/Wellington. 
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5.1 Introduction 

An important step towards understanding the dynamics of food webs is the 

understanding of interaction links between species; especially interactions between two 

trophic levels. However, the mechanisms that predict and determine host specificity are 

still not fully understood and some research questions remain. The interactions between 

native and introduced plants, and their associated insect herbivores are a particularly 

important area of research, because closely related plants are often similar in terms of 

their chemical profile (e.g. plant volatiles such as alkaloids) and morphology. Several 

types of host specificity are acknowledged in ecological research: i). monophagous 

species; herbivore feeds only on one species (Symons and Beccaloni 1999) ii). 

oligophagous species, i.e. herbivore feeds on species within one genus or plant family 

and iii). polyphagous species; where insect herbivores are known to feed on several 

genera across several plant families (Schoonhoven et al. 2007).  

Ecological theory suggests one or more of the following influence host selection: i). 

morphological traits such as leaf size,  flower head colour, shape and plant size (Prokopy 

and Owens 1983) ii). interspecific competition spill-over effects and apparent 

competition (Holt 1977, White et al. 2006, White 2008) and iii). phylogeny; which 

explains how closely two species are related and therefore share similar e.g. chemical 

traits as shown by Symons and Beccaloni (1999) and Briese and Walker (2002).  

Host-parasite interactions cannot be seen completely separately from the community 

they are embedded in due to various types of interactions. Identifying interactions 

between members of a habitat community is crucial for the wider understanding of 

ecological processes.  

Research on food webs is particularly important to predict the consequences for a 

community when a new species arrives in an established food web (Brockerhoff et al. 

2010). When researching food webs, it is important to identify host specificity within the 

study system (Novotny and Basset 2005), in order to identify comprehensive linkages 

between species within a community. Furthermore it provides useful information for 

conservation; especially when species from a food web are removed via extinction or 
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added through invasions which can lead to unpredictable consequences (McCann 2000). 

Different adaptations of food webs to introduced species have been demonstrated in 

previous studies and range from filling a previously unoccupied niche with an alien 

invader to extinctions (Drossel et al. 2000). 

Insect herbivores are not evenly distributed across their host species specimens (Egan 

and Ott 2007). Therefore several different ecological hypotheses have been posed to 

explain spatial differences of insect herbivore loads: the enemy release hypothesis (ERH) 

assumes that native species are largely confined in their abundance by their native 

enemies (e.g. Keane and Crawley (2002)). However, introduced species do not generally 

have the same enemies which evolved with their host species and therefore have a 

competitive advantage (e.g. Clay, 2003; Wolfe, 2002). The resource concentration 

hypothesis (RCH), which was first posed by Root (1973), predicts larger quantities of 

insect herbivores in areas with high host plant density. Despite the general recognition 

of this principle, some studies showed contrasting effects with less insect herbivores in 

denser areas (Thompson 1978, Price 1997), and in areas with low host plant density 

insects were more abundant on isolated plants (Karban and Courtney 1987). The 

resource dilution hypothesis (Otway et al. 2005) predicts that isolated plants experience 

a higher insect herbivore load than plants within dense patches. The natural enemy 

hypothesis (NEH), first raised by Pimentel (1961), predicts that generalist natural 

enemies are more efficient in controlling pest populations in complex systems than in 

species poor systems (Russell 1989, Stiling et al. 2003). In addition to direct competition, 

indirect competition is an important interaction between two species on the same 

trophic level that is mediated by interactions with a shared host or enemy on a different 

trophic level (Levine 1976, Holt 1977, Bonsall and Hassell 1997). If the apparent 

interaction is positive and thus facilitative, it is referred to as apparent facilitation 

(Helms and Vinson 2003, Hansen et al. 2007, Pellissier et al. 2010) 
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Resource density within the landscape 

Resources are not evenly distributed within the landscape and therefore ecological 

interactions take place at different spatial scales (Wiens 1989). Resource dependencies 

also differ depending on the species and the topography of the landscape. In arid areas, 

water is the limiting resource that determines ecological processes at different spatial 

scales (Sponseller et al. 2013). For predators, the availability of their prey determines 

resource availability at different spatial scales (Červinka et al. 2013). Plant-insect 

interactions can operate at multiple scales: the smallest scale might be a leaf of a plant, 

at the next scale up insects may search for the plant itself as well as various other scales 

that need to be identified for each study. Typically, three different factors have to be 

taken into consideration when setting up a study: the overall area of the study, the size 

of the sampling units and the distance between the different sampling units (described 

as extent, grain and lag respectively in Turner et al. (1989) and O’Neill et al. (1996)). 

Depending on the hypothesis being tested, the scale necessary for the survey or 

experiment varies: for mapping moss a 10 x 10 cm quadrat might have the appropriate 

scale (grain), for grasses most ecologists recommend at least a 1 x 1 metre quadrat, and 

in forests a standard size is at least 10 x 10 metres (20 x 20 m in high forest) (Allen et al. 

1951, Peet et al. 1998). Quadrat sizes, and their dispersion in space, will affect 

perceptions of alpha, beta and gamma diversity (Kwiatkowska and Symonides 1986).  

Murray et al. (2002) examined the relationship between plant traits and commonness of 

rare plants at local, regional and geographical ranges as a first step towards a 

methodology of rarity studies. Often it is necessary to build up hierarchical nested data 

sets to create the best model to answer the questions around host choice.  

I chose to investigate plant density as my main scale dependant factor for insect 

herbivore host choice. Several studies in the past have used plant density or biomass as 

measures for determining which of the two hypotheses is supported: the resource 

concentration or the resource dilution hypothesis (e.g. Bañuelos and Kollmann (2011), 

Stephens and Myers (2012)). These two hypotheses are also in the focus of my study as I 

compared different plant densities in terms of their insect herbivore infestations. In 

contrast to many of the previous studies, in my study system plants are not simply seen 
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as either hosts or non-hosts as often is the case. I considered the plant densities as 

factors in my linear mixed effect models. Furthermore, I used a set of very closely 

related native and introduced Senecio spp. to research the effects of the potential 

introduced host. More specifically, I also wanted to know, if spill over effects (where 

insects accidently lay eggs on a non-host plant in close proximity to a host plant) occur 

(Holt 1977, White et al. 2006, White 2008). My study incorporates several different 

spatial scales to help identify the factors influencing host specificity and host choice. I 

chose coastal Senecio spp. and their insect herbivores as a study system as they include 

closely related introduced and native species within a relatively species poor 

community. I expected to clarify the effects of an introduced congener on the 

interactions between native plant-insect interactions as the species paucity gave the 

opportunity to manipulate the food web.  

Coastal areas of New Zealand have undergone dramatic changes since the beginning of 

European settlements. Historically, New Zealand’s active dunes were more sparsely 

vegetated than their European counterparts (Gadgil 2006a), as only a few species 

evolved here. European species adapted to grazing and anthropogenic influences now 

have a competitive advantage over those species which were native to New Zealand 

dunes (Norton et. al. 1997). Naturally dynamic active dune areas have been stabilized 

with introduced marram grass (Ammophila arenaria). The planting of marram grass 

changed species combinations and facilitated the growth of other introduced species 

such as Glaucium flavum, Senecio elegans, Senecio skirrhodon, introduced legumes and 

many others (Gadgil 2006a). A mixture of native S. lautus, relict S. sterquilinus (and 

hybrids of S. lautus x S. sterquilinus) and closely related introduced Senecio spp. are part 

of today’s coastal communities. Currently there is little information about New Zealand’s 

coastal plant- insect communities. Despite a database for plant-insect herbivore linkages 

(Martin 2013) the interactions between coastal plants including Senecio spp. and insects, 

and interaction strengths remain largely unknown (see Chapter 4). With a survey of 

natural populations and a field experiment I aimed to identify important scales of plant 

densities and insect herbivore host plant choice.  
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Aims and research questions 

I. Quantify species linkage strengths between insect herbivores and host plants 

II. Does plant density affect insect herbivore host plant choice and cause spill over 

effects from native to introduced plants? Are there differences when congeneric, 

heterogeneric plant densities are considered? 

III. Is fine scale plant density more important for host plant choice than coarse scale 

density? 

IV. Which plant properties (plant morphology) influence insect herbivore host 

choice? 
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5.2 Materials and Methods 

5.2.1 Study species 

Focal plants  

As focal study species I chose plants from the genus Senecio spp., which is the most 

species rich genera within Asteraceae (Jeffrey et al. 1977), which is an important plant 

family (Stebbins, 1981). Senecio spp. are widespread and many species are known to be 

weedy (Radford and Cousens 2000, Garcia-Serrano et al. 2005). Within the New Zealand 

context, ragwort (Jacobea vulgaris, formerly known as Senecio jacobaea) is known to 

have a profound ecological and economic influence on native and pastoral ecosystems 

and was consequently declared a pest plant (New Zealand Government, 2008). Senecio 

spp. contain pyrrolizidine alkaloids and terpenes as defence chemicals to deter insects, 

which are known to be toxic to stock if digested in high numbers. Differences in toxicity 

depend on species identity (e.g. J. vulgaris McLean (1970), Johnson et al. (1989)). 

However, some specialist insects are able to sequester alkaloids and use them for their 

own defence; these insects may use alkaloids as a positive cue for host-finding and 

acceptability (Macel 2011). 

Within the Wellington region the following plant species have been previously recorded 

(including inland species): S. angulatus, S. biserratus, S. elegans, S. hispidulus, S. 

glastifolius, S. glomeratus, S. lautus, S. quadridentatus, S. skirrhodon, S. sterquilinus and 

S. vulgaris (Sullivan, pers. comm. 2010). I focused on S. lautus, S. skirrhodon, S. elegans 

and S. sterquilinus as they most frequently were found to grow in close proximity at 

exposed coastal shingle beaches. I only considered Senecio lautus (native), S. sterquilinus 

(relict endemic, associated with environmental conditions in the past, in this case bird 

guano), S. elegans (introduced) and S. skirrhodon (introduced) for my surveys and 

experiment, and occasional observations on S. glastifolius (introduced) and S. vulgaris 

(introduced) (Fig. 5.1). A detailed description of the study species can be found in 

Appendix V, and Figures A V.1-6.  
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Figure 5.1: Focal Senecio spp. of this chapter: Senecio sterquilinus, S. lautus, S. skirrhodon, S. elegans, S. 

vulgaris and S. glastifolius. 
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Focal insect herbivores 

I chose leaf miners, stem borer, gallers, leaf roller, seed head predators and 

lepidopteran larvae as focal insect herbivores. My selection was based on the 

dependence of the insect herbivore on the Senecio spp. plant for reproduction, and the 

effort and accuracy required for sampling. Additionally, leaf miners and seed head 

predators in particular are known to be highly host specific (Schoonhoven et al. 2007, 

Bañuelos and Kollmann 2011, Ali and Agrawal 2012). Therefore they should be good 

study organisms for the community influences of a closely related alien plant within the 

community. The major species were: the seed head predator tephritid fly Sphenella 

fascigera (endemic), the blue stem borer moth Patagonoides farinaria, the endemic 

diurnal magpie moth Nyctemera annulata, and the introduced leaf miner fly 

Chromatomyia syngenesiae. For a detailed description of the insect herbivores and their 

previous records see Appendix V. Insects other than the focal insect herbivores were 

recorded if they were reproducing on the plants (e.g. Geometridae and other 

lepidopteran larvae as well as dipteran larvae).  

 

5.2.2 Study site 

Survey of naturally occurring populations 

I surveyed five field sites within the Wellington region. The locations were Eastbourne, 

Petone, Makara Beach, Matiu/Somes Island and the Wellington South coast (Fig. 5.2). 

Long stretches of Eastbourne’s shingle beach have abundant S. elegans and S. skirrhodon 

populations, which seems to be a species combination which is widely distributed 

around New Zealand’s coast (personal observation). An approx. 150 m long stretch of 

shingle beach at the southern end of Eastbourne (latitude, longitude: -41.30751, 

174.8844), however is mainly inhabited by S. lautus (with only a few scattered 

individuals of S. elegans and S. skirrhodon). Only S. lautus is present at Makara beach. 

Senecio sterquilinus, S. lautus and possibly their hybrids are sharing the beaches on 

Matiu/Somes Island. Along the small bays of the South coast only S. lautus are nested 
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within stretches of S. elegans and mixtures of S. elegans and S. skirrhodon. Wellington is 

very windy with an average of 173 days per year with winds greater than 60 km/h 

(Turner and Chapell 2013). Average daily temperatures range 16.5˚C (summer) to 9.3 ˚C 

(winter) and annual precipitation is around 1185 mm (NIWA 2013). 

 

 

Figure 5.2: Map shows field sites for the survey of natural populations around Wellington. Red points = 

field site. 
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Experiment field site 

I chose the shingle beach at Eastbourne for this experiment (Fig. 5.3 and Fig. 5.4), as the 

field site consists of a long continuous stretch of similar vegetation with naturally 

occurring Senecio spp. (see Fig. 5.3 for field site location and Fig. 5.4 for transect 

locations). Plant species present at the field site include: Coprosma repens, Senecio 

skirrhodon, S. elegans, S. lautus, S. vulgaris, Anagallis arvensis, Glaucium flavum, 

Gazania rigens, Chrysanthemoides monilifera subsp. monilifera, Sonchus oleraceus, 

Lobularia maritima, Crepis capillaris, Hypochaeris sp., Taraxacum officinale, Atriplex 

prostrata and Galium spp. The vegetation typically occurs in bands parallel to the 

tideline and topographic undulations further inland, presumably reflecting differences in 

microclimate and substrate conditions. Often coastal Senecio spp. root in debris from 

the tideline (pers. observation).  

 

 

Figure 5.3: Field site location for Senecio spp. experiment. Red= field site area. 
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Figure 5.4: Map shows transect locations of the field experiment. T = transect. Red lines = transects with 

S. lautus versus S. elegans, green lines = transects with S. elegans versus S. skirrhodon and blue lines = 

transects with S. lautus versus S. skirrhodon. 
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5.2.3 Data collection 

Survey of naturally occurring populations 

I conducted surveys over three field seasons from April 2010 until April 2012. In the first 

survey, quadrats (2 x 2 m square nested within a 6 x 6 m square) were located at 

random points across each field site. For subsequent surveys the quadrats were located 

along transects in an adaptive fashion to increase their intersection with the ‘bands’ of 

coastal Senecio spp. that typically grow parallel to the sea (pers. observation). 

Consequently, the procedure was repeated at the first occurrence of Senecio spp. Plants. 

Since my aim was, not only to quantify linkage strengths between insect herbivores (the 

frequency of which the association was observed), but also to identify whether or not 

plant density affects insect host plant choice, I nested quadrats. This meant that the       

2 x 2 m square was nested in the 6 x 6 square as in the first survey, but a minimum 

spacing of 2 m between the outer quadrat and the next outer quadrat was set.  

Quadrats were located along a transect at 8 m intervals (2 m gap between 6 m 

quadrats). In the case of several consecutive empty quadrats, the next quadrat was 

placed over the next available Senecio spp. plant as the start of a new transect and the 

procedure was repeated. Each random point of the first survey (or the transects of the 

other surveys) formed the centre of a 2 m quadrat which was nested within a 6 m edge 

length quadrat (referred to as small (inner) and big (outer) quadrats respectively (Fig. 

5.5). I recorded GPS coordinates for the 6m quadrat. 

Within the 2 m quadrat I recorded the following general parameters: number of plants 

of each Senecio species and species present within the quadrat (Senecio spp. and all 

other plants). I recorded information from every individual Senecio spp. plant within the 

quadrat for the first survey. In subsequent surveys I only recorded measurements of up 

to 9 plants. To select these nine plants I divided the quadrat into 16 50 x 50 cm 

subquadrats and in quadrats with more than 9 Senecio plants, the Senecio focal plants 

were chosen closest to the internal intersections (see points labelled 1-9 in Fig. 5.6). If 

the nine plants (or less) were not evenly distributed they were all recorded regardless. I 

recorded the selected subquadrat ID (Fig. 5.6 for explanation) for each plant and 
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counted all plants within a 50cm radius circle (area = 0.8m²) of the investigated plant to 

research the effect of fine scale plant density on insect herbivore host plant choice. I 

noted for all Senecio spp. in which subquadrat they were located. For each focal plant I 

recorded: height, diameter, state of flowering (how many flower buds, how many 

flowers in bloom, how many flowers that have finished flowering), health score (how 

many discoloured leaves out of ten counted from the bottom up to the top of the plant), 

and feeding damage (by slugs etc. using the same counting approach as with health 

score leaves). In addition, I also recorded presence-absence of fungal-infestations. In the 

first survey all flower heads were searched, but in subsequent surveys only up to ten 

flower heads were opened and searched for seed head predators. I searched the whole 

plant for no longer than 10 min in total, and recorded all aphids, leaf miners, 

lepidopteran larvae, gallers and stem borers and all other insects I observed. I only 

recorded the number of conspecifics and hetero-specifics of the investigated Senecio 

spp. within the big quadrat (shaped like a square annulus, excluding 2 m quadrat plant 

counts with an area of 32 m²). Senecio sterquilinus is an endemic relict species 

(associated with bird colonies and their guano) and due to conservation legislation its 

stems could not be sampled destructively as conducted for the other species.   
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Figure 5.5: Nested quadrat design is shown with the small 2 m quadrat where 9 plants were selected 

and Senecio spp. density within a 50 cm radius circle (area = 0.8 m²) was measured. The black big 

quadrat represents the 6 m quadrat (area of the annulus = 32m²) in which Senecio spp.-plants were only 

counted but not further measured. 

  

6m 
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a b c d 

e f g h 

i j k l 

m n o p 

Figure 5.6: Subsampling design within a single 2x2m quadrat. Letters show 50 cm subquadrats. Numbers 

show idealised locations for all nine focal plants and green dots show hypothetical plants of varying 

sizes. Black lines indicate which plant would be a surveyed plant. The red circle shows the 50 cm radius 

circle in which all plants were counted (area = 0.8m²). 

 

Experimental setup 

The experiment focused on small scale plant densities, therefore a short distance 

between the experimental units was deemed efficient to test for effects of plant density 

on insect colonization. Out of the greenhouse grown Senecio spp. plants, 120 adult 

plants each of S. lautus, S. skirrhodon and S. elegans were used in a manipulative field 

experiment to test how plant density (introduced verses native species and introduced 

vs. introduced species) affects insect herbivore colonization. All experimental plants 

were initially grown under controlled settings in the Victoria University of Wellington 

greenhouse using seed collected from Eastbourne and Tarakena Bay (Wellington South 

Coast). Before transplanting into the field, plants were hardened-off on the roof of the 

university building for 2 weeks. To acclimatize the plants to salt spray, plants were 

frequently sprayed with seawater during this period. To avoid premature insect 

colonization plants were protected on the roof by a mesh cage. All plants were planted 

into 12cm high pots which were filled with a 2:1:1 mixture of coarse sand type 2 (2-5 

mm), standard seedling potting mix and standard compost. I added plant saturizer aid to 

the potting mixture (according to specifications from the manufacturer Debco). At the 

1 2 3 

6 

9 

5 4 

7 8 
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bottom of each pot a piece of artificial sponge was laid to aid with water retention. In 

the wild, healthy coastal Senecio spp. are often rooted in sponges in the tideline (pers. 

observation). One small shovel of potting mix (roughly 400 g), was added on top of the 

artificial sponge piece. On top of that half a shovel (roughly 200 g) of expanded crystal 

rain (water absorbing polymer used for hanging baskets to ensure plants do not dry out) 

was added before the seedling was planted and the pot filled with potting mix. Prior to 

transplanting plants into the field, the height, min/max width, number of flowers, health 

score, feeding damage, and largest leaf were measured for each plant. I set up six 

transects of each S. lautus vs. S. skirrhodon, S. lautus vs. S.elegans and S.skirrhodon vs. 

S.elegans parallel to the sea with a minimum distance of 20 m between transects. Each 

transect consists of ten plants of each of the two Senecio species, which were 

distributed into seven units (a-g) with varying plant densities, which had the following 

setup (Fig.5.7 and Table 5.1). Six transects per species combination were used to test for 

spillover effects of insect herbivores from native to introduced Senecio spp. plants at 

fine scales.  

 

    A   B            C            D                E                  F           G 

              2 m              50 cm                  

     12 m 

 

Figure 5.7: Schematic experimental setup of one transect. Each small yellow square represents one S. 

lautus pot plant, each purple square represents one S. elegans pot plant. A minimum distance of 20 m 

was kept between transects. A-F = units of the transect. 

Experimental plants were monitored in a similar way as Senecio spp. plants for naturally 

occurring Senecio spp. plants to research the influence of plant properties (plant 

morphology) on insect herbivore host choice. For each plant I recorded: height, 

diameter, state of flowering (how many flower buds, how many flowers in bloom, how 

many flowers that have finished flowering), health score (how many discoloured leaves 

out of ten counted from the bottom up to the top of the plant), and feeding damage (by 
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slugs etc., same counting approach as with the health score system). In addition, I also 

recorded presence-absence of fungal-infestations. Up to ten flower heads were opened 

and searched for seed head predators. I searched the whole plant for no longer than 10 

min in total, and recorded all aphids, leaf miners, lepidopteran larvae, gallers and stem 

borers and all other insects I observed. I recorded all Asteraceae within 50 cm of each 

Senecio spp. plant (area = 0.8 m²). Small Asteracea are defined as smaller than 25 cm in 

height. Plants were monitored once every month for insect herbivores. Due to 

vandalism it was not possible to use some of the data and the experiment was 

terminated earlier than anticipated. Data presented here show the first two months of 

monitoring.  

Table 5.1: Plant combinations of units. 

Unit name No of native S. lautus 

plants 

No of introduced S. 

elegans plants 

Total plants 

A 1 0 1 

B 0 1 1 

C 1 1 2 

D 3 1 4 

E 1 3 4 

F 0 4 4 

G 4 0 4 

Total 10 10 20 

 

5.2.4 Data analysis 

Natural survey 

I used the bipartite package (Dormann et al. 2008) from the statistical program R (R Core 

Team 2012) to construct a quantitative food web using the complete data set of all 

numbers and types of insect herbivores on all Senecio spp. plants. Since not all data met 

statistical assumptions of normality despite transformation, I used the Kruskall Wallis 

test (a nonparametric test) to test for host preferences of insect herbivores between the 

different plant species. Number of insects present was used as the dependent variable 

(with separate tests per herbivore species) and plant species was the independent 
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variable. If quadrats were empty (from the first surveys where random points were used 

to locate the quadrats), they were removed from all analyses. I used percent infestation 

of the flower heads as the dependent variable for the density of S. fascigera larvae to 

account for differences in the methodological approach in sampling all flower heads for 

the first survey, but only ten in all other surveys. I was interested in identifying the main 

effects of plant density of congeneric and heterospecific plants on insect herbivore host 

choice. Plant size was included as a covariate. Therefore I used linear mixed effect 

models (LME) to test for the effects of plant size, conspecific density and hetero-specific 

density upon insect herbivore numbers. Plant size was first calculated as the cube-root 

of an index of volume, which was subsequently log-transformed to improve normality. 

In the equation minwidth + maxwidth = diameter: 

(���(ℎ���ℎ� ∗ ((
����
�ℎ + 
����
�ℎ)/2)²) �/�).  

Density was measured at two spatial scales: firstly the number of plants within a 50 cm 

radius circle, and secondly the 6 m quadrat (excluding the plant counts from the 50 cm 

and the 2 m quadrat nested within). A complete explanation of terms can be found in 

Table 5.2. Site, quadrat and sub quadrat were included as nested random effects. I 

tested each insect herbivore species for each Senecio species individually, for the effect 

of surrounding conspecific density, by using linear models (plant size was accounted for 

as a predictor). Model residuals were tested for normal distribution and data were 

transformed to achieve normality. If the data showed near normal distribution, and thus 

no other distribution could be specified, LMEs were applied as no current available non-

parametric test allows for nestedness of random effects. Where boxplots were used, 

boxes and whiskers are by R default (boxes encompass the interquartile range (IQR). 

Whiskers extend to the end of the range except for the outliers (>1.5 times the range).  
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Table 5.2: Explanation of variables used in the linear models. All variables are continuous. Insect 

herbivore (IH) was used as dependent variable. 

Symbol Variable  Range Description Unit 

IH Insect herbivore  0-2 per flower S. fascigera in flower heads 
(SHPF)  

count/flower  

 SHPF or SHPS  0-47 S. fascigera in stems (SHPS)  count/ plant 

PS Plant size  0- 3 log(height*((minwidth+maxwidth
/2)

2
)^(1/3)) 

cm 

50 cmSL 50 cm density of 
S. lautus 

 0-67 number of S. lautus 50 cm around 
focal plant 

count 

50 cmSE 50 cm density of 
S. elegans 

 0-15 number of S. elegans 50 cm 
around focal plant 

count 

6 mSL 6 m density of S. 

lautus 
 0-199 density of S. lautus within 6 m 

quadrat 
count 

6 mSE 6 m density of S. 

elegans 
 0-44 density of S. elegans within 6 m 

quadrat  
count 

 

Experiment 

Dead plants were replaced and after 4 weeks incorporated in the monitoring. I assumed 

that all plants from the original experiment had influenced insect herbivore host choice 

for the first monitoring. For the second monitoring I used the actual plant numbers 

available from the first monitoring.  

Where boxplots were used, boxes and whiskers are by R default (boxes encompass the 

interquartile range (IQR). Whiskers extend to the end of the range except for the outliers 

(>1.5 times the range).I used the Kruskall Wallis test as a nonparametric method to test 

for host preferences of insect herbivores between the different plant species, as 

normality was not always achieved despite data transformation. I used the bipartite 

package (Dormann et al. 2008) for the statistical program R (R Core Team 2012) to 

construct a quantitative food web using the complete data set from both monitoring 

rounds. The complete data set was split up between monitoring data sets for the density 

analysis. I tested each Senecio species individually for the effect of surrounding 

conspecific density by using LMEs (plant size was accounted for as a predictor). Model 

residuals were tested for normal distribution and data was transformed to achieve 

normality. If the data showed near normal distribution and thus no other distribution 

could be specified, LMEs were applied as no current available non-parametric test allows 
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for nestedness of random effects. Transect and unit were included in the LMEs as nested 

random effects. For density effects of conspecifics it was necessary to pool congeneric 

species to gain a sufficient sample size to apply the LMEs (all model terms see Table 5.3).  

Table 5.3: Model variables used for LMEs of the experiment. First repetition = one month after planting, 

second monitoring was two months after planting. Insect herbivore was the dependent variable.  

Variable Range Description Unit 

insect herbivore 0-16 
all IHs individually per plant except S. fascigera in 
flowers (proportion) 

count/plant or 
count/flower 

plant size 0-5 log(height*((minwidth+maxwidth/2)^2)^(1/3)) cm 

conspecific counts 0-3 counts of surrounding conspecific plants counts 

heterospecific counts 0-3 counts of surrounding heterospecific plants counts 

heterospecific counts 
in second repetition 

0-6 pooled heterospecific counts due to low sample size counts   
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5.5 Results 

A complete list for all insect species recorded on both natural surveys and the 

experimental monitoring can be found in Table 5.4. 
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Table 5.4: Associations between insect herbivores and occasional incidental records of insect herbivore 

parasitoids are shown for all Senecio spp. investigated (SL = S. lautus, ST= S. sterquilinus, SE = S. elegans, 

SS = S. skirrhodon, SV = S. vulgaris). Senecio glastifolius is not extra listed, but only N. annulata 

specimens were found on it during the survey of natural populations. For S. angulatus only plant 

hoppers were recorded (Hemiptera). Numbers indicate relative abundance (0 = not found, 1 = 

occasionally found, 2 = common, 3 = abundant). If there was only one record per insect herbivore this is 

noted with x. Question marks were used to indicate that there is no information available for this 

species in that cell.   

Order Family Scientific name Seasonality SL 
S

E 

S

S 

S

T 
SV 

Acari NA NA December 2 2 2 2 ? 

Diptera Agromyzidae 
Chromatomyia 

syngenesiae 
Spring 2 3 1 2 ? 

Diptera Melanagromyza 
Melanagromyza 

senecionella 
NA 

rar
e 

0 0 1 ? 

Diptera Tephritidae 
Sphenella 

fascigera 

More at peak of 
summer 

3 2 2 4 1 

Hemiptera 
Aphidoidea 
(Superfamily) 

NA Early spring 3 3 3 ? ? 

Hemiptera Flatidae Siphanta acuta In early Feb 2 2 2   ? 

Homoptera Cercopidae 
Philaenus 

spumarius (L.) 
Early in the season? ? 2 2 ? ? 

Hymenoptera Pteromalidae 
Pteromalidae spp 

parasitoid  
Peak of  season 1 ? ? ? ? 

Lepidoptera Arctiidae 
Nyctemera 

annulata 

Common throughout 
the year 

3 3 3 3 3 

Lepidoptera Crambidae Udea flavidalis NA ? 
1
x 

? ? ? 

Lepidoptera Geometridae NA 
In early February 
very common 

4 4 4 1 ? 

Lepidoptera Geometridae 
Phrissogonus 

laticostatus 
Peak of season ? ? x ? ? 

Lepidoptera Nepticulidae Stigmella ogygia NA ? 
  

2 ? 

Lepidoptera Noctuidae 
Helicoverpa 

armigera 
NA ? x ? ? ? 

Lepidoptera Pyralidae 
Patagonoides 

farinaria 
Common 3 2 2 3 ? 

Lepidoptera Tortricidae tortricid spp. Rare 1 ? ? ? ? 

Lepidoptera 
 

Asterivora colpola Early in the season? x x     

Nematocera Cecidomyiidae 
 undescribed 
species 

Early in the season? 
rar
e 

1 0 2 ? 
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5.5.1 Survey of naturally occurring populations 

Species linkages and interactions strengths 

Figure 5.8 shows a quantitative food web for all main associations encountered during 

the field surveys. It shows that most insect herbivores used all Senecio species but 

proportions were higher on native S. lautus which also provided the sample set with the 

most plants investigated.  
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    Figure 5.8: Quantitative food web of the main insect herbivores found during the survey of natural populations. Each connection line between an herbivore and   the   

Senecio spp. represents the association between the two. The thickness of the line (grey) and the plant species bar (black) are proportional to the number of  

specimens.  The naming of insect herbivores goes from left to the right. Due to space restriction they are placed at varying heights to be included in the graph. 

Melanagromyza senecionella 
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The Kruskall Wallis test showed that host choice differed significantly between insect 

herbivores for Senecio spp. plants (Table 5.5, Figure 5.9 and Figure 5.10). The 

KruskallWallis rank sum test showed significant differences for Senecio species choice for 

S. fascigera in flower heads and in stems (Table 5.5). Prevalence of S. fascigera in flower 

heads and stems was highest for S. sterquilinus, followed by S. lautus. Infestation rates 

for both S. elegans and S. skirrhodon were less than half the value observed in S. 

sterquilinus and S. lautus. The Kruskall-Wallis rank sum test showed significant 

differences for Senecio species choice for C. syngenesiae (Table 5.5).  

Table 5.5: Results of a Kruskal-Wallis rank sum test, testing the null hypothesis that insect herbivores 

are equally prevalent across the four Senecio species. 

Insect herbivore chi- squared df p-value 

SHPS (S. fascigera in stems) 87.948 3 <  0.001
 

SHPF (S. fascigera in flower heads) 84.331 3 <  0.001 

leaf miners 29.569 3 < 0.001
 

leaf roller 1.612 3  0.657 

cecidomyiid larvae 14.375 2  0.008 

lepidopteran larvae 30.011 3  0.001 

P. farinaria 8.877 3  0.031 

other larvae 2.761 3  0.430 

 

Mean leaf infestation by Chromatomyia syngenesiae was highest for S. elegans (Fig. 5.9). 

No significant differences were found for leaf rollers (Table 5.5) and the overall rate of 

infestations was low on all Senecio species (Figure 5.9).  
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Figure 5.9: Species interaction linkage strengths part 1: (SE = S. elegans with n =124, SS = S. skirrhodon 

with n = 80, SL = S. lautus with n = 618 and ST = S. sterquilinus with n = 54). X-axis displays the 

investigated Senecio species, y-axis displays the squareroot transformed counts of the insect herbivore 

per plant unless otherwise given (clockwise: flowers with S. fascigera, stems with S. fascigera, leaves 

infested with Chromatomyia syngenesiae and leaf roller (lepidopteran larvae)). Blue diamonds = mean 

values ± SE. 
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Cecidomyiid larval abundances showed significant differences in abundance across the 

four different Senecio species (p < 0.0001, Table 5.5). Cecidomyiid fly larvae showed high 

abundances on S. sterquilinus compared to S. lautus where cecidomyiid fly larvae were 

still occasionally observed (Fig. 5.10). Only one specimen of a cecidomyiid fly larva was 

observed on S. elegans, and none on S. skirrhodon. Lepidopteran larvae infestation 

numbers differed significantly between Senecio spp. (p < 0.0001, Table 5.5). Counts of 

lepidopteran larvae were highest on S. skirrhodon (Fig. 5.10). For all other Senecios spp, 

investigated counts of lepidopteran larvae were very low. 

Patagoniodes farinaria infestation numbers differed significantly between Senecio spp. 

(p = 0.031) (Table 5.5). Patagoniodes farinaria counts were highest on S. elegans, 

followed by S. lautus, S. skirrhodon and then S. sterquilinus (which could not be searched 

destructively). Occasionally other larvae were encountered, but no significant 

differences were found (Table 5.5). Likewise, no significant differences were found 

between Senecio species for Melanagromyza senecionella, and all aphids (Table 5.5 and 

Figure 5.1).  
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Figure 5.10: Species interaction linkage strengths part 2: x-axis displays the investigated Senecio species 

(SE = S. elegans with n = 124, SS = S. skirrhodon with n = 80, SL = S. lautus with n = 618 and ST = S. 

sterquilinus with n=54), y-axis displays the squareroot transformed individual counts of the insect 

herbivore (clockwise: Cecidomyiid larvae, lepidopteran larvae, stems with Patagonoides farinaria 

(Lepidoptera), and all other larvae). Blue diamonds = mean values ± SE. 
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5.5.2 Plant morphology and insect herbivore host plant choice 

Out of the variables measured, only plant size showed a significant influence on insect 

herbivore host plant choice. Occurrence of insects was positively influenced by plant size 

in all models for all plant species, regardless of which insect species was investigated. 

Only the datasets for S. elegans and S. lautus had sufficient numbers for further testing. 

See Table 5.6 for detailed LME-model values for insect herbivores on S. lautus and Fig. 

5.11 for the positive influence of plant size on S. fascigera in both stems and flower 

heads on S. elegans and S. lautus. The influence of plant size was stronger for S. lautus 

compared to S. elegans (see Fig. 5.11).  
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Figure 5.11: Sphenella fascigera infestations are shown for: (a) Senecio lautus flowers,(b) S. elegans 

flowers,(c) S. lautus stems  and (d) S. elegans stems  against log transformed plant size. Data points 

have been “jittered” to reduce overlap and improve visualisation of the trend. 
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in the neighbourhood increased, the number of S. fascigera per plant reduced, 

particularly at the fine scale measures of plant density (for flowers: F 1,131 = 3.875, p = 

0.051 and for stems F 1,131 = 17.477, p < 0.0001, for complete model see Table 5.6 and 

Table 5.7 respectively). The relationship between plant counts and infestation rates with 

S. fascigera on S. lautus was more influential for S. fascigera in stems compared to S. 

fascigera in flower heads (Fig. 5.12). The relationship between coarse scale conspecific 

counts and S. fascigera infestations was not significant for infestations in stems or 

flowers (Fig. 5.12, Table 5.7 and Table 5.6).  

Table 5.6: Anova summary for the complete LME for S. fascigera (sqrt-transformed) as response variable 

in flower heads of S. lautus (SL). Site, quadrat and subquadrat were included as nested random effects. 

Predictor for S. fascigera in flowers of SL effect numDF denDF F-value p-value 

plant size (log transformed) + 1 131 37.412 < 0.0001 
fine scale density of S. lautus  (50 cm log 
(counts)) 

- 
1 131 3.875 0.051 

coarse scale density of S. lautus (6 m log 
(counts)) 

+ 
1 105 0.631 0.429 

fine scale density of S. elegans  (50 cm log 
(counts)) 

- 
1 131 2.744 0.100 

coarse scale density of S. elegans (6 m log 
(counts)) 

- 
1 105 0.786 0.377 

 

 

Table 5.7: Anova summary for the complete LME for S. fascigera (sqrt-transformed) as response variable 

in stems of S. lautus (SL). Site, quadrat and subquadrat were included as nested random effects. 

Predictor for S. fascigera in stems of SL pos/neg numDF denDF F-value p-value 

plant size (log transformed) + 1 131 130.019 < 0.0001 
fine scale density of S. lautus  (50 cm log 
(counts)) 

- 1 
131 17.477 < 0.0001 

coarse scale density of S. lautus (6 m log 
(counts)) 

+ 1 
105 0.204 0.653 

fine scale density of S. elegans  (50 cm log 
(counts)) 

- 1 
131 5.845 0.017 

coarse scale density of S. elegans (6 m log 
(counts)) 

+ 1 
105 0.057 0.812 
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Figure 5.12: Sphenella fascigera infestations on stems and flower heads of S. lautus with S. lautus 

densities within 50cm (area = 0.8m²) and 6m (area = 32m²) around the focal plant. The fitted line shows 

the simple linear model of S. fascigera as the response variable with the associated density count as the 

only predictor. Solid lines show a significant relationship in the simple linear model, dashed lines show 

that the predictor was not significant. 

 

On S. elegans, no relationship was evident between fine or coarse scale density of 

conspecific plants and S. fascigera infestations in the stems or flower heads (Fig. 5.13). 

Data distribution was not normal enough for any further modelling and the model for P. 

farinaria on S. lautus plants did not provide a good enough sample size for further 

analysis. 
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Figure 5.13: Sphenella fascigera infestations on stems and flower heads of S. elegans with S. elegans 

densities within 50 cm (area = 0.8 m²) and 6m (area = 32 m²) around the focal plant. The fitted line 

shows the simple linear model of S. fascigera as the response variable with neighbourhood density 

counts as the only predictor. 

 

Influence of heterospecifics 

The fine scale density of heterospecific (S. elegans) plant density was a significant 

predictor of S. fascigera infestations of S. lautus stems (F1,131 = 5.845, p = 0.017), but not 

for S. fascigera on S. lautus within flower heads (Fig. 5.14 and Table 5.7 and Table 5.6). 

Coarse scale heterospecific density was not significant for stem or flower infestations of 

S. fascigera on S. lautus.  
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Figure 5.14: Incidence of Sphenella fascigera in stems and flower heads of S. lautus, as a function of S. 

elegans density at two different scales. Fine scale = number of plants within 50 cm (area = 0.8 m²), 

coarse-scale = number of plants within 6 m around the focal plant (area = 32 m²). The fitted line shows 

the simple linear model of S. fascigera as the response variable with the associated density count as the 

only predictor. Lines show a significant relationship in the simple linear model, dashed lines show that 

the predictor was not significant. 

 

Data on S. fascigera infestations of S. elegans and the influence of S. lautus at fine and 

coarse scale was not sufficient enough for a parametric test, but showed a graphical 

trend for a negative influence of S. lautus at coarse scale densities on S. fascigera stem 

and flower infestation (Fig. 5.15).  
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Figure 5.15: Incidence of Sphenella fascigera in stems and flower heads of S. elegans, as a function of S. 

lautus density at two different scales. Fine scale = number of plants within 50cm (area = 0.8 m²), coarse-

scale =number of plants within 6m around the focal plant (area = 32 m²).The fitted line shows the 

simple linear model of S. fascigera as response variable with the associated density count as the only 

predictor. Lines show a significant relationship in the simple linear model, dashed lines show that the 

predictor was not significant. 

 

A simple linear model showed a significant negative influence of fine scale and coarse 

scale density of conspecific S. lautus upon P. farinaria utilising S. lautus as a host plant 

(Fig. 5.16). In contrast, counts of heterospecific S. elegans showed a significant negative 

influence in the simple linear model (Fig. 5.16).  
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Figure 5.16: Patagoniodes farinaria counts per S. lautus plant and the interaction with fine scale 

conspecific (SL = S. lautus) and heterospecific (SE = S. elegans) plant counts on fine (area = 0.8m²) and 

coarse scale (area = 32m²). Lines show a significant relationship in the simple linear model. 

 

Combined effects of morphology (plant size) and plant density 

Plant size was a significant predictor of S. fascigera infestation rates within flower heads 

on S. lautus (F1,131 = 37.412, p < 0.001, Table 5.6). While fine scale conspecific density 

showed a marginally significant relationship (F1,131 = 3.875, p = 0.051), all other plant 

densities were non-significant (Table 5.6, Table 5.7).  
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The model for S. fascigera on S. elegans flower heads did not have sufficient data for 

further analysis.  

Plant size (F1,131 = 130.019, p < 0.001,) showed a positive, fine scale conspecific plant 

density (F1,131=17.477, p < 0.001,) and fine scale hetero-specific plant density showed a 

negative influence on S. fascigera infestations in stems of S. lautus (Table 5.8).  

 

Table 5.8: Anova summary for the complete LME for S. fascigera (sqrt-transformed) as response variable 

in stems of S. lautus. Site, quadrat and subquadrat were included as nested random effects. 

Predictor for S. fascigera in stems of SL pos/neg numDF denDF F-value p-value 

plant size (log transformed) + 1 131 130.019 <.0001 
fine scale density of S. lautus  (50 cm log 
(counts)) 

- 1 
131 17.477 <.0001 

coarse scale density of S. lautus (6 m log 
(counts)) 

+ 1 
105 0.204 0.653 

fine scale density of S. elegans  (50 cm log 
(counts)) 

- 1 
131 5.845 0.017 

coarse scale density of S. elegans (6 m log 
(counts)) 

+ 1 
105 0.057 0.812 

 

The model for S. fascigera in S. elegans stems did not have enough data for sufficient 

further analysis and the model for P. farinaria on S. lautus plants did not provide a good 

enough sample size for further analysis.  
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5.5.2 Plant density experiment 

Species linkages 

Density experiment 

The linkages expressed for the natural surveys between the focal plant species and the 

insect herbivores were mostly the same for the experimental setup, but less frequently 

recorded (Table 5.4). 

 

Species linkage-strengths 

The quantitative food web (Fig. 5.17) shows the interactions strengths (i.e. the number 

of associations between one plant species and one insect herbivore) between S. 

fascigera in stems, S. fascigera in flowers, Patagonoides farinaria, cecidomyiid larvae, 

Nyctemera annulata, leaf rollers (Lepidoptera), and Chromatomyia syngenesiae on S. 

elegans, S. lautus and S. skirrhodon. Both S. lautus and S. skirrhodon show more 

associations compared to S. elegans. However, the introduced dipteran leaf miner fly 

was most often observed on S. elegans, followed by S. lautus and S. skirrhodon. 

Sphenella fascigera in flowers was more often observed on S. lautus, followed by S. 

skirrhodon and S. elegans.  
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 Figure 5.17: Quantitative food web showing the observed interactions of both monitoring rounds of the experiment. 

 

S. fascigera (stems) 

Patagonoides farinaria 

Cecidomyiid larvae, Nyctemera annulata 



INSECT HERBIVORE HOST PLANT CHOICE 

177 

Insect herbivore associations showed seasonality: in the first monitoring round in early 

December 2011 (approximately one month after planting) C. syngenesiae was the most 

frequently recorded insect herbivore compared to the second monitoring where it was 

only recorded a few times. The Kruskall-Wallis test showed no significant differences 

between Senecio spp. (Table 5.9) when C. syngenesiae was the dependent variable. The 

Kruskall-Wallis test further showed significant differences between host plant 

infestations for all three Senecio spp. and for numbers of leaf rollers, lepidopteran 

larvae, and aphids (Fig. 5.18 and Table 5.9).  

Table 5.9: Kruskal-Wallis rank sum test for numbers of insect herbivores vs. Senecio species on the first 

monitoring round (one month after planting). 

Insect versus Senecio species chi- squared df p-value 

C. syngenesiae 6.392 2 0.041 

leafroller 6.544 2 0.379 

lepidopteran larvae 9.709 2 0.008 

aphids 11.837 2 0.003 
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Figure 5.18: Species interaction linkage strengths: x-axis displays first monitoring round on Senecio 

spp.transects (SE = S. elegans, SS = S. skirrhodon, SL = S. lautus), y-axis displays the squareroot 

transformed individual counts of the insect herbivore (clockwise: Chromatomyia syngenesiae, leaf 

rollers, lepidopteran larvae and aphids. Blue diamonds = mean values ± SE). 

 

The second monitoring round took place in early January 2011, two months after all 

plants were planted. The second monitoring data set showed significant differences 

between host plant choice of S. fascigera in flowers and for lepidopteran larvae (Fig. 

5.19 and Table 5.10).  

No other associations were significant when tested with the Kruskall-Wallis test (Table 

5.10).  

SE SS SL

0

1

2

3

4

Leaf infestation with Chromatomyia syngenesiae

Senecio species

sq
rt

 [
in

di
vi

du
al

 c
ou

nt
]

SE SS SL

0

1

2

3

4

Leaf infestation with leafrollers

Senecio species

sq
rt

 [
in

di
vi

du
al

 c
ou

nt
]

SE SS SL

0

1

2

3

4

Lepidopteran larvae

Senecio species

sq
rt

 [
in

di
vi

du
al

 c
ou

nt
]

SE SS SL

0

1

2

3

4

Plants with aphids

Senecio species

sq
rt

 [
in

di
vi

du
al

 c
ou

nt
]



INSECT HERBIVORE HOST PLANT CHOICE 

179 

Table 5.10: Kruskal-Wallis rank sum test for insect herbivores vs. Senecio species on the second 

monitoring round in January. 

Insect versus Senecio species chi- squared df p-value 

C. syngenesiae 2.387 2 0.303 

leafroller 1.147 2 0.564 

lepidopteran larvae 30.749 2 < 0.000 

aphids 1.466 2 0.481 

S. fascigera in flower heads 61.269 2 < 0.000 

S. fascigera in stems 2.387  2 0.303  

 

 

Figure 5.19: Species interaction linkage strengths: x-axis displays second monitoring round on Senecio 

spp.-transects (S E= S. elegans, SS = S. skirrhodon, SL = S. lautus), y-axis displays the sqrt-transformed 

individual counts of the insect herbivore (clockwise: Chromatomyia syngenesiae, leaf rollers, 

lepidopteran, aphids, flowers with S. fascigera and stems with S. fascigera. Blue diamonds = mean 

values ± SE). 
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Plant morphology and insect herbivore host plant choice 

Plant size showed a significant positive influence on C. syngenesiae infestations on all 

Senecio spp. observed (Fig. 5.20). The effect was significant for S. elegans (Fig 5.20c) in 

the first repetition.  

 

 

Figure 5.20a-c: Chromatogmyia syngenesiae (sqrt-transformed) and plant size (log-transformed) from 

the first monitoring round (one month after planting). The fitted line shows the simple linear model of 

Chromatogmyia syngenesiae as the response variable with the associated density count as the only 

predictor. Solid lines show a significant relationship in the simple linear model, dashed lines show that 

the predictor was not significant. 
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Within the second repetition, plant size showed a significant positive influence on S. 

fascigera infestations in flower heads on S. lautus and S. skirrhodon (Fig. 5.21). For S. 

elegans there was no significant effect of plant size on S. fascigera infestations detected 

(Fig. 5.21).  

 

 

Figure 5.21 a-c: Second repetition (monitoring after 2months): Sphenella fascigera in flowers and plant 

size of S. lautus, S. elegans and S. skirrhodon. The fitted line shows the simple linear model of Sphenella 

fascigera in flowers as the response variable with the associated density count as the only predictor. 

Solid lines show a significant relationship in the simple linear model, dashed lines show that the 

predictor was not significant. 
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Other plant variables measured 

Largest leaf size varied significantly between plant species (Kruskal-Wallis test: chi-

squared = 170.4658, df = 2, p-value < 0.0001) and showed highest values for S. elegans, 

second highest for S. sterquilinus and third highest for S. lautus. No measurements were 

available for S. skirrhodon. Feeding damage and fungi infestation out of 10 leaves 

differed significantly (Table 5.11) between Senecio spp. S. skirrhodon and S. lautus 

showed the highest values for feeding damage and S. lautus showed the highest values 

for fungi (Fig.5.22).  

Table 5.11: Kruskal Wallis rank sum test for feeding damage, health stress and fungi infestation out of 

10 leaves. 

Variable versus  Senecio species chi- squared df p-value 

Feeding damage 93.742 2 < 0.0001 

Health stress 5.5272 2 0.063 

Fungi infestation 22.635 2 < 0.0001 

I found the lowest discoloured leaf numbers on S. skirrhodon (Fig. 5.22).  
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Figure 5.22: Feeding damage (upper graph), plant stress (discolouration of leaves) and leaves with fungi 

out of 10 leaves are shown per Senecio species. 
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5.5.3 Plant size, plant density and insect herbivore host plant choice 

No significant effect of conspecific plant density was detected for C. syngenesiae for S. 

lautus, S. elegans and S. skirrhodon (Fig. 5.23 and Table 5.12). Plant data were too scarce 

to analyse congeneric influence on the focal plant species per species. Therefore data 

were pooled and analysed with two congeneric species for each focal plant. However, 

there was no significant effect of congeneric density for C. syngenesiae numbers per 

plant for any of the plant species (Fig. 5.23 and Table 5.12). However, plant size was a 

significant positive predictor of C. syngenesiae counts on S. lautus (F1,52 = 34.160, p < 

0.001) (Table 5.12).  

Table 5.12: Anova summary for the complete LME for C. syngenesiae (doublesqrt-transformed) as the 

response variable in stems of S. elegans. Transect and units were included as nested random effects. 

Congeneric density refers to S. skirrhodon and S. lautus counts (log-transformed). 

Predictor for C. syngenesiae numDF denDF F-value p-value 

Plant size (log) 1 52 34.160 <.0001 

Conspecific density (log) 1 36 0.298 0.589 

Heterospecific density (log) 1 36 0.019 0.890 
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Figure 5.23a-c: C. syngenesiae in flowers and plant counts of S. lautus, S. elegans and S. skirrhodon for 

dataset one month after planting. The fitted line shows the simple linear model of C. syngenesiae as the 

response variable with the associated conspecific and congeneric (= heterospecific) density (includes all 

other Senecio spp. other than focal plant count as the only predictor). Solid lines show a significant 

relationship in the simple linear model, dashed lines show that the predictor was not significant. 
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Figure 5.24: Second repetition (monitoring after 2 months): Sphenella fascigera in flowers of S. lautus 

and conspecific density of S. lautus (left) and congeneric density of S. elegans (right). The fitted line 

shows the simple linear model of Sphenella fascigera in flowers as the response variable with the 

associated density count as the only predictor. Solid lines show a significant relationship in the simple 

linear model, dashed lines show that the predictor was not significant. 
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5.5.4 Other plant densities and insect herbivore host plant choice 

C. syngenesiae infestation numbers were not significantly affected by surrounding 
Asteraceae with regards to any of the Senecio spp. Fig. 5.25 shows the effects of small 
and large Asteraceae within 50cm radius of the focal plants, as well as of small and large 
other plants.

 

Figure 5.25 a-c: C. syngenesiae in flowers and plant counts of S. lautus for the first repetition. The fitted 

line shows the simple linear model of C. syngenesiae as the response variable with the associated 

density of small Asteraceae, large Asteraceae, small other plants and large other plants. Solide lines 

show a significant relationship in the simple linear model, dashed lines show that the predictor was not 

significant. 
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Sphenella fascigera infestations of flower heads of S. lautus were significantly positively 

influenced by the presence of large Asteraceae within 50cm of the focal plant in the 

simple linear model (Fig. 5.26). This effect however, was not significant in a LME.  

The presence of small Asteraceae, small other plants and large other plants was neither 

significant in the simple model nor in the LME.  

 

Figure 5.26 a-c: Sphenella fascigera in flowers and plant counts of S. lautus for the second repetition. 

The fitted line shows the simple linear model of S. fascigera as the response variable with the 

associated density of small Asteraceae, large Asteraceae, small other plants and large other plants.  

Solid lines show a significant relationship in the simple linear model, dashed lines show that the 

predictor was not significant. 

  

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

log[ Fine scale density of small asteraceas] (cm)

S
qr

t(
 S

. 
fa

sc
ig

er
a 

in
 f

lo
w

er
s)

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

log[ Fine scale density of large asteraceas] (cm)

S
qr

t(
 S

. 
fa

sc
ig

er
a 

in
 f

lo
w

er
s)

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

log[ Fine scale density of other small plants] (cm)

S
qr

t(
 S

. 
fa

sc
ig

er
a 

in
 f

lo
w

er
s)

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

log[ Fine scale density of other large plants] (cm)

S
qr

t(
 S

. 
fa

sc
ig

er
a 

in
 f

lo
w

er
s)



INSECT HERBIVORE HOST PLANT CHOICE 

189 

5.6. Discussion 

The natural survey and the experiment showed significant negative effects of conspecific 

and hetero-specific density for Senecio spp. colonization. Examining S. fascigera in the 

stems of S. lautus, fine scale conspecific density and hetero-specific density (S. elegans) 

showed a negative effect on insect abundance per plant. A trend for a negative effect of 

conspecific density was also evident for S. fascigera in flower heads of S. lautus. Plant 

size was a significant positive predictor of insect colonization. For all other insects 

encountered during the survey of naturally occurring populations, these effects were 

only significant in the simple linear model that did not consider the nestedness of the 

data given through multiple spatial scales. The manipulative field experiment supported 

the host choice preferences that the natural survey detected. It also provided some 

information on seasonal changes of insect colonization as leaf miners and aphids were 

encountered earlier in the season compared to stem borers and seed head predators, 

despite plants flowering for the entire duration of the experiment. Furthermore, the 

experiment supported the importance of plant size for insect herbivore host plant 

choice and provided empirical evidence for the importance of conspecific and hetero-

specific plant density despite a relatively small sample set.  

My data showed the potential for indirect facilitation between native and introduced 

plants in the same genus through an influence on the colonisation rates of herbivorous 

insects i.e. hetero-specific densities affect insect abundance on focal plants. The 

resource concentration hypothesis (RCH) predicts more specialised insect herbivores in 

dense plant patches compared to more isolated plants (Root 1973). In contrast, the 

resource dilution hypothesis (RDH) predicts higher herbivory on isolated plant patches 

(Otway et al. 2005). My data suggests support of the RDH opposed to the RCH, as insect 

herbivores showed a decrease in abundance when plant counts were higher at fine 

scales. Stephens and Myers (2012) demonstrated a more detrimental effect of insect 

herbivory when the RDH was supported, resulting in localized extinctions of plants. Field 

observations showed a high turnover of individual plants and very variable life spans 

suggesting this could also apply to coastal Senecio spp. The scale at which those patches 

were located is not specifically defined for the RDH or the RCH - I chose a 50 cm radius 
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circle (area = 0.8 m²) around the focal plant as fine plant density scale and a 6 metre 

quadrat as coarse plant scale (32 m²)- It remains possible that other patterns exist at 

different spatial scales compared to my study. Density of plants other than Senecio spp. 

did not significantly influence insect herbivore host plant choice. However, the dataset 

from the experiment was relatively small and it is possible that a larger sample size 

might provide significant results as the graphs indicated an interaction. Hambäck and 

Englund (2005) showed, with their revised model investigating the RCH, that species 

identity and general search patterns for insects determine the host plant patch size and 

thus significantly aid in further enhancing our understanding of patch-density-insect 

herbivore density relationships. For New Zealand’s coastal insect herbivores however, 

limited information is available and some species remain undescribed e.g. the 

cecidomyiidoyd fly larvae that I encountered in my surveys. Therefore my study 

contributes to the species knowledge as well as providing some insight into which spatial 

scales are important for host plant choice.  

Plant size was a major predictor of insect colonization in addition to plant density. 

Consequently, I recorded more insect herbivores on bigger plants. Whether this is solely 

due to increased resource availability and a higher survival likelihood of the host plant 

and consequently the insect herbivores offspring, or whether the chemical defences of 

smaller plants are stronger remains unclear for my study organisms. While plant size 

might appear to be a trivial predictor, it has been shown to have a significant influence 

in insect herbivore host plant choice. For example Whitfeld et al. (2012) showed a 

positive influence of larger leaf biomass but a negative effect of tree size when they 

investigated tropical leaf miner host plant choice. Senecio spp. can vary in plant size 

from small prostrate flowering plants to large, almost bush-like plants (pers. 

observation). Plant size mattered more for S. fascigera in stems compared to S. fascigera 

in flowers. The size of flower heads varies between plants (pers. observation) but not as 

much as the plant size and thus the number of stems. Plant size can influence density 

dependent insect-herbivore-plant interactions where insect herbivores influence plant 

size and vice versa in interactions that are not currently well understood (Underwood 

and Halpern 2012). My data provide strong evidence that bigger plants are more 

attractive for insect herbivores.  
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Phylogenetic distance was identified as one of the most important predictors for host 

plant choice in a review by Bertheau et al. (2010). Genetic analysis of the Australian S. 

lautus complex suggests that coastal Senecio spp. have evolved several times 

independently and further underlines the morphological plasticity of members of this 

species complex (Roda et al. 2013). Senecio glastifolius is in the New World clade of 

Senecio spp. (Pelser et al. 2007), while the focal species of my study are closely related 

to each other with the closest level of relatedness between hybridising S. lautus and S. 

sterquilinus (Ornduff 1964). Senecio elegans was shown to exhibit different plant 

chemical defences compared to S. skirrhodon and S. lautus, suggesting a more distant 

relationship compared to the relationship between S. lautus and S. skirrhodon (Wilcox 

2012). Different ecotypes of a species might be able to support different insect 

herbivores. In my study I only considered field sites within Wellington to minimize 

geographic effects. However, Senecio spp. within the Wellington Region are relatively 

morphologically plastic (personal observation). McArt and Thaler (2013) were able to 

show that plant patches with a variety of different genotypes of a host plant showed 

increased abundance of an introduced herbivore but decreased the overall herbivore 

damage. It is not known if that could be the case for the investigated coastal Senecio 

spp., but remains a possible explanation for insect herbivore abundance.  

 Senecio lautus has the ability to develop heteroblastic leaves depending on exposure to 

environmental stress (Burns 2005). Leaf morphology could influence insect herbivore 

abundance, leaves with more surface area should be more attractive to leaf miners due 

to higher resource availability. It is possible that the introduced leaf miner C. 

syngenesiae was more frequently recorded on introduced S. elegans compared to S. 

skirrhodon or S. lautus, because S. elegans leaves show different morphological traits. 

They are frequently larger and contain different pyrrolizidine alkaloid concentrations 

(Wilcox 2012). However, the LME showed no significant effect of leaf size for leaf miner 

host plant choice - which is surprising given that any leaf miner larva, regardless of insect 

order, is dependent on the resources available from its leaf. However, I occasionally 

observed leaves with multiple leaf miners - suggesting that leaf size might not be as 

important as I originally assumed. Carrillo-Gavilán et al. (2012) found no support for the 

natural enemy hypothesis. In their study generalist herbivores did not discriminate 
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between native and alien plants. C. syngenesiae is not Senecio spp. specific (Martin 

2013) and thus fits the category of a relatively polyphagous species that is frequently 

recorded on other Asteraceae. 

My results showed higher infestation rates for endemic S. fascigera and cecidomyiid fly 

larvae on the native Senecio species S. lautus and S. sterquilinus respectively, compared 

to introduced S. elegans and S. skirrhodon. This supports the findings of Fenner and Lee 

(2001) who compared seed head predators on Asteraceae in the UK and New Zealand 

and found that introduced Asteraceae were significantly less infested compared to 

native ones. Similarly, I found higher abundances for endemic cecidomyiid larvae on the 

native Senecio spp. (with only a few occasional observations on introduced Senecio 

spp.). In contrast to Waring (2010) who compared host choice of N. annulata of 

introduced and native Senecio spp. (but did not consider coastal Senecio spp. for his 

study) I recorded more lepidopteran larvae (mostly N. annulata) on introduced S. 

skirrhodon. One explanation for the different finding in my study could be that N. 

annulata, albeit specialising on Senecio spp., is recorded for all Senecio species 

investigated in my study and records exist across a wide range of Senecio spp. (see also 

Chapter 4). In addition, N. annulata caterpillars are highly mobile within Senecio spp. 

patches and change host plants when a previous host plant is grazed exhaustively and 

no longer sustains the food requirements of the caterpillar (pers. observation). Similarly, 

caterpillars let themselves fall off the leaves and curl up as a defence mechanism against 

predation (pers. observation). Sometimes, caterpillars change the host plant if suitable 

plants are in close proximity (approximately within 50 cm) (pers. observation).  

The higher abundances of cecidomyiid fly larvae and S. fascigera on S. sterquilinus 

opposed to S. lautus could be linked with S. sterquilinus’ association with bird guano and 

therefore access to higher nutrient levels. Senecio sterquilinus is frequently described as 

a bigger plant than S. lautus (Webb et al. 1988). However, I could not support that with 

my own observations, as most S. sterquilinus plants I observed were of similar size to the 

S. lautus plants growing in close proximity with which it freely hybridises (Ornduff 1964). 

Nevertheless, when only morphological traits are considered, S. sterquilinus tends to 

have larger leaves and larger flower heads which were the main food sources of the 
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investigated insect herbivores and thus could be an important difference for host choice.  

Senecio sterquilinus has a higher number of petals which might be linked to a higher 

number of inflorescences (due to the nature of the composed flower head as a member 

of the Asteracea plant family). Petal numbers are thought to be linked closely to seed 

packing within the flower head (numbers are according to Fibonacci) (Klar 2002).  

Therefore S. sterquilinus should be able to support more producing seeds per flower 

head than S. lautus. Ecological theory predicts plants with access to higher nutrient 

levels will tolerate higher rates of herbivory due to higher regeneration capabilities (i.e. 

context dependent defence) (Herms and Mattson 1992, Hendriks et al. 2009). High 

nutrient plants do not have to invest so much into plant volatiles as a defence 

mechanism because they can afford to lose plant tissue, as shown for cotton plants that 

invested less in plant volatiles when N-fertilized (Chen and Schmelz 2008). Single records 

of S. sterquilinus infestations with both S. fascigera and cecidomyiid flies show the ability 

to support higher insect densities on smaller plants. These findings support the enemy 

release hypothesis (Keane and Crawley 2002), albeit without explicitly testing it (and 

only considering a few species), which predicts that introduced organisms escape their 

natural enemies in their new home ranges (White 2008). However, my results show that 

despite higher abundances and preferences for the native species, as in the case of S. 

fascigera and the cecidomyiid flies for native S. lautus and S. sterquilinus, both species 

have been recorded on the closely related introduced Senecio spp. This suggests either a 

possible host expansion, or early stages of a host shift by ‘spill-over-effects’. Ultimately, 

host expansions might be a first step towards species radiation (Bennett and O’Grady 

2012), shaping evolution according to the new species assemblages of introduced and 

native species with currently unpredictable consequences that merit further research.  

Although it was beyond the scope of my study to look at fitness consequences into the 

next generation, the fact that S. fascigera consumes immature seeds suggests it will 

have a definite negative impact on lifetime reproductive success of the affected plant. 

Personal observations showed that plants in late summer can have larvae in almost 

every flower of a plant, reducing that plants seed production significantly.  
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The apparent facilitation I was able to document for S. lautus when exposed to S. 

elegans on fine scales might be a short term effect. In the longer term extra S.elegans 

could help build up the population of S. fascigera thus increasing herbivore pressure on 

S. lautus. Modelling shows that a variety of population dynamics are possibly mediated 

through a shared herbivore (Schoolmaster 2008).  

Despite not explicitly analysing direct effects of introduced Senecio spp. on native 

Senecio spp., the distribution of introduced coastal Senecio spp. suggests a direct 

competitive effect of the introduced species. I found only a few locations when 

searching for sites around Wellington where introduced and native Senecio spp. grew in 

direct proximity. Most beaches around Wellington are now dominated by either S. 

elegans or S. skirrhodon, one of the two introduced species, or either S. lautus and S. 

sterquilinus or one of the latter two, or their associated hybrids. My personal 

observations indicate that there might be direct competition between introduced and 

native Senecio spp. (see Fig. 5.27) that could potentially mitigate the positive effects I 

was able to demonstrate with this study. It will further enhance our understanding of 

interactions between members of a community to investigate direct competition 

between Senecios and apparent competition including a third trophic level (insect 

herbivore parasites). My additional chapter 7 provides some insights into the 

interactions between a previously unrecorded and thus undescribed parasitoid wasp 

and S. fascigera as host on S. lautus.  

 

Figure 5.27: Possible direct competition between S. elegans (bottom left, middle and upper right) and S. 

lautus (only middle). 
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5.7 Conclusions 

My data have shown the importance of fine scale resource availability (host plants) for 

insect herbivores in coastal areas. Introduced species can have an apparent positive 

influence on the native species by mediating, on a small scale, the infestation of a native 

herbivore. However, despite a positive influence of the introduced Senecio on the focal 

native Senecio it is important to consider and quantify the long-term, population-level 

outcome of the interactions between the introduced and native species to predict future 

distributions and effects on the native plant and insect community.  
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Summary and general discussion 

 

  

 

 

 

 
 

Dune field at Whitiau, West Coast, Lower North Island, NZ. 
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6.1 Outline of thesis 

My thesis compared two examples of interactions between native and introduced 

plants that occur sympatrically in New Zealand’s coastal ecosystems. First, I 

investigated the direct competitive and facilitative effects of native and introduced 

grass species in a coastal sand dune environment examined in the context of the 

stress gradient hypothesis and whether the balance between competition and 

facilitation varied along an environmental gradient. Second, I undertook an 

investigation of indirect competition (apparent competition) between native and 

introduced Senecio spp. plants and their insect herbivores in a coastal environment 

to determine support for the resource dilution hypothesis which predicts higher 

insect herbivore numbers on isolated resource patches.  

A summary of these two components is provided in this chapter followed by 

consideration of the biotic interactions and spatial scales involved. Finally, 

implications relevant to Coast Care group and coastal managing agencies for 

conservation and dune management of marram-dominated dunes and for the 

management of invasive weeds (such as Senecio spp.) on coastal dunes are 

discussed. 

 

6.2 Direct competition-vs- facilitation and the stress gradient hypothesis 

My thesis aimed to investigate direct and indirect competition of native and 

introduced species in coastal habitats. I researched direct competition by 

investigating the interaction between the common native  sand binder grass spinifex 

(Spinifex sericeus) and the invasive sand binder marram grass (Ammophila arenaria) 

along an abiotic stress gradient determined by wind, sand movement, salt exposure, 

soil development and the topography of dunes. My experiment also had a 

conservation angle: to investigate the best method to convert marram-dominated 

dunes back to native spinifex dominated dunes in exposed sites while retaining 

some ground cover during the restoration process. My volunteers and I planted 
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2475 spinifex seedlings in bare sand, live marram and herbicide-sprayed, dead 

marram grass over three locations (stations) at fore dunes, mid dunes and back 

dunes over 11 transects at two field sites. Performance of spinifex plant growth was 

monitored to assess the best restoration option and to test if the predictions of the 

stress gradient hypothesis apply (Chapter 2). Survival did not differ significantly 

between treatments but growth was better in sprayed marram plots closer to the 

sea at one field site compared to plantings further inland. This suggested a 

facilitative interaction between live spinifex and dead marram at the most seaward 

sites where stress was most severe compared to a more competitive interaction 

further inland. Consequently, the spinifex growth data supports the stress gradient 

hypothesis and thus showed better facilitation at the more seaward sprayed plots. 

However, apart from growth measurements my experiment did not provide support 

for the SGH. In addition to the effect of herbicide treatment, the initial cover of 

marram grass prior to spraying was a significant predictor of spinifex growth, with 

reduced growth of spinifex in plots that had a dense initial marram grass cover.  

I also investigated the population dynamics of self-colonizing species at the same 

plots described above with and without plantings (Chapter 3). Most of the species I 

encountered were introduced pasture weeds and did not follow the pattern 

expected by the SGH over the environmental gradient, occurring along the length of 

each transect. The exotic coastal species Senecio elegans is not associated in its 

parts of its home range with marram grass and hence is not especially adapted to 

growing amongst it. Senecio elegans was the only plant that was facilitated by 

sprayed marram grass closest to the sea compared to live marram grass and also 

had higher abundance in sprayed marram grass plots compared to bare sand plots 

closer to the sea compared to plots further inland. Generally, most other weeds 

were facilitated by sprayed marram grass in a similar manner but they did not show 

a pattern as expected by the SGH. From a practical management point of view, 

planting into sprayed dead marram grass is therefore only worth the extra effort if 

the site is not weed-prone as growth of other introduced species are facilitated in 

the same manner as spinifex.   
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6.3 Indirect competition and the resource dilution hypothesis 

I researched indirect competition (apparent competition) between native and 

introduced plants and their insect herbivores. I started by reviewing current 

knowledge about native and introduced Senecio spp. as well as associated native 

and introduced insect herbivore food webs in New Zealand (Chapter 4). Surprisingly, 

there were few documented associations to allow comparison of my studies to 

Senecio spp.-insect associations elsewhere. My review showed no significant 

differences for the likelihood of non-native insects colonizing native or introduced 

plants. Most interactions recorded were leaf miners (both Lepidopteran and 

Dipteran) as well as other native and introduced Lepidoptera. Consequently, I chose 

coastal Senecio species to conduct my own Senecio spp.-insect food web surveys 

(Chapter 5). Here I was particularly interested in how colonisation of plants by 

insect herbivores was affected by the fine- and coarse-scale density of conspecific 

and heterospecific Senecio spp. and plant morphology. My results showed that 

insect herbivores favoured larger plants. Furthermore, a significant negative 

influence of conspecific and heterospecific plant density measured at the fine scale 

influenced host plant choice. Thus, high densities of introduced S. elegans in close 

proximity to a native S. lautus reduced the colonisation rate of the tephritid fly, S. 

fascigera, on to S. lautus. These results were confirmed in a field experiment where 

I manipulated plant densities between introduced S. elegans, S. skirrhodon and 

native S. lautus. These results support the resource dilution hypothesis which 

predicts higher insect herbivore numbers on isolated resource patches. 

Furthermore, my results also provide empirical evidence for a situation which may 

result in apparent facilitation of a native plant by an introduced plant “diverting 

away” the impacts of a shared herbivore. Taking biotic and abiotic influences into 

consideration, the implications from my study for conservation efforts on coastal 

dunes are that the net outcome of direct and indirect interactions is important to 

assess and mitigate the influence of an introduced species. I did not directly 

measure the impact of S. fascigera on Senecio spp. fitness. However, this insect 

herbivore feeds on immature seeds and plants in late summer are heavily infested 

(some plants have all flowers and stems colonized by S. fascigera). This strongly 
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suggests a negative impact on lifetime reproduction success. Consequently, the 

apparent facilitation of S. lautus by S. elegans could be a short term effect. In the 

long term S. elegans could help to build up S. fascigera populations as it is an 

alternative host already and thus increase the herbivore pressure on S. lautus. 

Modelling shows that a variety of population dynamics are possible mediated 

through a shared herbivore (Schoolmaster 2008).  

 

Biotic interactions and spatial scales  

Recent research has emphasized the need to identify and quantify the effects of 

direct positive and negative interactions between species interactions. This includes 

considering both indirect positive and negative interactions between species 

simultaneously under varying abiotic conditions (e.g. Callaway and Walker 1997, 

Chaneton et al. 2010, Atwater et al. 2011, Lutscher and Iljon 2013). My research 

showed direct facilitative effects when spinifex seedlings are planted within sprayed 

marram grass. In effect, the dead marram grass exhibited a nurse plant effect (e.g. 

Franco and Nobel 1988, Franco et al. 1989) thus supporting the stress gradient 

hypothesis for spinifex growth only (Bertness and Callaway 1994). Indirect positive 

or negative effects are an important aspect of analysing the net-outcome of the SGH 

(e.g. (Malkinson and Tielbörger 2010). Weeds were facilitated by the protective 

effects of sprayed marram grass in the same manner as the growth of planted 

spinifex was enhanced. This indicates an indirect negative effect of sprayed marram 

grass on spinifex where, if present, weed species can become dominant at the 

expense of spinifex. 

Senecio elegans, as one of the focal introduced plant species for my food web 

research, profited from facilitation provided by sprayed marram grass. It also 

exhibited a negative influence on insect herbivore colonization of native S. lautus. 

Unfortunately, it was not possible to test the stress gradient hypothesis and 

research the indirect effects of S. elegans on S. lautus simultaneously, as S. lautus 

was not present at any of the dune restoration experimental sites. In addition, the 
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coastal sites used for the experiment of Chapter 5 were not sufficiently wide to 

provide a seaward to inland gradient to explore the SGH. However, it would be very 

interesting to research the net outcome of these direct and indirect interactions in a 

single model incorporating all species within a coastal community. While it would 

also be valuable to incorporate a third trophic species to further untangle food web 

interactions of Senecio spp., the data on introduced Senecio spp. at my study sites 

was too sparse for an analysis of parasitoid-insect herbivore interactions. 

Consequently, I focused on population dynamics and different density scales of the 

most common parasitoid (Pteromalus sp) found parasitizing Sphnella fascigera in 

Senecio lautus (Additional Chapter 7 in Appendix I page 209).   

Figure 6.1 shows a summary of the interactions I researched with my thesis. Many 

more interactions are possible, but were beyond the scope of my study. In 

summary, abiotic and biotic factors (albeit these were not considered in my study) 

have both positive and negative direct effects on live and sprayed marram, which 

also positively and negatively impacts other investigated species (both blue and red 

arrows). Sprayed marram grass has a direct positive interaction with spinifex, 

introduced S. elegans and other plants. The Senecio species shows a positive direct 

effect on insect herbivores. Exotic S. elegans exhibits an indirect negative 

interaction on spinifex.  
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Figure 6.1: Interactions of my research: Blue arrows = negative direct interaction, red arrows = 

positive direct interaction, blue dashed arrow = indirect negative interaction, red dashed arrow = 

indirect positive interaction. Interactions that were not researched, but are assumed are not 

shown in the graph. Other abiotic factors were not incorporated in my study (except for browsing 

monitoring), but are probably exhibiting both direct and indirect effects on coastal sand dune 

communities. 

 

Abiotic and biotic interactions take place at different spatial scales (e.g. Forey et al. 

2009 for local and regional scales, Carranza et al. 2010 for landscape sale patterns, 

and a range of scales in Maltez-Mouro et al. 2010). My research considered two 

different spatial scales (i.e. fine scale plant density (= plants within 50 cm, area = 

0.785 m²) and coarse scale plant density (= plants in a six metre square annulus, area 

= 32 m²) for the interactions between Senecio spp. and their insect herbivores which 

are not incorporated in this simplified model of Fig. 6.1. Stress gradient hypothesis 

interactions appear to depend on species identity. This dependence was 

emphasized in recent research where severely stressful conditions were found to 

diminish facilitative interactions usually expected by the SGH (Maestre et al. 2009). 

Similarly, the spatial scale at which insect herbivores are affected by host plant 

densities varies according to species or animal class (Hambäck and Englund 2005). It 

is possible, that my surveys and experiments did not comprise the full stress 

gradient and range of spatial scale at which these interactions occur. In particular 
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for the SGH this could be the case as some of the weed species were not especially 

adapted to coastal conditions and hence might not have been able to persist at 

most seaward locations that were incorporated in my transect layout. Consequently, 

these weeds might follow the pattern expected by the SGH if a gradient that goes 

even further inland is considered.  

 

6.5 Contribution to current knowledge 

Most research on interactions between species along a stress gradient has focused 

on pairwise interactions using mostly native species (e.g. Le Roux and McGeoch 

2010). There have been a few exceptions where entire communities have been 

studied along an environmental gradient (e.g. Armas et al. 2011) including where 

invasive species have been present (e.g. Santoro et al. 2012, Mason et al. 2012). My 

research demonstrates the complexity of interactions in a relatively species-poor, 

but highly dynamic temperate coastal dune system. Spinifex plant growth and 

colonisation of plots by the introduced S. elegans ) at one field site supported the 

stress gradient hypothesis (SGH, which predicts more facilitative interactions where 

stress is severe and more competitive interactions where stress is less severe 

(Bertness and Callaway 1994, Callaway and Walker 1997, Lortie and Callaway 2006, 

Brooker et al. 2007, Maestre et al. 2009).  

It is often noted that native species persist for a long time (longer than expected) 

within patches of introduced plants before eventual out-competition (Atwater et al. 

2011, Zarnetske et al. 2013). My results support this assumption, as spinifex was 

able to survive in live marram throughout the duration of the experiment (Chapter 

2) despite very limited growth, possibly due to its better tolerance to salt spray at 

fore dunes. Nevertheless other studies have shown that in most situations native 

sand binders will eventually be eliminated at the site through the better introduced 

competitor (e.g. Hilton et al. 2005 for Ficinia spiralis). Intervention is therefore 

required to ensure native sand binders planted in invaded dunes will not eventually 

succumb to the competitive effects of the more aggressive marram grass. The 
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sprayed marram grass option evaluated in my field trials has shown that this can be 

a practical method for converting marram grass dominated dunes to spinifex. This 

method is increasingly being used by Coast Care groups in many regions of New 

Zealand (David Bergin, Dunes Trust, pers. comm., 2013).  

My dune restoration experiment was to my knowledge the first study that 

researched the SGH in a restoration context with a herbicide spray-killed invasive 

species and its influence on plant growth as well as recording population dynamics 

of self-colonizing species of a coastal dune community. I was able to show that dead 

plant material is less facilitative (potentially hindering) for planting survival if initial 

marram densities are too high, but facilitative at low to medium densities. 

Furthermore, species responses towards stress are indeed dependent on species 

identity.  

My research on Senecio species indicates apparent facilitation between introduced 

S. elegans and native S. lautus at fine spatial scales via the shared seed head 

predator S. fascigera, but no significant influence of Senecio spp. density at coarser 

scales. In addition, the need for considering abiotic impacts on direct interactions 

has been emphasized. Senecio elegans was directly facilitated by sprayed marram. It 

will be crucial for our understanding of community structure to research the net-

outcomes of direct and indirect interactions at different spatial scales as well as 

incorporating effects of abiotic resource limitations at a community level. Thereby 

my thesis provides a foundation for larger community level longer-term future 

studies. 

 

6.6 Implications for conservation and dune management 

Introduced species alter habitats in various ways (Niemelä and Mattson 1996, 

Drossel et al. 2000, McCann 2000, Pearson and Callaway 2003) and are the second 

biggest threat to biodiversity after habitat destruction (Pimentel et al. 2005). 

Coastal areas in New Zealand have been altered substantially with the introduction 
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of marram grass and other weeds that now dominate coastal habitats in large parts 

of the country (Hilton et al. 2000, 2005, Bergin 2011). However, local Coast Care 

groups are endeavouring to reverse this degradation of dunes systems in many 

regions by replacing introduced species with appropriate coastal native species. 

Such volunteer groups in collaboration with local councils and the Department of 

Conservation spend a significant amount of volunteer time in restoration of their 

local beaches. Their enthusiasm is admirable but they still struggle with survival 

rates of native plants and knowledge about coastal species remains patchy. 

Throughout my research I had the chance to work closely with involved 

stakeholders: The Department of Conservation, the local Iwi, City Councils, weed 

control contractors, Coast Care groups and the general public including local 

residents. Collaboration with these parties further advanced my understanding of 

coastal ecosystem processes and their restoration initiatives. Complete planting loss 

was frequently reported for beaches with major erosion events, regardless of the 

planting approach - this is in accordance with my observations at Whitiau, where I 

had clustered treatment plots at a transect but lost the entire fore dune due to a 

massive winter storm regardless of planting regime. Volunteers who contributed to 

my research by planting spinifex according to my research design said it was 

significantly harder to plant into sprayed marram grass, suggesting this method 

should only be applied if the gains justify it, i.e. in an exposed environment where 

facilitation by providing shelter is necessary to promote the establishment and 

growth of spinifex. However, other weeds are a constant management problem in 

that scenario if weed sources are in close proximity. Consequently, I have developed 

management recommendations based on my own experiments, visits to restoration 

sites throughout the country and consultation with the various parties involved in 

dune restoration (Fig. 6.2). For degraded dunes dominated by marram grass on 

exposed sites, planting native sand binders is likely to succeed where there is no 

major erosion expected along fore dunes, and where re-invasion of marram or other 

weeds is less likely because of of reduced propagule sources. Planting establishment 

under the mentioned conditions is more successful if other human-induced factors 

such as rabbits are controlled and beach user access is managed. At such sites, the 

option evaluated in this thesis of using sprayed marram grass to facilitate the 
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establishment of native sand binders is likely to be a practical method for 

restoration. On less exposed sites, choice of method for replacing marram grass 

with appropriate native species will depend on the presence of fauna sensitive to 

the use of herbicide sprays and the degree of exotic flora present. 

 

 

 

Figure 6.2: Recommendations for spinifex restoration planting depending on local site conditions. 

Based on Chapter 2&3 as well as on consultations with restoration stakeholders. 
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My research indicates apparent facilitation of native S. lautus by introduced S. 

elegans at fine scales. However, it is questionable whether or not this effect 

indicates a positive net-outcome of for native S. lautus as I observed S. elegans 

encroachment into areas previously only inhabited by native S. lautus. This leaves 

scope for speculation about further invasion expansion and direct competition as 

discussed in Chapter 5. Introduced S. elegans and S. skirrhodon grew faster than 

native S. lautus in the greenhouse. Both introduced species starting flowering 

earlier and flowered longer compared to S. lautus. Consequently, the introduced 

species should have a direct competitive advantage against S. lautus in the wild 

giving them the opportunity to produce more seeds, for a longer period of time and 

with more efficient competition for space through better growth.  

Coast Care groups frequently weed their local beaches to protect their restoration 

plantings and promote long term restoration. However, it is possible that indirect 

effects not only take place between two closely related Senecio spp. and their insect 

herbivores but also when weeding is done. In my experience S. elegans is frequently 

weeded while introduced S. skirrhodon is left in situ because it is mistaken for native 

S. lautus. Therefore S. skirrhodon experiences a colonization advantage at some of 

the managed beaches. It is currently unclear to what extent New Zealand’s beaches 

are modified. It may be possible that even anemochore and thus very mobile 

species such as coastal Senecio spp. are limited in their recruitment - So far 

according to my consultations with Coast Care groups they did not actively plant 

native coastal Senecio spp. However, in Australian coastal systems, aggressive 

introduced Asteraceae such as bitou bush (Chrysanthemoides monilifera subsp. 

rotundata) may be depleting native seed banks as these are typically not very 

longlived and thus limit seedling recruitment of key native species (French et al. 

2010). Furthermore, exotic plant invasion has been shown to inhibit native plant 

regeneration as demonstrated for invasive Lantana camara in south eastern 

Australia (Gooden et al. 2009). Further study is required to determine if exotic 

Senecio species on New Zealand dunes may be affecting native Senecio spp. 

populations especially where weed control is indiscriminate. Clear information on 

species identification to determine differences between exotic and native Senecio 
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spp. is essential in weed control programmes targeting these species (see Appendix 

for photos of the morphological variety of the Senecio spp. considered in my study)  

Development of  long term restoration goals that embrace the wider ecosystem 

services provided by coastal dunes (as reviewed in Barbier et al. 2011) will be crucial 

for effective management of New Zealand’s dunes. This includes the protection 

provided by well-managed dunes with a cover of appropriate native sand binders 

that will be more resilient than exotic species to erosion in the case of large storm 

events (Zarnetske et al. 2012). An understanding of dune processes where the aim is 

to restore and manage natural dune form and function using native plants will be 

essential as is the provision of practical guidelines to coastal communities and 

collaborating agencies so they can effectively restore and manage them.  

 

6.7 Concluding remarks 

My thesis has demonstrated the complexity of interactions in species-poor coastal 

dune systems. They are dependent on direct and indirect interactions of abiotic and 

biotic factors at different spatial scales and possibly temporal scales. More 

specifically my main conclusions are:  

• Restoration plantings in dead, sprayed marram grass can follow the 

predictions from the SGH for growth and experience facilitation at fore dunes 

and a more competitive interaction at back dunes in comparison to plantings 

in live marram and bare sand. 

 

• Whether or not a species follows the predictions of the SGH is highly 

dependent on species identity and on the stress gradient researched 

 

Introduced species can exhibit an apparent facilitative effect on a closely related native 

congener at fine spatial scales, e.g. as demonstrated for the influence of introduced S. 

elegans on the shared seed head predator S. fascigera which was consequently less 

abundant on neighbouring native S. lautus. This facilitative effect may become negative, 
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however when considered over longer time scales and larger spatial scales, if 

populations of the shared herbivore build up. 

 

Future studies will face the challenge of manipulating a system at the community level 

to at least a second trophic level to entangle these complex interactions. Conservation 

managers need to be aware of the net-outcomes of interactions involving invading 

species to be able to assess adequately the long-term impact an introduced species can 

have on native plant (and animal) communities.  
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Specimen of Pteromalus sp on a milimiter scale. 
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density on parasitism of Sphenella fascigera (Diptera) 

7 Tri-trophic interactions and the minimal effect of host 

microsite, plant properties and plant density on 

parasitism of Sphenella fascigera (Diptera) 

 

Abstract 

Parasitoid insects are important natural biocontrols of insect herbivores. How 

parasitoids choose particular hosts amongst many larvae on different plants is not fully 

understood. We investigated factors including host larval location on the plant, plant 

density and quality, host larval density, and other insect herbivores. Our model system 

was the coastal plant Senecio lautus and its tephretid herbivore Sphenella fascigera 

parasitized by an undescribed parasitoid wasp Pteromalus sp. We recorded S. fascigera 

larvae and collected fly pupae for hatching of Ptermomalus sp. The overall rate of 

parasitism of S. fascigera was 25 %. There was no significant effect of larval location 

upon parasitism rate, or any other variables. One explanation could be the evolution of 

an efficient search strategy to locate all potential larvae, with equal probability. Future 

research on whether S. fascigera larvae on congeneric plants experience different rates 

of parasitism could be advantageous for understanding tritrophic interactions.  

7.1 Introduction 

About a quarter of all insects are parasites (Schoonhoven et al. 2007) and some might 

have potential as biocontrol agents for agricultural pests (i.e. crop damaging insect 

herbivores) (Aebi et al. 2006) or inhibit the success of insect herbivores which act as 

biocontrol agents (Paynter et al. 2010). Despite studies of the interactions between 

parasites and their hosts, a lack of knowledge remains for a great number of parasites 

and how they choose their hosts (reviewed in Lewinsohn, Novotny, & Basset, 2005, 



CHAPTER 7 

213 

Paynter et al., 2010)). Due to a lack of universal pattern, these interactions are thought 

to be species specific (Sasakawa et al. 2013).  

The tritrophic interaction between plants, their insect herbivores and parasitoids have 

many different facets: plants evolve means to escape insect herbivores by developing 

deterrent chemicals to make themselves less attractive and less palatable (Pare and 

Tumlinson 2011). These chemical plant defences, however, have also been shown to 

encourage other plants to increase their plant volatile production when a nearby 

congener has been damaged by herbivory (Howe and Jander 2008). Plant volatiles may 

also act to attract parasites and other natural enemies of herbivorous insects (e.g. 

Ngumbi et al. 2012, Uefune et al. 2012, Chiappini et al. 2012). In some cases the plant 

volatiles are insect herbivore specific and therefore attract specific parasitoids targeting 

these insects (Moraes et al. 1998).  

Tri-trophic interactions are an important component of larger more complicated food 

webs and exemplify the potential for indirect facilitative and competitive effects across 

lower trophic levels (Holt and Lawton 1993). Unlike direct competition and facilitation, 

that typically occurs between plants in close spatial proximity (Bertness and Callaway 

1994, Brooker et al. 2007), mobile insects can mediate indirect interactions across larger 

spatial scales (Lynch and Kaplan 2006, van Veen et al. 2006, Wielgoss et al. 2012)., In 

particular, it is thought that predators (including parasites) generally act at larger spatial 

units than their prey/hosts (Östman and Ives 2003).   

The resource concentration hypothesis (Root 1973) predicts a greater density of 

herbivores, and similarly more predators, in patches with a high amount of resources 

(i.e. high density stands of plants). Nevertheless, some studies showed opposite effects 

with fewer insect herbivores per plant in areas with high resource concentrations and 

more insects per plant on isolated plants (Karban and Courtney 1987). Hence, the 

resource dilution hypothesis (Otway et al. 2005), which predicts that isolated plants 

experience a higher insect herbivore load than plants within dense patches. 

Furthermore, this also positively affects parasite colonization (Williams et al. 2001).  
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Empirical evidence distinguishes between two steps of host location by parasitoids: 

firstly, finding the host plant of the host insect host and secondly, locating suitable larval 

hosts on the plant (Vinson, 1975; Vinson, 1976). Both insect herbivores and  parasitoids 

have been documented to use mainly visual (Ferreira Santos de Aquino et al. 2012) and 

chemical cues (Segura et al. 2012) to locate their hosts. Insect herbivores typically face a  

choice between many potential host plants, and are likely to  evaluate  plant properties 

(plant size, health, plant architecture) to maximise offspring survival (Egan and Ott 

2007). More structurally complex plants are thought to provide shelter from enemies 

(i.e. parasites) by increasing the difficulty of the search for insect hosts (Obermaier et al. 

2008). Potential insect hosts may escape from parasitism by seeking microsites that 

provide a refuge against discovery and attack. For example,  the parasitoid wasp 

Venturia canescens (Gravenhorst) was unable to parasitize many potential host larvae of 

Plodia interunctealla (Hübner) due to a depth-refuge (Begon et al. 1995). Seeking refuge 

has implications for evaluating potential biological control agents success, as discussed 

by Lynch, Bowers, Begon, & Thompson (1998). Hosts can also escape their parasitoids by 

changing their feeding behaviour or building up their own chemical and physical 

defences (Kraaijeveld et al. 2001, Takahashi-Nakaguchi et al. 2013).  

Our study aimed to investigate the factors affecting parasitoid host choice at a range of 

scales. We studied a common coastal plant: Senecio lautus (Willd) (Asteraceae) which is 

frequently infested with Sphenella fascigera (Malloch) fly larvae which can either 

develop in galls in plant stems or within the flowerheads. In turn, the fly larvae may or 

may not be parasitized by Pteromalus sp, an undescribed parasitoid wasp.  

Specifically we asked whether: 

i) Location of the larval host within the plant is important to parasitoids. More 

precisely  galls in plant stems are hypothesised to provide a more protected 

refuge than flowerheads (perhaps at the cost of lower quality nutrition for the 

fly larva)  

ii) Plant density (a proximate measure of resource concentration) is positively or 

negatively related to parasitism rates, 

iii) Plant properties (i.e. plant size, vigour and maturity) influence parasitism rates 
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7.2 Methods and materials 

Study species and field sites 

 Senecio lautus, Asteracea, was chosen as the focal plant species. Senecio lautus is a 

flowering annual or short-lived perennial herb with glaborous or sparsely hairy leaves 

which can be deeply divided and toothed, the leaves are heteroblastic (Burns 2005) and 

plants can vary tremendously in size (pers. observation). Leaf shape is an adaptation to 

wind and abiotic conditions- leaves can exhibit succulence when exposed to salt and 

wind and are generally more deeply serrated in more exposed areas (Burns 2005). Ray 

florets vary between 0 (rare), 7-13 (Webb et al. 1988). Plants can be found flowering 

year round (NZPC Network 2013) with a peak in summer. Typical habitats are coastal 

areas, especially shingle beaches and rocky areas (Webb et al. 1988). Like most plants in 

the seneciod tribe, Senecio spp contain pyrrolizidine alkaloids (Jeffrey et al. 1977). Their 

primary function appears to be to deter vertebrate and invertebrate herbivores (Hol 

2011). Due to their toxicity, however, some species of insect have evolved a general 

tolerance to alkaloids, and some specialist herbivores sequester it for their own defence 

(Nishida 1994, Nishida et al. 1994). Prominent examples of insect herbivores 

sequestering alkaloids from Senecio spp. include arctiid moths e.g. Nyctmera spp. (Benn 

et al. 1979). and Tyria spp. (Naumann et al. 2002). 

Sphenella fascigera (Diptera: Tephretidae), formerly known as Tephritis fascigera, 

(revised by (Hancock and Drew 2003) was our focal insect herbivore. This endemic 

tephretid fly has larvae that develop in the immature seeds of flowerheads or through 

forming galls in the stems of Senecios (Martin 2013, personal observation). In captivity, 

S. fascigera can survive several months as adult flies (personal observation). Sphenella 

fascigera adults have been observed on a range of Senecio species in New Zealand 

including: S. bipinnatisectus Belcher; S. diaschides D.G.Drury; S. esleri Webb; S. 

glomeratus Poiret; S. hispidulus A. Rich; S. lautus G. Forst. Ex Willd.; S. minimus Poiret S. 

skirrhodon DC.; S. vulgaris (Martin 2013) and on S. elegans and S. sterquilinus (Orndorff) 

(pers. observation). To our knowledge, no parasitic wasps have been previously 

recorded from Sphenella fascigera.  
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 Pteromalus sp is an undescribed parasitiod wasp (pers. comm. Early and Schnitzler 

2012) of the Pteromalidae family, which consists of over 70 species in New Zealand 

(Landcare Research, 2009). Most of the Pteromaliden are parasitoids and various types 

of parasitism are represented (Landcare Research, 2009). Pteromalus spp. have been 

used as biocontrol agents as in the case of the generalist pupal parasitoid Pteromalus 

puparum (L.), which was introduced to New Zealand to control Pieris rapae, but also 

spread to other hosts (L.) (Barron 2007). The modern day mixture of native and 

introduced insects in New Zealand also comprises other Pteromalus spp. as documented 

by Berry (2003) for Neopolycystus insectifurax Girault. The parasitoid species of the 

genus Megastigmus (Torymidae) is established in NZ and parasitizes Procecidochares 

alani (Tephritidae) on the mist flower Ageratina (= Eupatorium) riparia NZ (Schnitzler 

and Winks, pers. comm. 2012). Species of Megastigmus. and Pteromalus?. have also 

been recorded in New Zealnd and were found  to parasitise Procecidochares utilis 

(Tephritidae) on Mexican devil weed Ageratina (= Eupatorium) adenophora. A 

Pteromalus? sp. is known to parasitise Tephritis cassiniar (Tephritidae) on Cassinia sp. 

(Asteraceae) (Schnitzler and Winks, pers. Comm. 2012). 

Field sites were located around Wellington, New Zealand (see Fig. A.I.1) with monitored 

populations at shingle beaches at Owhiro Bay, Owhiro Beach, Moa Point (near Lyall Bay), 

Makara Beach, Petone, Breaker Bay and Eastbourne Beach. At Moa Point, Petone and 

Eastbourne populations of congeneric Senecio spp. (S. elegans and S. skirrhodon) were 

present within a few hundred meters of the sampling points. Other plant species 

commonly present at the field sites included: Coprosma repens, Anagallis arvensis var. 

arvensis, Glaucium flavum, Gaznia rigens, Chrysanthemoides monilifera, Sonchus 

oleraceus, Lobularia maritima, Brassica spp. Crepis capillaris, Leontodon taraxacoides, 

Taraxacum officinale, Atriplex prostrata, Galium spp. The vegetation occurred typically 

in bands following the tideline. Often coastal Senecio spp root in debris from the tideline 

and the sections with S. lautus were usually the areas with less immediate public access. 

 

Data collection  
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Plants were surveyed between February-April 2012 when the majority of plants were 

mature. 2 x 2 m quadrats, with an internal grid of 50 cm subquadrats, were laid out 

consecutively over the area where S. lautus was present.  

The number of Senecio lautus individuals and other congenerics in each subquadrat was 

counted, differentiating between juveniles, adults and dead individuals. Each S. lautus 

plant was searched (i.e. opening every flowerhead and every stem gall) and all S. 

fascigera pupae encountered were collected for rearing in the laboratory where they 

were kept in plastic tubes  (4.5 cm height and 1cm diameter) closed with cotton wool 

and stored at room temperature (17-22°C). Larval stages of S. fascigera were also 

recorded, but not collected. The height and diameter of each plant was measured. 

Linear size was obtained using the formula:  

  Plant size (cm) = [ height * (diameter/2)2 ]1/3  

This formula normalized the distribution of plant size by referring the value from a 

volume back to a linear value. We recorded the phenological state of the focal plant 

(assessed by counting the number of flowering buds (= 0), buds (= 1), mature flowers (= 

2), post-flowering flower head (= 3) and dried-out flower heads (= 4)), the number of 

branches at the base of the plant, plant vigour (categorized from 0 (dead)-5 (very 

healthy)) and the presence of other insects on the plant. The 2 x 2 m quadrat was nested 

within a larger 6 x 6 m quadrat, and the number of Senecio plants surrounding each        

2 x 2 m quadrat (but within the 6 x 6 m quadrat was recorded). A total of 4740 

flowerheads, from 356 plants located in 68 2 x 2 m quadrates were searched for pupae 

across all sites. 
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Fig. A I.1: Map showing the locations of the natural S. lautus populations sampled in this study (black 

points). Grey points mark urban areas.  

 

  



CHAPTER 7 

219 

Data analysis 

We used linear mixed-effects models to investigate a variety of factors that might 

influence a parasitoid’s host selection at a range of nested scales. The response variable 

was binary: either “parasitized” or “not parasitized” for each fly pupa, hence the error 

distribution was specified as ‘binomial’. The independent variables were: the location in 

the plant (stem or flowerhead), the total number of flies in the plant, plant size, number 

of flowers on the plant, density of conspecific S. lautus in the 50 cm, 2 m or 6 m quadrats 

respectively, the presence of heterospecific Senecio plants, plant maturity, plant vigour 

and the presence of other insects on the focal plant (i.e. cecimidoyiid larva or Nyctmera 

annulata Boisduval (magpie moth) caterpillars)). Unique identifiers for each individual 

plant, nested within quadrat, nested within site, were added as random effects.  

Stepwise backward deletion of variables was used to obtain a parsimonious description 

of important variables which influenced parasitism. The model with the lowest AIC was 

retained as the best model. A type II ANOVA was performed for the model. In addition, 

all predictors were also tested individually in separate models to check the stability of 

the results in the face of potential cross-correlations between variables. All data analysis 

was conducted using the statistical software R (R Core Team 2012). Linear mixed-effect 

models were fitted using the package lme4 (Bates et al. 2012). 

 

7.4 Results 

One thousand, four hundred and twenty fly larvae or pupae were observed across 356 

plants. A total of 58 wasps were reared from 236 viable pupae giving an overall rate of 

parasitism of 0.246 (Table 1). A total of 328 collected pupae produced nothing. 30 % of 

flowerheads examined contained fly larvae or pupae. The greatest number of flies 

recorded on one plant was 39, from a plant at Owhiro Bay, 20 cm high and 28.5 cm 

diameter with 72 flowerheads and 4 major stems.  

When tested individually, none of the measured variables had a significant influence on 

the rate of parasitism of S. fascigera larvae. With respect to our primary question, 29 of 
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145 pupae recovered from stems were parasitized, as opposed to 29 out of 90 pupae 

recovered from flowerheads. In a single-factor test, this difference in rates (20% vs. 32%) 

was not significant (F= 3.392, df = 1, P = 0.066), and the variable was not retained in the 

minimum adequate model. 

With respect to plant density, both the fine-scale (50 cm) and coarse-scale (6 m) 

measures of conspecific density had a weak (non-significant, 0.05 < P < 0.1) effect of 

increasing rates of parasitism (Table 3). Fly density had no significant effect on wasp 

parasitism rates. 

Plant maturity was the only variable to show marginal significance in both the single-

variable test and the parsimonious model: older plants hosted pupae with a slightly 

higher rate of parasitism. Plant size, plant vigour and the number of branches showed no 

significant influence on parasitism rates (Table 3). 

None of the variables were significant in the full model. With backward stepwise 

variable elimination the AIC of the model was reduced by 101.5. The most parsimonious 

model included the following predictor variables: the total number of insects in the 

plant, density of S. lautus in the 6 m quadrat, plant maturity, plant vigour, and the 

presence of other insects. As in the single-variable models, a positive trend was found 

for the influence of plant maturity (p-value = 0.079) (Table 2), i.e. parasitism rates were 

slightly higher in larvae recovered form more mature plants. 
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Table A I.1: Summary statistics of fly and parasitoid incidence by site.  

 

Site 

No. 

of 2 m 

quadrats 

No. 

of 

plants 

No. of 

flower 

heads 

Total 

of 

flies
1 

No of 

pupae 

collected
2 

Hatched 

flies
3 

Hatched 

wasps
3 

Fly 

density 

per 

plant
4 

 

Rate of 

parasitism 

 
          

Breaker 
Bay 

4 7 50 14 6 4 0 2.00 0 

Eastbourne 6 15 670 7 11 0 0 0.47 0 

Makara 
Beach 

2 2 15 1 0 0 0 0.50 0 

Moa Point 3 9 183 6 3 0 0 0.67 0 

Owhiro Bay 
1 

29 181 2336 660 486 91 32 3.65 0.260 

Owhiro Bay 
2 

9 95 949 526 232 49 20 5.54 0.289 

Owhiro Bay 
3 

4 15 57 39 7 1 1 2.60 0.5 

Owhiro 
Beach 

7 21 318 165 63 23 3 7.86 0.115 

Petone 1 7 162 2 2 1 0 0.29 0 

NA
5 

3 4 NA NA 13 9 2 NA 0.181 

          
Total 68 356 4740 1420 823 178 58 3.99 0.246 

1
Total number of flies includes all larvae and pupae, 

2
collected pupae are all the closed pupae found, 

3
hatched flies and parasitoids numbers are found after rearing in the laboratory and hatching of the 

pupae, 
4
fly density per plant is the total number of flies divided by the number of plants, rate of 

parasitism is the number of hatched wasps divided by the sum of the hatched wasps and flies (i.e. all 

hatched pupae). 
5
NA means that site information is missing. 

 

Table A I.2: Rate of parasitism depending on the location of the pupa in the stem or flowerhead of the 

plant. 

Location  Parasitoid No parasitoid n Rate of parasitism 

 Flower head 29 61 90 0.32 

Stem 29 116 145 0.20 

Total 58 177 235 0.25 
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Table A I.3: Results of a multi-variable (stepwise deletion) minimum adequate model and single-variable 

linear models for parasitism rate of S. fascigera by Pteromalus sp. NA = single value beta coefficients are 

not applicable for multi-level factors. NS = not significant, ∙ = marginal significance when: 0.05 < P-value 

< 0.1 

 

 

variable 

Minimum adequate 

model 

Variables tested one by one 

 Beta 
coefficient 

p-
value 

 Beta 
coefficient 

p-
value 

Significance 

1. Location on plant       
flowerhead-vs-stem

 
dropped   -0.634 0.066 . 

2. Other plant-level 

factors 

      

total number of flies -0.182 0.473  -0.220 0.403 NS 

Other insects NA 0.447  NA 0.306 NS 
2. Plant attributes       
Maturity 0.517 0.079 . 0.483 0.085 . 
Vigour peaked at vig. 

= 3 
0.324  NA 0.244 NS 

Total flowers dropped   -0.078 0.696 NS 
Size dropped   -0.393 0.116 NS 

3. Neighbourhood plant 

densities 

      

# S. lautus within 50 cm
 

dropped   0.565 0.051 . 
# S. lautus within 2 m dropped   0.299 0.319 NS 

# S. lautus within 6 m 0.456 0.230  0.728 0.056 . 
# other Senecio plants 
within 2 m 

dropped   
NA 

  

 

7.5 Discussion 

We tested a range of factors for their influence on parasitism of fly larvae. These factors 

ranged from fine-scale differences between different locations on the plant (e.g. stem vs 

flowerhead), through to properties of the plant (such as plant height and maturity) and 

finally neighbourhood effects of the density of other conspecifics and con-generic 

plants. None of the variables showed a significant effect. We found some weakly 

supported trends (0.05 < P < 0.1) for the influence of stem vs flowerhead, plant maturity 

and plant density when tested in single-factor models.  

In general, insect larvae that inhabit galls are thought to benefit from increased 

protection from parasitoid attack – especially if the gall is thick and the parasitoid’s 

ovipositor is relatively short (Ito and Hijii 2004). Although parasitism of S. fascigera 
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larvae recovered from stem galls was two-thirds that the rate of larvae in flowerheads, 

this difference was not statistically significant with our sample size, and, the variable for 

“stem-vs-gall” was eliminated from the minimum adequate model, suggesting it has only 

a small influence on parasitoid attraction. Hence, there is little evidence that stem galls 

provide significant protection in comparison to larval development in flowerheads, for 

Sphenella fascigera.  

Throughout this study only one fly larva was found per flowerhead of S. lautus, with the 

exception of a single instance of two larvae. Whether that is the result of flies only laying 

one egg per flowerhead or only one larvae surviving is unknown, although if it were the 

case of competitive exclusion we might expect to see more instances of two immature 

larvae per flowerhead. In the closely related S. sterquilinus, however, it is not 

uncommon to observe two S. fascigera larvae within one single flowerhead (S. Krejcek 

pers. obs.). Given that S. sterquilinus has larger flower heads, and its association with 

bird guano which would lead to a higher nutrient status, the distribution of only single 

larvae of S. fascigera in S. lautus flowerheads might be a necessity of resource-

limitation. Therefore a mechanism to escape parasitism by increasing clutch size 

(e.g.(Freese and Zwölfer 1996) is unlikely in this interaction.  

The use of stems might be a strategy to avoid intra-specific competition when fly 

densities are high. 

If plant properties were a crucial factor for parasitoid attraction, an influence of plant 

size and plant vigour would have been expected, supporting the plant vigour hypothesis 

(Price 1991). However, that was not the case as only plant maturity showed a positive 

trend for parasitism rates which is consistent with the findings of Souza-Filho et al. 

(2009), who showed with their study on fruit flies (Tephretidae and Lonchaeidae) that 

seasonality is important for some host-parasitoid interactions. We observed a 

succession of insect herbivores throughout the season, with insect herbivores such as S. 

fascigera occurring later in spring, peaking in summer after aphids and leaf miners have 

mostly disappeared. A positive relationship between numbers of seed head predators 

and plant maturity is expected as larvae develop within flower heads. 
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Finally, we tested for the effect of local plant density at different spatial scales around 

each focal plant (50 cm, 2 m and 6 m) and found a marginally significant trend indicating 

a negative relationship between conspecific plant density (at 50 cm and 6 m scales) and 

rates of wasp parasitism.  The resource dilution hypothesis (Otway et al. 2005) predicts 

that isolated patches are more heavily infested with insect herbivores and thus more 

likely to be searched by parasitoids, if these are generalists (Thomas 1989). Another 

explanation for the possible attraction of insect herbivores to isolated patches could to 

spread the risk from large vertebrate herbivores to host plants (Williams et al. 2001).  

Pteromalus sp. is an undescribed species (pers. comm. Early and Schnitzler 2012) and to 

our knowledge there are no previous records of other hosts. Nevertheless, there is the 

potential that it uses other insects on other plants which might influence distributions of 

wasps amongst S. fascigera larvae. Anecdotal evidence from a congeneric species (Duan 

et al. 1996) suggests a close relationship between Pteromalus spp. and their tephretid 

hosts. Despite taking into consideration plant spatial distribution, plant properties and 

host larvae location, none of the factors was provided a significant explanation of the 

variation in parasitism rates. It is possible that we did not investigate the most influential 

factor for wasp attraction, but some authors (Vinson 1976, Xu et al. 2010) have 

suggested that parasitoid host location can also follow a random distribution. In other 

words, it appears that the combination of environmental cues and foraging behaviour 

utilised by Pteromalus sp. have adapted it to exploit all available Sphenella fasigera 

hosts in S. lautus with almost equal probability, regardless of where the host is located 

on the plant, the size and quality of the plant or the density of host plants.   

Taking this research one step further, it would be interesting to compare rates of 

parasitism of Sphenella fascigera located on other Senecios, both native and introduced 

species. Sphenella fascigera has been recorded on S. sterquilinus, S. elegans, S. 

skirrhodon, S. glastifolius, S. vulgaris (Krejcek et al., unpublished data 2013). A recently 

adopted host plant shift by Sphenella fascigera to an introduced plant species might yet 

reveal a refuge of S. fascigera larvae from parasitism by Pteromalus sp. Understanding 

tri-trophic relationships within the context of novel food webs of native and introduced 
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species is an area of growing ecological importance as the indirect effects of introduced 

species may be mediated by altered parasitoid-herbivore interactions. 
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Marram grass (Ammophila arenaria) 

Marram grass is a sand binding grass native to Europe (Huiskes 1979). As a highly 

specialized dune grass it flourishes close to the sea as one of the major sand binders in 

its native range where it is limited in its growth by root damaging nematods (Putten et 

al. 2005). Marram growth is fast and it reproduces both sexually and via rhizomes. These 

features make it very effective in colonizing new areas (Huiskes 1979). Compared to the 

native pingao and spinifex it quickly grows in dense tufts to a height up to one metre 

(Willis 1965) which is higher than the natives. After its first record in Wellington in 1873 

(Wendelken 1974) marram was widely used to stabilize often human-induced and 

naturally occurring parabolic migratory dunes in New Zealand, and became widely 

distributed throughout the country (Hilton et al. 2006). Marram grass was chosen over 

the native sand binders such as spinifex and pingao because of its fast-growing nature. 

Compared to spinifex and pingao, marram grass dunes tend to be much steeper and 

higher (Esler 1970) where there is substantial sand supply and a high wind environment 

(Hart et al. 2012). 

 

Pingao (Ficinia spiralis, formerly known as Desmoschoenus spiralis)    

 

Figure A II.1: Pingao at Tapuarau (Photo by Stephen Hartley). 
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This endemic sedge grows less high compared marram grass, and has high cultural 

significance for Maori (used for traditional weaving). Pingao exhibits less vigorous 

growth compared to marram grass and spinifex. It is the only major sand binding species 

that can persist in the more southern places where spinifex is not occurring due to low 

temperatures. On sites such as Stewart Island it can occur in almost pure mono-species 

stands (Hilton et al. 2005).   

 

Initial differences of plants from different nurseries 

Initial height and leaf length differences between plants from different nurseries were 

singnificant. However, at the time of monitoring there was no significant difference 

between nurseries anymore.  

 

 
 

Figure A II.2: Initial spinifex height in cm and the length of the longest leaf in cm are split up between 

different nurseries. Kitahii nursery plants are from the local iwi nursery and the Naturally Native nursery 

plants are grown commercially. T-test for height: t = -17.9102, df = 16.927, p-value = 1.946e-12. T-test 

for longest leaf: t = -10.4604, df = 17.005, p-value = 7.948e-09. 

a 
a*** 

b*** 

b*** 

a*** 
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User defined function for R to generate relative graphs for Chapter 2 and 3:  

Kindly provided by Stephen Hartley (2012).  

#user-defined function (currently uses size for June 12)      
  
        
plot.rel.diff = function(data.df){        
 "data.df <- subset(data.df, size > 0)"       
 "Plot.means <- tapply(log(data.df$size), list(data.df$treatment, data.df$station, 
data.df$transect), mean, na.rm = TRUE)"       
 "Plot.Ns <- tapply(log(data.df$size), list(data.df$treatment, data.df$station, data.df$transect), 
length)"       
        
 #swap the commenting out to use Nbreadth       
 "#data.df <- subset(data.df, Nbreadth > 0)"       
 "#Plot.means <- tapply(log(data.df$Nbreadth), list(data.df$treatment, data.df$station, 
data.df$transect), mean, na.rm = TRUE)"       
 "#Plot.Ns <- tapply(log(data.df$Nbreadth), list(data.df$treatment, data.df$station, 
data.df$transect), length)"       
        
 "Plot.diffs.MrtB <- Plot.means[2,,] - Plot.means[1,,]   # Marram rel.to Bare"   
    
 "Plot.diffs.SrtB <- Plot.means[3,,] - Plot.means[1,,]   # Sprayed rel.to Bare"   
    
 "MrtB.mean <- rowMeans(Plot.diffs.MrtB, na.rm = TRUE)  "     
 #mean relative difference Marram rt Bare 
 "MrtB.sd <- c(sd(Plot.diffs.MrtB[1,], na.rm = TRUE), sd(Plot.diffs.MrtB[2,], na.rm = TRUE), 
sd(Plot.diffs.MrtB[3,], na.rm = TRUE))" "#sd of 5 plots at station 1, 2 and 3"   
   
 "MrtB.N <- c(table(is.finite(Plot.diffs.MrtB[1,]))[2], table(is.finite(Plot.diffs.MrtB[2,]))[2], 
table(is.finite(Plot.diffs.MrtB[3,]))[2])"       
 "MrtB.N <- apply(data.frame(MrtB.N, dim(Plot.diffs.MrtB)[2]), MARGIN = 1, min, na.rm = TRUE)" 
      
 MrtB.se <- MrtB.sd/sqrt(MrtB.N)       
 "SrtB.mean <- rowMeans(Plot.diffs.SrtB, na.rm = TRUE)  "     
 #mean relative difference Sprayed rt Bare 
 "SrtB.sd <- c(sd(Plot.diffs.SrtB[1,], na.rm = TRUE), sd(Plot.diffs.SrtB[2,], na.rm = TRUE), 
sd(Plot.diffs.SrtB[3,], na.rm = TRUE))" "#sd of 5 plots at station 1, 2 and 3"   
   
 "SrtB.N <- c(table(is.finite(Plot.diffs.SrtB[1,]))[2], table(is.finite(Plot.diffs.SrtB[2,]))[2], 
table(is.finite(Plot.diffs.SrtB[3,]))[2])"       
 "SrtB.N <- apply(data.frame(SrtB.N, dim(Plot.diffs.SrtB)[2]), MARGIN = 1, min, na.rm = TRUE)" 
      
 SrtB.se <- SrtB.sd/sqrt(SrtB.N)       
 "plot(x = c(1,2,3,5,6,7), y = c((MrtB.mean), SrtB.mean), xlab = ""Station"", ylab = ""Size relative to 
bare"", ylim = c(-0.2,0.3), pch = 21, las = 1, cex = 1.6, xaxt = ""n"")"     
  
 "arrows(x0 = c(1,2,3), y0 = MrtB.mean - MrtB.se, y1 = MrtB.mean + MrtB.se, code = 3, angle = 90, 
length = 0.2)    #add standard errors to plot"       
 "arrows(x0 = c(5,6,7), y0 = SrtB.mean - SrtB.se, y1 = SrtB.mean + SrtB.se, code = 3, angle = 90, 
length = 0.2) "       
 "abline(0,0, lty = 2)"       
 "axis(side = 1, at = c(1,2,3,5,6,7), labels=c(1,2,3, 1,2,3))"     
  
 "text(2,2, ""Marram"")"       
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 "text(6,2, ""Sprayed"")"       
 "return(list(Plot.means, MrtB.mean, MrtB.N, SrtB.mean, SrtB.N))"    
   
 }       
       

 

  

Figure A II.3: PCoA of conductivity, organic matter and sand movment at Whitiau (left graph) and 

Tapuarau (right graph). 
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Calystegia soldanella L. Sp. Pl. 1753, 159 (sand convolulus) 

Calystegia soldanella is a native, but not endemic perennial coastal herb with a white 

and pinkish flower and kidney shaped leaves. It has a creeping rhizome with spreading 

and branching stems (Webb et al. 1988).The plants flower usually between October and 

March. Due to its widespread distribution (compromises Southern and Northern 

temperate regions) it is known to be adapted to early succession marram stands in 

Northern Europe (Smith and Lockwood 2010). Physical dormancy is exhibited by C. 

soldanella’s seeds and the species is acknowledged as an important fore-dune species, 

which is able to trap sand to a certain extent (Ko et al. 2004).  

Sonchus oleraceus (Puha)  

Sonchus oleraceus naturalized in 1832 in New Zealand. Its homerange includes Europe, 

North Africa and Western Asia (NZPC Network 2013). The yellow flowering 

annual/biannual plant is widely distributed in New Zealand.  

Senecio elegans (purple groundsel),  

Senecio elegans L., Sp. Pl. 869 (1753), also commonly known as purple groundsel is an 

introduced South African plant, which is sometimes cultivated for its ornamental values 

with the purple or purplish pink (rarely pale or white) 12-17 or sometimes more ray 

florets and yellow discs (Popay et al. 2010). Leaves are usually hairy, becoming almost 

glaborous when older on the top and are deeply serrated (petiole < lamina, often leaves 

are toothed. Flower times have been stated in (Webb et al. 1988) from Sep-Nov. The 

leaves are deeply serrated. Plant size can vary tremendously from flowering plants with 

a height of 15 cm up to 1.30 m (personal observation). Depending on its location within 

the dune system stressed plants can exhibit red colouring and succulence of leaves. 

Seeds are predominantly anemochore (wind dispersed) distributed.  

Senecio elegans has been shown to outcompete native coastal plants (Weedbusters 

2013) and is currently managed by some of the local coast care groups.  
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Lagurus ovatus L (hares tail)  

Lagurus ovatus was introduced to New Zealand in 1873 from the mediterrean (Network 

2013). It has been introduced from its native ranges (i.e. Southern Europe, North Africa 

and Western Asia) to various temperate countries including Australia, the UK, parts of 

North and South America (Queensland Government 2011). The most distinctive feature 

of this small annual grass (up to around 60cm in height) are its whitish eggshaped 

flowers which often remain long after flowering. The leaves are tufted at the base of the 

plant with hairy leaf sheaths. Lagurus ovatus is regarded as an environmental weed in 

Australia where it frequently invades coastal habitats via seed. 

Orobanche minor (broomrape) exotic 

Orobanche minor is a non-photosynthetic parasitic plant which prefers Fabaceae and 

Asteraceae as hosts, albeit it can also parasitise Ranunculaceae and Poaceae. Its flowers 

can vary in colour from yellowish to purplish. This species is native to Southern Europe 

but has been widely spread and is now a very common parasite (Webb et al. 1988). 

Orobranche minor can be a problem where Fabaceae are used to improve pastures or 

prepare the soil for other crops (Ross et al. 2004).  

Conyza canadensis (L.) Cronquist (fleabean) exotic 

Conyza canadensis is a fully naturalized annual herb which is native to North and South 

America. Lifestock often avoid fleabean due to its bitter taste. According to the weed 

fact sheets in Australia, each of the plants is capable of producing up to 110 000 seeds 

and is difficult to control with herbicides as it is capable of becoming resistant to them 

(Widderick and Wu 2013). 

Dandelions  

Leontodon taraxacoides, Crepis capillaris, Hypochoeris radicata and Taraxacum 

officinales occur at both field sites. These ‘dandelions’ are all members of the asteracea-

plant family and are dispersed by wind (i.e. anemochore). They are all naturalized 

pasture weeds. Taraxacum officinale is managed only in a few circumstances (more 

when asthetics are concerned on turfs etc), which can be difficult as the dandelions 

considered here are able to survive in low nutrient conditions and are able to resprout 

from their tap roots (Harrington 2013) 
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Legumes (clovers and others) 

Lotus pedunculatus, Trifolium repens, Trifolium pratense and Trifolium arvense occur on 

both field sites. These introduduced Fabaceae are all capable of fixing nitrogen and thus 

change soil conditions. They were introduced for agricultural reasons to improve the 

soils. Lotus pedunculatus forms a persistent seedbank and large parts of its above 

ground parts break down in winter, giving rhizome fragments the chance to develop 

independently (Sheath 1975). Similarly, Trifolium repens is also capable of reproducing 

via seeds and vegetative (Chapman 1983). Large plants of Trifolium arvense, which was 

unintentionally introduced in the late 19th century, are capable of producing up to         

20 000 seeds (Palmer 972) and hence are considered pioneering plants which possibly 

get eventually replaced by grasses and swards.  

 

Table A III.1: Plant species used for the PcoA for Whitiau and Tapuarau. Only presence and absence data 

was used in the PcoA (yes=present, no=absent). 

 

Species  Whitiau Tapuarau 

Convolvulus calystegia yes yes 

Conyza canadensis yes yes 

Coprosma acerosa yes no 

Ficinia nodosa yes no 

Fabaceae spp. yes yes 

Dandelions yes yes 

Lachnagrostis billardierei yes yes 

Lagurus ovatus yes yes 

Orobranche minor yes no 

Oxalis spp. yes no 

Senecio elegans yes yes 

Sonchus oleraceus yes yes 

Pimelia arenaria no yes 

Trifolium pratense no yes 

 



APPENDIX III 

233 

Table A III.2: Complete species list of all plants recorded at Whitiau and Tapuarau. * = rare, 1 = station 1, 

2 = station 2, 3 = station 3. 

 

Family Species common name Station Status 

Asteraceae Conyza canadensis canadian fleabean 1*, 2, 3 exotic  

 
Crepis capillaris 

smooth 
hawksbeard 

1,2,3 exotic 

 Hypochoeris radicata catsear 1,2,3 exotic 

 
Leontodon taraxacoides hawkbit 1,2,3 exotic 

 Ozothamnus leptophyllus Tauhinu 2,3 native 

 
Senecio elegans purple groundsel 1,2,3 exotic 

 
Senecio glastifolius pink ragwort 1*, 3* exotic 

 
Sonchus olearaceus puha 1*, 2, 3 exotic 

 
Taraxacum officinale dandelion 1,2,3 exotic 

Atripliceae Atriplex prostrata orache 1,2,3 exotic 

Convolvulaceae Calestygia soldanella sand convolvulus 1*, 2, 3, native dune plant 

Cyperaceae Carex pumila sand sedge 3 native 

 
Ficinia nodosa knobby clubrush 2,3 native 

 
Ficinia spiralis Pingao 1,2,3 endemic 

Fabaceae Lotus pedunculatus 
Greater Bird's-foot 
Trefoil 

2,3 exotic 

 
Lupinus arboreus tree lupine 2,3 exotic 

 
Trifolium arvense hares foot clover 2,3 exotic 

 
Trifolium pratense red clover 2,3 exotic 

 
Trifolium repens White clover 2,3 exotic 

Orobanchaceae Orobranche minor broom rape 1*, 2, 3 exotic 

Oxilidaceae Oxalis sp. oxalis 2,3 exotic 

Poaceae Ammophila arenaria marram grass 1, 2, 3 
exotic, managed 
weed 

 
Holcus lanatus Yorkshire grass 3 exotic 

 
Lagurus ovatus  Hares tail 2,3 exotic 

 
Lachnagrostis billardierei sand wind grass 2,3 native 

 
Spinifex sericeus spinifex 1,2,3 native sandbinder 

Polygonaceae Muehlenbeckia complexa creeping wire vine 3 native 

Primulaceae Anagallis arvensis var. arvensis scarlet 3* exotic 

Rubiaceae Coprosma acerosa sand coprosma 1*, 2, 3 
declining due to 
marram grass 

 Solanaceae Solanum chenopodioides  nightshade 2*, 3* exotic 

Thymelaeaceae 
    

      Pimelia villosa      sand daphne           2*, 3*         endemic                    
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Table A IV.1a: Senecio spp. and their biostatus; origin; year of introduction or first record; geographic 

range within NZ, and habitat. Introduced species are marked with an asterisk and natives are 

emphasised with bold font. 

  

Senecio spp. biostatus origin year geographic range Habitat 

S. angulatus 
L.f.* 

exotic South 
Africa 

1940 NI, SI until Nelson Waste places, 
scrubland, coastal areas 

S. banksii 

Hook. f.  
endemic NZ NA east coast from Bay of 

Plenty to Castlepoint 
Usually on coastal 

cliffs, often limestone, 

less common on cliffs 

inland to 600m in 

Hawke's Bay 
S. 

bipinnatisectus 
*Belcher 

exotic Australia 1916 NI, SI Malborough Sounds 
and Lincoln 

Waste places, coastal 
sites, pasture, forest 
margins and clearings 

S. biserratus 

Belcher 
non-

endemic, 

wild 

NZ, 

Tasmania 

and S.E. 

Australia 

NA N.: local in N. and S. 

Auckland, and Wellington 

Province, S.: Otago, 

Southland, and collected 

once from S. Canterbury; 

St.; A.  

Coastal habitats 

including forest 

margins and waste 

places, rarely inland.  

S. diaschides 
D.G.Drury* 

exotic Eastern 
Australia 

1975 Northland to Auckland Mostly waste places 
and coastal sites, also 
swamps, pasture and 
cultivated ground 

S. elegans L. * exotic South 
Africa 

1935 Northland, Bay of Plenty, 
coastal Wellington, 
Hawkes's Bay, S: 
Blenheim, coastal 
Canterbury, Otago and 
Southland 

Sand dunes, sandy 
coastal sites, occasional 
in waste places inland 

S. esleri Webb* exotic NA NA NA NA 

S. glastifolius* exotic South 
Africa 

1969 Gisborne, Havelock, 
Mana, Wellington, SI: 
Motueka, Christchurch 

Waste places, hillsides, 
pasture, scrubland and 
riverbeds 

S. glomeratus 

Poiret 

non-

endemic, 

wild 

NZ, 

Australia, 

W. USA 

NA N, S: Troughout, St.; Ch.  waste places, 

especially roadsides 

and stonly sites, forest 

margins and clearings, 

coastal sands and cliffs, 

also in shrubland, 

grassland, and swamps 

from sea level to 

1000m 
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Table A IV.2b: Senecio spp. and their biostatus; origin; year of introduction or first record; geographic 

range within NZ, and habitat. Introduced species are marked with an asterisk and natives are 

emphasised with bold font. 

 

  

Senecio spp biostatus origin year geographic range Habitat 

S. hispidulus 

A.Rich 
non-

endemic, 

wild 

NZ, 

Australia 
NA N: Northland, vicinity of 

Auckland, Coromandel, 

Opotiki District, 

Wellington Province; S.: 

Nelson, Marlborough, N. 

Canterbury.  

Waste places, forest 

margins and 

clearings, coastal 

sites, riverbeds and 

damp areas.  

S. lautus G. Forst. 

Ex Willd. 
non-

endemic, 

wild 

NZ 

possibly 

Australia 

NA N: throughout, mainly 

coastal, occasional 

inland; S.: coastal 

Marlborough, Nelson, 

Westland (N. of 

Greymouth) and 

Canterbury S. to Raikaia 

R. Ch.  

Coastal cliffs, turf, 

sand and rocks 

S. minimus Poiret non-

endemic, 

wild 

NZ, 

Australia 

and W. 

USA 

NA N.; S.; St.L throughout; C. waste places, open 

forest, forest margins 

and clearings, 

occasionally in 

shrubland, swamps 

and coastal habitats.  
S. quadridentatus 

Labill 

non-

endemic, 

wild 

NZ, 

Australia, 

Indonesia 

NA N.; S.; throughout; 

especially common in E. 

South Id. 

waste places, 

riverbeds and other 

stony places, cliffs 

and rock outcrops, 

also occasional in 

shrubland and 

grassland, sea level 

to 1000m 

S. radiolatus F. 

Muell. Supsp. 

Antipodus (Kirk) 

C.J. Webb 

endemic NZ NA Ch. (subspecies 

radiolatus), Ant (subsp. 

Antipdus (Kirk) C. Webb) 

coastal habitats, 

open forest grassland 

S. rufiglandulosus 

Colenso 

endemic NZ NA N.; S.: 38 °to 43°.  Lowland to subalpine 

stream sides, forest 

margins, shrubland, 

banks, cliffs and 

roadsides. 

S. scaberulus 

(Hook. f.)  D. 

Drury  

endemic NZ NA N: Northland S. to 

Hauraki Gulf including 

offshore islands, Puru R. 

and Raglan (S. Auckland); 

S. : collected from 

Piction, Akaroa, and 

Dunedin, but not seen 

recently; Ch.  

Coastal habitats, 

scrubland, forest 

margins and 

clearings 
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Table A IV.3c: Senecio spp. and their biostatus; origin; year of introduction or first record; geographic 

range within NZ, and habitat. Introduced species are marked with an asterisk and natives are 

emphasised with bold font. 

 

 

 

Senecio spp. biostatus origin year geographic range Habitat 

S. 

skirrhodon 

DC. 

exotic Madagaskar, 

Mozambique 

to South Africa 

1920 Whangarei, Auckland, 

Tauranga, Waikato, 

Napier, Palmerston 

North, coastal 

Wellington, S: 

Westport, Christchurch, 

Dunedin 

Coastal sites, waste 

places, inland mainly as 

a weed of railway lines, 

yards and ballast 

S. 

sterquilinus 

Ornd.  

endemic NZ NA N.; S.: known only from 

the type locality 

(Hawke's Bay), 

Brothers Is and 

Stephens Id (Cook 

Strait), and Punakaiki 

(near Greymouth).  

Seabird nesting 

grounds, coastal 

habitats 

S. sylvaticus 

L. *  

exotic Europe 1878 throughout NI and SI waste plaes, forest 
margins, pasture and 
stony sites from coastal 
areas to 1000m 

S. vulgaris* exotic Europe, N-
Africa, Asia 

1867 throughout NI and SI 
except Westland 

waste places, cultivated 
land, gardens, rierbeds 
and stony sites, from 
coastal areas to 700m 

S. 

wairauensis 

Belcher 

endemic NZ NA N.: S.: throughout, St.  stony or wet sites in 

open forest, forest 

margins and clearings, 

shrubland, grassland, or 

disturbed areas, mostly 

from 600-1500m but 

reaching sea level in 

some areas 
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STUDY SPECIES  

Senecio lautus (Wild., Sp. Pl. 3: 1981 (1803), also commonly known as shore groundsel is 

an yellow flowering annual or shortlived perennial herb with glaborous or sparsely hairy 

leaves which can be deeply divided and toothed, the leaves are heteroblastic (Burns 

2005) and plants vary tremendously in size. Leaf shape is an adaptation to wind and 

abiotic conditions- Leaves can exhibit succulence when exposed to salt and wind and are 

generally deeper serrated in more exposed areas. Ray florets vary between 0 (rare), 7-

13. Plants can be found flowering year round with a peak in summer. Typical habitats 

are coastal areas, especially shingle beaches and rocky areas (Webb et al. 1988). There 

has been a controversy if plants in Australia are part of the same species or not, 

however, (Ornduff 1964) stated they were sufficiently different and are therefore no 

longer part of the species complex of S. lautus. However, the debate seems to be not 

fully ended. Despite the recognition of several subspecies within the species complex of 

S. lautus, for the purposes of this study we only distinguished between S. lautus and S. 

sterquilinus as they thrive on different abiotic conditions (with S. sterquilinus dependent 

on bird guano for healthy plants). Since S. lautus is known to be especially variable 

within the Wellington region, I considered plants with up to 13 rayflorets as S. lautus, 

recorded plants with typical S. sterquilinus leaf morphology but less than 18 rayflorets as 

potential  S.lautus x S. sterquilinus hybrids, as they are known to hybridize sympatrically 

(Webb et al. 1988) 

 

Senecio sterquilinus, Ornd., Trans. Roy. Roy. Soc. N. Z. 88: 68 (1960) also commonly 

known as guano groundsel (Webb et al. 1988) is a range-restricted relict endemic yellow 

flowering senecio-species in New Zealand. It is strongly associated with nesting birds and 

therefore vulnerable to declines in shore nesting bird colonies. Compared to S. lautus, S. 

sterquilinus tends to grow to a bigger size, has more ray florets, and more numerous 

bracts. Only plants with more than 18 rayflorets were considered to be S. sterquilinus 
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(after discussion with Wellington DOC botanist, John Sawyer (pers. comm.). To my 

knowledge, no previous recordings of insect herbivores on S. sterquilinus have been 

published. I conducted my S. sterquilinus surveys on Matiu/Somes Island, but due to the 

anemorechore distribution specimens of S. sterquilinus have been recorded in Petone 

and Evans Bay (NZPC Network 2013) and around Breaker Bay (Dorset Point) and 

occasionally on the Southcoast (personal observations).  

 

Introduced Senecio spp. 

Senecio elegans L., Sp. Pl. 869 (1753), also commonly known as purple groundsel is an 

introduced South African plant, which is sometimes cultivated for its ornamental values 

with the purple or purplish pink (rarely pale or white) 12-17 or sometimes more 

rayflorets and yellow discs (Webb et al. 1988). Leaves are usually hairy, becoming almost 

glaborous when older on the top and are deeply serrated (petiole < lamina, often leaves 

are toothed. Flower times have been stated in NZ flora from Sep-Nov (Webb et al. 1988), 

but within the Wellington region we have observed S. elegans flowering year round. The 

leaves are deeply serrated (Popay et al. 2010). Similar to S. lautus plant size can vary 

tremendously from flowering plants with a height of 15 cm or up to 1.30 m (personal 

observation).  

Senecio elegans has been found to outcompete native coastal plants (Weedbusters 

2013) and is currently managed by some the coast care groups (pers. comm). It is has an 

additional alkaloid that is absent in S. lautus and S. skirrhodon (Wilcox 2012). When S. 

elegans leaves are crushed they smell distinctively different compared to S. lautus and S. 

skirrhodon (personal observation).  

 

Senecio skirrhodon DC., Prodr. 6: 401 (1838), also commonly known as gravel groundsel 

is an annual or short-lived perennial plant (sometimes becoming woody at the base) 

introduced to New Zealand (native range is Madagaskar to Mozambique to South Africa) 

around 1920. S. skirrhodon has between 11-17 ray florets which are bright yellow; discs 

are golden yellow (Webb et al. 1988, Popay et al. 2010). Compared to S. lautus the 

colour is warmer (i.e. more towards orange than the slightly greenish ray florets of some 

S. lautus varieties). The leaves are usually less divided and toothed. Similar to other 
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senecios S. skirrhodon is possibly poisonous due to its alkaloid concentrations (Wilcox 

2012). This species grows at coastal sites, but can also flourish at inland sites. It is often 

found at railway tracks, river gravel banks and urban wasteland. On beaches it is often 

found at beaches with frequent recreational visitors (personal observation).  

 

Other introduced Senecio spp. occasionally searched for insect herbivores  

Senecio glastifolius, also commonly known as ‘holly leaved senecio’ is an introduced 

plant that can reach up to 2 m in height and develop a woody base. The flowers are pink 

or mauve with yellow discs (Webb et al. 1988, Popay et al. 2010), flowering time is 

between September-November. It was first introduced to Wellington and has now 

spread across the lower North Island with potential to expand its range significantly if no 

management actions are taken (pers.comm Beautrais, 2012). Usually S. glastiolius grows 

further back compared to the other focal plants in coastal areas and was thus less 

frequently searched for insect herbivores compared to the other plants in our study.  

Senecio vulgaris also commonly known as ‘groundsel’ is a widespread weed that is 

native to Europe, Asia and North Africa. It has deeply serrated leaves and no ray florets. 

Similar to ragwort it is poisonous to stock. Von Borstel et al. (1989) documented the 

potential of S. vulgaris for hybridisation with other Senecio spp. It only occasionally 

occurs in our study as it tends to colonize waste places more than coastal sites (personal 

observation).  

 

INSECT HERBIVORES 

Sphenella fascigera (formerly known as Tephritis fascigera, name revised by (Hancock 

and Drew 2003): An endemic tephretid (i.e. fruit fly family) seed head predator fly that 

either has larvae developing in seed heads of Senecio spp. or forms galls in the stems of 

Senecio (pers. obvservation). In captivity they can survive several months as adult flies 

(personal observation). Sphenella fascigera has been observed on S. bipinnatisectus 

Belcher; S. diaschides D.G.Drury; S. esleri Webb; S. glomeratus Poiret; S. hispidulus 

A.Rich; S. lautus G. Forst. Ex Willd.; S. minimus Poiret S. skirrhodon DC.; S. vulgaris 

(Martin 2013)and on S. elegans, S.sterquilinus (Orndorff). Tephritid flys are known for 
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their signalling with their pigmented wings during courtship. To our knowledge no 

parasitoid wasps have been previously recorded from Sphenella fascigera (but see 

additional Chapter 7 in the appendix).  

 

Patagonoides farinaria (blue stem borer) Patagoniodes farinaria (Turner, 1904), 

Pyralidae, Lepidoptera (moths & butterflies) is an endemic species with caterpillars 

feeding on shoots of native and adventive Senecio species. Previously it has been 

recorded on: S. bipinnatisectus Belcher, S. esleri Webb, S. hispidulus A.Rich, S. lautus G. 

Forst. Ex Willd, S. minimus Poiret, S. skirrhodon DC. (Martin 2013) and on S. sterquilinus, 

S. elegans (personal observations).  

 

Nyctemeria annulata (magpie moth) is an endemic diurnal moth (Lepidoptera, 

superfamily: Noctuoidea, family: Arctiidae) known to feed on native and introduced 

senecios. Yellowish eggs are laid in clusters of about 20 eggs on the underside of Senecio 

spp. leaves. The moth larvae (also commonly known as ‘woolly bears’) are covered in 

black hair. Caterpillars can move actively to reach neighbouring plants if the original host 

plant is no longer providing enough food. The endemic N. annulata is known to hybridise 

with the Australian introduced species N. amica. Hybrid moths have longer hairs at the 

head region and are therefore easily distinguished from N. annulata. Within our study 

we only encountered pure N. annulata. The magpie moth has been previously recorded 

on: S. esleri Webb, S. elegans (personal observation), S. glastifolius (pers. obs.), S. 

hispidulus A. Rich, S. lautus G. Forst. Ex Willd, S. minimus Poiret, S. radiolatus F. Muell. 

Supsp. Antipodus (Kirk) C.J. Webb, S. rufiglandulosus Colenso, S. skirrhodon DC., S. 

sterquilinus (personal observation), S. sylvaticus L., and S. vulgaris 

 

Chromatomyia syngenesiae Hardy, 1849, order: Diptera, superfamily: Opomyzoidea, 

family: Agromyzidae (Lindquist et al. 1984).The larvae of this introduced fly mine leaves 

in Asteraceae and other plants. Chromatomya syngenesiae has been recorded (Martin, 

2013) on S. hispidulus A. Rich, S. bipinnatisectus Belcher, S. esleri Webb, S. elegans 

(personal observation), S. glomeratus Poiret, S. lautus G. Forst. Ex Willd, S. minimus 
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Poiret, S. quadridentatus Labill, S. radiolatus F. Muell. Supsp. Antipodus (Kirk) C.J. Webb, 

S. rufiglandulosus Colenso, S. skirrhodon DC, S. sterquilinus (Orndorff) (personal 

observation), S. vulgaris and a number of plants that occur in the same coastal 

communities as our focal  Senecio spp. (i.e.: Crepis sp.; Cirsium vulgare, Plantago sp., 

Sonchus asper; Taraxacum officinale, Trifolium repens).  
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Figure A V.1: Correlation between predictors of the LME: size (plant size), fine scale SL, fine scale SE, 

coarse scale SE and coarse scale SL are shown as correlation graphs. SL = Senecio lautus, SE = Senecio 

elegans.  

 

 

Table A V.1: Correlation coefficients of predictors used in the LME for Sphenella fascigera in stems and 

flower heads.. 

 

Correlation table coarse.scale.SL coarse.scale.SE fine.scale.SE fine.scale.SL 
plant 

size 

coarse.scale.SL 1 NA -0.1425515 0.4043674 -0.32174 

coarse.scale.SE NA 1 NA NA NA 

fine.scale.SE -0.1425515 NA 1 -0.1223418 0.119477 

fine.scale.SL 0.4043674 NA -0.1223418 1 -0.24682 

size -0.3217449 NA 0.1194766 -0.2468187 1 
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Figure A V.2: Senecio elegans: a) typical plant, b) leaves = lobbed like S. lautus (hybrid?), c = flower in 

typical pink and in light purple, d= unusual leaf, resembles more S. lautus than S. elegans, but flower 

(edge of photo) is purple, albeit a bit smaller than the average S. elegans flower, e= small flower of 

typical colouring and large flower in pale rose, almost white.  

 

  

a) c) 

d) 

e) 

b) 
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Figure A V.3: Senecio lautus: a) development of heteroblastic leaves, b) deeply lobbed leaves (origin 

Petone), c) rayless form, d) dissected flower head. 

  

b) a) c) 

d) 

e) 
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Figure A V.4: Senecio skirrhodon: a) unlobbed leaves, b) leaves = heteroblastic/lobbed, c = typical 

flower, d = dissected flower head 

  

b) a) c) 

d) 

e) 
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Figure A V.5: Senecio sterquilinus: a) S. sterquilinus on Matiu/Somes Island, b) deeply lobbed leaves 

(origin Petone), c) hybrid between S. sterquilinus and S. lautus (less than 20 rayflorets), d) Mature S. 

sterquilinus, finished flowering. 

  

a) b) 

c) 

d) 
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Figure A V.6: Insects: a) Melanagromyza senecionella, b) Cecimidoyiid larvae, c) Pteromalus sp., d) 

Nyctemera annulata caterpillar, e) Mating Sphenella fascigera, f) leafminer trace (Chromatomya 

syngenesiae) 
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