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Abstract: This paper examines the literature on research into the effects of burial by deposition
of blown sand, volcanic deposits (tephra, lavas and lahars) or fluvial sediment on vegetation and
the subsequent capacity of the vegetation for survival and regeneration. Research on this topic
involves the understanding and skills of the biogeographer, the ecologist and the geomorpholo-
gist and represents a potentially very interesting area for integration between these areas of
physical geography.

Burial is closely linked to concepts of plant succession and pedogenesis. A general model of
burial stress is presented that shows how types of stress are linked to the burial environment and
the characteristics of the burial event, in particular the magnitude and frequency. The
importance of elasticity of response of species to burial is vital, as demonstrated by the evolution
of certain species, such as those of the genus Ammophila in sand dunes that appear to respond
positively to the burial process.

Research into burial by dust deposition, by volcanic tephra and lavas, by sand in coastal and
lake dune environments, in desert environments and by alluvium and ‘run-on’ following hydro-
logical events are reviewed in turn. The significance of burial to palaeoenvironmental and
palaeoecological research is then demonstrated by reference to machair sand dune stratification
in the Outer Hebrides and vegetation damage and burial following proximal volcanic impacts
in New Zealand. Finally, methods of experimental research into burial in both the field and in
the greenhouse are summarized and the conclusion stresses the need for more holistic
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456 Studies of vegetation burial

approaches to the study of burial that link the biogeographical aspects of plant ecophysiology
and both individual species and community ecology to the various geomorphic processes of
deposition and sedimentation.

Key words: deposition, ecophysiology, geomorphology, palaeoecology, pedogenesis, plant
ecology, plant succession, sand dunes, volcanic tephra.

I Introduction

Burial of vegetation is a recurring theme in physical geography. Primary mechanisms
are both wind (aeolian deposition) and water (fluvial deposition). Perhaps the most
widespread and obvious example is the frequent burial of vegetation within sand dune
ecosystems (Ranwell, 1972; Packham and Willis, 1997) but considerable attention has
also been paid to the effects of vegetation burial by volcanic tephra or lava after major
eruptions (Oner and Oflas, 1977; Hendrix, 1981; Timmins, 1983; Tsuyuzaki, 1989, 1991;
Nakashizuka et al., 1993 and Mazzoleni and Ricciardi, 1993). In particular, the Mount St
Helens eruption in Washington, USA, in May 1980 stimulated research in this area (del
Moral and Wood, 1988, 1993; del Moral and Bliss, 1993; del Moral et al., 1995; Zobel and
Antos, 1997 and Titus and del Moral, 1998), although most of this research relates to the
development of primary succession on new surfaces, rather than to the effects of burial. 

Burial is also a common feature of plant species in arid and semi-arid dune environ-
ments (Viles, 1990; Bullard, 1997), but the amount of research in this specific area is
minimal. Burial of vegetation is also a frequent occurrence after hydrological and geo-
morphological events of varying magnitude and frequency, such as land- and
rockslides, earth movements and deposition of alluvial sediments following fluvial
storm events (Antos and Zobel, 1985a, 1987). During flash floods, ephemeral streams in
arid and semi-arid dryland areas commonly deposit and rework sediments on top of
existing plant cover. Volcanic deposits are also often reworked fluvially, giving rise to
the phenomena known as ‘lahars’. Finally, plants may also be subject to stress as a result
of burial by logs, litter and animal excavations (Antos and Zobel, 1985a). General
differences between environments where plants are known to be subject to burial are
summarized in Table 1, although clearly responses vary, depending on the magnitude

Table 1 A comparison of characteristics of various depositional environments
important to plant survival of burial

Characteristic Tephra Sand dunes Dust Alluvium

Chemical toxicity Sometimes Unlikely Unlikely Unlikely
Nutrient deficiency Likely Likely Unlikely Unlikely
Frequency Low Highest Low Occasional
Predictability Low High Low Moderate
Relative potential for plant adaptation Low High Low Moderate
Estimated abundance of refugia within deposit Low High High High
Correlation with season and weather None Moderate High High

Source: from Antos and Zobel, 1987; reproduced with the kind permission of the authors and the
University of California Press
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of a given event, antecedent conditions and the particular species involved.
Examination of the literature shows very clearly that most research on vegetation and

geomorphology has been concerned with vegetation cover and its protecting role in
controlling or preventing erosion (e.g., Gregory and Gurnell, 1988; Thornes, 1990;
Thomas and Tsoar, 1990; Rogers and Schumm, 1991; Wolfe and Nickling, 1993;
Lancaster and Baas, 1998). In contrast, and taking a more biogeographical standpoint,
the ecological and ecophysiological effects of burial on established plant cover have not
been widely studied, despite the frequency of occurrence of such events. Plant response
to burial involves consideration of factors such as the origins, nature and depth of
deposit, frequency of redeposition, phenological stage and the presence or absence of
propagules within the deposited material. Antecedent conditions are also important,
not least the extent to which the plant community was under stress previously, perhaps
in relation to earlier burial events, existing environmental conditions, its biogeographi-
cal position possibly near the limits of its range and the intensity of biotic pressures. 

Plants subjected to frequent burial have evolved various strategies to cope. If burial
is not too deep, regrowth through the deposited material is frequently possible and
possession of geophyte characteristics (Raunkiaer, 1934) may prove valuable. Perennial
species have the advantage of already being established and certain species, notably
varieties of Ammophila (marram grass) on coastal dunes, have evolved tolerance and are
able to grow through and keep pace with gradual deposition. When burial becomes too
deep, annual or therophyte strategies assume importance and the presence/absence of
an ‘innoculum’ of seeds and other propagules or vegetative fragments in the deposited
material will prove vital in the initial stages of primary succession on the new surface
(Owen et al., 2001). Burial of large growth forms (trees and shrubs) largely occurs only
after volcanic eruptions.

II Burial and plant succession

Burial is closely linked to concepts of plant succession (Burrows, 1990; McCook, 1994;
Begon et al., 1996). A burial event is retrogressive in successional terms but subsequent
development depends on whether existing plants can initiate secondary succession by
growing through the deposit or whether the existing vegetation cover is completely
killed, in which case primary succession will be initiated. Often both types of succession
will occur locally within an area following burial, as demonstrated by the work on
Mount St Helens by del Moral and Bliss (1993), del Moral et al. (1995), Zobel and Antos
(1997), del Moral and Wood (1988, 1993) and Titus and del Moral (1998). This results in
a mosaic of plant community types of varying ages and successional stages.

Plant succession and pedogenesis are also closely linked. Regrowth of species after
burial has important implications for soil development. The physical and chemical
nature of the deposited material may be very different to the original solid geology or
sediments, thus changing soil physical and chemical properties. Once re-established,
species contribute organic matter to the surface, which assists in re-stabilization and the
conservation of moisture. This process is important in palaeoecology and the frequent
occurrence of palaeosols, corresponding to former soil surfaces within sequences of
dune deposits and tephras, provides valuable evidence of periods of former stability
and disturbance (see Section IX).

M. Kent et al. 457
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458 Studies of vegetation burial

III Burial as a major plant stress – a general model

Burial is a major stress event for plants and the response of a plant to stress is an
important aid in appreciating its geographical distribution and its performance along
an environmental gradient (Grime, 1979). Plants may be buried by several different
processes and a number of sources of burial stress have been recognized. Burial
magnitude and frequency (Wolman and Miller, 1960), and thus the nature of the stress,
vary in relation to the origin and source of the deposit. Burial in coastal or arid dune
environments is characterized by relatively frequent occurrences of comparatively low
magnitude, although there may be occasional extreme exceptions. In contrast, burial by
volcanic tephra, by alluvial deposits following floods and by dust following drought or
dust storms, are generally rare and extreme events, often of high magnitude. The
ongoing stress of the sand dune environment thus requires a quite different plant
response to the adaptations suitable for the occasional extreme volcanic or dust storm
event (Table 1).

Antos and Zobel (1987) present a brief review of literature relating to the burial of
vegetation by tephra (volcanic aerial ejecta), dust, alluvium and dune sand, and
propose a theoretical model of how plants survive these burial processes (Figure 1).
They postulate that, following burial, a plant is either totally buried by the deposit
(Figure 1, path A), or is characterized by the presence of some emergent shoots (Figure
1, path B). The shoots of deciduous herbaceous species will die back with time, so that
the plant is once again buried (Figure 1, path B). If, however, the emergent shoots are
those of a perennial species (Figure 1, path C), the plant already has a distinct advantage
in tolerating the burial process. At this point, if the root system can still function in the
soil, the buried plant will survive (Figure 1, path D). If the buried root system cannot
function, however, survival may still be possible through the development of new root
material (Figure 1, path E).

If an individual is totally buried, bud break must occur before aerial shoots can
emerge from the deposit (Figure 1, path F). Following bud break, emerging shoots of
woody or evergreen species need only retain their root system in the old soil or form a
new system in the deposit in order to survive burial (Figure 1, path G). However, if the
emergent shoot is deciduous, survival is only possible if the root system and
perennating structures remain in the old soil and shoots penetrate the deposit annually
(Figure 1, path H). Alternatively, the plant must move its underground structures, par-
ticularly roots and perennating organs, into the deposit (Figure 1, path I).

The effects of deposition on the larger growth forms of trees and shrubs is very
different. Such species are less common in the coastal and arid dune environments and
most studies of tree burial relate to tephra and ash deposition from volcanic eruptions
(Vucetich and Pullar, 1963; Thorarinsson, 1979, 1981; Whittaker et al., 1992; and
Burnham, 1994). Effects of volcanic ash on trees and shrubs is described in Section V 2.

IV Early work on dust deposition in the Great Plains

Weaver and Albertson (1936), Robertson (1939) and Mueller (1941) were among the first
to discuss burial and the effects of dust deposition following drought on the prairie
vegetation of the American Great Plains during the mid-1930s. A layer of dust 1.2–3.8
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cm in depth was sufficient to kill the majority of short prairie grasses. However, prairie
weeds, including Agropyron smithii and Bouteloua gracilis, thrived on areas of recently
deposited dust through the development of long vertical rhizomes and the formation of
new crowns on the surface of the deposit (Weaver and Albertson, 1936; Robertson,
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Figure 1 Responses to burial necessary for plant survival
Source: redrawn from Antos and Zobel 1987; reproduced with the kind
permission of the authors and the University of California Press
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460 Studies of vegetation burial

1939). Mueller (1941) confirmed the critical role played by rhizomatous growth after
burial and illustrated that the growth rate of a rhizome and its ability to grow vertically
through a deposit is of great importance to a grass following burial.

V Burial by volcanic deposits (tephra and lavas)

1 Burial effects on low-growing vegetation

The effects of burial by volcanic tephra have been the subject of a number of papers, for
example, Eggler (1948, 1959) and Griggs (1918, 1919). Mack (1981), Antos and Zobel
(1985b, 1987) and Zobel and Antos (1997) focused their investigations on the botanical
consequences of tephra deposition following the 18 May 1980 eruption of Mount St
Helens, Washington State, USA. The results of their studies indicate that although, as
illustrated in Figure 1, plants possess a number of solutions to the problem of burial,
one of the most critical factors in an individual’s survival and successful emergence is
its ability to perform some degree of morphological transformation. Antos and Zobel
(1985a) illustrated that graminaceous species buried by volcanic deposits were charac-
terized by the development of a new crown from stems penetrating the tephra. Shrubs
produced adventitious roots on the parts of their stems buried by tephra. Other
individuals survived deposition through a transformation from short to long rhizome
internodes, a re-orientation of rhizomes and/or the production of unusual vertical
shoots. In a subsequent investigation, Antos and Zobel (1985b) recorded the upward
movement of underground plant parts into Mount St Helens tephra deposits. Of the
eight species studied, seven responded to burial by moving their perennating organs
into the deposit. Species with extensive rhizomatous growth positioned their rhizomes
vertically in the tephra, and produced aerial shoots from depths as great as the tephra
base. Clearly, although a plant’s phenological stage may be an important factor
affecting the impact of tephra deposits (Antos and Zobel, 1987), those species with the
greatest degree of morphological plasticity will be the most successful in burial
situations (Mack, 1981). Local environmental variation has also been shown to be par-
ticularly important in determining patterns and depth of tephra deposition and
subsequent variability in successful regrowth (Mack, 1981; Zobel and Antos, 1997).

2 Burial effects on trees and shrubs

Ash accumulation has varying effects on vegetation and damage from unpolluted ash
usually depends on the thickness of the ash layer (Blong, 1996; Newnham et al., 1999a).
Burnham (1994) described the effects on vegetation following the eruptions of Mount St
Helens (1980) and El Chichon (1982), when vegetation was affected over 20 km and 15
km radii, respectively. The most surprising observations were that proximal cocoa tree
plantations, up to 12 km from the crater, withstood the initial violent eruptions but
areas with less dense forest canopy were subsequently damaged by wet ash accumula-
tion on leaves. Burnham reports that the leaves of the cocoa trees are coriaceous
(leathery) and are therefore more resistant to ash loading and pollutants. Leaves of
other trees appeared to have been snapped off and torn by the burden of ash, probably
exacerbated by the additional weight of water from rainfall following the eruption.
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Thus, chances of survival of ash-laden vegetation appear to be greatly reduced if
rainfall follows or occurs along with ash deposition. Rainfall also exacerbates chemical
impacts, for example by converting the sulphates, fluorides, chlorides, that are common
constituents of tephras, to their respective acidic forms and this ‘acid rain’ may further
increase acidity in the deposits themselves.

Whittaker et al. (1992) assessed the ecological effects of ash fall on the islands of
Sertung and Panjang, situated 3–5 km from Krakatau volcano. Examination of sediment
profiles on the islands revealed thick ash layers and buried soils, with evidence for con-
siderable vegetation damage by ash accumulation during ash-fall events in the 1930s
and 1950s. They also reported light ash-fall events that had localized effects, resulting
in short-term loss of tree leaf cover, owing to chemical effects, rather than to the direct
physical impacts of heavy ash fall.

Working on White Island, a near-continuously active volcano in the Bay of Plenty,
North Island, New Zealand, Clarkson and Clarkson (1994) emphasized the zonation
and variability of distribution of damage to trees and other vegetation. Toxic fumes,
acid rain and wet ash were listed as prime causes of plant death away from the
immediate vicinity but immediately adjacent to the source, blasting, burning and burial
were far more significant. Where the deposition layers are shallow, trees and shrubs
may survive. Turner (1928) and Wilmshurst and McGlone (1996) report that many
species that were stripped of leaves and small branches by the 1886 Tarawera eruption
resprouted prolifically in the years following the eruption. Morphological and eco-
physiological differences between species were particularly important in this respect, as
noted by Mack (1981) following the Mount St Helens event.

Covering of trees, shrubs and vegetation by lava flow represents an extreme form of
the burial process, whereby the excessive heat and considerable thickness of the deposit
make it virtually impossible for any vegetation to survive. However, because lava flows
typically follow valley courses and other depressions in the landscape, they often result
in a mosaic of burial with some areas that survive direct contact with lava providing
propagules that can rapidly colonize the solidified lava surface. Often these ‘refugia’
contain species that are specially adapted to growth on fresh rock surfaces, good
example being species of ‘ironwood’ (Metrosideros [Myrtaceae]) in volcanic regions of
the Pacific, such as Hawaii and New Zealand (Clarkson et al., 1989; Clarkson, 1990,
1998; Newnham and Lowe, 1991).

An exception to this mosaic landscape resulting from lava burial may occur when
fires, ignited by the flowing lava, spread beyond the lava body to cause much more
widespread destruction of vegetation. In such cases, the vegetation response will be a
combination of primary succession on the freshly solidified lava surfaces and
secondary succession of the burnt areas (Clarkson et al., 1989; Clarkson, 1990, 1998).

Pyroclastic flows are another volcanic process resulting in an extreme form of
burial marked by excessive heat. A lack of published research into this phenomenon
probably reflects the near total incapacity of plants to survive or respond in any way
other than through primary sucession. Some examples of complete burial by late
Holocene pyroclastic flows in New Zealand and the subsequent plant communities
developed have been described from pollen and plant macrofossil records (Clarkson et
al., 1988; Lees and Neall, 1993).
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VI Burial in coastal and lake dune environments

Burial by sand is a frequent environmental stress in the coastal and lake dune
environment and a number of authors (for example, Oosting and Billings, 1942;
Salisbury, 1952; Ranwell, 1958; Hewett, 1970; van der Valk, 1974; Moreno-Casasola,
1986; Houle, 1996) have recognized sand movement and the related burial stress as the
most important environmental factor controlling plant distribution in coastal dunes.

1 Rates and depths of burial

Maun (1994: 59) has stated that the risk of burial by sand in the dune environment is
high, owing to the ‘spatial and temporal variation in the substrate’. Estimates of rates
of sand deposition vary widely between dune systems and range from 8.7 cm yr–1 at the
Lake Huron sand dunes (Maun, 1985) to 90 cm yr–1 on an active dune site at
Newborough Warren, UK (Ranwell, 1958). Although the landward dunes are
comprised of relatively easily moved fine-grained sand (Chapman, 1964), the processes
of stabilization and fixation lead to an overall decrease in sand movement with the
progression of the dune system landwards from the sea. Strandline and foredune
species are, therefore, the most likely subjects of burial. During storms and high winds,
however, rates of sand accretion may be significantly increased. For example, Seliskar
(1990) recorded the deposition of a total of 28 cm of sand as a result of a single storm on
the coast of the USA. Such violent climatic episodes are frequently important in
extending the deposition of sand further back along the dune profile, even as far as the
dune grassland.

2 Geomorphic processes of sand deposition

The actual processes of sand deposition have been extensively studied by geomorphol-
ogists in both coastal and desert dunes. After the pioneering work of Bagnold (1941),
more recent research is summarized in Pethick (1984), May (1985), Sarre (1987),
Anderson (1989), Pye and Tsoar (1990), Cooke et al. (1993), Sherman and Bauer (1993),
Thomas (1997), Livingstone (1999) and Goudie et al. (1999). Most of these have studied
the physics and physical properties of sand movement in the field and within wind
tunnels assuming the absence of any vegetation cover. Nevertheless, some work has
been published on the role of vegetation cover in modifying processes of dune
formation and stability (Ash and Wasson, 1983; Tsoar and Møller, 1986; Wasson and
Nanninga, 1986; Lancaster, 1994; Wiggs et al., 1995; Musick, and Trujillo, 1996; Lancaster
and Baas, 1998). However, most of these relate to desert dunes and, again, stress the
protective role of vegetation in preventing or slowing processes of sand movement and
deposition, rather than examining the effects of deposition on the plants themselves.

3 The effects of burial by sand on the strandline flora

Rates of sand accretion at the strandline are greatly influenced by the high mobility of
the substrate (Lee and Ignaciuk, 1985) and may have important consequences with
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regard to the establishment of annual species, as burial of seed below a certain critical
depth may result in germination failure or failure of the seedling to emerge (Maun and
Lapierre, 1986; Baskin and Baskin, 1989; Hesp, 1991; Maun, 1994; Houle, 1996;
Greipsson and Davy, 1996). Lee and Ignaciuk (1985) studied the effect of burial by sand
on the germination of three annual strandline species, namely Atriplex laciniata, Cakile
maritima and Salsola kali, whilst Maun and Lapierre (1986) examined the effects of
artificial seed burial on the germination of Elymus canadensis, Ammophila breviligulata,
Cakile edentula and Corispermum hyssopifolium. The results of both investigations
suggested that the total germination of strandline species decreases with increasing
depth of seed burial (Lee and Ignaciuk, 1985; Maun and Lapierre, 1986). Studies
conducted by Maun and Lapierre (1986) and Greipsson and Davy (1996) found that the
rate of emergence and total emergence of seedlings of strandline species tended to
decrease with increased sowing depth. Other investigations (e.g., Johnson, 1978, cited
in Barbour et al., 1985) have indicated an important relationship between seed mass and
emergence depth, and it is generally accepted that species with larger seed size are able
to emerge from deeper burial treatments than small-seeded species. Species possessing
large seeds have an increased ability to successfully send up seedlings from deeply
buried seeds (Barbour et al., 1985; Lee and Ignaciuk, 1985; Maun and Lapierre, 1986).

4 Burial responses of foredune species

Literature relating to the effects of burial on foredune plants is largely restricted to the
burial responses of the Poaceae and of members of the genus Ammophila, in particular.
Studies have shown that a number of foredune species do not merely tolerate burial,
but are characterized by the capacity to respond positively to sand accumulation. Maze
and Whalley (1992a,b), for example, illustrated that burial of Spinifex sericeus, a common
Australian foredune grass, stimulated a positive growth response and demonstrated
that inundation by sand is a requirement for germination in this species. Zhang and
Maun (1990b) studied the effects of burial by sand on the germination, seedling
emergence, growth and survival of Agropyron psammophilum, a species endemic to the
foredunes of the Great Lakes. Field and glasshouse investigations indicated that burial
of A. psammophilum seedlings up to a depth of 6 cm stimulated an increase in height,
leaf and tiller production, and overall dry weight. Similar findings were recorded by
Zhang and Maun (1990a, 1991) for the effects of sand burial on the foredune species
Panicum virgatum. Partial burial of seedlings of the sandgrass Triplasis purpurea results
in increased survival, growth and eventual reproduction compared with unburied
seedlings (Cheplick and Grandstaff, 1997).

Tropical sand dune species respond to burial by sand in similar ways to temperate
species. Martinez and Moreno-Casasola (1996) investigated the burial responses of six
tropical species from the Gulf of Mexico and showed that all species, through increased
leaf area and total biomass, responded positively to sand accretion. The ability of these
foredune species to respond positively to burial (e.g., Zhang and Maun, 1990a,b, 1991;
Maze and Whalley, 1992a,b; Martinez and Moreno-Casasola, 1996; Cheplick and
Grandstaff, 1997) may represent an adaptation to the dune environment.

Investigations by van der Valk (1974) on six representative forbs from the foredunes
of the Cape Hatteras National Seashore yielded similar results to those of Lee and
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Ignaciuk (1985), and Maun and Lapierre (1986), with the larger and heavier seeds of
certain species proving capable of successful germination and production of seedlings
from increasingly greater depths of burial. Strophostyles helvola, for example, had the
largest and heaviest seed of the six species studied. Seeds of this species were able to
germinate and reach the surface through sand deposits as great as 14 cm (van der Valk,
1974). Subsequent investigations at Lake Erie further examined the effects of burial by
sand on the seeds and seedlings of S. helvola. Yanful and Maun (1996a,b) found that
individual plants from the seaward dunes produced a significantly greater number of
heavier seeds than those on the strandline. Seedlings from heavier seeds were able to
emerge from greater depths of burial, and took fewer days to re-emerge from different
burial depths, than individuals from small seeds. The largest S. helvola plants were
produced from the heaviest seeds (65–75 mg).

However, whereas the foredune species discussed above merely tolerate burial
through an ability to exhibit a positive growth response, other species, notably
Ammophila arenaria and Ammophila breviligulata, are known to actively require burial by
sand for maximum growth and successful completion of their life cycle. Ammophila
arenaria is an abundant grass of coastal dune systems occurring along all European
coasts south of latitude 63°N (Huiskes, 1979). Often the only species present in areas of
mobile sand (Huiskes, 1979), its distribution in the dune environment is largely related
to the fact that adult A. arenaria individuals are exceptionally tolerant of sand mobility
and are capable of withstanding burial by up to one metre of sand per annum (Ranwell,
1972). In North America, A. arenaria is largely replaced by populations of A. breviligula-
ta. Regarded as the ecological and sociological equivalent of A. arenaria (Laing, 1958), A.
breviligulata is characteristic of the sandy beaches, foredunes and stable dunes of the
Great Lakes and sea coasts of North America (Maun and Baye, 1989).

Leafy shoots of A. arenaria are capable of growing up through a moderate thickness
of sand by simple elongation of the individual leaves (Gemmell et al., 1953). However,
once an individual plant is overwhelmed by increasing depositions of sand, the axillary
buds develop to create vertical shoots with long internodes termed ‘vertical rhizomes’
(Gemmell et al., 1953). With continuing growth, the vertical rhizomes will eventually
reach the sand surface, the apex of each becoming a new leafy shoot. The initial post-
burial emergence of A. breviligulata also relies on the formation of long stem internodes
(Maun and Lapierre, 1984) and follows a similar pattern to that described by Gemmell
et al. (1953) for A. arenaria.

Studies have shown that A. breviligulata is capable of a range of positive burial
responses and typically demonstrates an increased vigour with increased burial depth.
Disraeli (1984), for example, indicated that below- and above-ground biomass, leaf area,
number of tillers per plant, number of buds per tiller, number of new plants from
horizontal and vertical rhizomes, total chlorophyll concentration, plant height and
plant cover of A. breviligulata were all positively affected by burial. Investigations by
Yuan et al. (1993) focused on the effects of sand accretion on the photosynthesis of A.
breviligulata. Working on the hypothesis that enhanced growth and vigour in buried
adult A. breviligulata plants is largely due to increased carbon assimilation, Yuan et al.
(1993) undertook a series of field studies. Their results supported the hypothesis that
sand accretion leads to an increase in net CO2 uptake, leading to increased photosyn-
thetic rates. Buried A. breviligulata seedlings also exhibited an increased rate of CO2
uptake. Yuan et al. (1993) concluded that the reported increase in biomass following
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burial (e.g., Disraeli, 1984), is partly due to increased carbon assimilation levels. Seliskar
(1994) recorded a significantly higher concentration of ethylene in the stems of
seedlings covered with sand than in those of unburied controls, suggesting a source for
the stimulation of stem elongation described in previous studies (e.g., Maun and
Lapierre, 1986).

Ammophila arenaria and A. breviligulata are clearly both excellent examples of
frequently buried, highly adapted foredune species, apparently requiring regular fresh
depositions of sand to maintain their vigour. The relationship between decline in vigour
in Ammophila (decreased shoot weight per plant, lesser number of plants per unit area,
decreased plant height, less prolific flowering) (Eldred and Maun, 1982) and the stabi-
lization of the dune sand surface, has been discussed by a number of authors (for
example, Tansley, 1949; Salisbury, 1952; Laing, 1958; Olson, 1958; Marshall, 1965; Hope-
Simpson and Jeffries, 1966; Huiskes, 1979 and Krajynk, 1979). Past studies have
attributed this decline in vigour to an increase in soil acidity (Salisbury, 1952),
increasing inter-specific competition (Tansley, 1949; Salisbury, 1952; Marshall, 1965) and
accumulation of dead and decaying organic matter (Wallen, 1980). Further proposed
explanations for the differences in vigour of A. arenaria and A. breviligulata on sand
accreting and nonaccreting sites are summarized by Marshall (1965) and Eldred and
Maun (1982). Expanding on the work of Marshall (1965), Eldred and Maun (1982) used
multivariate statistical methods in an attempt to identify the plant and environmental
variables responsible for a decline in vigour in A. breviligulata. Numerical analysis of
their experimental results indicated that of all the environmental variables measured
(sand deposition and flux, soil temperature and competition), sand accretion had the
greatest influence on the growth of Ammophila. More recent studies, however, have
implicated nematodes and soil-borne fungi in the decline of Ammophila (van der Putten
et al., 1988, 1989; de Rooij-van der Goes, 1995; de Rooij-van der Goes et al., 1995a,b; Little
and Maun, 1996).

5 Burial responses of other species 

Other frequently studied species in burial investigations include the grasses Elytrigia
juncea and Calamovilfa longifolia. Whereas E. juncea is a common species of the sandy
coasts of Britain and Western Europe (Hubbard, 1984), C. longifolia is primarily found
occupying the sand hills, sandy prairies and sand dunes of the Great Lakes of North
America (Maun, 1985). Adult and seedling individuals of C. longifolia respond to burial
in a similar manner to A. breviligulata, increasing carbon assimilation, leaf thickness and
number of bundle sheath cells (Yuan et al., 1993). The results of investigations by Maun
and Riach (1981) into seedling emergence in C. longifolia strongly agree with those of
Maun and Lapierre (1986) for a range of strandline species: emergence of C. longifolia
seedlings is related to seed burial depth.

Elytrigia juncea is capable of elongating its shoots through layers of sand as deep as
23 cm and has the capacity to withstand repeated depositions of sand; two facts
accounting for its common occurrence as a pioneer colonist on British foreshores
(Gimingham, 1964). Harris and Davy (1987) illustrated that, although growth after
seven days burial was supported by re-distributing dry matter between plant parts, so
that existing photosynthetic tissues were maintained at the expense of roots, shoots and
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developing leaves, E. juncea seedlings were unable to survive two weeks of burial by
sand. Investigations by Brown (1997) on three dune plant species, namely Sarcobatus
vermiculatus, Chrysothamnus nauseosus and Distichlis spicata, also indicated that plants
may respond to burial through a shift in biomass from below-ground to above-ground
components. Working on the assumption that photosynthetic competence is not
impaired by short-term burial, Harris and Davy (1988) subsequently undertook an
investigation into carbon and nutrient allocation in E. juncea seedlings after burial.
Results of their experiments revealed that photosynthetic capacity during burial may be
maintained by a reversal of the normal source-sink relationships for carbohydrate
between photosynthetic and nonphotosynthetic organs. Translocation of carbohydrate
to stem, roots and expanding leaves was virtually suppressed during burial, whereas
burial by sand increased the proportional allocation of total nitrogen, phosphorus and
potassium to fully developed leaves (Harris and Davy, 1988). Investigated adult burial
responses of four of the dune grasses discussed above are summarized in Table 2.

Chen and Maun (1999) used greenhouse experiments to examine the effects of sand
burial on seed germination and emergence of Cirsium pitcheri, a threatened species of

Table 2 Summary of the recorded adult burial responses of four commonly studied
dune grasses

Species Burial responses Reference

Ammophila arenaria Increased internode length, tiller production Sykes and Wilson,
and adventitious rooting 1990a

Ammophila breviligulata Increased vertical growth of tillers and Maun, 1985
rhizomes
Increased net photosynthesis Yuan et al., 1993
Increased leaf thickness Yuan et al., 1993
Increased above- and below-ground biomass Disraeli, 1984
Increased leaf area Disraeli, 1984
Increased tiller production Disraeli, 1984
Increased total chlorophyll concentration Disraeli, 1984
Increased shoot emergence time Maun and Lapierre,

1984
Decreased shoot density Maun and Lapierre,

1984

Calamovilfa longifolia Increased vertical growth of tillers and Maun, 1985
rhizomes
Increased net photosynthesis Yuan et al., 1993
Increased leaf thickness Yuan et al., 1993
Increased number of bundle sheath cells Yuan et al., 1993
Decreased shoot density Maun, 1996
Increased shoot emergence time Maun, 1996
Icreased number of nodes, internode length Maun, 1996
and adventitious rooting

Elytrigia juncea Increased internode length, tiller production Sykes and Wilson,
and adventitious rooting 1990a

 at PENNSYLVANIA STATE UNIV on April 8, 2016ppg.sagepub.comDownloaded from 

http://ppg.sagepub.com/


M. Kent et al. 467

the Lake Huron sand dunes. Seeds were buried at varying depths and the results
showed that seedling emergence occurred at a maximum depth of 6 cm, with most
seedlings only emerging from 2 cm depth. Percentage seed germination and emergence
of seedlings were also shown to be uncorrelated with seed size.

6 Burial of plants from the landward dunes 

One of the earliest accounts of the effects of sand deposition on dune vegetation is that
given by Farrow (1919), who artificially buried an area of grass-heath to a depth of 5 cm
with sterile sand. After a period of eight weeks, Agrostis capillaris, Galium verum, Rumex
acetosella, Thymus serpyllum and Lotus corniculatus were among the species to have
colonized the new sand surface. Although the exact processes of re-colonization were
observed to vary between the different plant species, emergence through the sand
surface generally involved an elongation of the main stem to reach the surface, or the
development of lateral stems from the buried crown, followed by the production of
adventitious roots within the sand (Farrow, 1919).

In a study of 30 New Zealand sand dune species, many perennials survived partial
burial, although most were killed by full sand cover (Sykes and Wilson, 1990a,b). In
contrast, the majority of annual grasses were unable to survive even when partly
buried. Results of the investigation indicated that the dune species studied have a range
of morphological responses to burial by sand. Most herbs with a creeping habit e.g.,
Centella uniflora and Hydrocotyle novaezelandiae responded well to burial, re-growing
from small pieces of stolon and generally following a vertical line of growth up to the
sand surface (Sykes and Wilson, 1990a,b). Similar morphological responses in plants
buried by volcanic ash (tephra) were chronicled by Antos and Zobel (1985a, 1985b).

Although bryophyte species constitute an important part of a dune system’s flora,
excepting a series of experiments undertaken by Birse et al. (1957), very few investiga-
tions into their responses to burial have been conducted until recently. Field studies by
Birse et al. (1957) suggested that the maximum depth of sand through which dune
mosses can grow in the natural environment is 5.5 cm. Others have suggested that some
mosses actually require partial burial in sand to maintain their vigour (Marshall, 1965;
Eldred and Maun, 1982; Disraeli, 1984; van der Putten et al., 1988; Little and Maun, 1996;
Maun et al., 1996). In bryophytes, a range of physiological attributes appeared to
respond to burial, including biomass, net photosynthetic rate, photosynthetic efficiency
and number of leaves. However, Martinez and Maun (1999) reported results of experi-
mental burial of 11 moss species found growing along the gradient of habitats from
foredunes to inland forests on the Lake Huron sand dunes. Various burial treatments
were applied, both in the field and in the greenhouse. Species were classified into three
types in terms of plant cover response: inhibited, neutral and stimulated, but most
species showed an ability to survive burial depths of up to 7 cm. Species occurring in
areas of high sand mobility and deposition were shown to be the most tolerant and
emerged from depths up to 35 times their height. Species of landward dunes showed
the least tolerance of burial.
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VII Burial in arid and semi-arid environments

Burial in arid and semi-arid environments is frequent and various studies have been
made of plant adaptations in these environments. However, most research has concen-
trated on plant evolutionary response to water stress (Goodall and Perry, 1979; Bullard,
1997; Wainwright et al., 1999). Other important characteristics of the vegetation are its
‘patchiness’, commonly a response to spatial variability in moisture and temporal
variability in what is termed ‘ephemeral’ or ‘accidental’ vegetation, which often
comprises annuals that grow and reproduce very rapidly, usually after a single
infrequent rainfall event. Thomas (1988) and Bullard (1997) emphasize, however, that
stability of the growth medium is equally as important in primary succession as
moisture availability. 

Yeaton (1988, 1990), working in the Namib Sand Sea, demonstrated a relationship
between the distribution of species on dunes with differing life-cycle characteristics and
the quantity of surface sand movement that occurred. Species establishing predomi-
nantly from seed occurred in lower and more stable parts of dunes (e.g., Stipagrostis
ciliata and Cladoraphia spinosa), while vegetative reproduction through rhizomes was
favoured near dune crests and in more mobile dune sand. Yeaton (1988) also showed a
clear relationship between monthly rates of sand movement and plant cover (Figure 2),
indicating that, even in deserts, species have problems in evolving tolerance to high
sand mobility. Nevertheless, as with coastal dunes, certain species have evolved in
direct response to sand accumulation and will die if accumulation ceases. Aristida
pungens, for example, grows actively through fresh blown sand and can create small
dunes up to 2 m high (Bendali et al., 1990). Given the limited nature of these studies,

Figure 2 The relationship between monthly rates of sand movement
(mm) and plant biomass (basal cover per 100 m2) in the Namib Desert
Source: redrawn from Yeaton, 1988 and reproduced with kind
permission of Journal of Ecology
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there is ample scope for further research into plant response to burial in the desert
environment.

VIII Burial by alluvium in hydrological events

Although burial by ‘run-on’ and deposition of eroded material from streams and rivers
following hydrological events is commonplace in most fluvial environments, compara-
tively little research appears to have been completed on vegetation response. Nanson
and Beach (1977), Hupp (1982, 1983, 1988), Hicken (1984), Hupp and Osterkamp (1985),
Hughes (1988), Kalliola and Puhakka (1988) and Dunham (1989) have examined
vegetation patterns in channels and on floodplains or bottomlands. The role of
vegetation in acting as a binding agent in alluvial deposits and sediments is often vital
and much depends on the magnitude and frequency of burial and the ability of species
to survive inundation. Plant propagules may also be selectively sorted and concentrat-
ed by fluvial action. Riparian vegetation has also been examined (e.g., Gregory et al.,
1991; Van Coller et al., 1997) with specific vegetation types linked to differing fluvial
geomorphic features but again without burial being examined specifically.

Combined volcanic and fluvial activity burial results in lahars or volcanic mudflows,
that occur frequently in the vicinity of active volcanoes in montane and tropical envi-
ronments. However, the response of vegetation to lahar burial and subsequent post-
burial response has received scant attention.

IX Palaeoenvironmental dimensions to vegetation burial

Once burial has occurred, existing vegetation and soil horizons, particularly surface
organic matter accumulations, become trapped by the deposit. In the various burial
environments, numerous examples exist of former soil and vegetation surfaces that
have been preserved. Often repeated horizons or surfaces are detectable and these can
assist with interpretation of past environmental variability, the nature and intensity of
catastrophic events, particularly volcanic eruptions and the timing and extent of human
impact. 

1 Machair sand dune stratification in the Outer Hebrides of Scotland

The climate of the Outer Hebrides is dominated by the strong prevailing wind that
originates from the south and southwest. Gales are recorded on 50 days or more a
year (Manley, 1979) and the average wind speed at Stornaway has been calculated as
7.4 m s–1 (Birse and Robertson, 1970; Angus, 1991). Burial by wind-blown sand is thus
a common problem for the vegetation of the dunes and machairs, which extend along
the west coast of the archipelago (Ritchie, 1967, 1979, 1991; Mather and Ritchie, 1977).
Sand movement also occurs widely as a result of anthropogenic impacts. Foremost
amongst these are the effects of agricultural activity, chiefly ploughing and lazy-
bedding (Pankhurst and Mullin, 1991; Angus, 1996; Owen et al., 1996, 2000; Owen,
1998).

Gilbertson et al. (1995) have partly attributed the vegetational uniformity of the
Hebridean machair sand dune plains to these burial processes that occur most
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frequently during the winter months but also following storms and gales throughout
the year. Gilbertson et al. (1995) hypothesized that perennial machair species are
adapted to burial by sand and, provided that burial is not too deep, will recover within
a few months of inundation. However, if the depth of burial becomes too great, re-
growth fails and the existing vegetation becomes buried under the sand, resulting in a
process they described as ‘machair stratification’ (Figure 3; Plate 1). 

Figure 3 Schematic diagram representing the major micromorpho-
logical features associated with machair soils
Source: adapted from Gilbertson et al., 1995; reproduced with the kind
permission of Blackwell Publishers
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Gilbertson et al. (1995, 1996) describe the phenomenon of machair stratification as an
apparently very young geomorphological feature that is invariably associated with the
vegetation of the low machair grassland and that typically does not occur below one
substantial palaeosol (Plate 1). Deposits exhibiting machair stratification typically range
from 0.5 to 1.5 m in thickness and Gilbertson et al. (1996: 73) describe these deposits as
displaying:

thin couplets of (1) laminae of white/grey to brown comminuted shell-sand (sometimes graded) which are
1 mm to 3 mm thick with a sharp lower boundary; and (2) laminae of grey to black organic shell-sand, variously
1 mm to 4 mm thick, with a bioturbated and diffuse lower boundary. (Figure 3; Plate 1)

The detailed micromorphological features of machair stratification are further
discussed by Gilbertson et al. (1995).

It is hypothesized that the origins of machair stratification are intimately associated
with the quantities of wind-blown shell-sand characteristic of the machair environment
(Gilbertson et al., 1996). Sand exposed as a result of rabbit activity, plough and spade
cultivation along with sand from blow-outs and quarries may spread in a thin sheet
across areas of the machair during storms and times of high wind activity (Owen et al.,
2000). This phenomenon produces the first part of the machair stratification couplet and
is described as (1) in the above definition (Figure 3). Subsequent plant growth through
this sheet of sand during the spring and summer months eventually produces a layer
of organic material, producing the second part of the couplet and described as (2) in the
preceding definition (Figure 3).

Plate 1 ‘Machair stratification’ in the sand dunes of South Uist in the
Outer Hebrides, Scotland. The main palaeosol underlying the stratified
layers is clearly seen, as are the numerous organic horizons within the
stratification itself. See text for explanation (photo: M. Kent)
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Gilbertson et al. (1996) thus conclude that machair stratification is closely related to
particular types of land use that have been practised over the historical period. This
palaeoenvironmental explanation ultimately leads to the hypothesis that the Hebridean
machair dune grasslands are a direct consequence of a particular combination of burial
resulting from both human activity and their natural situation (Owen et al., 2000).

2 Vegetation damage and volcanic impacts in New Zealand

Situated amidst one of the most diverse active volcanic regions anywhere on Earth, the
northern New Zealand region has provided numerous examples of vegetation response
to burial by tephra. In broad terms, these studies can be divided into examples of
primary vegetation succession following essentially complete burial at sites proximal to
the volcanic centre (e.g., Turner, 1928; Nicholls, 1963; Vucetich and Pullar, 1963; Burke,
1974; Clarkson and Clarkson, 1983, 1994; McGlone et al., 1988; Clarkson, 1990; Clarkson
et al., 1995; Horrocks and Ogden, 1998; Newnham et al., 1999b – see also Section V 2
above) and examples of secondary succession following partial burial at sites distal to
the volcanic centre (e.g., McGlone, 1981; Wilmshurst and McGlone, 1996; Wilmshurst et
al., 1997; Giles, 1999; Giles et al., 1999). In both categories, investigations involve
detailed analysis of plant macrofossils or pollen preserved in organic sediments
interbedded with the tephra layers, often allied with reference to present-day spatial
differences in forest structure and floristic composition.

Vucetich and Pullar (1963) examined plant macrofossils buried by tephra layers at a
range of sites to determine approximate critical depths of tephra deposits that would
cause significant damage to the forested regions of central North Island. They
concluded that a tephra depth of 38 cm or more typically resulted in complete
destruction of forest trees, 30–38 cm in almost complete destruction, and 23–30 cm in
partial destruction. These depths relate to primary airfall deposits with no overthick-
ening resulting from redeposition of sediment. It seems likely that for nonforested
vegetation communities, severe damage would be inflicted following less substantial
tephra fall. However, it should be emphasized that these critical thicknesses can only be
useful as broad approximations as the nature of the vegetation and in particular its sus-
ceptibility to damage, local site factors, tephra chemistry, time of season and meteoro-
logical factors are likely to be as important in determining vegetation response to burial.
Nicholls (1963) cites the example of bracken (Pteridium esculentum) reportedly emerging
through 50-cm-thick volcanic deposits one year after the AD 1886 Mount Tarawera
eruption. Several trees and shrubs, such as Aristotelia serrata, Coriaria arborea, Griselinia
littoralis and Weinmannia racemosa, have the capacity to resprout from stout basal shoots
and these, along with bracken, grasses and other seral species figure prominently in
pollen assemblages in sediments immediately above tephra layers. 

A number of recent investigations into distal volcanic impacts have confirmed that
even comparatively minor tephra fall, resulting in just a few centimetres of
accumulated deposit, can cause some disturbance to vegetation communities, often at
considerable distance from the volcanic centre (Newnham et al., 1999a). Perhaps the
best known example from New Zealand is the c. 1850 BP Taupo eruption. Forests within
a roughly circular area 70–90 km from the vent were completely destroyed by
pyroclastic flows but revegetation of the forest complex similar to pre-eruption forests
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was complete within c. 200 years of the eruption (Wilmshurst and McGlone, 1996).
However, tephra fall from this eruption also generated much more widespread
disturbance at sites up to 170 km away (McGlone, 1981; Newnham et al., 1989, 1995;
Wilmshurst and McGlone, 1996). At these distal sites, burial of vegetation ranged from
complete to partial, with significant damage associated with tephra deposits of <10 cm.
Nevertheless, patterns of damage and vegetation response were extremely variable and
not always related to tephra thickness. In areas that escaped complete burial or
suffocation of root systems, the damage to vegetation was probably inflicted by a
variety of mechanisms. Tephra fall would have broken small branches, defoliated and
damaged crowns of canopy and emergent trees whilst burying exposed smaller plants
(Wilmshurst and McGlone, 1996). Chemical effects from the highly acidic tephra would
have exacerbated the physical damage. Senescent or already weakened trees would
have been more susceptible, but more youthful or robust individuals would have
survived and replaced foliage in the following year. Numerous pollen records indicate
that besides inflicting damage, tephra fall provided opportunities for the more youthful
and vigorous survivors to exploit canopy gaps and thus facilitate forest regeneration. In
some instances, there is evidence for tephra deposition acting as a catalyst for acceler-
ating the pace of longer-term environmental change. This is especially evident during
the transition from the last glacial to the present interglacial, a period of reafforestation
associated with general climatic amelioration (Newnham et al., 1989; Giles, 1999). Often
post-eruption changes in vegetation composition are related to changes in substrate,
where volcanic deposits have given rise to very different soils from those present
earlier. In some cases soils have actually become more fertile (Burke, 1974; Clarkson et
al., 1988; McGlone et al., 1988; Newnham and Lowe, 1991; Lees and Neall, 1993).
Vegetation burial by lahar in the Taranaki region of New Zealand during the last inter-
glacial is reported by Newnham and Alloway (2001) (Plate 2).

In summary, besides indicating the frequency and magnitude of burial events for a
region, these and other palaeoecological investigations have provided some insights
into rates of change and recovery of vegetation following burial. These records also
demonstrate the importance of recurrent burial in the vegetation dynamics of volcanic
regions and have indicated that certain species are adapted to and can withstand the
burial process. These species in particular are subsequently important in both primary
and secondary succession and may facilitate the return of pre-eruption vegetation cover
in surprisingly short timescales. In some cases, burial may serve to increase rates of
turnover in mature forest communities or even to accelerate the pace of underlying
long-term change. At a broader phytosociological level, the history of burial from past
eruptive activity and associated soil developments can explain at least some of the more
complex patterns of vegetation distribution that are typically found in volcanic regions
(McGlone, 1985). 

The primary significance of the palaeoecological record is that it provides the time
dimension to burial processes. Nevertheless, certain aspects of change in palaeoecolog-
ical sequences can only be interpreted by understanding the mechanisms by which
certain species are able to survive and even prosper following the burial process.

M. Kent et al. 473

 at PENNSYLVANIA STATE UNIV on April 8, 2016ppg.sagepub.comDownloaded from 

http://ppg.sagepub.com/


474 Studies of vegetation burial

X Experimental research into the ecophysiological effects of burial

The way forward, in terms of research into vegetation burial, has been shown by Maun
and Lapierre (1984), Zhang and Maun (1990a,b, 1991), Maun (1996), Maun et al. (1996),
Yanful and Maun (1996a,b), Owen (1998), Martinez and Maun (1999) and Owen et al.
(2000). Field experiments are desirable but are problematic and extremely difficult to
control. They are also subject to partial or complete disruption following events of even
moderate magnitude. Disturbance of the surface and introduction of any structures to
contain blown material alters patterns of wind blow and subsequent deposition.
Nevertheless, valuable results can be achieved. Controlled experiments in greenhouses

Plate 2 Cliff section of Airdale Reef, Taranaki, New Zealand, showing
a >4-m-thick laharic deposit (uppermost layer) that has overwhelmed
vegetation represented by a layer of wood, roots and leaves preserved
at the top of the underlying peat (Newnham and Alloway, 2001)
(photo: B.V. Alloway)
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are generally more successful and allow species to be buried to differing depths and
with differing frequencies over time. Monitoring of subsequent regrowth is made
easier. 

Most studies have been carried out on single species regarded as significant
components of the plant communities of which they are a part. However, Owen (1998)
working on the machair sand dune systems of the Outer Hebrides of Scotland, took
0.5 × 0.5 m2 turves of dune grassland as ‘microcosms’ and having stabilized them in the
greenhouse, subjected the whole community of each turf to burial at varying depths
and time frequencies. The performance of all species was monitored and five different
species response strategies were determined. Turves from the same communities were
also placed in an infrared gas analyser to determine photosynthetic efficiency following
long- and short-term burial by sand. Clearly, the scope for further research on both
individual and community responses to burial in the many different environments
described in this paper , using these various techniques is very considerable. 

XI Conclusion

The literature on vegetation burial demonstrates that in the various different environ-
ments where burial occurs, species are characterized by different degrees of adaptation
and response to burial. Typically, those habitats that experience the greatest amount
and frequency of deposition contain species that have evolved adaptations to survive
burial and even benefit from it. For example, some foredune species, notably members
of the genus Ammophila are so tolerant of inundation by sand that they actively require
regular depositions to maintain optimum growth. Similarly, desert species, such as
Aristida pungens have evolved in the same way. The role of evolutionary processes in the
development of elastic responses in species is crucial in the burial environment (Berrie,
1984). A range of other species responses can be identified and this information is
clearly important with regard to a species’ position along the burial stress gradients of
deposition depth and frequency.

However, with the exception of the investigations of Farrow (1919) and Owen (1998),
studies of the effects of burial are largely restricted to species-specific responses and
tolerances, and there is a paucity of information relating to the effects of burial at the
community level. A more holistic approach to plant burial research is required that links
the biogeographical aspects of plant ecophysiology and both individual species and
community ecology to the various processes of deposition and sedimentation studied
by the geomorphologist.

Viles (1988) in the introduction to her edited volume entitled Biogeomorphology states: 

For many years geomorphologists in general have given only passing attention to biological factors. Several
recent geomorphology texts give the impression that landform development occurs within a largely abiotic
environment . . . Ecologists and biogeographers have also given little consideration to the interactions between
their subject and geomorphology. (Viles, 1988: 1–2)

This paper has been concerned with a relatively understudied research area that
provides a link between ecology, biogeography and geomorphology, namely the effects
of burial on vegetation cover. Since Viles’s classic volume of 1988, physical geographers
and ecologists have gradually paid more attention to the interactions between plants,
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animals and geomorphological processes, good examples being the volume on
vegetation and erosion edited by Thornes (1990) and more recently research
summarized by Evans (1998) on the relationships between erosion and grazing animals
and the paper by Gurnell (1998) on the hydrogeomorphological effects of beaver dam
building. Perhaps burial studies can provide a new focus for the combined research
efforts of biogeographers, ecologists and geomorphologists.
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