

New Zealand Journal of Marine and Freshwater Research

ISSN: 0028-8330 (Print) 1175-8805 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzm20

Bostrychia (Rhodomelaceae, Rhodophyta) species of New Zealand, and relationships in the Southern Hemisphere

Giuseppe C. Zuccarello & John A. West

To cite this article: Giuseppe C. Zuccarello & John A. West (2008) Bostrychia (Rhodomelaceae, Rhodophyta) species of New Zealand, and relationships in the Southern Hemisphere, New Zealand Journal of Marine and Freshwater Research, 42:3, 315-324, DOI: 10.1080/00288330809509959

To link to this article: http://dx.doi.org/10.1080/00288330809509959

Published online: 19 Feb 2010.

🖉 Submit your article to this journal 🗹

View related articles 🗹

Citing articles: 8 View citing articles 🖸

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzm20

Bostrychia (Rhodomelaceae, Rhodophyta) species of New Zealand, and relationships in the Southern Hemisphere

GIUSEPPE C. ZUCCARELLO School of Biological Sciences Victoria University of Wellington P.O. Box 600 Wellington, New Zealand. email: joe.zuccarello@vuw.ac.nz

JOHN A. WEST School of Botany University of Melbourne Parkville VIC 3010, Australia

Abstract Bostrychia is a widespread genus and has recently received considerable molecular attention, leading to insights into its evolution, and nomenclatural changes. We investigated the species of Bostrychia in New Zealand, to produce an identification key and highlight the nomenclatural changes of these species. We incorporated into a molecular phylogeny two species prominent in New Zealand (B. gracilis, B. vaga) that have not be investigated phylogenetically before. Our results show that three species of Bostrychia (B. arbuscula, B. gracilis, B. vaga), mainly restricted to New Zealand, share a common ancestor. Only B. vaga is known outside New Zealand. This restricted distribution is unusual for species within this genus in which many are widespread. A phylogeographic study of another New Zealand and Southern Hemisphere species, B. intricata, indicates that this species consists of several lineages that are found locally. These lineages, and physiological difference between lineages, suggest that cryptic species may be found within this species, as is common in many other red algal species. Our data highlight the unique nature of the New Zealand flora within this common genus and suggest continued investigation is warranted.

Keywords cryptic species; identification; phylogeny; *Stictosiphonia*; key

INTRODUCTION

The mainly mangrove-associated algal genus Bostrychia Montagne has been well characterised taxonomically. Falkenberg (1901) was the first to revise Bostrychia on the basis of number of tier cells derived from pericentral cells, resurrecting the genus Stictosiphonia J.D. Hooker & Harvey (Hooker & Harvey 1845, 1847) for species with more than two tier cells per pericentral cell associated with each axial cell. The division of the group into two genera based on tier-cell numbers was not, however, accepted by Post (1936, 1939) the leading researcher of Bostrychia and other mangrove-associated algae during the period from 1936 to 1968. She emphasised the type of hapteron (attachment structure) and on this basis divided the genus into two sections (Post 1936, 1939). The two-genus system (Bostrychia, Stictosiphonia) was again resurrected in the latest monographic study of King & Puttock (1989), and this nomenclatural system was used by Adams (1994) in her guide of the marine flora of New Zealand. Recent molecular data (Zuccarello & West 2006) also showed that the monophyly of the two genera is not supported and returned all the species to the genus Bostrychia. This molecular work also revealed that some "species" are found in multiple divergent clades, that at present cannot be resolved morphologically (e.g., B. simpliciuscula Harvey ex J. Agardh, B. moritziana/B. radicans species complex), and several lineages had wide geographic distributions (Zuccarello & West 2002, 2003). The new nomenclature from Zuccarello & West (2006) and biogeographic and molecular knowledge from Zuccarello & West (2003, 2006) were used to understand the diversity and evolution of Bostrychia in New Zealand.

At present, four species of *Bostrychia* are recognised in New Zealand. *Bostrychia moritziana* (Sonder ex Kützing) J. Agardh belongs to a

M08013; Online publication date 17 September 2008 Received 25 February 2008; accepted 30 July 2008

genetically highly diverse clade that also includes B. radicans (Montagne) Montagne (Zuccarello et al. 1999a; Zuccarello & West 2003). The group is characterised by an attachment structure, termed the cladohapteron, which is produced as a specialised branch from the second axial cell of lateral branches. Bostrychia moritziana is found in mangroves or saltmarsh vegetation and is reported from North Island and Marlborough Sounds, South Island (King & Puttock 1989). Bostrychia harveyi Montagne has been confused with B. scorpioides (Hudson) Montagne from the Northern Hemisphere and South Africa (Prud'homme van Reine & Sluiman 1980), but B. harveyi is a distinct Southern Hemisphere species (Zuccarello & West 2006), often found in brackish and freshwater habitats (King & Puttock 1989). Another alga reported in King & Puttock (1989) and Adams (1994) is B. tenuissima R.J. King & Puttock. However, molecular analyses by Zuccarello & West (2003) indicated that this species consists of three unrelated lineages that include the older named species B. simpliciuscula. Consequently B. tenuissima was placed in synonymy with B. simpliciuscula. Bostrychia tenella f. flagellifera (Post) King & Puttock is not reported in Adams (1994), but is noted to occur on Waitangi River, North Island (King & Puttock 1989). Molecular evidence shows it is not closely related to B. tenella and should be maintained as a distinct species, B. flagellifera Post (Zuccarello & West 2003).

The other species of Bostrychia reported from New Zealand have all been treated by King & Puttock (1989) and Adams (1994) as species of Stictosiphonia, and have recently been transferred back to Bostrychia (Zuccarello & West 2006). Bostrychia vaga (J.D. Hooker & Harvey) was reported from both the North and South islands (King & Puttock 1989; Adams 1994) and was found commonly at Doubtful Sound (Boyle et al. 2001). The species has also been reported from Kerguelen Islands (Hooker & Harvey 1847) and Falkland Islands (King & Puttock 1989). Stictosiphonia gracilis R.J. King & Puttock has only been reported from northern New Zealand (Titahi Bay northwards). Bostrychia arbuscula J.D. Hooker & Harvey, the largest Bostrychia species, is common in the South Island high intertidal but has also been reported from Cook Strait, North Island (Adams 1994). The most widespread species is B. intricata (Bory de Saint-Vincent) Montagne, that has been reported throughout the Southern Hemisphere (Australia, South Africa, South America, Falkland Islands, subantarctic islands) but also from more northern

locations (India, Indonesia) (King & Puttock 1989; Adams 1994; Silva et al. 1996).

The latest phylogenetic study of the genus *Bostrychia* (Zuccarello & West 2006) lacked two species common to New Zealand (*B. gracilis*, *B. vaga*). The present study was undertaken to clarify the taxonomy of *Bostrychia* in New Zealand using molecular data, to provide an updated key to these species, and to investigate the phylogeographic patterns of one widespread species, *B. intricata*.

MATERIALS AND METHODS

Some material was collected and maintained in culture following procedures of West & Zuccarello (1999), other samples were collected in the field and dried onto herbarium sheets. Voucher specimens and DNA sequences are deposited at WELT and GenBank, respectively (see Table 1). Some samples were prepared for microscopy by soaking dried samples in sea water for 10 min and then simultaneously staining and preserving the specimens in 0.1% acidified aniline blue in 50% Karo[®] syrup on a microscope slide. Photographs were taken on an Olympus AX-70 microscope with an Olympus DP-70 camera.

From cultured material, or dried field samples, DNA extraction followed a modified Chelex extraction method (Zuccarello et al. 1999b). Amplification of an approximately 900-1000 basepair region of the nuclear large subunit of ribosomal RNA (LSU), corresponding to the middle third of the molecule (Y-fragment, Harper & Saunders 2001) followed the procedure of Zuccarello & West (2002). Amplification and sequencing of the plastid-encoded large subunit of the ribulose bisphosphate carboxylase/oxygenase gene (*rbc*L) used amplification primers presented by Nam et al. (2000) and additional sequencing primers listed in Freshwater & Rueness (1994). The polymerase chain reaction procedure followed Zuccarello et al. (2002). Sequences were assembled using the computer software VectorNTI (Invitrogen), and aligned with Clustal X (Thompson et al. 1997). All sequences were compiled in Se-Al v.2a11 (Rambaut 1996). Phylogenetic relationships were inferred with PAUP*4.0b10 (Swofford 2002). Other sequences were selected from available GenBank deposits (Table 1). Centroceras clavatum and Caloglossa vieillardii were used as outgroups and have been used previously in the phylogenetic analysis of Bostrychia (Zuccarello & West 2006).

 Table 1
 Samples used in this study. Collection information include: location, date collected, and voucher information deposited at WELT, if applicable. Culture numbers refer to J.

 West's (University of Melbourne) culture collection, number preceded by a letter indicates DNA extraction number. Genbank accession numbers used. New sequences in bold type.

			GenBank		
			Culture	accessi	ons nos.
Species	Collection locations	Collection dates	no.	rbcL	LSU rRNA
Bostrychia arbuscula J.D. Hooker & Harvey	Brighton Beach, South Island, New Zealand	11 July 1998	D335	AY920845	AY920894
B. calliptera (Montagne) Montagne	Rio Sitio Grande, Ilha do Cardoso, Brazil	18 January 1990	3042	AY920805	AF382926
B. calliptera	Sontecomapan, Vera Cruz, Mexico	10 February 1994	3400	AY920806	AF382925
B. gracilis (R.J. King & Puttock) Zuccarello & West	Kakamatua Point, Manukau Harbour, New Zealand	16 May 2007	F562	_	EU886785
2.8. mons (-m. 1	(coll. M. D. Wilcox), WELT A023194				
B. harveyi Montagne	Havelock, Tasmania, Australia	7 July 1998	D618	AY920807	AY920857
B. harveyi	New Norfolk, Derwent River, Tasmania, Australia	14 October 1998	D670	AY920808	AY920858
B. intricata (Bory de Saint-Vincent) Montagne	Kommetjie, Cape Province, South Africa	17 February 1988	2876	AY920846	AY920895
B. intricata	Brighton Beach, South Island, New Zealand	11 July 1998	3867	AY920848	AY920897
B. kelanensis Grunow ex E. Post	Sadgroves Creek, Darwin, Northern Territories, Australia	4 June 1989	2988	AY920849	AY920898
B. kelanensis	Bowling Green Bay, Oueensland, Australia	28 September 1991	3214	AY920853	AY920899
B. moritziana (Sonder ex Kützing) J. Agardh	Buenaventura, Colombia	10 September 1991	3189	AY920812	AY920861
B. moritziana	Rio Guire, Edo Sucre, Venezuela	11 April 1991	3149	AY920811	AY920862
B. moritziana	Millers Landing, Wilsons Promontory, Victoria, Australia	17 December 1988	2934	AY920809	AY920863
B. moritziana	Nusa Dua, Bali, Indonesia	10 May 1999	3955	AY920815	AY920866
B. moritziana	W. Sawang, Sulawesi, Indonesia	16 November 1994	3453	AY920813	AY920865
B. moritziana	Farasan Islands. Saudi Arabia	8 July 2000	4069	AY920816	AY920867
<i>B pilulifera</i> Montagne	West Branch Demerara River Guyana	30 January 2002	4200	AY920817	AY920868
<i>B. radicans</i> (Montagne) Montagne	São Sebastião Brazil	2 July 1982	2649	AY920818	AY920869
R radicans	Teluk Awang Lombok Indonesia	27 May 1999	3980	AY920824	AY920874
B radicans	Estero Covote Babia San Ignacio Baia California Sur Mexico	26 March 1991	3124	AY920821	AY920872
B radicans	Cane Fear Estuary North Carolina United States	27 January 1991	3116	AV920820	AV920871
B. radicasa (Itono) West Zuccarello & Hommersand	Tempusak Sabah Malaysia	13 August 2000	4086	DO087406	DO087404
B. radicosa	Plage de Foué. New Caledonia	2 July 2001	4178	DO087407	DO087405
B. scarpioides (Hudson) Montagne	Roscoff France	1999	F130	AV920825	AV920875
B simpliciuscula Harvey ex I Agardh	Mandai Singapore	13 June 1989	2963	AY920826	AV920876
B. simpliciuscula	Balling New South Wales Australia	12 February 1007	3694	AV020828	AV020878
B. simpliciuscula	Western Port Bay Victoria Australia	25 October 1986	2747	AV020830	AV020880
B. simpliciuscula	Williamstown Victoria Australia	20 February 1006	3581	AV020844	AV020803
B. simpliciuscula	Brunswick Heads New South Wales Australia	23 October 1995	3546	AV020843	AV020880
B. simpliciuscula	Broughton Creek New South Wales, Australia	11 January 1003	3308	AV020840	AV020800
B. simpliciusculu B. tangatansis F. Post	St Lucia Natal South Africa	20 January 1993	3241	AT 920840	AV020001
B. tangatensis E. 10st	St. Lucia, Natal, South Africa	20 January 1992 22 December 1001	3266	AV020851	AV020002
B. tanglia (Lamouroux) I. A gordh	Tawi Tawi Mindanao Philippines	15 January 1088	2871	AV020832	AV020882
B. tenella	Rounging Stones Reach Queensland Australia	13 June 1097	2071	AT 920032	AT 920002
D. tenetiu R. tanella	Ilha da Itanarica, Rabia, Brazil	11 November 1006	2615	AV020837	AV020887
D. tenetia P. topolla	Mangrovo Troil Broome Western Australia Australia	18 June 1007	2742	AT 920037	AT 920007
B. tenestansis E. Bost	St. Lucia Natal South Africa	20 January 1002	3743	AT 920030	AT 920000
B. tangatensis E. Fost	St. Lucia, Natal, South Africa	20 January 1992	3241	A1920650	A1920901
D. ungalensis B. wasa (I.D. Hostor & Horrow)	St. Lucia, Natal, South Anica Tawharanyi Marina Bark, Anahar Bay, Naw Zaaland	16 May 2007	5200	R1920031	A1920902
D. vaga (J.D. NOOKEI & Natvey)	(coll. M. D. Wilcox) WELT A023193	10 May 2007	F300	E0000//1	EU000/84
Outgroup					
Caloglossa vieillardii (Kützing) Setchell	-			AY150327	AF522217
Centroceras clavatum (C. Agardh) Montagne	_			AF259490	AF259414

The data sets of the two genomic regions (rbcL and LSU) were tested for incongruence using the partition homogeneity test (PHT) (Farris et al. 1994) as implemented in PAUP* (1000 replicates, 10 random additions, 100 trees per addition saved). The data were combined as no incongruities were detected (P = 0.28). Maximum-parsimony trees (MP) were constructed in PAUP*, using the heuristic search option, 500 random sequence additions, tree-bisectionreconnection (TBR) branch swapping, and unordered and unweighted characters, with gaps treated as missing data. The program Modeltest version 3.06 (Posada & Crandall 1998) was used to find the model of sequence evolution that best fit each data set by an Akaike Information Criterion (AIC) (Posada & Crandall 2001). When the best sequence evolution model had been determined, maximum-likelihood was performed in PAUP* using the estimated parameters (substitution model, gamma distribution, proportion of invariable sites, transition-transversion ratio) (1-5)random additions).

Support for individual internal branches was determined by bootstrap analysis (Felsenstein 1985), as implemented in PAUP*. For MPbootstrap analysis, 1000 bootstrap data sets were generated from resampled data (5 random sequence additions).

Bayesian trees were inferred using MrBayes 3.1.2 (Huelsenbeck & Ronquist 2001) using a partitioned data set with three partitions for the codon positions for *rbc*L, with a GTR model with gamma distribution with eight variable rate category, two parallel runs each of three heated chains and one cold one, and $5\Box 10^{\circ}$ generations with sampling every 1000 generations. A burn-in of 2000 trees was removed before constructing the consensus tree. The analyses were submitted to the Computational Biology Service Unit (CBSU, Cornell University, http://cbsuapps.tc.cornell.edu/mrbayes.aspx).

RuBisCo spacer sequence amplification followed procedures outlined in Zuccarello et al. (1999b). (Location of sequenced samples, mainly of *Bostrychia intricata*, are in Table 2.) MP trees were constructed in PAUP*, as above.

RESULTS

Eight species of *Bostrychia* are currently recognised in New Zealand. The most obvious characters separating species of *Bostrychia* are number of tier cells per axial cell, presence/absence of cortication, and the attachment structure. The species characterised by the character number of tier cells are divided into two groups: species with two tier cells per axial cell (Fig. 1A), with the lower tier cell attached to the axial cell by a pit connection ("Bostrychiatype"); and species with more than two, usually 3–5 tiers of cells per axial cell ("Stictosiphonia-type")

 Table 2
 Bostrychia arbuscula, B. gracilis, and B. intricata samples used for RuBisCo spacer sequence analysis.

 (Falkland Islands samples collected by Louise Phillips.)

Species	Collection location (codes for DNA extractions)	GenBank accession nos.
B. arbuscula	Brighton Beach, Dunedin, New Zealand (D331, D336, D337)	EU886783
B. gracilis	Tawharanui Marine Reserve, Flat Rock, Anchor Bay, New Zealand (F559, F576)	EU886782
B. gracilis	Kakamatua Point, Manukau Harbour, New Zealand (F562)	EU886782
B. intricata	Millers Point, Cape of Good Hope, South Africa (E404)	EU886774
B. intricata	Oude Kraal, Cape Town, South Africa (E405)	EU886775
B. intricata	Cape Point, Cape of Good Hope, South Africa (E406)	EU886776
B. intricata	Kommetjie, Cape Province, South Africa (2875)	EU886774
B. intricata	Kommetjie, Cape Province, South Africa (2876)	EU886774
B. intricata	Cocholque, Concepcion, Chile (E588)	EU886772
B. intricata	Falkland Islands (Louise Phillips 306) (E867)	EU886773
B. intricata	Falkland Islands (Louise Phillips 64) (E868)	EU886772
B. intricata	Falkland Islands (Louise Phillips 139) (E869)	EU886773
B. intricata	Falkland Islands (Louise Phillips 247) (E879)	EU886772
B. intricata	Pambula Beach, New South Wales, Australia (E216)	EU886779
B. intricata	Tooradin, Victoria, Australia (E399)	EU886777
B. intricata	Whiskey Bay, Victoria, Australia (3472)	EU886779
B. intricata	Millers Landing, Wilsons Promontory, Victoria, Australia (3781)	EU886778
B. intricata	Waikowhai, Manukau Harbour, New Zealand (F561), WELT A023195	EU886781
B. intricata	Brighton Beach, Dunedin, New Zealand (3867)	EU886780

Key to Bostrychia species in New Zealand

1	Plants with distinct cortication
	Plants ecorticate thoughout, or at least ecorticate in ultimate regions (cortication light)
2	Two tier cells per axial cell
	More than two tier cells per axial cell
3	With monosiphonous laterals, and well developed peripherohaptera
	Without monosiphonous laterals, peripherohaptera as swellings at base of most lateralsB. harveyi
4	Branches terminating in colourless acute tips, intricate thalli
	Branches not with acute tips, upright thalliB. arbuscula
5	Two tier cells per axial cell
	More that 2 tier cells per axial cell
6	Attached by peripherohaptera, mostly polysiphonous throughout
	Attached by cladohaptera, often with ultimate monosiphonous laterals
7	Erect branches rarely with lateral branches, some minor cortication
	Erect branches regularly branched

(Fig. 1B). Cortication is absent in B. moritziana, B. simplisciuscula, B. intricata, and not seen in our specimen of S. vaga (Fig. 1C). Cortication is well developed in B. harveyi, B. arbuscula, and B. gracilis, but is often less well developed in lateral branches of B. flagellifera and the ultimate branches in this species are conspicuously monosiphonous (Fig. 1D). Bostrychia arbuscula and B. gracilis are distinguished only by the presence of acute tips in B. gracilis (Fig. 1E cf. 1F), the more upright and less intricate growth of B. arbuscula and the geographic range of B. arbuscula, which is found from Cook Strait south, whereas B. gracilis is more common north of Poverty Bay. The other character used to distinguish species is the type of attachment structures of which there are also two main types with one pronounced modification. Peripherohaptera, found in species such as B. vaga, are derived from tier cells, or cortical cells, usually associated with the bases of indeterminate laterals. The apical cells elongate and often form attachment pads on the substrate (see Fig. 1C). A modification is seen in B. harveyi in which peripherohaptera do not develop beyond small lumps at branch axes (Fig. 1G). Cladohaptera are derived from transformed branches that develop from the first axial cell of an indeterminate lateral (Fig. 1H).

Bostrychia simpliciuscula, reported as B. tenuissima in New Zealand, is a non-monophyletic species of three molecular lineages (Fig. 2). A sample of B. simpliciuscula from New Zealand (collected Havelock, South Island, 7 December 2005, data not shown) is of the H1 lineage. New Zealand samples also lack monosiphonous branch tips.

Two species not previously used in a phylogenetic analysis of the genus are *B. gracilis* and *B. vaga*. A combined data set of rbcL and partial LSU data contained 1951 aligned characters and 637 parsimony-informative sites. MP produced 3 MP trees of 2497 steps. Although ML produced one tree of -ln = 14399.44596 (AIC parameters: GTR + gamma distribution (0.5704) + proportion of invariable site (0.3605), Rate matrix: a = 2.171, b = 4.9787, c = 3.2184; d = 1.6853; e = 15.4520; f = 1.00), the trees did not differ in supported branches. The two newly sequenced species, *B. gracilis* and *B. vaga*, from New Zealand are in a moderately supported lineage with another New Zealand species, *B. arbuscula* (Fig. 2). These three species have a sister group relationship to another Southern Hemisphere species, *B. intricata*.

RuBisCo spacer analysis of 16 samples of *B. intricata* (298 aligned bases, 48 parsimonyinformative characters including outgroups *B. arbuscula* and *B. gracilis*, produced 1 MP tree of 47 steps) indicates that there is a high degree of regional variation between samples, with samples from Australia in two supported clades, as are samples from New Zealand and most samples from South Africa (Fig. 3).

DISCUSSION

Our results present a key to species of *Bostrychia* found in New Zealand and update the taxonomy based on molecular insights and morphology (Zuccarello & West 2006). Additional data on their morphology and distribution can be found in King & Puttock (1989) and Adams (1994). Eight species of *Bostrychia* are currently recognised in New Zealand, that are distinguishable based on a few

Fig. 1 A, Axis of Bostrychia simpliciuscula showing two tier cells per axial cell. Arrowheads indicate start and end of an axial cell. Scale bar = 100 μ m. B, Axis of B. intricata showing 4 tier cells per axial cell. Arrowheads indicate start and end of an axial cell. Scale bar = 100 μ m. C, Habit of B. vaga. Unbranched upright axis, prostrate axis with peripherohapteron (arrowhead) visible. Scale bar = 0.5 mm. D. Habit of B. flagellifera. Monosiphonous ultimate laterals visible (WELT voucher A023191). Scale bar = 0.5 mm. E, Apex of B. arbuscula showing non-acute tips. Scale bar = 100 μ m. F, Apex of B. gracilis showing acute tips. Scale bar = 100 μ m.G, B. harveyi with partially developed peripherohapteron in axis of branch. Scale bar = 200 μ m. H, Cladohapteron of B. moritziana (WELT voucher A023192). Scale bar = $100 \mu m$.

morphological characters. At present many of these "species" are not monophyletic, and morphologically indistinguishable lineages can only be identified by molecular methods. For example, *B. moritziana*, the only species with cladohaptera found in New

Zealand, is distinguished from samples identified as *B. radicans* by the presence of monosiphonous laterals. However, this character does not define a monophyletic group separate from *B. radicans* (Zuccarello & West 2003, 2006, and Fig. 2).

- 0.01 substitutions/site

Fig 2 Maximum-likelihood topology of relationships between *Bostrychia* species based on combined *rbcL* and partial LSU data. Species designation and origin given on tree. *Caloglossa vieillardii* and *Centroceras clavatum* were designated as the outgroups. Asterisk indicates bootstrap percentage (BP) values \geq 95% and posterior probability (PP) values \geq 0.95. Otherwise values presented as BP/PP (if over 50%BP and 0.90PP). H1–H3 = three lineages of *B. simpliciuscula*.

Fig. 3 Single most parsimonious tree of RuBisCo spacer sequence data of *Bostrychia intricata*. Designated outgroups *B. gracilis* and *B. arbuscula*. Bootstrap percentage values indicated on branches with over 50%.

Bostrychia tenuissima, another New Zealand species (Adams 1994; King & Puttock 1989), was also distinguished from *B. simpliciuscula* by the lack of monosiphonous branch tips (King & Puttock 1989). Three lineages are now recognised containing specimens both with and without monosiphonous branch tips (RuBisCo spacer lineages H1–H3, Zuccarello & West 2006), which appear to have different biogeographic distributions, with H1 the most southerly (Zuccarello et al. 1999c). A New Zealand sample, from the South Island, belongs to this southern lineage.

Our data support the monophyletic origin of the three exclusively (*B. gracilis, B. arbuscula*) or predominantly (*B. vaga*) New Zealand species of *Bostrychia*. Monophyly of the New Zealand species would indicate that morphological differentiation and speciation occurred in New Zealand, though the data can not directly address the question of speciation. *Bostychia arbuscula* and *B. gracilis* are similar morphologically (well developed cortication, peripherohaptera). However, *B. vaga* is an extremely distinctive species (greatly reduced cortication (none in plants examined) and reduced laterals). Genetically the relationships between these species are not well resolved, owing to the low level of genetic variation. Within *Bostrychia*, morphological change is not reflected by levels of change in commonly used genetic markers. For example, the highly corticated species *B. pilulifera* is genetically similar to some samples of the ecorticate species *B. radicans*, whereas other samples of *B. radicans* are genetically more distant (Zuccarello & West 2006, and Fig. 2). The scenario of an origin of these species within New Zealand would indicate that the presence of *B. vaga* in Falkland Islands, Chile, and Kerguelen Islands is a result of subsequent dispersal to these areas.

Bostrychia intricata is the sister species to B. arbuscula, B. gracilis, and B. vaga. It also has the widest distribution (as B. hookeri Harvey, B. mixta J.D. Hooker & Harvey, or S. hookeri (Harvey) J.D. Hooker & Harvey) as it is found throughout the Southern Hemisphere, mostly in temperate water, but also reported from Japan (Yoshida et al. 1990) and tropical water in India and Indonesia (King & Puttock 1989), although this tropical distribution is unusual and these records must be checked. Our analysis of the RuBisCo spacer data indicates that there is a high degree of regional variation between samples. The genetic differentiation of these samples is reflected in the temperature of induction of reproductive development (West et al. 1996), with samples from Australia requiring temperatures of 20–25°C, for South Africa 15°C, and Chile 10°C. These data indicate that more cryptic species may exist in this widespread alga, as has been observed in *B. moritziana/B. radicans* (Zuccarello & West 2003). More sampling and culture studies of this species are called for.

ACKNOWLEDGMENTS

We thank Mike Wilcox for samples from the Auckland area. This research was partially supported by Australian Research Council grants \$19917056 (1999–2001), a grant from the Australian Biological Resources Study (2002–05), and a grant from the Hermon Slade Foundation (2005–07).

REFERENCES

- Adams NM 1994. Seaweeds of New Zealand. Christchurch, Canterbury University Press. 360 p.
- Boyle MC, Jillett JB, Mladenov PV 2001. Intertidal communities in Doubtful Sound, New Zealand: changes over time. New Zealand Journal of Marine and Freshwater Research 35: 663–673.
- Falkenberg P 1901. Die Rhodomelaceen des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Fauna und Flora des Golfes von Neapel, Monographie Berlin 26. 754 p.
- Farris JS, Källersjö M, Kluge AG, Bult C 1994. Testing significance of incongruence. Cladistics 10: 315–319.
- Felsenstein J 1985. Confidence intervals on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
- Freshwater DW, Rueness J 1994. Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species based upon rbcL sequence analysis. Phycologia 33: 187–194.
- King R, Puttock C 1989. Morphology and taxonomy of Bostrychia and Stictosiphonia (Rhodomelaceae/ Rhodophyta). Australian Systematic Botany 2: 1–73.
- Harper JT, Saunders GW 2001. The application of sequences of the ribosomal cistron to the systematics and classification of the florideophyte red algae (Florideophyceae, Rhodophyta). Cahiers de Biologie Marine 26: 25–38.
- Hooker JD, Harvey WH 1845. Algae antarcticae. The London Journal of Botany 4: 249–276, 521–251.
- Hooker JD, Harvey WH 1847. Algae tasmanicae. The London Journal of Botany 6: 397–417.

- Huelsenbeck JP, Ronquist F 2001. MrBayes: Bayesian inference of phylogenetic trees. Biometrics 17: 754–755.
- Nam KW, Maggs CA, McIvor L, Stanhope MJ 2000. Taxonomy and phylogeny of Osmundea (Rhodomelaceae, Rhodophyta) in Atlantic Europe. Journal of Phycology 36: 759–772.
- Posada D, Crandall KA 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.
- Posada D, Crandall KA 2001. Selecting the best-fit model of nucleotide substitution. Systematic Biology 50: 580–601.
- Post E 1936. Systematische und pflanzengeographische Notizen zur *Bostrychia-Caloglossa*-Assoziation. Revue Algologie 9: 1–84.
- Post E 1939. Weitere Daten zur Verbreitung des Bostrychietum III. Archiv für Protistenkunde 93: 6–37.
- Prud'homme van Reine WF, Sluiman HJ 1980. Red algae found on European salt-marshes. I. Bostrychia scorpioides (Rhodomelaceae). Aquatic Botany 9: 323–342.
- Rambaut A 1996. Se-Al: Sequence alignment editor. http:// evolve.zoo.ox.ac.uk/ [accessed 9 August 2002].
- Silva PC, Basson PW, Moe RL 1996. Catalogue of the benthic marine algae of the Indian Ocean. University of California Publications in Botany 79. 1259 p.
- Swofford DL 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, Massachusetts, United States, Sinauer Associates.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24: 4876–4882.
- West JA, Zuccarello GC 1999. Biogeography of sexual and asexual reproduction in *Bostrychia moritziana* (Rhodomelaceae, Rhodophyta). Phycological Research 47: 115–123.
- West JA, Zuccarello GC, Karsten U 1996. Reproductive biology of *Stictosiphonia hookeri* (Rhodomelaceae, Rhodophyta) from Argentina, Chile, South Africa and Australia in laboratory culture. Hydrobiologia 327: 277–282.
- Yoshida T, Nakajima Y, Nakata Y 1990. Check-list of marine algae of Japan. Japanese Journal of Phycology 38: 269–320.

- Zuccarello GC, West JA 2002. Phylogeography of the *Bostrychia calliptera/B. pinnata* complex (Rhodomelaceae, Rhodophyta) and divergence rates based on nuclear, mitochondrial and plastid DNA markers. Phycologia 41: 49–60.
- Zuccarello GC, West JA 2003. Multiple cryptic species: molecular diversity and reproductive isolation in the *Bostrychia radicans/B. moritziana* complex (Rhodomelaceae, Rhodophyta) with focus on North American isolates. Journal of Phycology 39: 948–959.
- Zuccarello GC, West JA 2006. Molecular phylogeny of the subfamily Bostrychioideae (Ceramiales, Rhodophyta): subsuming *Stictosiphonia* and highlighting polyphyly in species of *Bostrychia*. Phycologia 45: 24–36.
- Zuccarello GC, West JA, King RJ 1999a. Evolutionary divergence in the *Bostrychia moritziana/B*. *radicans* complex (Rhodomelaceae, Rhodophyta): molecular and hybridization data. Phycologia 38: 234–244.
- Zuccarello GC, West JA, Kamiya M, King RJ 1999b. A rapid method to score plastid haplotypes in red seaweeds and its use in determining parental inheritance of plastids in the red alga *Bostrychia* (Ceramiales). Hydrobiologia 401: 207–214.
- Zuccarello GC, West JA, Karsten U, King RJ 1999c. Molecular relationships within *Bostrychia tenuissima* (Rhodomelaceae, Rhodophyta). Phycological Research 47: 81–85.
- Zuccarello GC, Sandercock B, West JA 2002. Diversity in red algal species: variation in world-wide samples of *Spyridia filamentosa* (Ceramiaceae) and *Murrayella periclados* (Rhodomelaceae) using DNA markers and breeding studies. European Journal of Phycology 37: 403–417.