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Frontispiece 

"When the last individual of a race of living things breathes no more, 

another heaven and another earth must pass before such a one can be born again." 

- Charles William Beebe, 1877-1962 

Adult Chatham Island oystercatcher, north coast, Chatham Island. 

(Photo by Don Hadden) 



This thesis is dedicated to 

all the conservation workers who have 

endured the hardships and 

had trouble planning their days. 

and to the late 

Gerry Clark (1927 -1999) 

ornithologist, naturalist, adventurer, 

and a wonderful inspiration. 

If the world were merely seductive, that would be easy, 

If it were merely challenging, that would be no problem. 

But I arise in the morning torn between a desire to improve the world, 

and a desire to enjoy the world. 

This makes it hard to plan the day. 

-EB White 

"Studying animals in the field can sometimes involve both physical and mental hardship 

because of the need to work in remote places with harsh climates. The field worker may have 

to live for extensive periods in difficult circumstances, facing isolation, possible ill health, poor 

diet and occasional physical danger. The advice and facilities which are taken for granted in 

an academic environment are rarely available. Problems with logistics and bureaucracy may 

mean that less research is done than expected, because everything takes more time .... " 

-Paul Martin and Patrick Bateson 

Measuring Behaviour, Cambridge University Press, 1986 



Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Ph.D. 

Aspects of habitat selection, population dynamics, and 

breeding biology in the endangered Chatham Island oystercatcher 

(Haematopus chathamensis) 

by Frances A. Schmechel 

Background 

IV 

In the late 1980s the endangered Chatham Island oystercatcher (Haematopus 

chathamensis) (CIO) was estimated at less than 110 individuals. Endemic to the Chatham 

Islands, New Zealand, it was feared to be declining and, based on existing productivity 

estimates, in danger of extinction within 50-70 years. These declines were thought to be 

caused by numerous changes since the arrival of humans, including the introduction of 

several terrestrial predators, the establishment of marram grass (Ammophila arenaria) 

which changes dune profiles, and increased disturbance along the coastline. The New 

Zealand Department of Conservation has undertaken recovery planning and conservation 

management to increase CIO numbers since the late 1980s. 

Recovery planning raised some key research questions concerning the population 

dynamics, habitat selection, and breeding biology of Chatham Island oystercatcher (CIO), 

and the critical factors currently limiting the population. The objectives of this study were 

to collect and interpret data on: 1) population size, trends, and distribution across the 

Chathams, 2) basic breeding parameters, 3) recruitment and mortality rates, 4) habitat 

selection at the general, territorial and nest-site levels, 5) habitat factors that are correlated 

with territory quality, and 6) cues that elicit territorial behaviour in CIO. 

Methods 

To determine distribution and abundance ofCIO a census conducted from 13-18 December 

1998. To determine habitat use of CIO, the lagoon shoreline and coastlines of Chatham, 

Pitt, and Rangatira Islands were mapped and habitat use by CIO recorded. Aspects of 

breeding biology, nest-site selection and use of habitat types within territories were studied 
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for 15 CIa pairs along north coast, Chatham Island during the 1994, 1995 and 1996 

breeding seasons. To identify factors limiting the population, territory quality was 

explored by comparing breeding parameters between territories and under different levels 

of management (none, low and intensive), and data on survival of first year birds were also 

collected. Because territorial behaviour plays such a key role in population dynamics, cues 

which elicit defense behaviour in CIa breeding pairs were explored using seven different 

two-dimensional models. 

Key findings 

Distribution and abundance Along 310 km (97%) of the coastline of the islands, and 100 

km (100%) of the lagoon shoreline a total of 142 CIa were counted. About 85% of CIO 

were located along the coastlines of Chatham and Pitt Islands. The census indicated an 

increase of about 20-40 adults over any previous count, although variations in methods of 

past counts made comparisons difficult. The main increases were along the north coast, 

and there has been a gradual decline on Rangatira Island. 

Breeding biology Breeding effort was high with 98% of pairs attempting to -breed, (n = 42 

pair-seasons). A clutch had a 20% chance of being successful (at least one egg surviving to 

produce a fledgling). Overall productivity averaged 0.44 fledglings/pair/season. Flooding 

was the main cause of egg loss (48%), followed by causes unknown (26%). Juveniles 

dispersed/were evicted from their natal territories within about 33 days (range 24-42) after 

fledging. 

Habitat selection 277 kms of coastline (92%) and 100% of the lagoon shoreline were 

mapped. CIO used coastline, rather than the lagoon shoreline, almost exclusively (98% of 

sightings). Intertidal rock platforms and wide sandy beaches were selected in much greater 

proportions than available. The highest densities of territories were 4 pairs/km at Tioriori, 

along the north coast, Chatham Island. Depending on the habitat types available within 

territories some pairs used rocky platform extensively for feeding (up to 60% of the time 

spent foraging), while others used sandy beach almost exclusively (76-95%). Paddocks 

were used for foraging up to 22% of the time by pairs. This extensive use of sandy beach 

and paddock is either a recent development or was previously under-detected. 

Territory quality and season oflimitations Over-winter habitat is probably not critically 

limiting based on the high survivorship rates (71 % and 83% minimum) of first-year CIa. 
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Productivity was much higher during periods of intensive management (e.g., predator 

control, fencing to exclude liv~stock, nest manipulation). Territories containing only sandy 

beach were the most productive under all management scenarios (none, low, or high 

intensity). 

Nest site selection CIO chose nest-sites along the widest sections of beach available, 

mostly on sandy beach (77% of nests), but occasionally on rock outcrops (23%). They 

avoided nesting within five metres of vegetation or the mean high tide line. The 

establishment of introduced marram and high predator pressure has probably had a 

significant impact on nest site availability and quality for CIO on the Chathams. 

Territoriality CIO aggressively attacked all the models that were shaped like an 

oystercatcher, but attacked those with CIO-like colouration most quickly and vigorously. 

The model with the least asymmetry (i.e. same colours and size) received the most warning 

behaviours. The pairs in lower quality territories were the least aggressive. Models also 

proved useful for determining territory boundaries and capturing birds. 

Key words: breeding biology, Chatham Islands, Chatham Island oystercatcher, 

endangered species, habitat selection, population size, Haematopus chathamensis, nest-site 

selection, New Zealand, territorial behaviour, territoriality, wildlife management 
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1 

CHAPTERl 

GENERAL INTRODUCTION 

" ... successful conservation biology must depend on a detailed understanding of population 

dynamics and social organisation, so that limiting factors can be identified and alleviated." 

Krebs 1994 

What/actors limit the population o/Chatham Island oystercatcher? 

The Chatham Island oystercatcher (Haematopus chathamensis) is a critically endangered 

shorebird species found only on the Chatham Islands (Baker 1973; Collar et al. 1994). The 

population was estimated at about 100-110 individuals in 1987, including 44 breeding pairs 

and, based on past productivity information, feared to be declining and at risk of extinction 

within 50-70 years (Davis 1988b). The New Zealand Department of Conservation has 

been managing Chatham Island Oystercatcher (CIO) in order to increase numbers since the 

late 1980s. Recovery planning identified research into the habitat requirements and 

breeding biology as high priority research needs (Davis 1988a; Grant 1993). 

Key questions raised by the recovery plans included: 

• If management intervention increased productivity, would the breeding/total population 

increase? (Is there enough habitat to support increased productivity, especially over 

winter?) 

• What were the primary causes of clutch and chick losses? 

• How could breeding habitat be improved and/or increased? 

• What recovery goal should be set, when will the habitat on the Chatham Islands be 

'full', i.e., when will CIO reach the carrying capacity of the islands? 

Unfortunately, attempting to identify carrying capacity is problematic. Definitions of 

carrying capacity often vary and create confusion (Dhondt 1988; Caughley and Sinclair 

1994). In addition, in order to predict carrying capacity many assumptions must be made 
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about the relationships between current and predicted habitat use, which is fraught with 

difficulties (see, for example, the review in Newton 1998). Determining limiting factors is 

suggested as a more fruitful and broader approach to conservation management than 

simply trying to determine carrying capacity. 

Understanding limiting factors can be crucial for effective conservation management of 

threatened species (Krebs 1994; Newton 1998). There are many examples where 

breakthroughs in understanding of limiting factors has led to successful management of 

populations which had previously resisted attempts to increase them. One of the better 

known and documented cases of this involves the red grouse (Lagopus lagopus), an 

important game bird in Britain. When the red grouse began to decrease in numbers, 

traditional and intuitive control measures were invoked, such as restrictions on hunting, 

predator control, the establishment of reservations and refuges, and game farming. Despite 

this effort the population continued to decrease. Finally, an intensive study of the problem 

was undertaken to determine the actual limiting factors and as a result of the information 

obtained, several unorthodox control measures were applied: patches of heather were 

burned, many older breeding grouse were removed, grit was provided, and wet areas 

drained. Following the instigation of these measures, the grouse population increased 30-

fold (Leopold 1933; Welty and Baptista 1988). A more recent example is the Aleutian 

Canada goose (Branta canadensis) which had been declining throughout the 20th century 

and breeds on most of the outer Aleutian islands in the Bering Sea. This decline was 

attributed to Arctic foxes (Alopex lagopus) taking eggs and goslings. Foxes were 

eliminated from four islands, but this did not stem the decline. Captive-bred birds did not 

survive, and translocation of wild birds to fox-freed islands did not reverse the decline 

either. Only when hunting was closed in 1975 on the wintering grounds did the goose 

population triple (Springer et al. 1978). Another excellent example of breakthroughs in 

managing endangered species is the red-cockaded woodpecker of the SE United States 

where managers and scientists realized that populations could be enhanced by the addition 

of artificial cavities (reviewed by Walters 1991). 

Understanding limiting factors is also essential for predicting responses of populations to 

changes in the environment (eg. changes in habitat, predator pressures, etc.). For example, 

to understand the response of CIa to past habitat changes, or to determine the most 

effective conservation management strategies, requires an understanding of the limiting 



factors; and, as the population changes, how these factors come into play at different 

densities and under different environmental conditions (e.g. different weather patterns or 

predators) . 
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The potential pitfalls of not understanding limiting factors includes placing high levels of 

resources into management that does not ultimately increase the population equilibrium 

level. For example, in birds species, high levels of management during the breeding 

season is almost always successful in increasing fledging success, but this often does not 

translate into larger breeding populations or a long term increase in population equilibrium 

level (Cote and Sutherland 1997). This is because survival rates of first year birds over 

winter may be low. Identifying the limiting factors and any bottlenecks at different stages 

is essential for effective conservation management. To determine the factors limiting a 

population it is essential to gain an understanding of basic breeding biology, recruitment, 

survival at different life stages, and population numbers and distribution. 

Insights into limiting factors allows for modelling various management options, and 

determining which ones would be the most effective. An understanding of the factors 

limiting a population also allows for predictions to be made and then tested, which can 

then add to the knowledge base. This is in contrast to a trial and error approach where 

many different management practices may simultaneously be applied (on top of a 

background of many varying environmental and biological conditions), and even positive 

responses add little to an understanding of what drives the systems. Making refinements to 

management are then difficult because there is no understanding of which of the many 

management practices created the positive responses, or the role of various environmental 

and biological conditions. Understanding of limiting factors also aids in predicting which 

demographic parameters would be most useful to monitor. For example, monitoring the 

total population in spring may be far more useful if the goal is increasing the total 

population than conducting a census in the autumn, especially if over-winter habitat and 

survival of first-year birds is limiting. 

Most birds, including CIO, are highly territorial, which can regulate populations by 

limiting the number of breeding pairs and recruitment rates. Aspects of avian territories 

including size and productivity are influenced by the biotic and abiotic environment. Site 

dependent regulation as proposed by Rodenhouse (1997) offers an elegant model for 

understanding the interactions between the roles of territorial behaviour and various 
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environmental and biological limiting factors, and how together they can lead to tight 

density dependent population regulation. Based on this model, the greater the variations in 

territory quality, the tighter the population will be regulated. As a population increases 

additional pairs will be forced to breed in lower quality territories, or will forgo breeding, 

reducing the overall productivity of the population until equilibrium is reached. 

Conversely, if the population declines, only the best quality territories with the highest 

rates of productivity will be occupied and keep recruitment rates high, stabilising the 

popUlation. 

Determining the environmental factors which are present, and affecting the population, is 

central to understanding the population dynamics of the species. Food resources are the 

ultimate limiting factor for a population, but populations may stabilise well below the 

confines of food resources due to limitations in nest-sites, predator pressure, disturbance, 

or pathogens (Newton 1998). These factors may act individually or interact and the main 

limiting factor may operate only in one season (i.e., the breeding season or over-winter), or 

may interact and operate in both (Fretwe111972; Sutherland 1996a; Sutherland 1996b; 

Newton 1998; Sutherland 1998). On the Chatham Islands many factors may be limiting 

the CIa population including native and introduced predators, lack of suitable nest-sites 

due to the loss of habitat, disturbance from humans and livestock, and ultimately foraging 

habitat. 

The species in context 

The family Haematopodidae in general 

The oystercatchers are a fairly small, conservative family with only a single genus 

(reviewed in Hockey 1996a; Hockey 1996b). Much research has been done on 

oystercatcher species around the world, especially Eurasian, American and African species; 

with the European subspecies of oystercatcher (H. o. ostralegus) being one of the most 

studied shorebirds in the world (Hockey 1996b). Morphologically all oystercatchers are 

similar in spite of a large geographical range, so much so that the taxonomy of several taxa 

are in dispute. There are two colour phases, one pied and one black, except for the variable 

oystercatcher (H. unicolor) which is polymorphic, containing black, pied and intermediate 

colour morphs. In all species the female is heavier and has a longer bill than the male. 

Oystercatchers are long-lived birds, reaching 40 years for Eurasian oystercatchers (Ens et 
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al. 1996) and for CIO at least 28 years old (this study). They do not nonnally breed for the 

first time until at least three to four years old (Davis 1988b; Ens 1992; Hockey 1996b; Heg 

et al. 2000). 

On the open coast and in estuaries they have a varied diet in which bivalves, gastropods 

and polychaetes figure prominently, but they also eat amphipods, crabs, ascidians, 

echinodenns and, occasionally, fish (reviewed in Hockey 1986). On rocky shores, the diet 

is usually dominated by molluscs, especially mussels, limpets, snails and chitons, whereas 

on soft substrates, bivalves and polychaetes are the dominant prey. Oystercatchers 

foraging inland eat mostly arthropods, especially earthwonns and insect larvae. 

The infonnation for the following sections are drawn from the following sources: Harris 

1967; Heppleston 1972; Hartwick 1974; Nysewander 1977; Summers and Hockey 1977; 

Hockey 1982; Davis 1988b; Lauro and Burger 1989; Lauro et al. 1992; Venneer et al. 

1992; Ens et al. 1993; Lauro and Nol 1993; Andres and Falxa 1995; Lauro and Nol1995; 

Hockey 1996a; Hockey 1996b; Banks 1998. All oystercatcher species are territorial during 

the breeding season and are predominantly monogamous, with both the male and female 

sharing in incubation and chick-rearing duties. A few species are migratory, most are not. 

Both migratory and sedentary oystercatcher species show both high mate and site fidelity. 

Some oystercatcher species breed inland, but most are coastal breeders. The coastal 

breeders nest in a range of open coastal habitats from rocky shores to shingle and sand 

beaches, and salt-marshes. Oystercatcher nests are often located close to high tide lines or 

on the shore side of vegetation lines, even though the risk of flooding is higher in these 

sites. Extensive inland breeding by Eurasian and South Island pied oystercatchers (H. 

ostralegus) has evolved only during the last century, concomitant with major population 

increases of both species. Pied species of oystercatcher usually nest on sandy beaches that 

are light in colour, and black species usually nest where beaches are dark and rocky 

(reviewed in Lauro and Nol 1995, p 926 Many oystercatcher species chose nest-sites that 

have more small objects (e.g. shells, gravel, shingle) than random sites, and which are 

located near objects or clumps of vegetation (Venneer et al. 1987; Andres and Falxa 1995; 

Lauro and No11995; Hockey 1996a). 

With very rare exceptions all are single-brooded, but lay replacement clutches if the nest is 

lost early in the breeding season. In the northern hemisphere the modal clutch size is three, 
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in the southern it is two except for variable oystercatcher and South Island pied 

oystercatcher, which have a modal clutch size of three. Oystercatchers are the only birds 

with young that have full precocial mobility (most chicks leaving the nest within 24 hours 

of hatching), yet receive food from their parents, some until well after fledging. Chicks 

fledge at around 33-49 days, not normally breeding for the first time until at least 3-4 years 

old. Piping seems to playa similar function in all species, as an aggressive behaviour 

between pairs, although it may be used in other contexts as well (such as greeting when a 

member of a pair returns from being away). 

CIO in particular 

The CIO is a pied, non-migratory, coastal breeding oystercatcher and is considered to be 

only one of two pied coloured rocky-shore specialists (Hockey 1996a). Endemic to the 

Chatham Islands group, fossil bones have been found in the dune layers, suggesting that 

the oystercatchers are not recent immigrants to the Chatham Islands (A. Tennyson, Te 

PapaiNational Museum of New Zealand, pers. comm., see also Holdaway et al. 2000). 

CIa are considered to be most closely related to variable oystercatcher and South Island 

pied oystercatcher (H ostralegus finschi), although the systematics of oystercatchers is 

uncertain (Baker 1972; Hayman et al. 1986; Sibley and Monroe 1993; Hockey 1996a). 

Historic numbers of CIO are unknown, although it was never considered common. Travers 

and Travers (1872) reported that CIa were not common and usually found on sandy 

beaches. Fleming (1939) was more specific, reporting that, "the CIO is not particularly 

abundant on the Chatham Islands, but is widely distributed on the rocky shores near 

Kaingaroa and other northern areas, and from Ouenga [Owenga] to the Tuku in the south. 

It is present also on Pitt, Mangere and South East [Rangatira] Islands. It is seldom if ever 

seen on sandy shores, many of which would be considered suitable feeding and nesting 

grounds for oystercatchers in New Zealand." The first attempted estimates of total 

numbers were by Baker (1973) based on a brief visit to the islands in the early 1970s, and 

by Best (1987) in 1987 who visited rocky shoreline which were considered most likely to 

have CIO present. These counts resulted in estimates of 50-75 individuals. The first 

complete census was conducted by Davis (1988b) in 1987 resulting in an estimate of 

103-110 individuals. A 1992 census by the NZ Department of Conservation resulted in an 

estimated 69-73 individuals. Unfortunately all these surveys were conducted using 



different methods, and often in different areas, making comparison difficult (see Chapter 

2). 

The major prey items reported for CIO foraging on rocky shores were limpets (Cellana 

strigilis), and for birds foraging on sandy beaches, sandhoppers (Amphipoda) and round 

worms (Nermertean) (Davis 1988b). Other prey items included blue mussel (Hytilus 

edulis), paua (Haliotis spp), whelks (Haustrum haustrorum), and ribbonworms 

(Polycheates). They also fossicked among wrack (washed up kelp and organic matter), 

feeding on sea tulips (Pyura pachydematina) and ribbed mussel (Aulacomya ater). Other 

bivalves and chitons have also been recorded as prey items. 

Location 

The Chatham Islands 
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The Chatham Islands are located in the Pacific Ocean 850 kms east of Christchurch, New 

Zealand (44.5°S, 176.5°W). There are two larger islands (Chatham and Pitt), several small 

islands, plus numerous stacks and islets. CIO are known to breed on four islands, with the 

majority of pairs (85%) breeding on Chatham and Pitt Islands (Davis 1988b; Page 1992). 

Chatham Island is around 96,500 ha (965 km
2
) in area, with approximately 320 km of 

. coastline. Te Whanga lagoon occupies an area of 186 km
2 

in the northern half of the 

island with around 100 kms of shoreline (Hay et al. 1970). The second largest island, Pitt, 

is around 6,190 ha (63 km
2
) in area. Chatham and Pitt Islands are inhabited, extensively 

farmed, and the vegetation is extensively modified over most of the land and coastal areas 

(Atkinson 1996). Coastal and dune vegetation is highly modified with most of the coastal 

forest and dune vegetation now replaced by the introduced marram grass (Ammophila 

arenaria), a sand binding species (Atkinson 1996). Both islands also have a large suite of 

. introduced predators and free ranging livestock (sheep and cattle). Rangatira or Southeast 

Island (218 hi!) and Mangere (113 ha) Islands were both cleared for pastoral farming but, as 

protected nature reserves for the last three decades, are rapidly becoming re-forested, and 

are free of introduced mammalian predators and weka (Gallirallus australis), a flightless, 

predatory rail native to the New Zealand mainland. 

The islands experience frequent strong winds and occasional high storm swells. The 

prevailing winds are from the south and west. Mean average wind speed is 25 kmJh with 

gale force winds (greater than 63 km/h) averaging 14 times per year. Frost is rare and 
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temperatures are moderate. Summer temperatures (mean daily maximum) reach 17-18° C; 

maximum temperatures exceed 20° C about 14 days each year. Winter minima are 5_6° C 

(Thompson 1983). 

North Coast study area 

The north coast of Chatham Island has a high concentration of breeding pairs of CIO 

between Waitangi West and Taupeka Point, and between Whangamoe and Whangatete 

Bays (see Chapter 1, Figure 1). The New Zealand Department of Conservation has 

managed pairs in the Tioriori and Wharekauri areas since the early 1990s to increase 

productivity (Munnan 1991; Sawyer 1993; Sawyer 1994; Bell 1998). The primary 

management action has been control of predators, but has also included artificial 

incubation of eggs, intennittent exclusion of livestock in some areas, and moving of nests 

away from the tide line to decrease risk from tidal flooding. The coastline in this area is a 

mix of sand and shell beaches, wave cut rock platfonn, low schist rock, or cliffs. Small 

areas contain boulder beaches or broken rocks. Grazed paddock, cliff, and marram grass 

covered sand dunes are found behind the coastline. 

Key questions and overview of chapters 

In order to answer the questions raised by recovery planning several key questions need to 

be answered including: 

• What are the factors limiting the population of Chatham Island oystercatcher (CIG) on 

the Chatham Islands? 

• What is the abundance and distribution of the population and is it increasing, 

decreasing or stable? 

• What are the recruitment and mortality rates, and within which segments of the 

population are they acting and during which season(s)? 

• What habitats are CIO selecting at the general, territory and nest-site level? 

• What are the links between productivity and habitat characteristics (what is high quality 

habitat?) 



To answer these questions, objectives for this study were set to collect and interpret data 

for CIO on: 1) population size, trends, and distribution across the Chatham Islands, 2) 

basic breeding parameters for 15 pairs along the north coast, 3) recruitment and mortality 

rates, 4) habitat selection at the general, territorial and nest-site levels,S) habitat factors 

that are correlated with territory quality as reflected in breeding success, and 6) cues that 

elicit territorial behaviour in CIO. 

Overview of the chapters 
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To identify the factors most likely to be limiting the CIa population, infonnation on the 

basic demography of the population is needed; infonnation such as distribution and 

abundance, population trends over time, and the age structure of the population. 

Infonnation on the age structure, and the proportion of the population which is non­

territorial, can provide important infonnation about the limitations imposed by low 

productivity within the breeding population and on mortality rates of different cohorts (e.g. 

breeders, nonbreeders). Chapter 2 addresses the current distribution and abundance of the 

CIO population. Detennining population trends over time, or the age structure of the 

population, would have been desirable, but was outside the scope of this study due to lack 

of historical data or individually marked CIa. Colour bands were not an option during this 

study due to past problems with colour bands on CIa. 

Data on basic breeding parameters such as breeding success, causes of clutch and chick 

losses, and timing of the breeding season are essential to understanding limiting factors and 

monitoring management outcomes. This information can also be used to model population 

responses to various management intervention scenarios. Chapter 3 reports on a range of 

breeding parameters for 15 pairs of CIO along the north coast, Chatham Island. Highly 

precise data on this topic was outside the scope of this study as the data were collected 

incidentally to the habitat use infonnation and pairs could not be visited daily. 

Ultimately, the upper limit for any population is detennined by habitat quality and 

availability. The two key seasons when habitat limitations operate are the breeding season 

and over winter (Fretwell 1972; Goss-Custard 1996; Newton 1998). Habitat use is also 

influenced by interactions between individuals and other factors such as predators or 

disturbance. Habitat selection is thought to occur at three levels. General habitat selection 

involves choice within a broad geographic area. For example, coastal birds commonly 
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show a preference for nesting on islands, where predators and human disturbance may be 

low compared to mainland sites (Buckley and Buckley 1980; Williamson 1981; Blondel 

1985; George 1987). Territory selection involves acquisition of an area vigorously 

defended by the pair. A territory is generally defended to protect critical resources, usually 

nest-sites or food supply. Factors that influence nest-site selection include physical and 

vegetation characteristics that protect adults, eggs and chicks from predators, conditions of 

abiotic environment, and conflicts with neighbours (Burger 1977; Burger 1985). 

Food and nest-sites are two critical resources found within territories which can limit 

populations. General habitat selection and territory selection, the habitat composition of 

territories, and the use of microhabitats within territories are examined in Chapter 4. 

Territory quality and its relationship to habitat types is explored in Chapter 5. In CIO, loss 

of clutches due to flooding often raises the question as to why they do not nest in areas less 

prone to flooding. Chapter 6 addresses nest-site selection in CIO and the implications to 

population regulation. 

Finally, behaviour plays a key role in regulating bird numbers through territorial behaviour 

(reviewed in Newton 1998). CIO were found to respond to two-dimensional models that 

resemble oystercatchers, which allows for exploration of territorial behaviour within the 

species. The cues that CIO respond to and the reasons for responding to these cues are 

explored in Chapter 7. 

Thesis context 

This thesis was conducted under contract to the Science and Research Division, New 

Zealand Department of Conservation. The author was supported by a Lincoln University 

Doctoral Scholarship. Additional funding was received from Lincoln University and the 

Gordon Williams Biological Fellowship. 

This thesis represents work that commenced in October 1994 under the supervision of Drs 

Adrian Paterson and Chris Frampton, Lincoln University, with external supervision by . 

Ralph Powlesland, Science and Research, New Zealand Department of Conservation. All 

data collection, analysis, and writing is original and was done by myself for all chapters. I 

received assistance with the data collection for two weeks from Alastair Freeman, Lincoln 

staff and about six weeks from Rachel Peach, summer student scholar. Assistance with 
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scanning photos and layout of the plates was received from Rhonda Pearce, Lincoln staff. 

Assistance with the figures containing maps was received from Adrian Paterson and 

Rhonda Pearce. The original research questions came from Andrew Grant, New Zealand 

Department of Conservation, who also assisted with the original funding application. The 

concept of testing various types of models was originally suggested by Adrian Paterson 

(Chapter 7). Shaun O'Connor, New Zealand Department ofCons~rvation, provided the 

funding and logistical support to conduct the 1998 census (Chapter 2). 

There were several constraints that limited the scope of the research. Colour banding of 

adult CIO was not an option due to past problems with bands. Experimental powder­

coated metal band was trialed on two cohorts of juveniles, but the colour wore off within 

less than two years. The timing and amount of data collected was constrained because the 

study area was remote and travel times to several CIO study pairs was about three hours 

return. Transportation was limited, especially the first season, and field work had to be 

suspended several times for transport or administrative reasons. (Inclement weather and 

changes in beach or river courses also regularly delayed or altered data collection.) 

Because of the long field seasons (about six months each season), logistics of organisation, 

and the difficulties with data entry and analysis while on the islands, some data collection 

and analysis that would have been desirable (such as the effect of storm patterns on 

productivity and population modeling) were outside the scope of this study. Determining 

the areas and habitat composition of each territory along the north coast was attempted, but 

because of a variety of technical obstacles involving aerial photography and GPS/GIS 

technology, the results could not be included in this thesis. Finally, there was only a short 

lead time before data collection commenced the first season, due to the terms of the 

contract, and the time between seasons was also limited (due to the logistics of the study 

and data entry). Communications by phone and email while on the Chatham Islands was 

limited due to cost and logistics. Therefore, I must take full credit for any flaws in study 

designs as I did not have many opportunities to adopt them from other sources. 

These chapters, excluding the General Introduction and General Conclusions, have been 

published or prepared for submission to journals, and so are not entirely consistent in their 

layout and style. As a result there is, unfortunately for the reader, some repetition of basic 

information in the introduction and location sections of several chapters, although I have 

attempted, to minimise it. The term 'season' or 'year' refers to the CIO breeding season, 
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which begins in October and ends in the following calendar year. Seasons are given as the 

year in which breeding begins (e.g., 1994 refers to the 1994/5 breeding season). 
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CHAPTER 2 

DISTRIBUTION AND ABUNDANCE OF THE CHATHAM 

ISLAND OYSTERCATCHER (HAEMATOPUS 

CHATHAMENSIS) 

FRANCES SCHMECHEL
l 

and SHAUN O'CONNOR
2 

I Ecology & Entomology Group, PO Box 84, Lincoln University, Canterbury, New Zealand 

2 Department of Conservation, PO Box 114, Chatham Islands, New Zealand 

ABSTRACT 

From 13 to 18 December 1998, we counted Chatham Island Oystercatchers 

(H aematopus chathamensis) on approximately 310 km (96 - 97%) of the coastlines of 

Chatham, Pitt, Rangatira; and Mangere Islands, and 100 km (100%) of the shore ofTe 

Whanga Lagoon, Chatham Island. A total of 142 adult Chatham Island Oystercatchers, 

including 34 confirmed breeding pairs and seven additional possible breeding pairs, were 

found. This is an increase of 20 to 40 adults over any previous count or estimate. Some 

of this increase may be due to efforts by the Department of Conservation to increase 

productivity of breeding pairs since the early 1990s along the northern coast of Chatham 

Island. Approximately 70% percent of the breeding pairs were on Chatham Island, 15% 

on Pitt Island, the remaining 18% on Rangatira and Mangere Islands. Most of the 

oystercatchers (79% of individuals and 74% of the breeding pairs) were in areas we 

broadly defined as containing rocky wave-cut platform or other rocky coastline or 

outcrops. Thirty individuals and nine breeding pairs were on sandy beaches. One 

immature bird was on the shore of Te Whanga Lagoon. 

KEYWORDS: Chatham Island Oystercatcher, Haematopus chathamensis, Chatham 

Islands, population size, endangered species. 

Published as: Schmechel, F.A.; O'Connor, S. 1999. Distribution and abundance of the 

Chatham Island Oystercather (Haematopus chathamensis). Notornis 46: 155-165. 
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INTRODUCTION 

The Chatham Island Oystercatcher (Haematopus chathamensis) is an endangered 

species endemic to the Chatham Islands (Baker 1973, Davis 1988, Collar et al. 1994, 

Department of Conservation 1994). Counts from 1986 to 1996 estimated the population 

to be between 65 and 120 adults, including 30 - 44 pairs (Best 1987, Davis 1988, Davis 

1989, Page 1992, Sawyer 1993, 1994; Schmechel, unpubl. data). Because only one or 

two people conducted these counts, they were done over limited areas and/or over 

relatively long periods (6 - 13 weeks) thus increasing the likelihood of under counting or 

double-counting birds. This census is the first to be conducted within a relatively short 

time-frame (1 week) over all four islands where Chatham Island Oystercatchers breed. 

Chatham Island Oystercatchers are non-migratory, and almost strictly coastal in 

their distribution (Baker 1973, Davis 1988). Breeding pairs appear to be fairly sedentary 

and defend their territories strongly during the breeding season, although individuals may 

move to other areas to feed (Davis 1988). As with many other oystercatcher species, they 

do not breed until at least two or three years old (Davis 1988, Marchant & Higgins 1993, 

Hockey 1996). Occasionally pairs defend territories but do not breed (Davis 1988); these 

pairs usually breed the following season (Sawyer 1983, 1984; Schmechel, unpubl. data). 

Territorial and breeding pairs often respond to a cardboard model of an oystercatcher 

placed inside the boundaries of their territories, displaying the same aggressive 

behaviours they do towards an intruding floater or neighbouring pair of oystercatchers 

(e.g., piping displays, object tossing, physical attacks) (Schmechel, unpubl. data). Non­

breeding and immature birds do not defend territories during the breeding season and 

'float' around, moving from area to area, even island to island, occasionally forming 

small flocks of up to a dozen birds (Davis 1988; S. Sawyer, pers. comm.; Schmechel, 

unpubl. data). Floaters may form pairs, which forage, roost and travel together. 

METHODS & LOCATION 

Census 

We searched the coastline of four islands (Chatham, Pitt, Rangatira and Mangere) 

inhabited by Chatham Island Oystercatchers (Fig. 1) from 13 to 18 December 1998. This 
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FIGURE 1 - Map of the Chatham Islands and the areas used for comparison with past 

counts (Table 2). 
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is within the breeding season, when all pairs are defending territories along the coast. We 

attempted to cover the islands in as short a time as possible to minimise the chance of 

miscounting birds. 

Census team members collected data on numbers of birds, band combinations, 

location, age class, habitat type, and made notes on breeding status and behaviour. The 

presence of nests or chicks was noted, but is not reported in this paper. Age class was 

estimated by colour of eyes, bill, and legs, i.e., oystercatchers with orange bill tip 

(possibly brown in some individuals), brown-orange eyes (versus scarlet) and pale legs 

were classified as immature birds; those with scarlet red/orange eyes, no brown on the bill 

tip, and reddish-pink legs as adults (Marchant & Higgins 1993, Heather & Robertson 

1996; Schmechel, unpubl. data). Colours can be difficult to distinguish from a distance 

and ageing birds becomes progressively more difficult as they approach adulthood. When 

in doubt, we assigned birds to the general category of adult. (Adults in this context were 

birds not identifiable as immature, but not necessarily of breeding age yet.) A cardboard 

model of an oystercatcher was sometimes used to determine territoriality of pairs if 

breeding could not be confirmed. 

Department of Conservation staff and contractors, members of the Ornithological 

Society of New Zealand, the Taiko Team, and volunteers from the local community (a 

total of 35 people) participated in the census. We explained identification, ageing, 

behaviours, and data recording to the team before the census and some of the less 

experienced members were teamed up with more experienced people. However, some 

areas of the coastline and lagoon edge were surveyed by trained but inexperienced 

observers. 

Team members checked the majority of the coast and lagoon edge on foot. Some 

long stretches of beach and the northern edge ofTe Whanga lagoon were surveyed from 

four-wheel farm bikes, and a section of the southern cliffs of Chatham Island between 

Cape Fournier and Otawae Point, where land access is difficult, was searched from a boat 

running close to the shore (Fig. 2). The swell was too large to complete a section of 

coastline of about eight kilometres between Otawae Point and an unnamed point east of 

Green Point, and the team did not cover a few small sections of the Pitt Island coastline 

(approximately four kilometres) (Fig. 2). Altogether, we checked an estimated 310 km of 

coastline, about 96 - 97% of the total coastline, and 100 km oflagoon edge (100%). This 
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FIGURE 2 - Location of oystercatchers sighted during the 1998 census and the areas not 

covered by the 1998 census (stippled). Codes: B = confinned breeding pair, 

S - suspected breeding pair, T - territorial pair, FP - floating pair, F - floater, 

I - immature, U - status unknown. 
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survey covered the known range of the Chatham Island Oystercatcher except for the Star 

Keys, small rock outcrops about 10 km east of Pitt Island, and the Muramur stacks of Pitt 

Island, where one or two oystercatchers have been reported (Davis 1988; M. Bell, pers. 

comm.; S. Sawyer, pers. comm.). 

Mapping and analysis 

We assigned oystercatchers, for the purposes of data analysis, to one of the 

following categories: 

1) confirmed breeding pair - breeding confirmed for that season by sighting of 

either a nest or chick; 

2) territorial pair (a good predictor of breeding in ejther the current or next 

breeding season) - pair seen to defend territory against either floaters, other pairs, or a 

model oystercatcher but not confirmed to be breeding; 

3) suspected breeding pair - pair not confirmed as territorial, but they are either 

displaying breeding behaviours (e.g., alarm calls, distraction displays) however nest or 

chicks were not found, or have been reported breeding from earlier in the season (but 

reports are unconfirmed); 

4) floaters - singles, or pairs travelling around together but not displaying 

territorial or breeding behaviours; and 

5) breeding status unknown. 

Where observers noted two adults together but had no additional information on 

their status, we recorded them as two individuals of unknown status at the same location, 

rather than as a 'pair'. We used this approach to avoid calling floaters 'pairs', since the 

term 'pair' can lead to an assumption of more breeding pairs than actually exist. This is a 

conservative approach and may underestimate the number of breeding pairs in areas 

seldom checked. In this paper the general term breeding pair includes confirmed and 

suspected breeding pairs, and territorial pairs. 
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RESULTS & DISCUSSION 

Distribution and abundance 

We counted a total of 142 adults (including those with immature colouration) on 

the four islands, including 34 confirmed breeding pairs and seven additional possible 

breeding pairs (Fig. 2). Together, Chatham and Pitt Islands (96% of the area searched) 

accounted for 90% of the total number of adults seen and about 85% of the breeding pairs 

(Table 1). Per unit area of coastline, Rangatira Island had the highest density of 

individual birds and breeding pairs (Table 1). The number of breeding pairs on Pitt Island 

may be an underestimate because many were observed infrequently and/or from a long 

distance, making determination of breeding status difficult. 

TABLE 1 - Number (and percentages) of Chatham Island Oystercatchers seen on each 

island in the Chathams, December 1998. Individual oystercatchers includes both 

adults and those with immature plumage. Lower estimates of breeding pairs are 

confirmed breeding pairs only, upper estimates includes suspected breeding pairs 

and territorial pair.s. 

Location Total individual oystercatchers Number of breeding pairs 

per 10 km per 10 km 

No. (%) of coastline* No. (%) of coastline* 

Chatham 94 (66) 4 23 - 30 (67 - 73) 1 

Pitt 34 (24) 6 5 (15) 1 

Rangatira 10 (7) 12 4 (12) 5 

Mangere 4 (3) 6 2 (6) 3 

Total 142 34 - 41 

* rounded to the nearest whole number 

Six (4%) ofthe oystercatchers seen had immature colouration, the remainder had 

adult or undetermined colouration. The number of birds with immature colouration will 

be a minimum, as those viewed from a distance, or where the observer was uncertain, 

were assigned to the adult age class. 

Fifty-one birds had metal bands, 49 were unbanded, 29 unknown (e.g., legs not 

seen), and 13 had either colour bands or jesses. There were no cases of individually 

recognisable birds being sighted twice, but there were two cases when birds not originally 

seen were later sighted (M. Bell, pers. comm.). Individuals (especially floaters) can move 

considerable distances from month to month, even between islands (Davis 1988; 
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Schmechel, unpubl. data), but details of how often birds move around and the patterns of 

movement are unknown. With only a small proportion of birds individually identifiable, 

it is difficult to estimate the likelihood of birds having been double counted or missed in 

this census. We attempted to minimize miscounting by checking adjacent survey areas on 

the same day as much as possible. 

Population trends 

Thirty-nine more adult Chatham Island Oystercatchers were seen during the 1998 

census than in any previous count, and the total was 22 more than the highest previous 

estimate (Table 2). Many past surveys were only partial (e.g., 1970171, 1986/87, 

1995/96) and covered different areas from one another. However, if a comparison is 

made of the number of adult oystercatchers seen in areas that have been counted most 

consistently over the last 12 years, it shows that numbers have increased in the northern 

half of Chatham Island, have remained steady in the southern half of Chatham Island and 

on Pitt Island, and decreased on Rangatira Island (Table 2). There is also good evidence 

that the number of breeding pairs has increased on the north coast of Chatham Island 

since 1987, but decreased on Rangatira Island since the 1970s (Table 3). 

Increases in the numbers of birds observed on the northern coast may be due, at 

least in part, to management activities since the early 1990s by the Department of 

Conservation designed to increase the productivity of breeding pairs, especially between 

Waitangi West and Okahu Points. Changes in weather patterns that effect the direction of 

high winds and storm tides during the breeding season could also have a significant effect 

on productivity over time in particular areas (Lauro & Nol 1993). The decline of 

breeding pairs on Rangatira Island since the mid 1980s is difficult to explain and could be 

due to a variety of causes including changes in habitat, weather patterns, lack of local 

recruitment, skua numbers, disturbance factors, or a combination of these or other factors. 
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TABLE 2 - Numbers of adult Chatham Island Oystercatchers in selected areas over 12 

years of surveys (including those with immature plumage for 1998). Numbers in 

parentheses indicate that only a portion of the area was surveyed. Areas (see also 

Fig. 1): NW Coast - Waitangi West to Waikauia Lake mouth, Wharekauri - Cape 

Young to Taupeka Point, SW Coast - Awamata Stream to Point Gap. Sources: 

1970171 = Baker (1973), 1986/87 = Best (1987), 1987 = Davis (1988), 1992 = 

Page (1992), 1995/96 = Schmechel (unpubl. data). 

Areas 1970/1
1 

1986/7
1 

1987 1992 1995/6
1 

1998 

NWCoast 4 - 20 nla 14 14 22 28 

Wharekauri 6 - 30 10 16 11 - 122 12 19 

Matarakau Point 0 0 0 2 4 6 

OkawaPoint 0 0 0 0 3 3 

Owenga 2 - 10 2 3 1 5 4 

SW Coast 0 12 11 2-6 9 13 

Pitt Island 8 - 40 (8) 23 9 (10) 34 

Rangatira 11 - 50 nla 17 12 12 10 

All other areas 4 - 20 15 19 18 20 24 

TOTAL count 25+ 65 103 69 97 142 

TOTAL estimate 50 65 -75 103 - 69 -73 100 - 140 -

110 120 150 

1 partial surveys only 

2 upper range includes 'unconfinned sightings' 

TABLE 3 - Changes in the number of 'pairs' of Chatham Island Oystercatcher along the 

north coast of Chatham Island (Washout Creek to the east end ofTioriori beach 

and Cape Young to Okahu Point) and Rangatira Island. The term 'pair' may have 

not been defined in the source documents and could include floating (i.e. non­

breeding) pairs. Sources: a = Fleming (1939), b = in Davis (1988), c = Davis 

(1988), d = Page (1992), e = Sawyer (1993), f= Nilson et. al. (1994), g = Sawyer 

(1994), h = Schmechel, unpubl. data, i = 1998 census. 

Year 

1937 

1970-84 

1984-87 

1987/88 

1991/92 

1992/93 

1993/94 

1994/95 

1995/96 

1996/97 

1998/99 

North coast of Chatham Island 

Total Known breeding 
. I 

paIrS 

11 

11 
13 

13 

13 

14 

14 

15 

10 

9 

11 

14 

14 

15 

Rangatira Island 

Total Known 
• 1 

paIrS breeding 

3 

10 - 13
2 

9 

8 

6 

6 

6 

6 

5 4 

[includes territorial, known and suspected breeding pairs 

2except in 1978179 when only 9 pairs were recorded (H. Robertson, pers.comm.) 

Source 

a 

b 

b 

c 

d 
e,f 

g,f 

h 
h 
h 
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Variables and potential biases 

There are potential biases in the data from both this census and previous counts. 

The time of day, tide, weather, and observer's skill, knowledge and experience may bias 

the number of birds sighted (Bibby et al. 1992). The weather during this census was 

mixed with light or no winds (less than 40 km/h) on most days and stronger winds 

(estimated 40 to 60 kmlh) on two other days. Light rain delayed the start times on two 

days (14 and 15 December), but there was no precipitation the remainder of these days. 

Only one section of coast was checked during occasional showers on the morning of 15 

December. Most days were a mix of cloud and sun, except 16 and 17 December, which 

were fine. 

High tide peaked between 02:52 - 06:34 and 15:17 - 18:54 during the dates of the 

census. The majority ofthe survey work was carried out between 09:00 - 18:00 resulting 

in portions of the rocky coastline being checked around low tide when birds may be more 

difficult to observe because they are foraging on rock platforms out of sight. 

Travelling slowly on foot may increase the chances of observing and hearing birds 

compared with travelling by farm-bike or boat, particularly along locations with rocky 

coastline. The majority of rocky coastline was checked by foot during this census; 

however, if farm-bike or boats were used more extensively during any of the past surveys, 

it may explain some of the variation in numbers between years (e.g., 1992). 

The overall potential bias for this census may be towards a slight undercounting of 

birds due to: the likelihood of missing birds on rocky coastline during low tide, effects of 

winds and swell on detecting birds (especially the south coast), areas of coastline that 

were not checked and may have contained birds, and the use of inexperienced observers 

in some areas. Countering this bias is the possibility of double-counting birds, especially 

since few have unique band combinations. As a result of this a range of 140 - 150 has 

been estimated for the population (Table 2). 

Differences in methods between counts over time (e.g., the amount and areas of 

coast-line and lagoon edge covered, the number of days over which the count was 

conducted, the experience of the observers, the definition of pairs, the method of travel) 

increase the risk of bias and make trends in numbers of breeding pairs, floaters, and the 

total population difficult to detect (Table 4). This census and the 1987 surveys are 

probably the most comparable in terms of methods of travel, experience of observers, and 
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areas covered. Many of the other surveys may have underestimated total numbers of 

birds in at least portions of their range due to lack of complete coverage of areas 

(1970171, 1986/87, 1995/96), or lack of experience of observers andlor methods of travel 

used (1992). In spite of this, the magnitude of the changes on the northern coast of 

Chatham Island and Rangatira are too large to be explained by variations in survey 

intensity alone, especially for breeding pairs, which tend to be reasonably sedentary and 

may be checked several times per season. 

TABLE 4 - Comparison of time-frames and number and experience of participants for 

past survey efforts. Experience of observers: H = high, U = unknown, M = 
mixed. Sources: a = Best (1987), b = Davis (1988), c = Page (1992), d = 
Schmechel, unpubl. data, e = 1998 census. 

Survey Duration Number of Approx. percent of Experience Source 

dates (weeks)* participants coastline surveyed of observers 

22.12.86 - 2.2.87 6 1 30 H a 
12.10.87 - 5.12.87 8 1 95 H b 

9.1.92 - 20.2.92 7 2 100 U c 

11.11.95 - 11.2.96 13 4 75 H d 

13.12.98 - 18.12.98 1 35 98 M e 

* rounded off to the nearest week 

Habitat use 

All oystercatchers were seen along the seacoast (e.g., within 0.5 km of the ocean) 

apart from one apparently immature bird that was seen on Te Whanga Lagoon on a 

substrate of sand and mud with low vegetation. Thirty adults (21 % of the total), including 

nine breeding pairs (26%), were on sandy (or sand and shell) beaches. Many of the sandy 

areas used by oystercatchers were near stream mouths, and had wide beaches and 

abundant kelp deposits. All other sightings (79%) were in areas broadly defined as 

having some wave-cut rock platform (relatively flat volcanic or sandstone platforms 

exposed only during low tide) or intertidal rocky areas (volcanic, schist or sandstone) 

associated with them (see also Davis 1988 for descriptions and maps of habitat types). 

Approximately 40% of the coastline of the four islands surveyed is classified by Davis 

(1988) as some type of intertidal rocky platform, 35% as sandy beach, and 25% as cliff or 

boulder. The oystercatchers are selecting for intertidal rocky habitats (79% use / 40% 

availability), using sandy beaches less than would be expected based on availability (21 % 

use / 35% availability), and avoiding cliff and boulder areas (0% use / 25% availability). 
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CONCLUSIONS 

The 1998 census was the most intensive to date, providing a base-line from which 

to compare both past and future Chatham Island Oystercatcher counts. Variations in 

census effort, methods, timing, and data collected between counts make it difficult to 

determine how much of the increase in numbers recorded is the result of actual changes in 

the population, changes in the census effort and accuracy, changes in management, or a 

combination of these and/or other factors. However, the estimated increase in total 

numbers (20 - 100% over previous estimates) and the nature of the data for some areas 

(e.g., the northern coast of Chatham and Rangatira Islands) provide good evidence that 

changes have occurred in the numbers of Chatham Island Oystercatchers and are not just 

the result of increased census effort. 

Careful and intensive monitoring is essential to detect changes in numbers, 

especially if numbers begin to decline. Because Chatham Island Oystercatchers, like 

other oystercatchers, appear to be long-lived, do not begin breeding until at least two or 

three years old, and a proportion of the Chatham Island Oystercatcher population is non­

territorial, it would be easy to miss early changes, such as a decline in the floater 

population, if periodic, comparable censuses were not conducted. Undetected declines in 

portions of the population, or concluding the population is increasing when it is not (a 

Type II error), could have serious implications for the conservation and management of 

the species if undetected for too long. 

Future surveys should be designed to minimise potential biases and make those 

counts as comparable as possible with this census. If partial surveys are done between 

complete censuses, the same areas should be covered each time and standard methods 

used. Ifbirds are individually marked, future counts could also provide information on 

adult and fledgling survival, movements, fidelity, population structure, and fecundity. 

Future surveys, combined with individual colour-banding, could also reveal whether 

management on the northern coast is benefiting the species at other sites. 

The number of Chatham Island Oystercatchers appears to have increased 

significantly. However, ~ecause reliable comparisons with past estimates cannot be 

made, trends in the overall population will remain uncertain until further comparable 

counts are undertaken. 
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CHAPTER 3 

ASPECTS OF THE BREEDING BIOLOGY 

OF CHATHAM ISLAND OYSTERCATCHER 

(HAEMATOPUS CHATHAMENSIS) 

ABSTRACT 
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In order to support conservation management efforts and better understand the population 

dynamics of the endangered Chatham Island Oystercatcher (CIa) aspects of the breeding 

biology of the CIO was studied on the north coast of Chatham Island during the 1994/5, 

1995/6 and 1996/7 breeding seasons. Reproductive activity was monitored regularly for 5 

to 6 months each season on 13 to 15 territories, or approximately 27-44% of the total 

estimated breeding population of the species. Data were also collected on colour changes 

of soft parts in immature birds. 

Breeding effort was high. Only one pair apparently did not attempt to breed in one season 

over the total 42 pair-seasons. On average 33% of all pairs successfully raised at least one 

chick to fledging per season (range 14-47%). Damaged eggs left in the nest ended or 

shortened 17% of the breeding CIO pair seasons due to pairs incubating these eggs rather 

than re-nesting. These mostly intact eggs were either cracked or had small holes in them 

from a variety of possible causes. 

Hatching success per clutch averaged 41 % (range 28-62%), and fledging success (of those 

clutches which hatched at least one chick) averaged 56% (range 43-63%). Over the three 

seasons a clutch had a 20% (range 9-38%) chance of being successful (at least one egg 

surviving to produce a fledgling). Overall productivity averaged 0.44 

fledglings/pair/season, but varied widely between years (range 0.14-0.73 

fledglings/pair/season). A total of 20 fledglings was produced over the three seasons in 

the study area (Waitangi West to Okahu Point). Tidal flooding and storms were the cause 

of almost half (48%) of all egg losses, followed by causes unknown (26%). Other 

mortality factors included predation, trampling, abandonment, and infertility. The risk of 

flooding was constant throughout the incubation period; for other causes, the risk of loss 

was highest the week before and after hatching. All but one chick that died before 



fledging simply disappeared (n = 8), and most ofthe losses (75%) occurred within the 

first 11 days after hatching. 
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The breeding season extended over six months (October to March) with peak activity 

from mid-November to mid-February. Clutches were initiated from mid-October until the 

third week in January. The latest nest hatched in mid-February. Chicks were present 

from mid-November to late March. The incubation period was normally 28-29 days. 

Chicks fledged about 39 days after hatching (range 30-47). One-chick broods fledged 

more quickly than two-chick broods (midpoint estimates ranged from 30-40 and 42.5-46.5 

days respectively). Fledglings were evicted (or dispersed) from their natal territories 

about 33 days after fledging (range 24-42). 

Based on 61 nests with complete records, mean clutch size was 2.20 (range 1-3) eggs per 

clutch. One-egg clutches were very rare (5% of all clutches) and found only in 

replacement clutches. Two-egg clutches, and clutches laid early in the season, were the 

most successful. Up to two replacement clutches were laid if the first clutch was lost. 

Immature CIO when under 11 months old had brown eyes, brown bill tips and pale legs. 

Between 11-16 months of age immature CIO began to resemble mature birds, but could 

still be distinguished by their brown bill tips, brown or brownish eyes, and legs which 

were not as red as mature individuals. From 22-25 months distinguishing immature birds 

from adults was difficult, but subtle differences in eye colour were noted. 

INTRODUCTION 

Basic information on population dynamics, limiting factors, habitat relationships, and 

predator/prey interactions underpins advances in understanding the ecology of threatened 

and endangered species (DeSante and Rosenberg 1998). For threatened bird species, 

information on the timing of the breeding season, incubation and fledging periods, and 

breeding success is necessary for most conservation management activities. To determine 

annual breeding success accurately, for example, it is essential to know how long 

fledglings remain in their natal territories. Similarly, to target management efforts where 

they can be most effective, it is essential to understand when losses are occurring and the 

magnitude of these losses. The Chatham Island Oystercatcher (Haematopus 

chathamensis) (CIO) is an endangered species with an estimated population of only 140-



150 individuals (Schmechel and O'Connor 1999), yet little is known about its breeding 

biology. 
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Limited information on breeding success, basic breeding parameters (e.g., clutch size, 

incubation period, egg measurements) and timing of the breeding season have been 

collected, mostly incidental to other work (primarily for the Rangatira Island population). 

However, little or no information is available on several key aspects of the breeding 

season, especially for pairs outside Rangatira Island, such as clutch replacement times, 

hatching success rates, productivity, time to fledging and dispersal/eviction of fledglings 

from parental territories, and causes of egg and chick losses. 

The information which is available on the breeding biology of Chatham Island 

Oystercatcher (CIO) comes primarily from a survey done by Davis (1988, 1989). 

Information on aspects of breeding was collected in conjunction with a survey of CIO 

numbers and habitat use during the 1987/8 and 1988/9 seasons (hereafter seasons are 

given as the year in which breeding begins) across the whole of their range. More 

detailed data on breeding have been collected incidentally on Rangatira and Mangere 

Islands from the 1970s by conservation and research workers. Some information was also 

collected in conjunction with management on the north coast of Chatham Island in the 

early 1990s. Much of the general breeding information for CIO is in unpublished reports 

to the Department of Conservation (Merton and Bell 1975; Davis 1988). The primary 

source of published information (based primarily on Davis' work) is Marchant and 

Higgins (1993) and Heather and Robertson (1996). Additional data have been published 

in early accounts of the species of the Chathams (Travers and Travers 1872; Fleming 

1939) and by Baker (1973; 1975) as part of a review of the oystercatchers of New 

Zealand. 

The impetus for recent conservation work on the species stemmed from concern that it 

was rare and possibly declining. The population was estimated at around 100-110 

individuals in the late 1980s with productivity too low to maintain the population (Davis 

1988). To increase CIO numbers, Department of Conservation drafted a recovery plan 

and initiated a management programme which included nest manipulations, predator 

control, and fencing along the north coast of Chatham Island (Murman 1991; Sawyer 

1993; Sawyer 1994). 
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Management intervention (e.g., predator control, nest moving, etc.) was minimal during 

the course of this study, providing a baseline from which to compare future efforts (DOC 

1995). The fence at Tioriori (an area managed specifically for CIO) was occasionally 

maintained, but breaches often occurred and both livestock and weka (Gallirallus 

australis) were regularly seen inside the fence during all three seasons of the study (pers. 

obs.). 

Breeding ofCIO is restricted to coastal areas (Baker 1973; Davis 1988). About 70% of 

the estimated 40-50 breeding pairs are on Chatham Island, 15-20% on Pitt, and the 

remainder on Rangatira and Mangere (Schmechel and O'Connor 1999; Moore et al. 

2000). Each pair vigorously defends its territory during the breeding season, and may 

defend it all year round in some locations (Davis 1988; pers. obs.). On Chatham Island, 

nesting is primarily in areas of good visibility for the incubating bird on sandy beaches or 

occasionally on rocky outcrops (Chapter 6). Nests are either shallow cup-shaped scrapes 

in the sand or similar depressions in low mat-forming vegetation on rocks. In 

oystercatchers, the precocial young are fully mobile (most chicks leaving the nest within 

24 hours of hatching), yet receive food from their parents, some until well after fledging 

(Hockey 1986). 

The major prey items which have been reported for CIO foraging on rocky shores are 

limpets (Cellana strigilis), and for birds foraging on sandy beaches are sandhoppers 

(Amphipoda) and round worms (Nermertean) (Davis 1988). Other prey items include 

blue mussel (Hytilus edulis), paua (Haliotis spp), whelks (Haustrum haustrorum), and 

ribbonworms (Polycheates). They also fossick among wrack (washed up kelp and organic 

matter), feeding on sea tulips (Pyura pachydematina) and ribbed mussel (Aulacomya 

ater). Other bivalves and chitons have also been recorded as prey items. 

A three year study (1994 - 1996) was undertaken to assess which factors may be affecting 

productivity and which may be limiting the population, and determine actions which 

could be taken to increase numbers breeding pairs on the north coast of Chatham Island. 

Additionally basic breeding information was collected to aid in management. Specific 

objectives of this study included: 

1) obtaining more detailed productivity information for CIO pairs outside of Rangatira 

(breeding success rates and the causes and timing of breeding failures); 



2) determining timing of the breeding season (clutch initiation, incubation periods, re-

nesting intervals, time to fledging, and timing of eviction/dispersal of fledglings); 

3) recording clutch sizes and egg measurements; and 

4) determining changes in soft part colouration as immature CIO age. 

This paper presents results of research on the breeding ecology of this species and 

compares CIO with other oystercatcher species. 

LOCATION 
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The Chatham Islands are located in the Pacific Ocean 850 kms east of Christchurch, New 

Zealand (44°S, 176.5°W). The islands experience frequent strong winds and occasional 

high storm swells. The prevailing winds are from the south and west. Mean average 

wind speed is 25 km/h with gale force winds (greater than 63 km/h) averaging 14 times 

per year. Frost is rare and temperatures are moderate. Summer temperatures (mean daily 

maximum) reach 17-18° C; maximum temperatures exceed 20° C about 14 days each 

year. Winter minima are 5_6° C (Thompson 1983). 

Chatham Island is around 96,500 ha (965 km
2

) in area, with approximately 320 km of 

coastline. Te Whanga lagoon occupies an area of 186 km
2 

in the northern half of the 

island with around 100 kms of shoreline (Hay et al. 1970). The second largest island, 

Pitt, is around 6,190 ha (63 km
2
) in area. Rangatira or Southeast Island (200 ha) and 

Mangere (100 ha) Islands are protected nature reserves with no permanent human 

residents nor any introduced mammals or avian predators (e.g., weka). Chatham and Pitt 

Islands are inhabited, extensively farmed, and the vegetation is extensively modified over 

most of the land and coastal areas (Atkinson 1996). Both Chatham and Pitt Islands have a 

large suite of introduced predators and free ranging livestock (sheep and cattle). Coastal 

and dune vegetation is highly modified with most of the coastal forest and dune 

vegetation now replaced by the introduced marram grass (Ammophila arena ria), a sand 

binding species (Atkinson 1996). 

The study areas were located on the north half of Chatham Island between Waitangi West 

and Taupeka Point, and between Whangamoe and Whangatete Bays (Figure 1) (hereafter 
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Figure 1 Map o/the north coast, Chatham Island with location of study pairs. 
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referred to as the 'north coast'). The coastline in this area is a mix of sand and shell 

beaches, wave cut rock platform, low schist rock, or cliffs. Small areas contain boulder 

beaches or broken rocks. Grazed paddock, cliff, and marram grass covered sand dunes 

are found behind the coastline. Four of the breeding territories at Tioriori were within a 

site fenced off to protect CIO nests (i.e., predator control and fencing to exclude 

livestock). 

METHODS 
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Territories of 13-15 pairs of CIO along the north coast of Chatham Island were monitored 

for breeding activity over most of the breeding season from October or November until 

late March or early April (Appendix 1). A record was kept of dates of breeding 

outcomes; hatching and fledging success; known and suspected causes oflosses of nests 

or chicks; dates of nesting, hatching, fledging, and eviction/dispersal of fledglings; clutch 

size; egg weights and measurements; and soft part colouration of fledglings. 

Pairs were widely scattered along the coastline with access to territories by farm-bike or 

on foot. Five pairs required three hours travel time to monitor. One pair, which nested on 

an island, could only be accessed during low tide. Two pairs (Waitangi West and 

Whanga) not regularly visited during the first season, were visited in subsequent seasons. 

Some pairs were passed regularly en route to other pairs and were therefore monitored 

more frequently. A range of 14-23 checks was made per pair per season (Appendix I). 

Pairs with fewer than eight checks in a season were excluded from some breeding 

calculations due to the higher likelihood of nests being missed, except clutch size and egg 

SIzes. 

For various analyses, clutch data were sometimes excluded. Two pairs were found with 

chicks for which no nest had been found; these were not included in the hatching success 

calculations for that season. In five cases, the final size of the clutch was not established _ 

with certainty; these clutches were excluded from calculations involving clutch sizes. 

Additional notes describing the criteria for exclusion are included in the tables and text. 

Clutch data were compared using a repeated measures ANOV A and one-way ANOV A to 

determine if there were differences between mean sizes of first, second and third clutches. 

Fisher's LSD test was then used to make pairwise comparisons between clutches. 
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Eggs were weighed to the nearest 0.5 grams using a Pesola 100 gram scale. Width and 

length were measured to the nearest 0.1 mm using Mitutoyo callipers. To reduce possible 

chilling or over-heating of eggs, care was taken to ensure visits to the nest were as short as 

possible, and nests were not disturbed during adverse weather. 

Breeding success was analysed in terms of individual eggs and clutches. Clutch success 

was categorised into 'hatching success' (percentage of nests that hatched at least one egg) 

and 'overall success' (percentage of nests that fledged at least one chick). Hatching and 

fledging success are presented as a percentage of the number of nests found during the 

study. Because frequency of checks for nests varied, and some nests were probably lost 

before being found, a daily survival rate for clutches was calculated using the Mayfield 

method to ensure that the importance of early losses was not underestimated (Mayfield 

1975). Failure of clutches was normally assumed to take place mid-way between the last 

two checks (Mayfield's original method) except in a few cases where there was very good 

evidence that clutches had been lost due to a large storm event, in which case the date of 

the storm (rather than the midpoint) was used as the 'loss date'. Maximum intervals 

between such checks varied from 4 to 21 days (average 8.92, n = 42). Clutches with 

damaged eggs (not viable) were considered 'lost' (treated the same as if they had 

disappeared). Clutches of unknown size were excluded from the data set for calculating 

survival probabilities. The stage between clutch completion and hatching was the only 

one reported using the Mayfield method. The data were insufficient to report meaningful 

daily survival probabilities for the other stages (i.e., laying, hatching, or chick rearing). 

Both the traditional or naiive methods as well as the Mayfield estimates were reported. 

There were numerous clutches where it was not possible to determine if they had hatched 

before disappearing. In these cases the clutches were assigned to three categories 

depending on how likely it was that they had hatched: high, unknown, and low. Clutches 

considered to have a high probability of having hatched were those that were pipping 

when last seen, or those with a predicted hatch date (based on clutch initiation and 

completion dates) in the first quarter or less of the period between the last two checks. 

Clutches assigned to the 'low' category were those with an estimated hatch date in the last 

quarter of the period between the checks. All others were assigned to the 'unknown' 

group. These were assumed to have had a 50% chance of hatching. In calculations of 

hatching success those assigned to the high category were assumed to have hatched, those 
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in the low were assumed to have been lost before hatching, and the unknowns were 

divided equally between the two groups. For the Mayfield calculations, if the estimated 

loss dates fell before the estimated hatch dates, the clutch was assumed to have hatched; if 

after, it was assumed to have hatched. 

When a range of dates, rather than the exact date, was known for clutch initiation, 

hatching, and fledging, the midpoint was normally used for estimating various 

parameters. If the intervals were at the beginning or end of the season, or simply too large 

(greater than 20 days), these data were excluded or noted in the appropriate section. 

Occasionally, if additional information (such as a minimum relaying intervals) was 

available to narrow the possible range, this was also incorporated. 

The following assumptions were used in calculations (based on parameters from my data 

where it was complete, and from other reported values for various oystercatcher species 

including CIO): 29-day incubation period from clutch completion to completion of 

hatching, a 48-hour period between each egg laid with incubation commencing when the 

last egg was laid, and a minimum 10-day relaying period from loss of clutch to initiation 

of the next replacement clutch (Baker 1969; Davis 1988; Marchant and Higgins 1993; 

Heather et ai. 1996). If an egg had not begun pipping when checked, it was assumed the 

earliest probable hatch date for this egg was a minimum of two days later. Incubation was 

defined as the time from clutch completion until the last egg hatched. 

The period of nesting was divided into 'early', 'mid', and 'late' season based on breeding 

patterns of CIO in the study area, specifically when second and third clutches were 

initiated. IEarly seasonl nests were those initiated before 29 November, Imid-seasonl nests 

were those initiated between 29 November and 3 January, and Ilate seasonl nests were 

those initiated after 3 January. 

The fate of failed nests was recorded when possible. Notes were made iflarge swells had 

passed over the nest area, or if predator, livestock, or tyre tracks were visible in the area 

around the nest site. The causes of egg loss were categorised as: 'unknownl, 'known' 

(where there was a high degree of confidence in the cause ofloss) and 'suspected' (when 

the evidence was less conclusive). 

The presence of chicks was determined by sight. If chicks were suspected as being 

present, but not sighted, a recording of the behaviour of the parents was made. A 
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fledgling was defined as any juvenile capable of flight. Because fledgling oystercatchers 

remain with the parents for a minimum of several weeks, and no CIa chicks disappeared 

between the last check before and the first check after fledging, no corrections were made 

for fledging success. Fledglings were regarded as being independent once they left their 

natal territory and had not returned for several days, or if their parents showed repeated 

aggressive behaviour to them and drove them away from their territories. Some of the 

chicks were colour banded with experimental powder coated metal bands during the first 

two seasons of the study and so were individually recognisable for one to two years later 

before the colour faded. 

During this present study most of the adult CIa were not individually recognisable. 

Some birds had metal bands, but it was not until the third season (1996) that a reliable 

method for drawing the birds in close enough to read metal bands from a distance was 

discovered. One colour banded bird was present in the study area during the beginning of 

the first season (1994). Males and females could sometimes be distinguished by the 

length and colour of the bill, but bill length of pairs can be quite similar (Schmechel, 

unpubl. data). 

RESULTS 

Hatching and fledging success 

Summary of breeding outcomes for pairs on the north coast, Chatham Island 

A total of 42 breeding pair seasons were monitored closely (i.e., visited over eight times 

per season). On average, one-third of all pairs were successful (i.e., raised one or more 

chicks to fledging) over the three seasons. Breeding success was lowest for the 1996 

season when only two pairs (14%) raised chicks to fledging, compared with 1994 and 

1995, when 38% and 47% of the pairs successfully raised chicks to fledging respectively 

(Table 1). The low success rate in 1996 was due primarily to two major storms that 

occurred at key times during the breeding season (just before many nests were due to 

hatch) (Figure 2). 



Table 1 Summary of breeding outcomesfor study pairs o/CIO, north coast, Chatham 

Island and causes of unsuccessful breeding seasons. 

Pair seasons 

Total By breeding season (n) 

Outcomes of breeding effort for the season Percent n 1994 1995 1996 
Successful* 33% 14 5 7 2 

Unsuccessful 67% 28 8 8 12 

no known breeding attempt 2% 1 1 

1 clutch (total for season), failed 5% 2 2 

2 clutches (total for season), all failed 21% 9 2 2 5 

3 clutches (total for season), all failed 10% 4 2 2 

1 clutch, damaged eggs** 12% 5 2 1 2 

2 clutches, damaged eggs 5% 2 2 

infertile eggs in clutch 2% 1 1 

lost older chick (over 14 days) 2% 1 1 

suspected pair turnover / new pair 7% 3 2 1 

Total pair seasons 100% 42 13 15 14 

* pair raised one or more chicks to fledging 

** damaged eggs left in nest delaying re-nesting 
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Entire breeding seasons were lost, in effect, due to various causes. Pairs not attempting to 

breed, loss of older (i.e., over two week old) chicks, or incubation of infertile clutches 

were rare causes (only once each over 42 pair seasons). Pair turnover, due to divorce or 

death of one of the members of the pair, was a more common cause, implicated in three 

instances. Once, a member of a pair disappeared during the breeding season (the only 

colour banded bird in the study), the nest was abandoned, and there were no further 

breeding attempts in that territory during the season. In the other two cases, the pairs 

acted oddly at the beginning of the season. One of these pairs made nest scrapes, but no 

eggs were ever found; the other pair did not initiate a first clutch until very late in the 

season (January). Damaged eggs left in nests either shortening or ended the breeding 

season for seven pair (17% of the unsuccessful outcomes). If eggs were damaged, but 

still substantially intact (e.g., shell cracked, or small hole in shell), pairs would often 

continue to incubate them for extended periods, rather than re-nest. Five pairs incubated 

inviable eggs for as long as 40-55 days (Table 2). 
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over the season, north coast, Chatham Island. Bold arrows mark major storms, 
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season, i,e., 1994). 
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Table 2 Number of pairs incubating inviable eggs (eg. damaged, infertile or dead 

embryo) for 40 or more days 1994 -1996, north coast, Chatham Island. Arranged 

from longest to shortest incubation period. Normal incubation period 28-29 days. 

Minimum number of Number of 

Pair Season days eggs incubated eggs 

TE 1994 55 2 

Cape 1994 49 1 

Creek 1994 42 2 

TW 1996 41 1 

OTF 1995 40 1 

Breeding outcomes and numbers of fledglings produced for the entire north half of 

C4atham Island (n = 55), including pairs outside the study area, are recorded in 

Appendix 2. During the first two seasons, 43% and 47% of pairs were successful (raising 

at least one fledgling) in marked contrast with the final season (1996) when only 9% of 

pairs were successful (compared with 14% in the study area). Even though a higher 

percentage of pairs was successful in the second season than the first, there were more 

fledglings per pair in the first season (0.71) than in the second (0.53), because of the 

higher number of two-chick broods in the first season (Appendix 3). The total number of 

fledglings recorded over the extended north coast area was the same for both of these 

seasons (i.e., 10 each season). 

Hatching and fledging success rates 

Over the three seasons, 20% of clutches produced at least one independent young, but 

success rates varied considerably between years, ranging from 9-38% (Figure 3). Of 60 

clutches, 41 % (± 14%) hatched at least one egg. Of those clutches which hatched at least 

one egg, 56% (± 20%) fledged one or more chicks. Chicks fledged per pair averaged 0.44 

(range 0.14 to 0.73) for the three seasons (Table 3). 
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Figure 3 Numbers of clutches and eggs and percent successful by season, north coast, 

Chatham Island. 'Successful' is defined as any egg surviving to hatching and the 

resultant chicks surviving to fledging, or any clutch where one or more chicks 

survive to fledging. 
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Table 3 Breeding success by clutch of Chatham Island Oystercatcher, north coast, 

Chatham Island 1994 - 1996. Hatching success - percent of clutches that hatched 

at least one egg, fledging success - percent hatched that fledged at least one chick, 

overall success - percent of clutches that fledged at least one young. Numbers in 

parenthesis are the upper and lower range limits of clutches which may have 

hatched due to some eggs disappearing around the expected hatching date. 

(Excluded - clutches of unknown size, and pairs with visits under eight in a 

season.) 

Year 1994 -

1994 1995 1996 1996 

Pairs 11 14 14 39 

Clutches l3 24 23 60 

Hatching success 62% (54-70) 42% (25-59) 28% (l3-43) 41% (27-55) 

Fledging success 63% (56-70) 60% (37-83) 43% (20-66) 56% (36-76) 

Overall success/clutch 38% 21% 9% 20% 

Chicks fledged/pair 0.73 0.50 0.14 0.44 

Chicks fledged/successful pair * 1.60 1.17 1.00 1.31 

*raised at least one chick to fledging 

Total fledgling success depended on a combination of hatching and fledging rates and 

brood size. If either hatching or fledging rates were very low, overall productivity was 

significantly decreased. In 1994, both hatching and fledging success rates (using 

traditional or naiive methods) were high (62% and 63% respectively), resulting in a high 

proportion of clutches (38%) successfully fledging at least one chick. In the following 

season, hatching success was lower (42%), but fledging success was still high (60%), 

resulting in over one fifth (21 %) of clutches being successful. In contrast, both hatching 

and fledging success rates were low (28% and 43% respectively) in 1996, resulting in a 

low overall success rate (9%). There was a much higher proportion of successful two­

chick broods in 1994 than the successive two seasons (33% in 1995 and 0% in 1996) 

(Figure 4). 

The estimated probability of clutches surviving to hatching using the Mayfield method 

(1975) in 1994 was almost twice that of the next two seasons (62% per day for 1994 

compared with 32% and 34% per day for 1995 and 1996 respectively). 
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Of individual eggs laid, 36% hatched; of those which hatched, 43% survived to fledging 

(Table 4). Overall, anyone egg had a 13% chance of hatching and surviving to fledging. 

The number of fledglings produced per year in the study area (i.e., between Waitangi 

West and Te Awanui Island) was: 1994 - 10 fledglings, 1995 - 8 fledglings, and 1996 - 2 

fledglings (Appendix 3). 

Table 4 Breeding success by individual egg of Chatham Island Oystercatcher, north 

coast, Chatham Island 1994 - 1996. E - eggs laid; C - chicks hatched; F -

fledglings. Numbers in parenthesis include the minimum to maximum number of 

eggs which could disappeared around the expected hatching date but it is 

unknown whether they hatched. (Excluded - clutches of unknown size and pairs 

with visits under eight in a season.) 

Year 1994 -

1994 1995 1996 1996 

Pairs 11 14 14 39 

Eggs laid (E) 31 55 48 134 

Hatching success (C/E) 52% (39-65) 37% (18-56) 240/0 (8-40) 36% (19-72) 

Fledging success (F IC) 53% (40-66) 46% (23-69) 30% (10-50) 43% (23-63) 

Overall success (FIE) 26% 13% 4% 13% 
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Nest loss 

The main cause of egg loss over the three seasons was flooding (48%), especially in the 

1995 and 1996 seasons, followed by causes unknown (26%) (Figure 5). Together these 

two causes accounted for 74% of the total egg loss. This includes both 'known' and 

'suspected' losses. Causes of loss were often difficult to determine because eggs 

frequently disappeared with few traces. This was due in part to frequent strong winds and 

rain which obscured any tracks or signs, and the habit of CIO of removing shells if eggs 

are crushed or after hatching (pers. obs.). Only one clutch was thought to be infertile, 

possibly due to the male being less than three years old. The following year, the pair in 

that territory (presumably the same pair - a metal banded male, and unbanded female) 

raised two chicks to fledging. Crushing due to vehicles ( once) or livestock caused several 

losses, plus several additional 'close calls' (where vehicle, horse or livestock tracks were 

seen near the nest). The suspected predation was by weka and possibly spur-wing plover 

(Vanellus miles). In one case, an empty egg shell was found near a nest with marks 

similar to those on chicken eggs depredated by weka. In another case, a single peck mark 

was found in an egg and spur-wing plover were suspected because there was no further 

predation of the egg and because of their presence in the area; but gulls or weka may also 

have been responsible. One embryo died during hatching (see later section). 

The highest risk of loss from any cause for eggs or chicks was during the seven days 

before, and after, hatching (Figure 6). About 60% of losses occurred during those two 

weeks. 
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Figure 5 Causes of egg loss, including suspected losses, of Chatham Island 

Oystercatcher along the north coast, Chatham Island. 
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If the cause of clutch loss was tidal flooding, losses were independent of clutch age 

(Figure 7). However, if the cause ofloss was non-flooding, a large percentage oflosses 

occurred between day 21 and day 37. During the first three weeks after laying, 80% of 

these clutches remained viable (i.e., at least one, but usually all, eggs surviving). After 

day 21, survival dropped quickly until only 36% of clutches were viable by day 37. In 

other words, for clutches lost to causes other than flooding, 62% of these were lost during 

this critical two-week time period (i.e., day 22 to day 36). 
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Figure 7 Percent a/viable clutches after estimated clutch completion. A viable clutch 

was defined as any of the eggs or chicks still surviving. Hatching occurs at about 

29 days after clutch completion and fledging around 70 days. 

Loss of chicks 

Most chicks which died before fledging disappeared without a trace (7 out of 8), and the 

majority (6 of 8) disappeared while still less than 11 days old. There were 45 eggs over 

the three seasons where it was not known whether loss occurred before or after hatching 

(i.e., the clutch disappeared, and chicks were never found). Of these eggs of unknown 

fate, if any chicks had hatched, they must have died at under 14 days old based on when 

the territories were checked. 
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Timing of the breeding season 

The entire breeding period, from egg-laying to dispersal of fledglings, extended over at 

least six months from mid-October to April and probably into May (Figure 8). The 

nesting and chick periods, the main time when management activities to increase 

productivity normally occur, peaked from November through February. Fledglings were 

present from January to April, when data collection ceased. Dispersal or eviction of 

fledglings began in late January and continued into April. 

Oct Nov Dec Jan Feb Mar Apr 

Clutches ? - - * * * * * * * * * * * * 
Chicks * * * * * * * * * * * * 
Fledglings ? ? 

Dispersals ? ? 

Checks - - - - - * * * * * * * * * * * * * * * * * * * 

Figure 8 Timeline of presence of clutches, chicks, fledglings and timing of dispersal of 

fledglings from parental territories on the north coast, Chatham Island, 1994-

1997, and dates when territories were checked for breeding activity. * 90% of 

activity occurred within this time, - remaining 10% of activity, = indicates period 

fledglings were present and dispersals were occurring. ? - little or no data 

available for this time period.) 

Nesting and hatching dates 

? 

? 

The estimated initiation date for the earliest clutches was 13 October, but could have been 

as early as 9 October. Clutch initiation varied by 4-6 weeks in 1995 (the only year with 

complete early season data), with earliest pairs nesting in mid-October, and later pairs not 

commencing first clutches until mid-November or early December. 

Peak clutch initiation occurred from the last week of October to the second week of 

December (Figure 9). Second clutches were initiated from the last week in November, 

and third clutches from the first week in January. Clutches were initiated as late as the 

end of January. Two clutches laid as late as mid-January resulted in chicks surviving to 

fledging. The main period when eggs were present was from November to January 

(Figure 10). Eggs began hatching in mid-November and the last eggs hatched in mid­

February. 
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Figure 9 Clutch initiation dates, Chatham Island Oystercatcher 1994-1996. 
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Laying, incubation, and hatching 

Only one clutch yielded data on laying intervals. The first egg of the clutch was present 

for two days in a row before another egg was laid, suggesting a 24-48 hour laying 

interval. The clutch was eventually complete at three eggs. 
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Two clutches with known clutch completion and hatching dates (to within a day) had 

incubation periods of 27-29 days and 28-30 days. One other successful clutch had a 

minimum incubation period of 30 days. One unsuccessful clutch had a minimum 

incubation period of 37 days. This three-egg clutch was first sighted after completion on 

23 November 1994; pipping was recorded 36 days later (28 December). The following 

day (29 December) the chick had almost hatched but appeared cold and lifeless. This 

hatching egg/chick had disappeared by the following day and the other two eggs never 

hatched. This pair was subject to disturbance (e.g., fence maintenance activity) due to 

conservation management activities (fence maintenance) on at least three days during 

incubation (29 November, 6 & 7 December or 8, 15, and 16 days after the estimated 

clutch completion dates) and were observed spending up to 1.25 hours continuously off 

the nest at a time. 

Hatching started with tiny star-shaped fractures appearing in the egg and chick 

vocalisations about 2-3 days before hatching. Distinct holes were pipped one day or less 

before hatching. Newly hatched chicks were occasionally found in or adjacent to the nest 

just after hatching. Hatching was asynchronous by up to one day in some clutches and 

occurred over at least two days (Table 5). 

Table 5 Hatching times for five Chatham Island Oystercatcher pairs, north coast, 

Chatham Island. 

Pair 

Cliff 

Cape 

Island 

Waitangi West 

Day 1 

2 pipping 

2 pipping 

2 pipping 

2 pipping 

Day 2 Day 3 

2 chicks 

1 chick, 1 pipping 

2 pipping 

1 st chick, 1 pipping 2nd chick 

Final outcomes 

2 chicks 

1 chick, 1 unknown 

2 chicks 

2 chicks 

Three nests were flooded by high or storm tides but incubation continued, with the eggs 

either in a new location, remaining in the nest, or being recovered by the pair. Two of 

these tidally flooded nests were unsuccessful (in one, the egg was probably inviable, the 
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other nest was lost to a later storm tide), and one hatched a single chick. CIO will recover 

eggs dislodged from the nest by rolling them back in to the nest. One pair of CIO 

repeatedly retrieved a displaced egg (previously damaged but still being incubated) back 

into the nest scrape from as far as a metre away. 

Re-nesting intervals 

Pairs frequently re-nested after losing clutches and, in at least one case, a pair re-nested 

after losing a young chick (3-7 days old). Almost all first clutches were replaced if no 

damaged or inviable eggs were left in the nest scrape and the pair was intact. Of21 first 

clutches lost, with no damaged or abandoned eggs left in the nest scrape, a minimum of 

19 (90%) were replaced. Second clutches were replaced much less often; only 31 % were 

replaced after loss (n = 16) (Table 6). No third clutches were replaced. 

Table 6 Minimum replacement rates of clutches after loss (ie. clutch no longer viable) of 

first and second clutches, with and without damaged/inviable eggs left in nest 

scrape after loss. 

1994 1995 1996 total 

1st clutch 

total loss of clutch 

percent replaced 100% 100% 80% 90% 

total number (n) 3 8 10 21 

damaged or abandoned eggs 

percent replaced 0% 50% 0% 12% 

total number (n) 4 2 2 8 

totallst clutches lost 7 10 12 29 

2nd clutch 

total loss of clutch 

percent replaced 0% 33% 37% 31% 

total number (n) 2 6 8 16 

damaged or abandoned eggs 

percent replaced 0% 0% 

total number (n) 1 1 

total 2nd clutches lost 2 7 8 17 

If damaged eggs were left after the clutch was damaged (i.e., became inviable), 

replacement was delayed or precluded due to the pair attempting to incubate these eggs. 

Of eight first clutches with damaged eggs left in the clutch, only one was replaced. No 

damaged second clutches (n = 1) were replaced. The one pair which initiated a second 



clutch after having damaged eggs in its first clutch, did so quite late in the season 

(19 January 1996). 
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The mean time for a pair to re-nest after losing a clutch was 15 days (range 7.5-24 days, 

SD = 4.46, n = 23). Because nests were not checked daily, there was a range of possible 

days when the renesting could have occurred for anyone clutch. The variation ranged 

from plus or minus 3-13 days, (mean = 4.39, SD = 3.17). 

First clutches were replaced on average more quickly than second clutches. Midpoint 

estimates for first clutch replacements averaged 13.9 days (range 7.5-22 days, SD = 4.4, n 

= 18), and for second clutches 17.6 days, (range 15-24 days, SD = 3.76, n = 5). 

Replacement intervals varied between pairs, year and clutch order as illustrated in Figure 

11 (using a subsample ofthe data). 

Days to replace lost clutches 

Pair Yr CO 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192021 22232425262728 

WW 95 c1 I-------------X--------------I 
96 cl X 

............................... ?~ ...... _ .. ~3. ...... _ ......................................................... ..I.:~~.:.:~~~~~~.:.:~~L ........................................................................... . 
WOC 96 cl X .. ·TW ...... · .. · .... · .. · .. 9·6· .. · .. --·~i ...... --.... · ...................... · .......... · ...... · ........ · .. · .. · ...... · .. ·X .......... · ...... · ...... · .... · .................. · .... · ........ · .......................... .. 

96 c2 I--------------X--------------I .. ·TE .......... · ........ · .. 96· .... --.. ~i .... ·--.................. · ............ ·F~:·:~~:·:~~:X~~:·:~~:·:~~i .............. · ...... · .......... · ...... · .................. · ............................... . 
.. ·OTF .. · ........ · ...... ·9·4 .... ·--.. ~i ...... -........ · .............. · ........ F~:·:~~:·:~~:X~~:·:~~·:·:~~i .................... · .................. · .......... · .. · .... · ............................... . 

95 c 1 1---------------------X---------------------I 
96 cl I----X----I .. ·Creek .......... · .... ·9·5 ...... -.. ~'i" .... --.. · .... · .... · .................................... · ........................ · .. ·F~·:~~~:~~~:X~~·:~~~·:~~~·:r ...... · ................................... . 

.. ·P~iinamu .. · ...... 95 .. · .. ·-.. ~·i .... · .. -· .... · ...... · ...... · ...... · .. · .... · ........ · .... · .......... · .... · ........ · ........ · ........ · .. i~·:~~~X~~~:~j" .. · .... · ........ · ............................ .. 

96 cl I---------X--------I 

Figure 11 Range of days from loss of clutch to initiation of replacement clutch for CIOs, 

north coast, Chatham Island where the range of dates were known to within five 

days. Yr - breeding season, CO - clutch order (i. e, first or second clutch being 

replaced), X-midpoint estimate, 1----1 possible range of replacement days. 

Arranged by territory in geographical order from west to east. 

Fledging 

Chicks were present from mid-November until late March. The earliest recorded chick 

was on 15 November, the latest 19 March. Numbers of chicks were highest from the first 
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week in December until the last week in February (90% of observations). Fledglings 

were present from the first week of January into April and probably beyond. The earliest 

recorded fledgling was on 6 January (but the actual dates of fledging were probably 

earlier - sometime between 23 December and 6 January, the dates when the areas were 

checked). Fledglings were still present until observations ceased in the first week of April 

(1995 and 1997). 

Chicks fledged, on average, 41 days after hatching (SD = 5.9, n = 15) (Appendix 4). One 

chick broods fledged more quickly, on average, than two chick broods (39 days, range 

30-47 days, SD = 4.8, n = 10 and 44 days, range 36-54 days, SD = 6.9, n = 5 

respectively); however, there was overlap with some two-chick broods fledging more 

quickly than one-chick broods. Within territories dominated by a particular habitat type 

(e.g., sandy beach, rocky platform, or mixed), differences in fledging time between one­

and two-chick broods were greatest in the sandy beach territories (Table 7). 

Table 7 Average fledging times (days) of one- and two-chick CIO broods within 

territories predominated by different habitat types. SB - sandy beach, RP - rocky 

platform, MX - mixed, n - sample size. 

Fledging time (days) by habitat types 

Brood size SB (n) RP (n) MX (n) Total (n) 

One-chick 38 6 38 1 41 3 39 10 

Two-chick 47 3 40 2 0 44 5 

Overall average 41 9 39 3 41 3 41 15 

Dispersal of fledglings 

After fledging, juvenile CIO remained in their natal territories for varying times, but for 

eight fledglings monitored for six or more weeks, all were evicted from (or left) their natal 

territories. In one case where two sibling chicks fledged, one fledgling was driven out of­

the natal territory after 17-30 days. Although it was observed attempting to return to its 

natal territory, it was driven offby the adults and the remaining fledgling. The second 

fledgling was still present in the territory two days later when observations ceased. For 

five broods, where the dates were known to within 15 days, fledglings dispersed on 

average 33 days after fledging (range 24-42 days) (Table 8), beginning the third week of 

January. 
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Table 8 Dispersal periods and dates for five fledged Chatham Island Oystercatcher 

chicks, north coast, Chatham Island. Arrangedfrom shortest to longest days after 

fledging. 

Brood Days after fledging 

Pair and season size Midpoint Possible range Dispersal dates 

WoC 1994 2 24 17 - 30 1st: 23 - 24.3.94 

unknown 32+ 2nd: after 26.3.94 
WoC 1995 1 28 18 - 39 23.1.96 - 2.2.96 
WW 1995 1 32 30 - 35 18.3.96 - 21.3.96 

Whanga 1995 1 41 37 - 46 6.2.96 - 12.2.96 

TE 1995 1 42 37 - 49 1.2.96 - 21.2.96 

Overall averages 33 28 - 40 

Measurements 

Clutch size varied between one and three eggs with a mean size of2.20 (n = 61). Over 

95% of the clutches contained two or three eggs, with two-egg clutches the most common 

(70%) (Table 9). One-egg clutches were found only during the third season of 

monitoring. In 1994 there was a higher percentage of three-egg clutches (38%) than in 

the following two years (20-22%). 

Table 9 Frequency of clutch sizes (e - egg) and clutch order for three breeding seasons 

in Chatham Island Oystercatcher, 1994 - 1996, north coast, Chatham Island. 

1994 1995 1996 Mean 

Clutch Clutch size Clutch size Clutch size clutch 

order 1 e 2e 3e 1 e 2e 3e 1 e 2e 3e SIze 

First 6 5 10 3 9 3 2.31 

Second 2 7 2 1 5 2 2.16 

Third 3 2 1 1.67 

Total 0 8 5 0 20 5 3 15 5 2.20 

Average clutch size tended to decrease with both advancement of the breeding season and . 

with the number of replacement clutches. There was a significant relationship between 

clutch size and number (F2,6o = 4.60, P = 0.014)(Table 9). Third clutches were 

significantly smaller (p < 0.05) than first and second clutches (Fisher's pairwise 

comparison). A replacement clutch was always the same size or smaller than the previous 

clutch. Nearly all (88%) second clutches were the same size as the first clutch (n = 16); in 



contrast, many (66%) third clutches were smaller than the second clutch (n = 6). There 

was no significant difference in average clutch size between years. 
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Some pairs consistently laid larger clutches than others (Table 10). First and third 

clutches were more likely than second clutches to fledge at least one chick successfully 

(Table 11). This must be interpreted with caution, however, because if a clutch was lost 

before being found (e.g., was flooded in the days between initiation and a search for the 

nest), some second and third clutches could have been wrongly identified as first or 

second clutches. If time of year, rather than clutch order, is used in the analysis there is a 

similar pattern (Table 11). A much larger proportion of two-egg clutches were successful 

(28%) than three- or one-egg clutches (7% and 0% respectively) (Table 12). Egg 

measurements recorded in 1996 are shown in (Table 13). 

Table 10 Percentage of 3-, 2-, and 1-egg clutches laid by Chatham Island Oystercatcher 

breeding pairs, north coast, Chatham Island and number of chicks fledged over 

three seasons from 1994-1997. Excluded - pairs checked less than 8 times/season, 

clutches of unknown final size, or less than 2 clutches total). 

Clutch size (percent) Total no. Total 

Pair 3 egg 2 egg 1 egg of clutches fledglings 

Island 80 20 0 5 4 

OTF 80 20 0 5 0 

Rock 40 60 0 5 1 

Woolshed 33 67 0 6 1 

Cape 25 75 0 4 0 

Creek 25 75 0 4 0 

Cliff 20 80 0 5 0 

WW 0 100 0 5 2 

WOC 0 100 0 4 3 

Dune 0 100 0 3 0 

TE 0 80 20 5 1 

TW 0 80 20 5 3 

Pounamu 0 67 33 3 0 



Table 11 Effect of clutch order and season (nest period) on fledging success. Early­

before 29 November, mid - 29 November - 3 January, late - after 3 January. 

Proportion of Proportion of 

Clutch clutches which Nest clutches which 

order were successful * N period were successful N 

1st 25% 36 early 27% 30 

2nd 11% 19 mid 15% 20 

3rd 33% 6 late 18% 11 

overall 21% 61 overall 21% 61 
* fledged 1 or more chicks 

58 

Table 12 Effect of clutch size on fledging success in Chatham Island Oystercatcher, north 

coast, Chatham Island. 

Percent of clutches that were successful 

Clutch size 1994 1995 1996 Total N 

1 egg 0% 0% 3 

2 egg 50% 30% 13% 28% 43 

3 egg 20% 0% 0% 7% 15 

all sizes 38% 21% 9% 20% 61 

Table 13 Size and fresh weights of Chatham Island Oystercatcher eggs. Sources,' a) this 

study, b) HA. Robertson and MD. Dennison, 1980, c) A. Davis, unpubl. data. 

No. No. 

Parameter Mean SD Range eggs clutches Source 

Length (mm) 56.9 2.7 50.3 - 62.7 48 22 a 

56.5 3.2 52.9 - 61.2 6 3 b 

56.0 55.5 - 56.4 22 c 

Width (mm) 40.2 1.1 37.8 - 42.2 48 22 a 

40.5 1.6 37.6 - 42.2 6 3 b 

40.6 40.4 - 40.8 22 c 

Weight (g) 47.9 4.1 40.0 - 52.5 7 4 a 

Plumage and soft part colouration by age 

Colour changes as CIO matured are summarised in Table 14. All individually marked 

CIO of known age that were less than 11 months old (from estimated hatching date) had 

brown eyes, brown bill tips and pale legs. They also tended to have 'cleaner' black/white 

demarcation lines on the breast and were more shy than older birds, i.e., they often ran or 

flew away more quickly than older birds when approached. From 11 months, the eye 



Table 14 

Age 

2 - 10 

months 

11 - 16 

months 

22 - 25 

months 

mature 

adult 

Colouration by age of Chatham Island Oystercatcher. 

Bill Eyes 

brownish and/or brown 

brown tip 

orange, may have brown to brownish-orange to reddish-

brown tip orange 

reddish (but not scarlet), some with 

slightly more brown in centre 

orange/red or red scarlet (iris and orbital ring, with dark 

with yellowish tip pupil) 

Legs 

grey to pale ('putty') 

pink, pale red, or 

pinkish-red 

red 

red 

Other 

often clean black/white chest line, 'shy' 

behaviour 

bolder behaviour - may approach model of 

Chatham Island Oystercatcher 
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colour began to change, but the timing of the colour change appeared to be variable 

between individuals. Birds 22 and 25 months (n = 3) had colouration like adults 

including plumage, bill colour and leg colour except for the eye colour. The eyes tended 

to be reddish rather than scarlet and to have more brown in the centre. These colour 

differences were subtle, however, and best confirmed in a mixed group of birds with 

mature birds as reference points. 

DISCUSSION 

Hatching and fledging success 

Summary of breeding outcomes for pairs on the north coast. Chatham Island 

Breeding effort was much higher during this study than that reported by Davis (1988). 

During this study only one pair (2%) apparently did not attempt to breed out of a total of 

42 pair-seasons. This is in contrast to Davis (1988) who found that 27% of pairs did not 

breed in 1987 and 21 % could not be confirmed, resulting in only 52% of pairs confirmed 

as attempting to breed. Methodology could affect reported non-breeding effort. Davis' 

(1988) definition of pairs included those that were sexually immature, which accounted 

for some, but not all, of the non-breeding effort. Clutches can be laid and lost quickly 

(Ens et al. 1996). As a result, frequent monitoring is needed over the nesting season to 

confirm lack of breeding effort. Due to the nature of the work in 1987 in which many 

sites were visited, but not frequently, the level of monitoring was possibly not sufficient 

to determine breeding effort, at least in some cases. As a result the number of pairs 

attempting to breed may have been under-estimated. (On Chatham and Pitt Islands a total 

of 34 territories were checked during 1987 on average 5.4 times, range 1-13. Twenty-two 

territories (65%) had no visits recorded between mid-December and late March). 

Alternatively breeding effort may have varied considerably between this study and the 

1987 season due to differences in weather, the sites studied, other factors, or most likely 

some combination of methods plus conditions. 
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Hatching and fledging success rates 

The average productivity of north coast pairs during this study was similar to the average 

for pairs monitored on Rangatira between 1974 and 1986 (Davis 1988), but much higher 

than in 1987 for the whole of the Chathams which is the only productivity estimate for the 

whole of their range (Table 15). The productivity for the 1987 season might have been 

unusually low due to storms or other factors. Over the three seasons of this study, 

fledging success during one of the seasons was especially low (0.14 fledglings/pair) 

compared with the other two seasons (0.50 and 0.73 fledglings/pair). Rangatira 

productivity shows a similar pattern with average productivity at 0.48 

fledglings/pair/season, but during the worst season was only 0.22 fledglings/pair 

compared with 0.85 fledglings/pair during the best season. 

Table 15 Hatching and fledging success of the Chatham Island Oystercatcher breeding 

at various locations and dates. Ranges of different year in parenthesis. 

Location 

North coast, CI 

Chathams group 

Rangatira Island 

Years 

1994 -1996 

1987 

1974 - 1986 

Pairs 

13 (11-14) 

30 

10(8-11) 

Fledge/pr/yr (range) 

0.44 (0.14 - 0.73) 

0.27 

0.48 (0.22 - 0.85) 

Source 

this study 

Davis 1988 

Davis 1988 

Breeding success reported for the 1987 season should also probably be considered a 

minimum, since eviction/dispersal times of juveniles were not known when this work was 

done and re-analysis of the data shows many pairs were not checked often enough to 

determine productivity accurately. During the 1987 season, breeding was assumed to be 

unsuccessful if no chicks or fledglings were found in territories during a single check in 

mid- to late March. This may not be accurate because fledglings could already have left 

their natal territories by mid-March. In addition, a single check may be insufficient to 

determine success, as evidenced by several accounts where a record of 'no chicks or 

fledglings found' was logged in territories that must have had chicks or fledglings present 

based on later sightings of fledglings in these areas. 

CIO productivity on the north coast was low compared to that of most other oystercatcher 

species around the world (Table 16). Succe~s for eggs surviving to fledging was as low or 

lower than most recorded averages except for a very small sample of Australian pied 

oystercatcher (H longirostris). Hatching and fledging success ofCIO eggs, though 
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within the range of that for other species, is low, especially for hatching success. The 

success of clutches is reported less often than the success of individual eggs. Compared 

with one study of American black oystercatcher (H bachmani), CIa clutches had better 

hatching and much better fledging rates. However, compared with Eurasian oystercatcher 

(H ostralegus), overall success was very low (20% in CIa compared with 61-86% for 

Eurasian oystercatcher). Number of CIa fledglings/pair/season was towards the low end 

of the averages, but variation is quite wide from study to study and species to species. 

If hatching success is low, management efforts can be concentrated on the nesting period; 

alternatively, if chick survival is low, management can be concentrated on this portion of 

the breeding phase. During this study, hatching rates were lower than fledging rates in 

two of the three seasons, with both being low during the third season (1994). On 

Rangatira Island from 1984-1987, loss of eggs was higher than loss of chicks in two 

seasons, but in the other two seasons losses of chicks were greater than losses of eggs 

(Davis 1988). In a review of oystercatcher species worldwide Hockey (1986) found that 

most mortality occurred during incubation, rather than chick-rearing, although higher 

hatching than fledging success has been reported for the Eurasian oystercatcher (Harris 

1967; Heppleston 1972). 

The estimates for hatching success were maximums because some nests might not have 

been found before disappearing. Hatching probabilities were calculated to correct for 

variable monitoring and the risk of inflated hatching success figures due to early 

undetected losses of clutches (Mayfield 1975). In 1994 and 1996 the calculated hatching 

probabilities and traditional hatching successes were similar (62%). In 1995, however, 

the traditional hatching probability was 31 %, compared with a calculated 42% hatching 

success, suggesting some nests were missed. 

Mayfield calculations assume mortality rates are constant (Mayfield 1975; Johnson and 

Shaffer 1990). This is not necessarily the case for CIa clutches that are lost due to 

flooding, which are often clustered in time and space. In the first season (1994), there 

would have been time for pairs (up to 10, but probably about 4-8 based on other seasons) 

to lay and lose a first clutch before monitoring started, especially if there had been a large 

storm in late October. As a result, both the hatching success estimate and the Mayfield 

estimate of daily survival rates may have been overestimates for the 1994 season. In 

addition there appears to be a higher risk of loss close to hatching from causes other than 



Table 16 Comparison of CIO productivity from this study (both by eggs and by clutch) with that of other OC species. Ranges represent the high and 

low averages reported in the literature reviewed. Species: EO - European Oystercatcher (H. ostralegus), AO - American Oystercatcher (H. 

palliatus), BO - Black Oystercatcher (H. bachmani), PO - Australian Pied Oystercatcher (H. longirostris), SIPO - South Island Pied 

Oystercatcher (H ostralegusfinschi), VOC - Variable Oystercatcher (H unicolor). E - eggs laid; C - chicks hatched; F - fledglings. Clutches 

% hatching - percent of nests that hatched at least one egg, clutches % fledging - percent hatched that fledged at least one chick, clutches % 

success - percent of nests thatfledged at least one young. Sources: a) Harris 1967; b) Heppleston 1972; c) Kersten and Brenninkmeijer 1995, 

d) Newman 1992, e) N-T 1986,j) Andres and Falxa 1995; g) Hartwick 1974; h) Nol and Humphrey 1994; i) Groves 1984;j) Sagar et al. 2000; 

k) Goss-Custard 1995; I) this study, m) Paine 1990, n) Marchant and Higgins 1993,0) Newman 1983, p) Vermeer 1992. 

Breeding pair years 

No. eggs (total) 

Hatching success (CIE) 

Fledging success (F/C) 

Overall success (FIE) 

No. clutches 

Clutches % hatching 

Clutches % fledging 

Clutches % successful 

Fledglings/pair/year 

Sources 

EO 

15 - 32 

44 - 94% 

20 -78% 

13 -72% 

61% - 86% 

0.13 - 0.80 

a,b,c,e,h,k 

AO 

48 -71% 

34 - 80% 

0.24 - 0.39 

h 

BO 

10 - 206 

57 - 614 

25 -70% 

12 - 39% 

81 - 114 

23 - 38% 

12% 

0.19 - 1.10 

f,g,i,m,p 

Species 

PO SIPO 

5 31 

23,27 782 

30% 49% 

59% 

7 -13% 29% 

0.25 - 0.89 0.70 - 0.79 

d,n,o J, n 

VOC 

147 

0.64 

n 

CIO 

39 

134 

36% 

43% 

13% 

60 

41% 

56% 

20% 

0.44 

I 
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flooding, but the risk of the nests disappearing before being recorded is much less. The 

rate of clutch losses during laying may have been under-estimated. Because incubation 

probably does not commence until clutch completion, there may be high losses during 

laying. As a result, first egg(s) may be at higher risk from predators. In the Netherlands, 

survival rates of European oystercatcher eggs during laying were lower than in the 

incubation phase (Beintema and Muskens 1987). On Schiermonnikoog, 40% of first-laid 

eggs were lost before the second egg was laid (Ens et al. 1996). This could have resulted 

in clutches that would have been three-egg clutches being classified as only one- or two­

egg clutches in the analysis. Daily monitoring during the laying period would be required 

to determine if there are high rates of losses during laying in CIO clutches. 

Causes and timing of nest and chick loss 

Weather appeared to be a major factor affecting productivity in some years, through 

flooding and possibly food availability. In this study about half of all egg losses were 

because of tidal flooding. This pattern is similar to that for other oystercatcher species 

where the main causes of egg loss are storms and predators (Table 17) (Hockey 1996b). 

A large percentage of eggs were also lost to causes unknown (26%). Normally little sign 

is left after a nest disappears due to winds and rain. In addition CIO, similar to other 

oystercatchers, remove shells if eggs are crushed or after hatching (pers. obs.) (Hartwick 

1974; Nethersole-Thompson 1988; Nol and Humphrey 1994; Andres and Falxa 1995). 

The unknown losses may have been predators, since this cause is difficult to detect and 

many potential predators occur along the north coast. Disturbance may also be a 

significant factor in decreasing productivity or even lack of breeding attempts, but this is 

also difficult to determine. In other oystercatcher species, disturbance andlor habitat loss 

has led to significant declines or even local extinction (JehI1985; Nol and Humphrey 

1994). 



Virtually all the chicks disappeared without trace. Possible factors included predators, starvation, neighbouring pairs of CIO, and trampling (Table 

17). In one case, a dead chick was found in its territory. This death was probably not due to predation since the chick had not been eaten or 

carried away. The most likely causes were the neighbouring CIO pair, sibling rivalry, starvation or disease. Oystercatchers will "viciously 

attack and sometimes kill chicks from other pairs that wander into their territories" (Ens et al. 1992). Table 17 Causes of nest and chick loss 

among OC species. Species: EO - European Oystercatcher (H ostralegus), AO - American Oystercatcher (H palliatus), BO - Black 

Oystercatcher (H bachmani), PO - Australian Pied Oystercatcher (H. longirostris). Sources: a) Sagar et al., in press, b) Newman 1992, c) 

Lauro and No11993, d) Harris 1967, e) Nethersole-Thompson 1988,j) Heppleston 1972, g) Hartwick 1974, h) Groves 1984, i) Andres and 

Falxa 1995,j) Nol1989, k) Lauro and Burger 1989, l) Nol and Humphrey 1994, m) Johnsgard 1981, n) Marchant and Higgins 1993; 

Species 

SIPO 

VOC 

PO 

PO 

EO 
EO 
EO 
EO 
EO 
ABO 

BO 

BO 

BO 

BO 

AO 

0) Vermeer et al. 1992; p) Nol and Humphrey 1984; q) Hockey 1983; r) Ens et. al. 1992, s) Beintema 1987. 

Primary 

Stock, human activity, unknown 

Storms & high spring tides 

High tides 

Storms, flooding (62 - 80%) 

Predation 

Tides / flooding 

Predation ( chicks), agriculture ( eggs) 

Starvation of chicks (leapfrog territories) 

Predation (42%), trampling (34%) 

Predation (76%) 

Tides (storms) (48%) 

Storms, avian predation 

Predation, waves 

Predation (eggs/young chicks) 

Storms and high tides, predation, starvation 

Causes of loss 

Others 

Predation, weather, infertility, died hatching 

Human disturbance, predators 

Predation of adult & eggs, damage of eggs 

Floods, infertile, dead embryos, human interference, desertion, livestock, disease 

Predation 

Flooding, infertile eggs, stockihumans, died hatching 

Agriculture, abandoned, unknown 

Flooding, died hatching 

Predation 

Damaged, abandoned, addled 

Disturbance 

Human disturbance, disease, habitat loss, red tide poisoning 

Source 

a 

n 

b 

c 

d 

e 

f 

r 

s 

q 

g 

h 

o 

1 

j,k,l,m,p 
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Known causes of chick loss at Schiennonnikoog, the Netherlands, included two species of 

gulls (Larus spp.), drowning during a flood, trampling by cattle, stabbing to death by 

neighbouring oystercatchers after venturing into their territory, starvation, and probably 

diseases (Ens et al. 1992). 

Weather affecting food availability might explain why there are were more two-chick 

broods surviving to fledging compared with one-chick broods in some years. At 

Schiennonnikoog, food availability changed with weather conditions and, in poor years, 

decreased the fledging success of oystercatchers, in part because hungry chicks became 

more active and thereby more vulnerable to predators (Heg 1999). 

On Rangatira Island, where there are no mammalian predators, the main factors affecting 

breeding success were losses of eggs and young to avian predators and failure of eggs to 

hatch. Causes of eggs failing to hatch included possible infertility, cracked shells, and 

chicks dying during hatching. Human disturbance may also have been a factor in the 

failure of some eggs to hatch (Davis 1988). Flooding has not historically been identified as 

a major cause ofloss. 

Flooding, as a significant cause of egg loss, is consistent with egg loss in other coastal 

nesting oystercatcher species (Table 17). In Virginia, of 20 pairs that failed to hatch any 

eggs in anyone season (n= 3.1 mean number of seasons), 18 (90%) of these pairs lost 

nests to high tides (NoI1989); 47% of American oystercatcher nests at salt marshes were 

flooded by spring tides over a two-year period (Lauro and Burger 1989); 48% of clutches 

of American black oystercatcher were lost to storms (Hartwick 1974); and with Eurasian 

oystercatcher, the main cause of loss is flooding (Nethersole-Thompson 1988). 

On the Chatham Islands, nest sites on high ground may become the limiting factor for 

nesting. American oystercatcher nests on high ground are the most successful (Lauro and 

Burger 1989); in some locations, high elevation nest sites appear to be limited and the 

habitat saturated (Lauro et al. 1992). In general, oystercatchers exhibit high nest site 

fidelity from year to year. For the American oystercatcher this results in some pairs 

experiencing nest loss due to high tides nearly every year (Nol and Humphrey 1994). This 

could also be true for CIO, especially with any population expansion and the use of lower 

quality territories, or in areas exposed to prevailing winds. 

The incidence of tidal flooding ofCIO nests (and even chicks) along sandy beaches may 

have increased with the introduction ofmarram grass (Ammophila arenaria). Planted 
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widely around the islands in the late 1800s and early 1900s to stabilise sand dunes, which 

had become denuded by livestock, marram changes the shape of dunes, capturing sand very 

effectively and creating much steeper dunes than the native pingao-dominated dunes (Esler 

1970; Heyligers 1985). Marram grass is now well established and covers well over 90% of 

the sandy dune systems on Chatham and Pitt Islands (pers. obs.). This has had two 

possible effects: reduction of areas of sandy beach above the high tide line available for 

nesting, and creation of habitat for introduced predators such as weka, possum 

(Trichosurus vulpecula) and cat (Felis domesticus). Weka were observed at high densities 

within the marram grass dunes, foraging and nesting. Possum used the dunes for daytime 

denning, and both cat and possum tracks were often seen on the sandy beaches adjacent to 

the dunes (pers. obs.). 

In Australia, the establishment of marram grass has negatively impacted closely related 

nesting shorebirds, the Australian pied oystercatcher and hooded plover (Thinornis 

rubricollis), which nest on terraced-shaped foredunes formed by native grasses. At 

Ca1verts Beach in southern Tasmania, hooded plover nested in the foredunes in the mid 

1970s. The whole dune system has since been stabilised with marram and the birds no 

longer nest there (Park 1994). In Oregon, USA, Snowy Plover (Charadrius alexandrinus) 

nesting habitat has been lost due to establishment of marram grass. In areas where marram 

has been removed and predators excluded, nest success is 70% versus 6% in other areas (P. 

Moore, pers. comm.). 

In attempting to determine the relative causes of nest loss, flooding as a source of nest 

failure is the easiest to identify and may appear over-represented relative to other causes 

that are more difficult to determine. The effects of flooding on productivity may vary more 

significantly from year to year and perhaps from place to place (see below) than do the 

effects of other causes. Three years is too short to estimate the long term significance of 

flooding on population levels. If correlations between weather patterns and nesting success 

could be established, long-term trends and the overall impact of stormy weather and the 

resultant flooding (both past and future) might be determined. 

Likelihood of flooding may vary significantly between areas due to prevailing winds (Pugh 

1987). In Australia, this influenced nesting success on Big Green and Flinders Islands with 

significantly less flooding of nests on leeward coasts. Losses due to floods, wind and rain 

on exposed Flinders Island were 62% and 80% in the 1988 and 1989 seasons respectively, 
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compared with 10% for both seasons on sheltered Big Green Island (Lauro and Nol 1993). 

Longer term if, because of global climate change, ocean heights rise or storm frequencies 

or intensities increase, CIO could be especially susceptible to effects of tidal flooding. 

Between 1970 and 1978 gale force winds (28+ knots) on the Chathams during spring 

(Sept-Nov) and summer (Dec-Feb) were predominantly from the west and southwest (67%, 

n = 75). Very high swells (14+ metres) came primarily from the south and southwest 

(82%, n = 22) (Thompson 1983). Assuming these general weather patterns hold, the risk to 

CIO nests from storms on the coastline of the Chathams is greatest for those exposed to the 

south and to the west. 

Predation is an important cause of breeding failure in birds worldwide (Nice 1957; Ricklefs 

1969; O'Conner 1991; Martin 1993; Cote and Sutherland 1995). Predation ofCIO was 

suspected as a cause of egg and/or chick losses. A number of known oystercatcher 

predators occur on Chatham Island (Table 18) and were trapped in the area where CIO was 

nesting (Table 19). Many of the 'unknown' cases of mortality noted in this study might 

have been caused by predation, which would have been more difficult to detect than 

flooding or some of the other causes. 

Table 18 Potential predators which occur on the Chatham Islands of oystercatchers or 

other ground nesting birds specie. Sources: 1) Nol and Humphrey 1994, 2) 

Rebergen et al. 1998,3) Sanders 1997, 4) Marchant and Higgins 1993,5) Pierce 

1986, 6) Atkinson 1978, 7) Brown et al. 1993, 8) James and Clout 1996, 9) Hutton 

and Sloan 1993,10) Ronkii and Koivula 1997, 11) Nethersole-Thompson 1988,12) 

Andres and Falxa 1995,13) Nol and Humphrey 1994,14) Harris 1967,15) Groves 

1984, 16) Ainley and Lewis 1974,17) Oliver 1955, 18) Dowding, pers. comm.; 

19)Dowding 1993;20) Dowding 1997b. 

Species 

cat (Felis catus) 

dog (Canus familiaris) 

Norway rat (Rattus norvegicus) 

ship rat (Rattus rattus) 

hedgehog (Erinaceus europaeus) 

possum (Trichosurus vulpecula) 

gulls (Larus spp.) 

weka (Gallirallus australis) 

harrier (Circus approximans) 

spur-winged plover (Vanellus miles) 

turnstone (Arenaria inter pres ) 

Life stage depredated 

adult, chick 

adult 

adult 

adult 

eggs 

eggs 

eggs, chicks, adults 

eggs 

eggs, chicks 

eggs 

eggs 

Source 

1,2,3,4 

1,4, 19 

1,5,6 

1,6 

2,3,20 

7,8 

1,4,9,10,11,12,13,14,15,16 

17 

4,5 

18 

10 
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Table 19 Number of predators removed near Chatham Island Oystercatcher breeding 

areas, north coast, Chatham Island 1992,1993, and 1998 (sources: Murman 1991, 

Sawyer 1993,1994; P. Moore 2000). (Datafor 1997 unavailable.) 

Breeding 

seasons Possum Cat 

1990 1 

1992 8 3 

1993 6 2 

1998 133 47 

1999 61 51 

Weka Hedgehog 

150 

55 6 

14 0 

654 39 

719 41 

Rat 

1 

0 

0 

44 

Gulls 

23 

53 

Predation is often assumed to be a significant cause of breeding failure and population 

declines in threatened bird species; however, the actual losses are difficult to document. 

Because significant amounts of time and money are devoted to predator control this is 

often a topic of much debate and speCUlation. In addition, although losses of nests to 

predators may be high, predators in some cases may not be a major threat to populations 

because overall nesting success can still be high due to re-nesting (Beintema and Muskens 

1987). However, predation is a significant factor affecting breeding success in at least 

some situations for oystercatcher. Throughout its range, the American oystercatcher tends 

to be more common and more successful in areas with few or no terrestrial predators (e.g., 

islands) (Nol and Humphrey 1994). Nests of American black oystercatcher are rare on 

accessible mainland sites, and those sites accessible to mammalian predators had higher 

predation rates than nests on offshore rocks (Nysewander 1977; Campbell et at. 1990; 

Vermeer et al. 1992). In South Africa, oystercatchers breeding on predator-free islands 

have much higher productivity than their mainland counterparts (Urban and Shugart 1986). 

On Marcus Island, South Africa, after terrestrial predators gained access via a causeway in 

1976,28 adult oystercatchers were killed (25%) and productivity was only 0.03 fl/pr/yr. 

After fencing and trapping eliminated predators, productivity increased 10-fold to 0.30 

fl/pr/yr and was as high or higher in subsequent years (Cooper et al. 1985; Hockey 1996a). 

Adults may be especially susceptible to predation during incubation. At Marcus Island, 

mortality due to predation was significantly higher during the breeding season (Hockey 

1985). 

Cats have the potential to be especially problematic for oystercatcher populations due to 

their ability to kill adult birds, as well as chicks and eggs. Feral cats (Felis catus) are 

known to have killed adult oystercatchers of several species (Summers and Hockey 1977; 
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Heg 1999). They have been videotaped killing nesting adult banded dotterel (Charadrius 

bieinctus) (as well as killing chicks and eating eggs) in the Mackenzie Basin of New 

Zealand (Sanders and Wells 1999), and have been videoed attacking incubating CIO along 

the north coast (Peter Moore, pers. com.). Populations are often more sensitive to the loss 

of breeding adults than to other factors (Hamilton and Moller 1995; Reed et al. 1998). 

Populations may also exhibit threshold responses to changes in mortality rates. In 

Hawaiian Stilts (Himantopus mexicanus knudseni), population modeling suggested that a 

10% change in adult mortality could result in a drop in persistence probability from 100% 

to 0% (Reed et al. 1998). 

Gulls are probably the best documented predator of oystercatchers and have been reported 

to take eggs, chicks and even adults for many species (Table 17). In South Africa, human 

disturbance of incubating birds caused them to leave their nests. Under these conditions 

predation of eggs by kelp gulls (Larus dominicanus) was observed once and suspected in 

three cases. Kelp gulls were also observed several times taking small chicks (Summers 

and Hockey 1977). Oystercatchers can defend their eggs and chicks from gulls, but eggs 

and chicks may be vulnerable if a breeding pair is disturbed by humans or other predators 

(pers. obs.) (Summers and Hockey 1977; Marchant and Higgins 1993). Super-abundance 

of gulls is a well documented and wide spread phenomenon around the world (Blokpoel 

and Scharf 1991; Blokpoel and Spaans 1991; Isenmann et al. 1991; Spaans et al. 1991; 

Vermeer and Irons 1991). Black-backed gulls (Larus dominicanus) are probably super­

abundant on the Chathams due to human activities - feeding from fish factory offal, on 

livestock carcases, and at rubbish tips. Black-backed gull were often observed in large 

numbers (l00 or more) feeding on offal at Waitangi West and Port Hut (pers. obs.). 

Gulls may also compete with oystercatchers for food. Kleptoparasitism (food stealing) by 

gulls can be significant to oystercatchers in some situations (see Ens and Cayford 1996). 

Oystercatchers feeding on giant bloody cockles (Anadara senilis) on the Bane d'Arguin in 

Africa lost almost half their food to kleptoparasites, mainly to lesser black-backed gulls 

(Larus fuscus) (Swennen 1990). CIO was sometimes harassed by gulls attempting to steal 

food (pers. obs.), but the amount actually lost is unknown. Several events were observed 

over the course of three seasons, but did not appear to be common relative to overall 

feeding times. 



Disturbance and trampling by vehicles or livestock were important potential causes of 

breeding failure and, on the Chathams may preclude use by CIO breeding pairs of 

otherwise suitable areas. Some beaches and coastline areas around Chatham, Pitt, and 

Rangatira Islands were frequently used by humans for a variety of activities including 

travelling, fishing, launching fishing boats, and mustering sheep (pers. obs.). The use 

could be prolonged (several hours in duration) and there were often dogs and vehicles 

associated with various activities. 
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Human-induced disturbance is the most important factor limiting population growth in 

blackish oystercatcher (H. ater) in some parts of its South American range (Andres and 

Falxa 1995). For American black oystercatcher human disturbance and feral cats on 

Channel Island, California, caused pairs to abandon nest sites. The density of birds on 

disturbed islands was only 3% of densities on undisturbed islands (Warheit et al. 1984). 

For 100 years, disturbance by humans and domestic animals precluded American black 

oystercatcher from breeding on South Fallaron Island, California. Twenty breeding pairs 

re-established within just five to seven years after removal of disturbances (i.e., relocation 

of four resident families and their domestic animals) (Ainley and Lewis 1974). On 

Destruction Island, Washington, USA, the number of pairs increased three-fold from 4 to 

12 pairs within seven years ofthe lighthouse being automated (Nysewander 1977). Human 

disturbance was believed to be the cause of a rapid population decline of the American 

oystercatcher in Florida, and resulted in relatively low nesting success in traditional open 

sandy beach habitat compared with forested spoil islands (Toland 1992). In South Africa, 

there are apparently suitable areas that now contain few or no oystercatchers. This is 

thought to be due to human disturbance which may keep birds off their eggs for extended 

periods (Summers and Hockey 1977). Near Cape Agulhas, South Africa, there was a 

decline from 13 to 0 fledglings/annum over seven years due to increased human 

disturbance (vehicular traffic, egg removal, nest crushing and exposure) (Jeffery 1987). 

Dogs frequently accompany humans in their various activities along the coastline of the 

Chathams (pers. obs.). The presence of dogs may increase the impact human disturbance 

has on breeding shorebirds. In the Mornington Peninsula National Park near Melbourne, 

Australia, a management scheme to reduce disturbance from humans and dogs along the 

coast during the breeding season led to a 158% increase in breeding success of hooded 

plover (a shorebird species with similar nesting habits to oystercatchers) from an average 

of less than three fledglings per year to over 10 (Dowling 1999). Dogs disturb shorebirds 
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by running after them (Retallick and Bolitho 1993) and, in another wader species, the New 

Zealand dotterel (Charadrius obscurus), the presence of dogs caused birds to leave the nest 

much sooner than when humans alone approached (Lord 1996). 

Livestock may trample nests and cause significant losses. In simulated trials with artificial 

nests in the USA and in the Netherlands, trampling caused over a third of all nest losses 

(Beintema and Muskens 1987; Paine et al. 1997). Sagar, et al. (2000) reported that 47% of 

losses of South Island pied oystercatcher nesting in paddocks were due to trampling by 

livestock. Both sheep and cattle were frequently observed on the Chatham's coastline, 

often eating kelp. In addition, sheep were occasionally mustered along the coast (pers. 

obs.). In one case, a chick disappeared after a flock of several hundred had been mustered 

through its territory. 

Asynchronous hatching is common in many bird species, and may sometimes lead to the 

abandonment of the terminal egg, especially in species that use open nests at ground or 

water level and have precocial or semi-precocial chicks (Evans and Lee 1991). The eggs of 

American oystercatcher hatch in the order they are laid, the first two relatively 

synchronously. Newly hatched chicks may leaving the nest before the third has hatched. 

Parents will attend the hatched young, which may result in the third egg being abandon 

(Nol and Humphrey 1994). At Schiermonnikoog, the Netherlands, abandonment of 

pipping eggs occurred in 4.5% of the nests (Heg 1999). Abandonment of the last egg laid 

was thought to have occurred at least once in the north coast Chatham Island popUlation 

during the 1994-1997 study. The causes of this behaviour are not clear (Heg 1999). 

Incubation of damaged eggs by CIO reduced overall productivity since several pairs did 

not re-nest while incubating these eggs. These eggs were mostly intact and may have been 

damaged due to adults jumping off the nest quickly, livestock, flooding, weka (Gallirallus 

australis), or spur-winged plover (Vanellus miles). In variable oystercatcher (H unicolor), 

the longest unsuccessful incubation lasted over 81 days (Fleming 1990). One pair of CIO . 

incubated eggs that were not viable, probably infertile, through most of the season. The 

male ofthe pair was probably only two years old and possibly sexually immature, as most 

oystercatcher species do not begin breeding until at least three or four years old (Hockey 

1986; Marchant and Higgins 1993). 

Following to this study, video monitoring of CIO nests along the north coast, Chatham 

Island during the 1999 season recorded two nests lost to predators, one each to a cat and a 
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weka. There were also several 'visits and interactions' (which did not result in loss of the 

clutch): four cats, six cattle, one sheep, two possum, one weka, one rodent (spp unknown), 

and one person (P. Moore, pers. comm., Feb 2000). Incubating adults experienced 'close 

calls' escaping attacks by cats. 

The period of highest risk for CIa eggs and chicks was the week either side of the 

estimated hatch date. Some of this variation was due to uncertainty in hatching dates and 

the timing of nest checks. In most oystercatcher species, chick losses are highest during 

the first week or two after hatching. Kersten and Brenninkmeijer (1995) found that only 

44% of 548 Eurasian oystercatcher chicks survived until they were 12 days old. Older 

chicks survived better, with 77% of 184 chicks still alive at an age of21 days fledged. In 

American black oystercatcher, chicks were most vulnerable during the first two weeks after 

hatching (Groves 1984). For Eurasian oystercatcher and African black oystercatcher the 

first week after hatching was most perilous, over 60% and 87% respectively of chick 

mortality occurred during this time (Heppleston 1972; Hockey 1983). 

In oystercatcher species around the world, the two most common factors in chick losses are 

either lack of food or predation (especially by gulls). Other causes of chick loss include 

sibling rivalry (which is related to food supplies), neighbouring oystercatchers, trampling, 

disease, and weather (Groves 1984; Hockey 1986; Ens 1992; Heg 1999). At Forvie, 

Scotland, the main factors influencing chick survival were the density of predators and 

other oystercatchers and the location of food supplies (Heppleston 1972). 

Chick mortality in oystercatchers is apparently often due to starvation and has been 

recorded in Eurasian oystercatcher (Safriel et al. 1996), American oystercatcher (H. 

palliatus) (NoI1985), American black oystercatcher (Groves 1984; Purdy 1985), and 

African black oystercatcher (R. moquini) (Hockey 1996a). In American black 

oystercatcher, all except one chick heavier than 200g at 20 days old fledged (n = 15), 

whereas only 5 of 10 chicks weighing less than 200 g at 20 days old survived to fly 

(Groves 1984). In years of stormy weather (and therefore more limited food supplies), 

some of this starvation may have been due to the establishment of a sibling hierarchy and 

death of the subordinate chick, due to the subordinate chick being more active due to 

hunger and therefore more vulnerable to predation (Groves 1984; Heg 1999). 

Timing of food availability and bad weather can be critical. In periods of extended strong 

winds, or heavy swells, food may become a problem and long-legged shorebirds may stay 
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all day on sheltered roosts without attempting to feed (Evans and Smith 1975; Davidson 

1981; Evans and Pienkowski 1984). At Marcus Island, South Africa, numbers of African 

black oystercatcher during one such storm in 1975 more than trebled in numbers (to c. 600) 

and fed on stranded mussels - possibly due to a temporary food shortage elsewhere 

(Hockey 1984). Rain and chilling affected chick survival at Schiermonnikoog, the 

Netherlands and, during rain, parents stopped feeding (Heg 1999). 

Good weather and more food availability may explain the high proportion of two-chick 

clutches (75%) in 1994 compared with the other two seasons (33% in 1995 and none in 

1996). Good weather means fewer nests are lost to flooding and possibly fewer losses of 

chicks to drowning or starvation. After several days of high seas, if alternative foraging on 

rock platforms or beaches is not available, chicks might starve or become more active due 

to hunger, and so more susceptible to predation (Groves 1984). No data on growth curves 

of CIO chicks were available from this study to give an indication of the role of food 

supply in chick losses on the north coast, Chatham Island. However, two-chick broods 

took longer to fledge than one-chick broods suggesting food competition decreased growth 

rates and increased time to fledging. Food is more likely to be a limiting factor at higher 

popUlation densities or in stormy years. 

Causes of mortality in chicks may interact in complicated ways (Safriel 1981; Safrie11982) 

so the most important causes remain unknown. Location of food within or around 

breeding territories, rather than the total amount of food available, may be a key factor in 

fledging success. In studies of Eurasian oystercatcher (Heppleston 1972) and American 

oystercatcher (NoI1989), fledging success was related to location of food and adult 

attendance of chicks. The more time parents spent away from chicks collecting food the 

lower the fledging rates, because the chicks had less parental protection from predators. 

Timing of the breeding season 

Nesting (date oflaying) 

The first nesting dates (9-13 October) from this study were earlier than any previously 

recorded. Saywer (1993) reported first nesting attempts on 24 October 1991, and 23 

October 1992. These differences were probably due to the intensity of the monitoring 

rather than to any differences between years in initial laying dates. CIO begins nesting 

later than South Island pied oystercatcher, which began nesting in early August on the 
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Canterbury Plains (later in Mackenzie Basin) or variable oystercatcher, which initiates 

nesting in mid-September (Baker 1969; Marchant and Higgins 1993; Heather et al. 1996; 

Maloney et al. 1999; Sagar et al. 2000). This may be due to Chatham Island's weather 

patterns affecting the availability of food and increased risk of nests being lost to storms 

and tidal flooding. In Tasmania, which is about the same latitude as the Chathams, 

Australian pied oystercatcher (H longirostris) nested from early September to late 

December or early January. Sooty oystercatcher (H fuliginosus) in South Australia nests 

at about the same time as CIO, incubating eggs from October to January and, rarely, 

February (Marchant and Higgins 1993). African black oystercatcher (H moquini), nests 

with eggs have been found from 10 October to 1 May, with the most being found from 

mid-November to the end of February (Summers and Hockey 1977). 

CIO clutch initiation times varied between pairs by at least four weeks. Early laying is 

well known to increase the chances of successfully fledging chicks in single-brooded bird 

species (reviewed in Dann, 1989). The causes for earlier laying in some pairs are difficult 

to determine. In Eurasian oystercatcher, the range of laying dates spanned more than 40 

days (Ens 1992). Ens et al. (1993) found that with advancing age, females lay 

progressively earlier, but at the same time differences in laying between individual females 

remained consistent. They concluded that it was impossible to decide whether the laying 

date was due to differences in food availability in the territories, the female's foraging 

ability (which may improve with experience), or the extent to which she could abstain from 

assisting her mate in territorial defence. Heg (1999) found, in a follow-up study, that food 

and age were minor causes in advancing laying dates, but the main causes were pair bond 

duration and time spent defending the territory pre-laying. He concluded that, ultimately, 

territory quality and pair bond duration were probably the main factors. Newman (1992) 

reported up to six weeks of variation in the initiation of first clutches by pairs of Australian 

pied oystercatcher in Tasmania. He felt maturity did not adequately explain the variation, 

and hypothesised it was due to differences in the quality of the territories and of food 

supply. 

Laying, incubation and hatching 

A laying interval of 24-48 hours is similar to that reported for clutches laid on Rangatira 

Island (Davis 1988). Hemming (1987) also reported a CIO nest in which the first egg was 

seen on one day and the second egg the following day. In variable oystercatcher, the 
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laying interval averaged 48 hours (range 36-52) with incubation commencing when the last 

egg is laid (Baker 1969). Laying intervals of about one to two days have also been 

recorded for Australian pied oystercatcher, Eurasian oystercatcher, and American 

oystercatcher (Keighley and Buxton 1948; Newman and Park 1992; Nol and Humphrey 

1994). Cold and/or wet weather can delay egg laying in American oystercatcher (Nol and 

Humphrey 1994). 

An average incubation time of 28-29 days is significantly longer than those reported by 

Davis (1988) and Marchant and Higgins (1993) of25 ±1.2 days (n = 3 pairs). CIO eggs 

taken from the north coast, Chatham Island and kept in incubators began hatching on day 

26 (26.75 ± 0.89, n = 8), with chicks taking between 48-72 hours to hatch (Sawyer 1993), 

giving a total incubation time (i.e., clutch completion to hatching completion, or the 

beginning of incubation of a particular egg to completion of hatching of that egg) of 28-29 

days. Hemming (1987) reported a 30-day incubation period (including hatching) for one 

nest on Rangatira, which took about 2 days (eggs not pipping 20.12.86, pipping mid-day 

the 21st and 9:00 am the 22nd, both eggs hatched by 9:30 am the 23rd). 

A 28-29 day incubation period for CIO is similar to that for variable oystercatcher (average 

28 days, range 25-32 days). South Island pied oystercatcher has a shorter incubation 

period of 24-28 days (Marchant and Higgins 1993). Incubation periods of other 

oystercatcher species range from 23.5-39 days (reviewed in Hockey 1996). Occasionally, 

successful incubation periods can be unusually long - one pair of Australian pied 

oystercatcher hatched eggs after 44 day incubations (Newman 1992). (This pair hatched its 

eggs in the stump of a tree, an unique site. Regular visits by the researcher excluded the 

possibility that two clutches were involved. No other explanation for this long incubation 

period were offered.) 

There is much evidence that chilling of eggs during incubation can retard hatching and 

extend the incubation period (Nysewander 1977; Webb 1987). In the present study, this 

may have been the cause of the extended incubation period for one clutch where one chick 

died while hatching after an incubation period of a minimum of 37 days. It may also 

explain the longer incubation period of 30 days plus for another pair. Disturbance and 

chilling, and the consequential delay in hatching, may increase the risk of terminal egg 

abandonment (Evans and Lee 1991). 
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CIO continued to incubate eggs after flooding by the tide. This behaviour has also been 

reported for several other oystercatcher species. Eggs in nests washed over by spring or 

storm tides have successfully hatched in American oystercatcher and American black 

oystercatcher. Of 31 American black oystercatcher eggs ( 12 nests) submerged 1-4 times in 

Glacier Bay, Alaska, 17 survived to hatch (Andres and Falxa 1995). American 

oystercatcher does not normally roll its eggs back into the nest (Nol and Humphrey 1994). 

American black oystercatcher eggs were either incubated where they were left by the 

receding tides or returned to the nest (Andres and Falxa 1995). 

An asynchronous hatching period, with hatching lasting 1-2 days for CIO, was similar to 

that of other oystercatcher species. Hatching periods (from first pipping to hatching) are 

about 36 hours for variable oystercatcher (Baker 1969); and 53-67 hours for Eurasian 

oystercatcher (Nethersole-Thompson 1988). 

Re-nesting (replacement clutches) 

Re-nesting patterns on the north coast, Chatham Island are similar to those reported by 

Davis (1988), with the exception of pairs on Rangatira Island which are reported to have 

laid third replacement clutches (i.e., up to a total of four clutches in one season). Up to 

three replacement clutches have also been reported for Eurasian oystercatcher (Heg 1999). 

Replacement rates of first clutches were high in CIO (80-100%), but declined for second 

clutches, which were replaced in only about one third of the cases (31 % on average). 

Some replacement clutches may not have been found or identified as such, so these 

numbers are minimums. Quantitative information on re-nesting is scanty, but during the 

first weeks of the breeding season about 100% of all Eurasian oystercatcher nests lost were 

replaced. This probability of re-nesting decreased, but more research would be needed to 

quantify this (Beintema and Muskens 1987). There were only two cases during this study 

when first clutches were not replaced. In one case the pair acted oddly, and there may hav~ 

been turnover in one or both of the pair members. The other pair was not monitored very 

closely in December and January. A scrape was found, but never any eggs. Are-nesting 

attempt may have been missed due to the low number of checks. 

The replacement interval of about 10-20 days for the north coast, Chatham Island CIO was 

shorter than those reported by Davis (1988) and Marchant and Higgins (1993) of a 

minimum of 21 days for most pairs. They were similar to the replacement intervals 

reported for several other oystercatcher species: Australian pied oystercatcher in Tasmania, 
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11-25 days (Newman 1992), Eurasian oystercatcher, 11-19 days (Mercer 1968; Nethersole­

Thompson 1986), and American oystercatcher, 14 days (NoI1989). The differences 

between the results from this study and that of Davis may be due to differences in location, 

years, or methodology. 

The interval between clutch loss and initiation of the next clutch may reflect the food 

resources available for egg production. The costs of egg production can strain a female's 

daily energy balance and slow down egg formation (Walsberg 1983). Evidence of food as 

a limiting factor in the breeding of oystercatchers is, however, inconclusive. In a study of 

American oystercatcher, food supplies and reproductive performance were examined, and 

no apparent correlation was found between food supply and interclutch intervals (Nol 

1989). In contrast, Newman (1992) speculated that the shorter intervals between clutch 

replacement of different years for Australian pied oystercatcher in Tasmania were due to 

more favourable (e.g., less stormy) tides and weather, and therefore better food availability. 

Chick rearing and fledging 

The average time to fledging of approximately 39 days (range 30-47 for one-chick broods, 

36-54 for two-chick broods) for chicks on the north coast was less than that reported by 

Davis (1988) for Rangatira Island of 47.8 ±1.5 days (n = 4 chicks). This is probably 

because of differences in chick growth due to food availability. Kersten and 

Brenninkmeijer (1995) reported fledging times ranging from 27 to 52 days in Eurasian 

oystercatcher. This wide range was due to chicks fledging at an early age displaying much 

faster growth rates than later fledging chicks. Differences in food availability could arise 

from differences between years (weather and its effect on food availability), territory 

quality and/or brood size. 

Two-chick broods grow significantly more slowly than one chick broods in American 

black oystercatcher (Groves 1984). This same pattern appeared in CIO, with two-brood 

chicks always taking longer to fledge than one-chick broods (n = 7). Where days to 

fledging were known to within two weeks, two-chick broods on the north coast (n = 2) 

fledged in 42 to 47 days on average; one-chick broods (n = 5) from 30 to 40 days on 

average. The size of broods on Rangatira was not reported, but on average they took 

longer to fledge than all but the slowest growing two-chick broods on the north coast. 

Young (cited in Davis 1988) reported a single chick taking about 50 days to fledge on 

Rangatira in 1974. These data suggest that chicks on Rangatira grew slowly relative to 
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north coast chicks due to either poor years when the data were collected, or poorer quality 

territories, rather than differences in brood size (i.e., all Rangatira broods were slow 

growing due to being from two-chick broods). 

Dispersal of fledglings 

The average time to eviction or dispersal after fledging for CIO juveniles on the north coast 

(33 days) is quite short relative to that for most other oystercatcher species and to juveniles 

on Rangatira. On Rangatira some fledglings remained with their parents for at least 27 

days after fledging, with many fledglings apparently remaining in or near their natal 

territory until the following breeding season (Davis, 1988). In many oystercatcher species, 

movement to wintering areas away from breeding areas determines when young birds leave 

their natal territories (Nol and Humphrey 1994). Kersten (1995) reported that Eurasian 

oystercatcher fledglings remained dependent on their parents up to an age of 3 months and 

often longer. In American black oystercatcher, pairs evict offspring from territories about 

5-6 months after fledging (Helbing 1977 in Andres and Falxa 1995). In variable 

oystercatcher, young often remain with the parents through the winter, but otherwise they 

join winter flocks 3-4 weeks after fledging and appear to be independent of their parents 

(Moon 1967; Baker 1969; Fleming 1990). 

The type of food available within a territory may determine how long young depend on 

their parents for food. Oystercatchers are well known for their unique combination of 

precocious young which are fed by their parents (Hockey 1996a). If soft food is available, 

chicks may be able to feed themselves at an earlier age and therefore become independent 

of their parents at a younger age. 

Clutch sizes 

The decline in clutch size within the season and with each replacement clutch in CIO is 

similar to that found in many other oystercatcher species, including the closely related 

South Island pied oystercatcher (Baker 1969; Hockey 1996b; Sagar et al. 2000). 

Variation in clutch size is affected by a variety of factors including genetic differences 

between individuals, age, food availability and season (Boag and Noordwijk 1987). Food 

shortages can reduce or staII egg production and thus affect clutch size (King 1973; 

Ricklefs 1974). Year-to-year variation in average clutch size in Great Tit (Paris major) 

and California guII (Larus califarnicus) are directly related to food abundance (Perrins 
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clutch sizes within years is due to differences in territory quality (Hogstedt 1980). 
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In oystercatchers, variations in clutch size has been related to age and food. In American 

oystercatcher no relationship was found between food and clutch size, but age appeared to 

be a significant factor. Older birds were more likely to lay three-egg replacement clutches 

than younger birds (NoI1989). In contrast, reduced food availability was suggested as the 

reason for declining clutch size in South Island pied oystercatcher as declines occurred in 

both experienced and inexperienced pairs (Sagar et al., 2000). 

The tendency for two-egg clutches to be more successful in CIO than one-egg clutches is 

also seen in other oystercatcher species. In Eurasian oystercatcher, larger clutches (two -

four eggs) were more successful than one-egg clutches (50-68% versus 33%) (Harris 

1967). In American black oystercatcher, an average 0.75 chicks/clutch survived to fly 

from two-egg clutches compared with 0.50 chicks/clutch from one-egg clutches (Groves 

1984). Oystercatchers may lay one more egg than the number of chicks they can normally 

fledge, a type of 'insurance' against egg loss. In Eurasian oystercatcher, 48% of clutches 

that hatched at least one chick lost one or more eggs (Heg 1999). The lower success of 

three-egg clutches (0.13 fledglings/clutch) compared with two-egg clutches (0.37 

fledglings/clutch) in CIa is puzzling, but the sample size was small. 

Third clutches were most successful with a third successful (Table 11), but the sample size 

was small (n = 6). When classified by season, rather than clutch order, early clutches were 

more successful than late clutches (27% and 18% respectively). This was due to the low 

success rate of five first and second clutches that were laid late in the season (i.e., clutches 

completed after 3 January). Three of these clutches may have been initiated late in the 

season because in every case the first clutch was initiated late (after 19 November) and 

then survived until hatching or near hatching so, by the time the pair replaced them, it was 

late in the season. Alternatively, some or all of these apparently second clutches might, in 

fact, have been third clutches, mis-identified as second clutches (due to the first clutch of 

the season being lost before I found it). The other two late clutches were unlikely to have 

been mis-identified. In one case, the pair was probably newly established (a conclusion 

based on events observed during the preceding season). They made nest scrapes all season, 

but did not finally lay until 31 January 1997. They were checked frequently (29 times over 

the season), so any earlier clutches would probably have been discovered. In the other 
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. case, a damaged egg from the first clutch was left in the nest, which delayed re-nesting by 

29-38 days. 

The initiation of up to three clutches may indicate good quality pairs (e.g., long pair bonds, 

experienced individuals) or perhaps good quality food within the territories. In Eurasian 

oystercatcher, females that initiate early clutches benefit because they are more likely to 

produce replacement clutches within the same season if all eggs or chicks are lost (Heg 

1999). 

SUMMARY AND MANAGEMENT RECOMMENDATIONS 

In spite of high breeding effort by pairs over all seasons, productivity was relatively low 

along the north coast, Chatham Island. Weather appeared to be a major factor affecting 

productivity in some years, through flooding and possibly food availability. In the 1996 

season storms destroyed most of the nests and only two fledglings were produced that 

season. Over all seasons flooding was the main cause of nest losses, but pairs re-nested up 

to three times, which compensated for some of this loss in less stormy years. Habitat 

modification on the Chathams, especially the establishment of marram grass, has probably 

increased losses of nests to tidal flooding and may also be providing suitable habitat for 

predators. A large proportion of nest losses were lost to causes unknown, which may have 

been due to predators, a cause more difficult to detect than flooding. 

Chick losses are particularly difficult to establish, since most chicks disappear without 

trace; however, predation was probably a significant factor based on the high number of 

predators present. Weather, interacting with predation pressure may explain why there are 

were more two-chick broods surviving to fledging compared with one-chick broods in 

some years (i.e., hungry chicks became more active and thereby more vulnerable to 

predators (Reg 1999)). More data on food availability between territories/habitats and 

years would be needed to determine the role of weather and food availability and potential 

interactions with predators. 

In some locations, such as Virginia, oystercatcher nests have been protected from flooding 

tidal during specific periods only when the risk was highest (E. No1, pers. comm.). 

Flooding occurs during spring tides with on-shore winds. The spring tides were 

predictable and susceptible nest sites could be raised during the 3-4 hours of tidal surges. 

A similar technique may be useful for some nests on the Chathams, although long travel 
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times to and between pairs, access difficulties during surge tides, and lack of resources may 

make this difficult for most nests. 

The highest risk times for non-flooding losses (which may be primarily caused be 

predation) appear to be around hatching. This may be the best time to concentrate any 

management efforts aimed at minimising non-flooding losses. The laying period may also 

be high risk as has been shown for some other oystercatcher species, but more detailed 

monitoring would be needed to determine if this is so for CIO. 

Removing damaged eggs could increase productivity by encouraging re-nesting. Because 

CIO parents continued to incubate damaged eggs that were inviable, rather than re-nest, 

these types of losses had more impact on overall productivity than the clean loss of a clutch 

where all eggs disappeared from the nest or were so clearly damaged that the pair 

re-nested. Over the three seasons ofthis study, 17% of breeding pair seasons (n = 7) were 

lost or shortened due to damaged eggs in the nest. In the most optimistic scenario, if all 

damaged eggs had been removed from nests in the study area and all pairs successful re­

nested and fledged chicks, the overall breeding success for pairs would have been raised 

from 33-50% and an additional 14 chicks could have fledged. This is a relatively low cost 

and easy management option for raising CIO productivity, and could be combined with 

monitoring of productivity rates of CIO in other areas on the Chathams. 

The fact that CIO fledglings along the Chatham Island north coast appear to be evicted or 

disperse of their own volition within four to six weeks of fledging has important 

implications for censuses and monitoring of productivity. Past monitoring has probably 

been to infrequent to detect all fledglings. Because nests can be difficult to detect unless 

territories are monitored frequently the behaviour of pairs when young are present is 

probably the best indicator of breeding activity for infrequently monitored territories. Even 

when chicks are present, observers may not always detect their presence (Davis 1988, 

Sawyer 1993, Schmechel pers. obs.). Chicks or fledglings are present in a territory for 

about 9 to 12 weeks. Therefore, for monitoring purposes, CIO territories should be 

checked at least every nine weeks between mid-December and mid-March for chicks or 

fledglings. If chicks are found, a follow-up visit within four weeks to determine if the 

chicks survived to fledging must be made to determine fledging success accurately. If 

monitoring visits are any less frequent, the chick(s) may fledge and disperse from the 

territory without being detected. There is still a possibility of chicks fledging successfully, 
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but dying before detection, which could underestimate fledging success. Analytical 

methods (such as the Mayfield method (1975) to correct for these errors should be 

considered. If historic records of fledging success are used, they should be reviewed in 

light of these data to determine whether checks were made frequently enough to determine 

breeding success accurately. 

Productivity varied considerably from year to year, and probably varies significantly from 

area to area. Therefore, caution should be used when considering productivity estimates 

from small non-randomly selected areas or seasons to estimate population trends or 

evaluate management effectiveness for other areas or seasons. 

The number of breeding pairs in any given area can fluctuate with time and, as the numbers 

of breeding pairs increase, the productivity per pair may decrease (due to lower quality 

habitats being occupied, or other density-dependent factors coming into play). 

Productivity values can, therefore, be misleading. If there are few pairs in a given area, 

they may produce many fledglings per pair per decade for example; but if there are more 

breeding pairs, even though there may be less fledglings per pair, the total number of 

fledglings produced for that area may be higher. For this reason, the number of chicks 

fledging in specific areas should be monitored in addition to productivity per pair. 

Lack of food may preclude two- or three-chick broods in some circumstances, such as in 

difficult years (low food availability due to weather), or in lower quality territories. If 

other species are competing for food with CIO, a secondary benefit of control of these 

species (e.g., weka, gulls) may be increased food availability through increased food 

supplies, as well as the reduced predation risk during foraging. 

The number of CIO chicks that survive successfully in a brood has interesting implications 

for conservation management strategies. The same number of fledglings may be produced 

in various ways. For example, 10 fledglings could be produced either from 10 pairs each 

successfully raising one chick, or by five pairs each raising two chicks. It may be more 

effective to manage fewer pairs on higher quality territories than more pairs over a wider 

area. 

Future research and monitoring recommendations 

• Productivity probably varies considerably between different areas. Estimates of 

fledging success for various areas over several years could provide information 
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productivity needed to achieve population recovery goals. 
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• Correlations between weather patterns and breeding success could help determine how 

much weather determines productivity and fledging success. It could also help with 

predictions of fluctuations in productivity not attributable to the influence of 

management. 

• Eviction/dispersal periods for fledglings needs to be confirmed because some of the 

data from this study were incomplete and some were inconclusive. 

• Collection of growth curves for chicks, and of fledging times, would help provide an 

indication of the role of food supplies in productivity between years and between areas. 

However, this can be time consuming and potentially increase predation risk for chicks, 

especially if black-backed gulls are present. Therefore, the risks and benefits should be 

considered. Alternately, collecting data on parental feeding rates may provide an 

indication of relative food supply between areas and seasons, and their role in 

productivity. 

The C/O in context with other oystercatcher species 

Apparently unique to CIO on the north coast was the short time to juvenile 

eviction/dispersal (33 days, range 24-42). In most other species, the time is longer. For 

Eurasian oystercatcher the time is three months or longer, for American black oystercatcher 

five to six months, and for variable oystercatcher it is often through the winter (otherwise 

they join winter flocks three to four weeks after fledging). 

Some breeding parameters are quite variable within oystercatcher species, probably 

because these are more influenced by external factors, such as habitat quality or age of the 

,female. Average fledging time for CIO on the Chatham Island north coast was 39 days, on 

Southeast Island 48 days and for other species 25 to 49 days (Hockey 1996b). Within a 

single species (eg. Eurasian oystercatcher), fledging periods may range from 27 to 52 days 

depending on chick growth rates and food availability (Kersten and Brenninkmeijer 1995). 

For CIO on the north coast the length of the replacement interval, if a clutch were lost was 

similar to that of Australian pied oystercatcher, Eurasian oystercatcher, and American 

oystercatcher. 
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Laying dates for CIO was later than for either of the New Zealand mainland oystercatcher 

species (excepting South Island pied oystercatcher pairs in the Mackenzie basin). CIO 

initiated first clutches about a month later than variable oystercatcher, and over two months 

later than South Island pied oystercatcher. Compared to Australian pied oystercatcher in 

Tasmania (which nest at a similar latitude) CIO began laying about six weeks later; but at 

about the same time as sooty oystercatcher nesting in the south of Australia. 

CIO was similar to other oystercatcher species in a variety of breeding parameters. An 

incubation period for CIO of 28-29 days is similar to that for variable oystercatcher (28 

days), and just slightly longer than that for South Island pied oystercatcher (26 days, range 

24-28), and was well within the range for other species (24-39 days). Laying intervals are 

similar for all oystercatcher species. CIO shared the habit, with other oystercatcher 

species, of incubating eggs after flooding and displacement. Asynchronous hatching of 

chicks is common in many oystercatcher species. 
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APPENDICES 

Appendix] 

Monitoring effort (number of monitoring visits per pair per season and dates 

territories were checked for breeding activities). No. - number of checks for that pair. 

Numbers in italics - visits under 8, excluded from breeding success analyses. 

1994 1995 1996 

Pair No Dates No Dates No Dates 

Study area 

WW 5 8.1.95 - 22.2.95 18 8.11.95-22.3.96 23 18.10.96-19.3.97 

WOC 18 24.11.94-24.3.95 18 8.11.95-22.3.96 39 8.10.96-19.3.97 

TW 19 1.12.94-24.3.95 19 8.11.95-22.3.96 33 8.10.96-19.3.97 

TE 19 30.11.94-24.3.95 17 8.11.95-22.3.96 33 8.10.96-19.3.97 

OTF 18 7.11.94-22.3.95 14 9.11.95-22.3.96 28 18.10.96-19.3.97 

Creek 18 23.11.94-24.3.95 16 9.11.95-22.3.96 29 18.10.96-19.3.97 

Pounamu 14 9.11.94-24.3.95 14 9.11.95-22.3.96 24 18.10.96-19.3 .97 

Dune 9 25.11.94-24.3.95 15 9.11.95-22.3.96 27 18.10.96-19.3.97 

Cliff 13 25.11.94-24.3.95 17 9.11.95-22.2.96 24 18.10.96-19.3.97 

Cape 10 30.11.94-4.4.95 10 13.11.95-20.3.96 8 26.1 0.96-6.3.97 

Mairangi 9 30.11.94-4.4.95 12 12.11.95-21.3.96 10 26.10.96-6.3.97 

Wooished 11 22.11.94-4.4.95 13 13.11.95-21.3.96 14 29.10.96-6.3.97 

Rock 10 30.11.94-4.4.95 16 13.11.95-21.3.96 16 29.10.96-6.3.97 

Island 10 30.11.94-4.4.95 17 13.11.95-21.3.96 12 27.10.96-6.3.97 

Whanga 3 12.12.94-26.1.95 10 14.11.95-26.2.96 7 29.10.96-5.2.97 

Other areas 

Okahu 4 30.11.94-2.4.95 4 6.3.96-23.3.96 5 28.11.96-6.2.97 

Ohira Bay 4 18.1:96-19.2.96 4 27.11.96-9/1197 

Paritu E. 2 14.12.96-28.12.98 

Paritu W. 1 28.12.96 

Taupeka 2 112/96-20/3/96 1 24.1.97 

Matarakau W. 1 2113/96 2 7/1197-2811197 

Rangitai Pt. 2 1912196-2113/96 2 7/1197-28/1197 
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Appendix 2 

Breeding season effort, pair status, and outcomes, north coast, Chatham Island. 

Parenthesis - excluded from breeding success calculations due to low monitoring 

rates. Codes: s - successful (one or more chicks fledged), ie - infertile eggs, c­

clutches, de - damaged eggs, a/pto - abandon/pair turnover, ch - hatched chicks (but 

lost before fledging), nnf - nest never found, ? - no nest found (breeding attempt 

unknown) but monitored infrequently, tp - territorial pair, sbp - suspected breeding 

pair, nkp - no known breeding or territorial pair, p - pair of unknown breeding status. 

Territory 1994 1995 1996 

Study area 

WW (s) s s 

WOC s s 2c 

TW s s 3c 

TE Ie s 3 c 

OTF 2c 2 c, de 2c 

Creek 1 c, de 2c a/pto 

Pounamu a/pto ch 2c 

Dune nba 2c 1 c, de 

Cliff 1 c, de 3c 1 c, de 

Cape 2c 1 c, de 2c 

Mairangi p/pto? s (nnf) s 

Woolshed s 3c 2c 

Rock s 2 c, de 1 c 

Island s s 1 c 

Wbanga (?, ch?)* s (2 c, de) 

Other 

Okahu ?, p? ?, tp 2c 

Ohira Bay s loc 

Paritu E. 1 c 

Paritu W. ?, tp 

Taupeka nkp ?,sbp 

Matarakau W. ?,p ?,sbp 

Rangitai Pt. s ?, p 

Totals 

successful 6 9 2 

pairs 14 19 22 

successful 43% 47% 9% 

* strong anti-predator behaviour 12112/1994, suspected 

chick(s) were present, but later lost 



Appendix 3 

Number of chicks known to have fledged, northern Chatham Island 1994 - 1996. Numbers only for territories where pairs territorial, resident or 

suspected to have bred. 

Territory 

Study area 

WW 

WOC 

TW 

TE 
OTF 

Creek 

Pounamu 

Dune 

Cliff 

Cape 

Mairangi 

Woolshed 

Rock 

Island 

Whanga 

Other 

Okahu 

Ohira Bay 

Paritu E. 

Paritu W. 

Taupeka 

Matarakau W. 

Rangatai Pt. 

Totals 

fledglings 

pairs 

fledglings/pair 

No. of fledglings 

1994 1995 1996 

2 

2 

2 

o 
o 
o 
o 
o 
o 
o 

1 

2 

o 

10 

14 

0.71 

1 

1 

1 

1 

o 
o 
o 
o 
o 
o 
1 

o 
o 
2 

1 

o 
o 
o 
o 
o 
o 
o 
o 
o 
1 

o 
o 
o 
o 

o 0 

o 
o 
o 
o 

o 
1 

10 

19 

0.53 

o 
o 

2 

22 

0.09 

Notes 

possible pair turnover 

pair member disappeared during 1994 season; lost an older chick (over 2 weeks old) in 1995 

1994 - territorial pair, but no known breeding attempt 

1994 - no known breeding attempt, pair not consistently in residence 

suspect pair turnover 1996 (?) 

1994 - pair not consistently in residence, 1995 - territorial pair 

1996 - new pair, territorial, unknown if attempted to breed 

1995 - no known pair, 1996 - suspected nesting 

1995 and 1996 - pair of unknown status 

1996 - pair of unknown status 



Appendix 4 

Estimated fledging times (days) for Chatham Island Oystercatcher chicks, north coast, 

Chatham Island. In order from shortest to longest fledging periods by brood size. 

Plus/minus column is the possible range of days chicks may have fledged. 

Midpoint +/-

Territory Year (days) (days) 

One chick broods 

TW 95 30 8 
Mairangi 95 35 11 
TE 95 36 7 
Rock 94 38 31 
Woolshed 94 39 4 
WW 95 39 2 
Whanga 95 40 5 
WW 96 40 6 
woe 95 45 10 
Mairangi 96 47 16 

Two chick broods 

Island 95 36 9 

WW 94 40 11 
Island 94 43 5 
TW 94 47 1 
woe 94 54 16 
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CHAPTER 4 

HABITAT SELECTION AND USE 

ABSTRACT 

Habitat selection at the general and territory level were examined for CIO on the 

Chathams Islands from the 1994 to 1996 breeding seasons. To determine general habitat 

use at the broadscale, the coastline of Chatham, Pitt, and Rangatira Islands and the Te 

Whanga lagoon shoreline were mapped, and sightings of CIO recorded. To explore use 

within breeding territories, time observations were conducted for a minimum of one-half 

hour for 15 breeding pairs along the north coast, Chatham Island for three seasons. 

A total of277 kms of coastline (92%) on Chatham, Pitt, and Rangatira Islands, and 93 km 

(100%) of the Te Whanga Lagoon shoreline, were visited and mapped. During mapping 

115 CIa were sighted. Results from the mapping and a 1998 census were combined to 

determine habitat use. CIa were found around the entire coastline of all three islands, but 

in quite low densities on some types of coastline (e.g., cliff, narrow schist, and areas with 

no storm-zone) and the shoreline of Te Whanga Lagoon. 

CIO selected general habitats that provided foraging habitat and breeding pairs, in 

addition, selected sites that provided nest-sites and chick-rearing habitat. Breeding 

territories were confined to coastal areas. Sections of coastline with wide storm-tide 

zones were preferred over similar narrow sections in all cases but one. Along the 

coastline, use (relative to availability) was highest for intertidal rock platform and areas 

with sandy beaches in the storm-tide zone. The high use of rock platform was similar to 

that reported by Davis (1988), but the extensive use of sandy beaches was either 

previously under-detected or is a recent development. Sandy beaches provided foraging 

habitat even when rock platforms were covered by the tides, and were often used for 

nesting. Paddock was selected less than available, especially by breeding pairs, but more 

than previously reported. Much of the paddock area (70%) was along sections of 

coastline with intertidal habitat types general avoided by CIO such as boulder/cliff, sand 

or schist. 
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The highest density of breeding pairs (4 pairslkm) were at Tioriori on the north coast, 

Chatham Island, an area with extensive intertidal rock platform. Territories along the 

north coast were of three basic types: 1) long stretches of sandy beach with a stream or 

creek mouth (with one exception), 2) sections of coastline with intertidal rock platform, 

or 3) a mix of sandy beach and boulder or rock outcrops. Within territories, sandy beach 

was the most used habitat type for all activities, but the amount of use varied considerably 

among pairs. In rocky platform territories, rock platform was used extensively for 

foraging (12-60%), whereas in sandy beach territories sand was used almost exclusively 

for foraging (76-95%). Paddock was used up to 22% of the time for foraging by some 

paIrs. 

INTRODUCTION 

Understanding the factors which regulate or limit the CIO population on the Chathams is 

necessary for the most effective management and recovery of the species. If secure nest­

sites are limiting, for example, providing additional secure nest-sites should result in an 

increase in breeding pairs and an increase in the total population; however, if foraging 

habitat is poor, additional nest-sites will probably not be effective in increasing the 

population size (Newton 1998). Many factors have been suggested as limiting bird 

populations including critical habitat resources, such as food or nest-sites, with food 

resources providing an upper theoretical limit to population levels; however, populations 

may equalise below this level due to predation pressures, limitations in nest-sites, or 

occasionally other factors such as diseases or parasites (reviewed in Newton 1998). 

Measurable habitat features may provide, or be correlated with, critical resources that 

limit a population, e.g., resources such as nest-sites and food. By understanding the links 

between habitat types and population regulation/change it may be possible, for example, 

to measure foraging areas or nesting substrates and determine if particular habitat-related 

factors are limiting population growth (see for example, Goss-Custard et al. 1994; Goss­

Custard et al. 1995a; Goss-Custard et al. 1995b, Newton 1998). 

Habitat selection assumes that individuals can assess and choose among various options. 

CIO (and other animals) probably do prospect for, assess, and select habitat based on of 
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several factors including direct sampling, cues from con specifics during intrusions, 

instinct (i.e, a genetic predisposition for certain sites), or early experience. In Eurasian 

oystercatcher (H ostralegus) floaters appeared to prospect for territories and were often 

drawn to disturbances and fights (Ens 1992; Heg 1999; Heg et al. 2000). Nonbreeders not 

already committed to obtaining a nesting territory in a particular location performed an 

estimated 400 intrusions per year (Ens 1992; Heg et al. 2000). Heg et al. (2000) 

suggested that the purpose of these intrusions from nonbreeders was to extract 

information on territory ownership, territory quality and the cost of territory 

establishment. Territory quality may be gauged from vegetation characteristics, feeding 

opportunities and presence of chicks. Clues to the cost of territory establishment may be 

gleaned from how often territory owners are absent from their territories and the degree of 

cooperation shown by pair members when defending territories. Early experience can 

also influence habitat choice in birds (Gllick 1984), although this appears to be untested as 

yet in oystercatchers. 

The CIO is an endangered shorebird species endemic to the Chatham Islands (Baker 

1973; Davis 1988; Collar et al. 1994), with a population estimated at approximately 150 

individuals and 50 pairs (Schmechel and O'Connor 1999, P. Moore, pers. com.). Historic 

numbers are unknown, but were probably higher and have declined due to the nature of 

the changes that have occurred on the Chathams. Based on densities of other 

oystercatcher species, the upper limit is likely to have been in the hundreds or low 

thousands because the island area is small. Efforts by the New Zealand Department of 

Conservation to increase numbers through management have been ongoing since the late 

1980s. To understand what factors are limiting the population, and if management aimed 

at increasing productivity would be effective, research on habitat requirements and 

estimates of carrying capacity were identified in the recovery plan as high priority items 

(Grant 1993). 

CIO were thought to occur primarily in association with rocky shoreline (Best 1987; 

Davis 1988), although historically were reported to use both rocky shoreline and sandy 

beaches (Travers and Travers 1872; Fleming 1939). Best (1987) searched only areas of 

rocky shoreline in one of the first systematic attempts to determine total numbers ofCIO. 

Davis (1988), in a survey of the coastline of the four main Chatham islands, concluded 
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that wide wavecut volcanic rock platfonns were optimal habitat, but CIO were also found 

to use sandy beaches associated with rock platfonns and around stream mouths. 

Historically they had also been reported using schist and sedimentary rock platfonn areas 

(in Davis 1988). Fossil records ofCIO bones indicate CIO are not recent migrants to the 

Chathams responding to changes brought about by humans, and have probably been 

present for at least thousands of years (A. Tennyson, Te PapalNational Museum of New 

Zealand, pers. comm., and Holdaway et al. 2000). 

CIO should prefer territories which provide abundant food adjacent to good nesting sites 

(e.g., those with low flooding risk and good visibility for predator avoidance in areas 

where ground predators occur). Areas with low predator pressure and disturbance levels 

should also be preferred over areas with higher predator densities and disturbance. 

The aims of this study were to detennine: 

1) habitat selection by CIO at the broadscale and territory level during the breeding 

season, 

2) habitat characteristics within breeding territories along the north coast, Chatham 

Island, and 

3) use of micro-habitat types within territories. 

I examined habitat use at three scales: general habitats (e.g., coastline or lagoon 

shoreline), territories, and nest-sites because birds may select habitats in this respective 

sequence (Burger 1985; Klopfer and Ganzhom 1985; Sherry and Holmes 1985). This 

chapter is devoted to general and territorial habitat selection and use. Chapter 6 examines 

nest-site selection in more detail. 

Definitions 

Territory - defended areas with exclusive use ([Maher, 1995 #266]). In this study a 

territory is defined as an area used by a breeding pair of CIO for feeding and breeding 

(nesting and chick-rearing) and defended from other CIO. 

Habitat selection - the process in which an animal chooses a resource/ 
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Habitat preference - the chance a resource will be selected from a range of resources 

offered in equal proportions (Johnson 1980). Selection indices measure the use of habitat 

types in relation to their availability. In essence, when resources are used 

disproportionately to their availability in the environment, use is said to be selective. 

Floater - nonterritorial, nonbreeding CIO. 

METHODS AND LOCATION 

CIO habitat use was studied on the Chatham Islands, which lie between latitudes 43° and 

45° south, 870 km east of the New Zealand mainland. There are two larger islands, 

several small islands, and numerous stacks and islets. CIO are known to breed on four 

islands. The majority of pairs (85-90%) breed on Chatham (90,000 ha) and Pitt Islands 

(6300 ha) (Schmechel 1999; Moore et al. 2000), the two largest islands. Both Chatham 

and Pitt Islands are inhabited and fanned, with extensively modified vegetation, and 

introduced mammalian and introduced and native avian predators. The remaining 

10-15% of CIO pairs breed on Mangere (113 ha) and Rangatira Islands (218 ha) 

(Schmechel 1999; Moore et al. 2000). Both of these were cleared for pastoral farming 

but, as protected nature reserves for the last three decades, are rapidly becoming re­

forested, and are free of introduced mammalian predators and weka (Gallirallus 

australis). 

The Chatham islands experience frequent strong winds and occasional high storm swells, 

especially from the south and west. The prevailing winds during spring (Sept-Nov) and 

summer (Dec-Feb) are predominantly from the west and southwest. Mean average wind 

speed is 25 kmlhr with gale force winds (greater than 63 kmlhr) occurring 14 times per 

year on average (Thompson 1983). 

Chatham Island has a wide range of shore habitats, with an sheer cliff line along the entire 

south coast, and extensive sand beaches punctuated with rocky headlands elsewhere. 

There are also smaller areas of shell and boulder beaches in some areas. Schist rock areas 

are found only in the northern part of Chatham Island (Hay et al. 1970). Davis (1988) 

categorised the Chathams into 14 different shore types based on the combined intertidal 



105 

and storm-tide zones. The primary categories were volcanic or schist platform (narrow or 

wide), sand and shingle beaches, boulders, and cliff. Under her classifications about 40% 

of the coastline of Chatham Island was classified as sandy beach, 29% as schist (narrow 

and wide), and 15% as cliff. Pitt Island was classified as 41 % cliff, 28% volcanic 

platform (narrow and wide, backed by various habitat types), and the remainder as other 

types (e.g., sand, boulder). Rangatira was volcanic platform of some type (62%) and cliff 

(38%). Terrestrial areas adjacent to the coast include sand dunes covered in marram 

grass, paddocks, rough vegetation (e.g., bracken fern), occasional small patches of native 

vegetation in reserves, and cliff. The large, brackish Te Whanga Lagoon occupies a major 

proportion (16,000 ha) of the northern half of Chatham Island (Hay et ai. 1970). 

I studied habitat use within 15 breeding territories along the north coast of Chatham 

Island between Waitangi West and Okahu Point near Wharekauri, and between 

Whangamoe and Whangatete Bays (a total of about 28 kms of coastline). Names and 

locations of territories in the north coast of Chatham Island are given in Chapter 3, 

Figure 1. These sections of coastline are characterised by a mix of volcanic (or volcanic 

derived) intertidal rock platform, schist rock, sandy beaches, and small sections of shell or 

boulder beaches. Terrestrial areas along the coastline include long sections of marram 

dunes, paddock, forest patches, rough vegetation and cliffs (Table 1 and Appendix 2). 

Coastline survey 

To determine general habitat use at the broadscale, the coastline of Chatham, Pitt, and 

Rangatira Islands and the Te Whanga lagoon shoreline were mapped by walking the areas 

and marking habitat types on 1:50,000 maps (Chatham Islands, NZMS 260 series, 1&2). 

Distances were estimated by extrapolation from marked sections measured using an 

ipsometer (map wheel). Mangere Island and about 26 kms of the southern-most cliff 

coastlines of Chatham Island were excluded because they were inaccessible to me. 

Habitat types were divided into three zones: intertidal, storm-tide, and terrestrial (i.e., 

those areas immediately adjacent to the coastline, directly behind the storm-tide zone). 

Within each zone, habitat categories were defined and delineated (Plate 1 and 

Appendix 3). A total of 351 sections of coastline and lagoon shoreline habitat types were 
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Table 1 Summary of habitat types by zone along the north coast study areas, Chatham 

Island. Within each zone categories arranged from most to least common by 

linear kilometre. See also Appendix 2. 

Habitat categories 

Zone within each zone Percentage 

Intertidal sand 41% 

boulder/cliff/shell 20% 

schist 18% 

rock platfonn 11% 

rock or rock/sand mix 10% 

Stonn-tide sand 61% 

rock or shell narrow 15% 

rock or shell 11% 

sand narrow 7% 

no stonn zone (-4%\ 

boulder/cliff --2% , 

Terrestrial vegetation 70% 

paddock 21% 

cliff 9% 

delineated in minimum 250 m sections, as these were the shortest sections that could be 

measured reasonably accurately on the maps. The storm-tide sections were defined as 

those not inundated daily, but washed by ocean tides only during storms (normally less 

than every 30 days on average during the breeding season). The upper portion of these 

areas were discernible based on the lack of vegetation, the lower boundary by the fresh 

debris or wrack line. In sections where two or more habitat types were intermixed (e.g., 

cliff and rock platform, or sand and shell) classifications were made using the following 

criteria: 1) by predominance of the habitat types (e.g., if a beach were 60% shell, 40% 

sand it would be classified as shell) or, 2) if the mix was fairly even, by habitats known to 

be used by CIO (e.g., if a 250 m section of intertidal area was about half rock platform 

and half cliff it would be classified as rock platform). Because CIO rarely used the 

lagoon shoreline, and because subtle differences in the habitats and other factors may 

have affected use, the lagoon shoreline figures were excluded from some habitat selection 

calculations. 
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To determine whether CIO selected habitat with respect to availability, the proportions of 

available habitat types were compared with the proportion of sightings of CIO found on 

these same substrates. Birds were divided into three groups: breeders, pairs of unknown 

status, and nonbreeders. Breeders included pairs known to have bred, those suspected of 

breeding, and pairs defending territories. Habitat selection by pairs of unknown status 

was similar to known breeders, so the two were combined. 

Use of habitats by CIO was determined during extensive searches of the coast and 

shoreline of the islands and lagoon on two separate occasions. One census was done in 

conjunction with the mapping of habitat categories during the 1995/6 and 199617 seasons 

(hereafter seasons are given as the year in which breeding begins). The second census 

was conducted in December 1998 (Schmechel and O'Connor 1999). A small section of 

coastline (8.5 kms) covered by the habitat mapping was not covered during the 1998 

census, and this area was excluded from both the use and availability calculations. To 

avoid very small denominators in the available columns which could inflate ratios, habitat 

categories were combined so that no single category comprised less than a total of 5% 

(except in one instant which is noted in the appropriate section). Results of habitat 

selection from both censuses were similar, and were therefore combined to give a clearer 

picture of general use over time, especially for nonbreeders which move around more than 

breeding pairs. Chi-squared tests were used to compare observed and expected values of 

habitat use. 

To determine if storm-tide zone width influenced selection by CIO, the habitat types were 

classified into wide or narrow. Similarly, to determine if foraging substrate was important 

in the storm-tide and terrestrial zone, habitats were classified 'food' or 'no food' based on 

observations of habitats where oystercatchers have been seen to forage (Table 2). To 

check if coastline habitat types categorised as wide were more likely to provide foraging 

habitat than those classified as narrow, the percent of narrow and wide categories with 

foraging substrates (the 'food' or 'no food' groups) were calculated. The associations 

between paddocks and preferred intertidal and storm-tide zones were calculated to 

determine patterns of selection for paddocks by CIO. Ratios of use compared to 

availability were determined for habitat use and those where use was 50% more or less 



Plate 1. Examples of habitat types along the Chathams coastline: (A) schist rock; (B) exposed rock platform and cliff; (C) 'mixed' rock 

and sandy beach at Wharekauri; (D) intertidal rock platform, wide sandy beaches, and marram-covered dunes at Tioriori. 



than available were considered higher or lower than might be expected (and usually 

shown in bold font in the tables). 
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Table 2 - Classifications of storm-tide and terrestrial zones into categories of 'food/no 

food I and 'narrow/wide ',' where 'food' is suitable foraging habitat and 'no food' 

areas are those with no suitable foraging habitats. 

Zone food/no food narrow/wide 

Storm-tide 

boulder/cliff no food narrow 

rock/shell no food wide 

rock/shell narrow no food narrow 

no stonn zone no food narrow 

sand/mix food wide 

sand narrow food narrow 

Terrestrial 

paddock food 

cliff no food 

vegetation no food 

To determine if special features within general habitat types were used selectively they 

were classified into the following categories: 1) creeks, 2) bays, 3) areas with high 

amounts of kelp and wrack, and 4) 'comers' (areas where sandy beaches meet rock 

outcrops). The proportion of areas that contained bays, kelp/wrack, and comers were too 

infrequent to analyse individually, so these were combined. 

Territory habitat description, selection and use 

Territory boundaries were determined by a combination of watching birds defend 

boundaries against neighbouring pairs and intruders, observations of general use, and by 

using cardboard decoys (Chapter 7) which resident birds would often attack if placed 

within their territory boundaries. 

Habitat use within 15 territories was studied during three successive breeding seasons 

from 1994-1996. During observations, the habitat type used and associated behaviours 

were noted at five minute intervals for at least one-half hour per observation. Behaviours 

were classified into six categories: foraging, resting, incubating, territory defence, 

preening, and other. Walking was often associated with either foraging or territory 
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defence, but was noted as 'other'. Preening included bathing. Resting included standing 

or sitting still, guarding behaviour and brooding. Micro-habitats within territories used 

during timed observations of CIa were classified into six categories: sand, rock platform, 

paddock, boulder/rock, freshwater, schist and shell. If a mix of habitat types were present 

(e.g., shell and sand) the predominant habitat type used was recorded. For some 

calculations the sandy beach and freshwater categories were combined because all the 

freshwater areas had sandy substrates; this was noted in the appropriate section. 

For incubating pairs, the non-incubating bird was the focus of observations. When 

beginning a round of observations, a pair was chosen at random for the initial observation 

and all pairs then observed over several days. After a round of observations was 

completed, a new pair was randomly chosen from the 15 study pairs for beginning the 

next round and the process repeated. Observations were conducted only during daylight 

hours and no attempt was made to time observations for a particular tide cycle or time of 

day. Pairs were observed with 1 O-power binoculars from a distance (usually 30 or more 

metres depending on the topography) using hides or natural cover from vegetation and 

topography. If it appeared the pair was becoming overly influenced by the observer (e.g., 

alarm behaviours, false brooding, etc), observations were discontinued and a new location 

for observations sought with a period of time (a minimum of 20 minutes) out of sight of 

the birds to allow them to resume normal activities. If individuals moved out of sight 

during the observations this was noted and included as part of the calculations. 

Breeding was classified into four stages: pre-breeding, incubating, chick-rearing and post­

breeding. Pre-breeding was defined as the period before and between clutches. Chick­

rearing included flying juveniles until they were evicted (or dispersed) from their natal 

territories (usually about 24-42 days). Post-breeding was defined as the period after the 

last known nesting attempt or after juveniles had been evicted or left the territory. Ifno 

nesting attempts were detected, but the date was prior to 1 January, pairs were assumed to 

be still breeding. 

To determine use of habitat types within territories they were grouped into three types: 

sandy beach, rocky platform, and mixed. The third of territories which contained no rock 

platform and pairs used sandy beach (including the areas around fresh water) 85% of the 
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time or more the territory was classified as 'sandy beach'; the third of territories where 

rock platform was available within the territory and was used over 25% of the time were 

classified as 'rock platform'; the other third of the territories, which contained a mix of 

habitat types, were classified as 'mixed' territories (Appendix 1). 

RESULTS 

Coastline surveys 

A total of 277 kms of coastline (92%) on Chatham, Pitt, and Rangatira Islands, and 93 km 

(100%) of the Te Whanga Lagoon shoreline, were visited and mapped. During mapping 

115 CIa were sighted. During the 1998 census (Schmechel 1999) 136 CIa were 

recorded in the mapped areas (of 142 total) (Table 3). CIa were found around the entire 

coastline of all three islands, but in quite low densities some types of coastline (e.g., cliff, 

narrow schist, and areas with no storm-zone) and the shoreline of Te Whanga Lagoon. 

Table 3 - Numbers ofCIO pairs (P) andfloaters (f) along the coastline and lagoon 

shoreline from mapping and census data for the Chathams coastline (Chatham, 

Pitt, Rangatira and Mangere Islands) and Te Whanga lagoon edge. 

Coastline CIa Nos. Lagoon CIa Nos. Total CIa Nos. 

p f total p f total p f total 

Survey 

Mapping survey 41 31 113 0 2 2 41 33 115 

1998 census 51 32 134 0 2 2 51 34 136 

Combined 46 31.5 123.5 0 2 2 46 33.5 125.5 

average use 

Along the coastline, some relatively abundant combinations of intertidal/storm-tide 

categories received very little use by CIO (Appendix 4). Intertidal sandy beaches with 

narrow sandy or no storm-tide zone comprised 19% of the coastline, and areas of 

intertidal schist with narrow rock in the storm-tide zone 10%, yet each received only 

about 1 % of the recorded use. One intertidal/storm-tide combination which was common, 

and used in higher proportions than available, was coastline with sand in both zones (18% 

use:12% availability). Most combinations of intertidal plus their related storm-tide zones 
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were too infrequent (less than 5% availability) to determine selection accurately (because 

of the small denominators and potentially resultant inflated ratios). 

When analysed by individual zone, some habitats were selected in much greater 

proportions than available (e.g., ratios of 1.50 or greater); these preferred habitats were 

those with sand (or sand/rock mix) in the storm-tide zone and areas with rock platform in 

the intertidal areas (Table 4 and Appendix 5). The differences in use of habitat types 

within zones was significant for all but floaters in the terrestrial zone (Table 5). Pairs and 

floaters used sections of coastline with no storm-tide zone, or sections of narrow rock or 

shell in the storm-tide zone, and areas with c1ifflboulderlshell in the intertidal zone less 

Table 4 Proportions of use and availability of habitat types for CIO pairs and floaters 

along the coastline of Chatham, Pitt, and Rangatira Islands, (lagoon excluded). 

Ratios of use/availability - those greater than 1.00 indicate use of habitat types by 

CIGs in higher proportions than available. Ratios in bold (above 1.50 or below 

0.50) indicate use that is much higher or lower (i.e., at least 50% more or less) 

than would be expected based on the availability of the habitat. + indicates 

selection for and - selection against use of habitat. (See also Appendix 5a). 

Ratios calculated to 4 digits. 

Floaters Pairs 

Habitat types by zone use avail ratios use avail ratios 

Terrestrial 

c1ifflboulder 0.13 0.17 0.73 0.12 0.17 0.70 

paddock 0.32 0.26 1.24 0.11 0.26 0.43 -

vegetation 0.56 0.57 0.98 0.77 0.57 1.35 

Storm-tide 

c1ifflboulder 0.10 0.13 0.72 0.09 0.13 0.66 

no storm zone 0.02 0.06 0.28 - 0.01 0.06 0.19 -

sand narrow 0.08 0.22 0.37 - 0.16 0.22 0.76 

rock/shell 0.41 0.28 1.47 0.29 0.28 1.02 

rock/shell narrow 0.05 0.13 0.35 - 0.03 0.13 0.24 -

sand/mix 0.35 0.18 1.97 + 0.42 0.18 2.35+ 

Intertidal 

clifflboulderlshell 0.02 0.10 0.16 - 0.01 0.10 0.11-

rock/mix 0.24 0.17 1.41 0.15 0.17 0.91 

rock platform 0.33 0.13 2.57 + 0.54 0.13 4.14 + 

sand 0.21 0.36 0.57 0.20 0.36 0.55 

schist 0.21 0.24 0.86 0.10 0.24 0.41-

N 31.5 267.5 kms 45.5 267.5 kms 
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Table 5 Chi-squared values for habitat use by zone for CIO pairs and floaters along the 

coastline of Chatham, Pitt, and Rangatira Islands. 

Floaters Pairs 

Zone X
Z 

df p X
Z 

df p 

Terrestrial 4.90 2 0.086 ns 7.77 2 0.021 * 
Stonn-tide 13.27 5 0.021 * 21.20 5 <0.001 *** 
Intertidal 14.95 4 0.005 ** 69.27 4 <0.001 *** 

than was available. Pairs seldom used areas with schist in the intertidal zone, or paddock 

in the terrestrial zone. Floaters· avoided using narrow sand beaches. 

When the storm-tide zones associated with particular habitat types were categorised into 

'narrow' or 'wide', CIa select wide over narrow for every habitat type but one (Table 6). 

The exception was the boulder/cliff/shell category of habitat types. 

Table 6 Proportions of use and availability of narrow (n) or wide (w) storm-tide zones. 

Ratios over 1.00 indicate use in greater proportion than is available. Ratios in 

bold indicate where the difference in selection is greater than 25% between wide 

or narrow storm-tide zone within a habitat category. 

Intertidal Use Available Ratios 

habitat type n w n w n w 

Pairs 

boulder/cliff/shell 0.01 0.00 0.08 0.02 0.14 0.00 

rock/mix 0.03 0.12 0.06 0.11 0.59 1.07 

rock platfonn 0.23 0.31 0.07 ·0.06 3.09 5.58 

sand 0.01 0.19 0.23 0.13 0.05 1.42 

schist 0.01 0.09 0.10 0.14 0.11 0.63 

Floaters 

boulder/cliff/shell 0.02 0.00 0.08 0.02 0.20 0.00 

rock/mix 0.05 0.19 0.06 0.11 0.85 1.68 

rock platfonn 0.14 0.19 0.07 0.06 1.91 3.45 

sand 0.02 0.19 0.23 0.13 0.07 1.45 

schist 0.02 0.19 0.10 0.14 0.16 1.37 

Similarly, if the terrestrial and storm-tide zones were classified as either providing, or not 

providing, foraging substrate ('food' or 'no food'), CIO selected sections of coastline with 

'food' regardless of the intertidal zone in all but two cases (Table 7). The two exceptions 

were sections of coastline with intertidal schist or rock platform. In these two habitat 
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types, the presence of foraging substrate in the stonn or terrestrial zones did not increase 

the amount of use over those with 'no food'. 

Table 7 No food (nj) versus food (f) in the storm and terrestrial zones. Combined ratios 

over 1.00 indicate use in greater proportion than is available. Ratios in bold 

indicate where the difference in selection is greater than 25% between wide or 

narrow storm-tide zone within a habitat category. 

Intertidal Use Available Ratios 

habitat type nf f nf f nf f 

Pairs 

boulder/ cliff/shell 0.00 0.01 0.09 0.01 0.00 0.73 

rock/mix 0.05 0.10 0.08 0.09 0.55 1.15 

rock platform 0.23 0.31 0.09 0.04 2.66 7.16 

sand 0.00 0.20 0.04 0.32 0.00 0.61 

schist 0.05 0.04 0.08 0.16 0.65 0.28 

Floaters 

boulder/cliff/shell 0.02 0.00 0.09 0.01 0.19 0.00 

rock/mix 0.05 0.19 0.08 0.09 0.57 2.22 

rock platform 0.21 0.13 0.09 0.04 2.37 2.95 

sand 0.00 0.21 0.04 0.32 0.00 0.64 

schist 0.05 0.17 0.08 0.16 0.57 1.01 

In the comparison of food availability in narrow and wide stonn-tide zones, wide stonn­

tide zones were more likely to include foraging substrates than narrow stonn-tide zones in 

all cases but one (Table 8). The exception was the stonn-tide zones associated with 

intertidal rock platfonn; these sections, whether narrow or wide, had similar percentages 

of habitat types which provided foraging substrates (e.g. sand or sand mix). 

Table 8 Food availability in narrow and wide storm zone. Arranged by intertidal zone. 

Storm-tide zone 

Intertidal Narrow (kms) Wide (kms) Total Food availability 

habitat type no food food no food food (kms) narrow wide 

clifflboulder 20.25 1.25 2.50 2.75 26.75 6% 52% 

rock/mix 10.50 4.50 10.75 19.50 45.25 30% 64% 

rock platform 13.00 7.00 10.25 4.50 34.75 35% 31% 

sand 9.00 52.00 0.50 34.75 96.25 85% 99% 

schist 13.00 14.25 9.50 27.75 64.50 52% 74% 

Grand Total 65.75 79.00 33.50 89.25 267.50 55% 73% 
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Paddocks were often located in areas that were otherwise not used by CIO, that is they 

were often inland from the storm-tide or intertidal zones that CIO avoided, such as cliff 

and boulder areas (Table 9). 

Table 9 Percentages of intertidal and storm tide areas with paddocks, Chatham and Pitt 

Island and selection a/these areas by CIa. CIO selection: + positive, 0 neutral, -

negative. Habitat types: rp - rock platform, rll- rock/shell, s - sand, t - schist, 

b/dl - boulder/cliff/shell, s/rnx - sand/mix of sand and rock, b/c - boulder/cliff, nsz 

- no storm zone, rn/ln - rock/shell narrow, sn - sand narrow. 

CIO Percent areas 

Zone selection with paddocks Habitat types 

intertidal + 13% rp 

0 17% rll 

70% s,t,blcll 

storm-tide + 18% s/rnx 

0 28% rll 

54% b/c,nsz,rnlln,sn 

Creeks alone were not used more than available (Table 10). However, if the creeks or 

streams were in areas with other special features, these areas were used over twice as 

often as would be expected according to their availability. 'Comers', bays or areas with 

abundant kelp/wrack were also favoured. 

Table 10 Use by CIO and availability of special features on the Chathams. 'Other' 

includes areas with 'corners', bays, or beaches with an abundance of kelp and/or 

wrack. Corners are areas where sandy beaches meet rock outcrops. Ratios in 

bold (above 1.50) indicate use that is much higher (i.e., at least 50% more) than 

would be expected based on the availability of the habitat. 

use 

no special feature 0.40 

creek 0.24 

comer, bay or kelplwrack 0.19 
creek plus 'other' 0.17 

Floaters 

available ratio 

0.64 0.62 

0.18 1.36 

0.11 1.71 

0.07 2.35 

Pairs 

use available ratio 

0.36 0.64 0.57 

0.18 0.18 1.00 

0.18 0.11 1.58 

0.29 0.07 3.84 
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Lagoon shoreline use 

Along the entire 93 kilometres of shoreline of the lagoon, only two individual CIO, both 

nonterritorial nonbreeders (floaters) were seen in each survey. Selection by CIO of 

coastline (by linear Ians) was 98% use:74% availability, in contrast with the lagoon 

shoreline with only 2% use:26% availability. One of these sightings was near the lagoon 

mouth which has habitat more similar to that of the coastline than the majority of lagoon 

shoreline. 

During the 1996 season CIO were incidentally sighted along the lagoon shoreline a total 
, 

of four times. In every case they were immature birds. Twice two birds were seen 

together (a banded two year old and an unbanded first-year bird), and twice a single first­

year bird was seen. Observations of foraging were collected on two occasions. During 30 

minutes of observations in November 1996 two immature CIO feeding on bivalves 

(commonly referred to as pipis, Ammphidesm spp?) which they consumed at an average 

rate of 5.25 per minute (range 3 to 8). Possibly the same pair were also observed foraging 

on cockles (Chione stutchbury) and mussels (Aulacomya ater or Mytilus edulis) on 

20 December 1996. 

Territories 

The highest density of breeding territories was located at Tioriori, with four territories in a 

single kilometre of coastline. This section of coastline was characterised by its extensive 

rock platform, backed by marram dunes and paddock. From Washout Creek to Tutuiri 

Creek (including Tioriori) the density of breeding pairs was just over one per kilometre. 

This section includes long stretches of sandy beach and stream mouths backed by 

extensive marram dunes and some paddocks. Wharekauri also had a high density of pairs. 

Between Cape Young and Okahu Point there was just under one pair per kilometre of 

coastline. This area was a mix of sandy beaches and rocky platforms, or outcrops of rock 

and boulders backed by either paddock or marram dunes. The other northern area with 

high densities of CIO territories was around Whangamoe (four pairs along about seven 

kilometres of coastline, 1.7 pairs/Ian). The Whangamoe area was characterised by a mix 

of schist rock interspersed with sand and shell beaches, with a small volcanic rock area. 

The storm-tide zone was backed by paddock and rough vegetation. 
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Territories used by CIO along the north coast, Chatham Island, varied in length along the 

coastline from 170 to 1540 m, and the width of the coastline sections varied from 1 to 

70 m (Appendix 6). Of fifteen territories, ten had paddocks within their territory 

boundaries, and an additional three had paddocks within short flying distances. In these 

latter three instances, use of paddocks by these pairs was suspected (based on reports by 

land owners or movements of birds), but never confirmed. 

Within the 15 study territories habitats tended to either be predominantly sandy beach, 

and contain a large creek or be adj acent to rock platform, but not both. All of the 

territories composed primarily of sandy beach had major streams except Woolshed, which 

had a minor creek (Appendix 6). Pairs from Tioriori probably visited Tutuiri Creek. CIO 

were often seen flying from Tioriori in that direction and visa versa, and CIa were often 

in the Tutuiri Creek area. CIa used streams for foraging, drinking and bathing. Eleven of 

the territories contained either intertidal rock platform or intertidal sections of 

boulder/rock coastline. One territory (TE) had a small section of boulders/rock that was 

exposed intermittently, depending on sand movements. 

Fifteen CIa pairs along the north coast were observed for a total of 83 hours over three 

seasons. During a total of 155 half-hour sets of observations 1,992 individual behavioural 

and habitat use records were noted. Sandy beach habitat was used far more than any other 

habitat type (Table 11 and Figure 1), followed by rocky platform habitat. Fresh water 

areas (which in every case had sandy substrates), sandy areas interspersed with boulders 

and paddock were used less. Shell and schist were used very little. 

Use of habitats varied considerably between pairs in different territories. Sandy beach 

(including the areas around streams) was used from 10-96% of the time for all activities, 

and rocky platform from 14-55% of the time where present (Table 11). Pairs used 

anywhere from two to six different habitat types, with the majority (12 of the 15 pairs) 

using between two and four different habitat types within their territories. 



118 

Table 11 Use of habitats by territory for all activities by CIO, north coast, CI. SB-

sandy beach, RP - rock platform, B - boulder, PAD - paddock, FW - fresh water, 

SRL - shell, T - schist rock platform, UNK - unknown. N = the number of half-

hour observation sets. Total = the total number of habitat types used. 0% 

indicates habitat available, but not used during observation sets. 

Territory SB RP B PAD FW SHL T UNK N Total 
Whanga 10% 11% 7% 31% 38% 3% 7 6 
WW 89% 7% 4% 8 2 

WoC 85% 8% 0% 6% 15 2 
TW 76% 8% 10% 6% 13 3 
TE 78% 6% 6% 6% 3% 13 4 

OTF 76% 22% 2% 11 2 

Creek 77% 17% 5% 2% 12 3 

Pounamu 73% 14% 8% 5% 12 3 

Dune 47% 29% 6% 14% 4% 14 4 

Cliff 60% 28% 2% 2% 7% 11 4 

Cape 59% 32% 9% 7 2 

Mairangi 66% 14% 12% 4% 0% 5% 10 4 

Woolshed 96% 2% 0% 2% 9 2 

Rock 26% 55% 14% 6% 7 3 

Island 47% 50% 0% 3% 6 2 

Mean 67% 30% 9% 7% 5% 15% 38% 4% 155 3.07 

For foraging, all pairs used sandy beaches, some pairs almost exclusively, but use varied 

widely from 15-95% of the total time spent foraging by pairs (Table 12). For pairs with 

creeks within their territories, sandy substrates near and in fresh water were used up to 

16% of the time. All pairs used rock platform for foraging if it was available within their 

territories, some quite extensively (up to 60% of the time). A total of seven pairs foraged 

in paddocks, 4-22% of the time. Schist rock platform, boulder, and shell were only used 

in a couple of territories. 

Pairs spent 30-49% of their time feeding, depending on breeding activity (Table 13). 

Pairs with chicks spent the most time foraging, and incubating pairs the least. Resting 

was the most common non-foraging behaviour among pairs (33-34% of the observations) 

unless they were incubating a clutch, which took 46% of their time. Territory defence 

was observed from 3-7% of the time for non-incubating pairs, whereas incubating pairs 

were not recorded in territory defence. 
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Table 12 Habitats used for foraging by territory. SB - sandy beach, RP - rock platform, 

B - boulder, PAD - paddock, FW - fresh water, SHL - shell, T - schist rock 

platform. N = the number of observation sets. Total = the total number of habitat 

types used. In order by geographic distribution from southwest to northeast. 

Territory SB PAD RP T B FW SHL (N) 

Whanga 15% 22% 48% 14% 6 

WW 92% 8% 8 

WoC 84% 16% l3 

TW 85% 4% 11% 11 

TE 76% 8% 11% 5% 11 

OTF 58% 42% 9 

Creek 75% 18% 2% 5% 10 

Pounamu 71% 8% 21% 9 

Dune 31% 10% 48% 12% 10 

Cliff 31% 7% 60% 1% 9 

Cape 48% 52% 5 

Mairangi 63% 10% 12% 15% 10 

Wool shed 95% 5% 7 

Rock 36% 57% 7% 7 

Island 71% 29% 5 

Mean 64% 10% 37% 48% 12% 9% 14% l30 

All territories 64% 5% 18% 2% 7% 4% 1% 

Table 13 Percent of time spent by CIa in various behaviours by breeding stage, north 

coast, Chatham Island. PN - prenesting, I - incubating, CH - chick-rearing, 0-

other. 

Breeding stages 

Behaviour PN I CH 0 Total 

foraging 38% 30% 49% 33% 36% 

resting 34% 9% 33% 33% 26% 

preening 9% 6% 7% 14% 9% 

territory defence 5% 3% 0% 7% 4% 

incubating 0% 46% 0% 0% 14% 

other 15% 7% 11% l3% 11% 

total non foraging 62% 70% 51% 67% 64% 

(n) 39 46 26 44 155 
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The type of habitats used for foraging varied by territory type. Pairs in territories 

composed primarily as sandy beach spent 94% of their time on average foraging in sand 

(including fresh water areas) (Figure 1). In contrast, pairs in rocky platform territories 

spent only 40% of their time foraging in sand, instead using rock platform over half the 

time observed (51 %) for foraging. Pairs in mixed type territories foraged on rock 

platform 12% of the time on average, on sandy substrates 61 % of the time, and in 

boulders, paddock, and schist from 7-13% of the time. Shell received little use, only 2% 

by pairs in mixed type territories. 

DISCUSSION 

General habitat use 

The following habitat types should be preferred because they provide critical resources 

such as food, nest-sites, and safe roosting areas include, described by coastline zone: 

1) Paddocks in the terrestrial zone (i.e., areas never flooded by high tides) because these 

provide potential feeding areas, including during high or storm-tides. If directly backing 

the storm-tide zone they provide less cover for predators than marram-grass covered 

dunes. 

2) Wide sandy beaches (especially those with kelp and wide or high rock areas) and wide 

or high rock areas with low mat-forming vegetation in the storm-tide zone. These habitats 

types should provide safe (high visibility), low flood-risk nesting sites. Kelp and wrack 

on sandy beaches should provide additional foraging substrate during mid and high tides, 

and may also help provide a more complex visual patterns, making nests and chicks more 

difficult for predators to locate (Heppleston 1971; Hockey 1982; Lauro and Nol 1995). 

3) Wide, flat rocky platforms; wide sandy beaches; wide areas with rock and sand in the 

intertidal zone. These areas would provide good foraging habitat during low tide. The 

best areas would be flat and accessible to young chicks (Hazlitt 1999). 
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Figure 1 Habitats used for (A) foraging and (B) all activities within territories by 

territory type. Habitat types: sb+fw - sandy beach and fresh water (sand 

substrate), rp - rock platform, b - boulder, pad - paddock, t - schist rock, 

shl - shell, unk - unknown (birds out of sight). 
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Habitat use by CIO around the islands on a broadest scale is probably influenced by a 

combination of the general geology of the islands and prevailing wind patterns. The 

southern half of Chatham Island, and portions of Pitt and Rangatira, are volcanic rock 

with steep cliff areas and little stonn-tide zone, and with prevailing southerly or 

southwesterly winds, probably limit nesting areas for CIO. Aspect and prevailing winds 

have been shown to affect likelihood of flooding, lowering productivity (Pugh 1987). In 

Australia, losses due to floods, wind and rain was much higher for oystercatchers on 

exposed Flinders Island (62% and 80% in 1988 and 1989 respectively) than on sheltered 

Big Green Island (10% for both seasons) (Lauro and NoI1993). Additionally, food 

availability may be less during prolonged high winds or stonns (Evans and Smith 1975; 

Davidson 1981; Evans and Pienkowski 1984), making these exposed areas unsuitable for 

chick-rearing. 

Along the coastline, use by zone (relative to availability) was highest for intertidal rock 

platfonn and areas with sandy beaches in the stonn-tide zone. CIO probably select rock 

platfonn and wide sandy beaches because they provide good foraging habitat and, for 

breeding pairs, good nesting habitat. The high use of rock platfonn was similar to that 

reported by Davis (1988), but the extensive use of sandy beaches was either previously 

under-detected or is a recent development. Sandy beaches provided foraging habitat even 

when rock platfonns are covered by the tides, and were often used for nesting (Chapter 6). 

Use was lowest for intertidal boulder/cliff; intertidal sandy beach backed by narrow or no 

stonn-tide zone; and intertidal schist back by narrow rock in the stonn-tide zone. Any 

area with narrow rock or shell stonn-tide zones, or which had no stonn-tide zones, were 

used very little relative to their availability. These areas probably provided little in the 

way of foraging habitat and no good nesting sites. 

All of the intertidal areas except clifflboulder were used more if backed by wide, 

compared to narrow, stonn-tide zones and were almost always used more if backed by 

areas that provided foraging substrates. However, higher use of wide stonn-tide zones 

may have been because wider sections of coastline were more available (i.e., there was 
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more surface area in total than narrow ones), and the use of linear measurements did not 

accurately reflect this greater availability. 

Schist was used less than available by both pairs (ratio 0.41) and nonterritorial 

nonbreeders (ratio 0.86) (Table 4). The topography of schist varies considerably; some 

sections are flat and wide with pools and good foraging areas, others are more narrow or 

uplifted, with less substrate for marine vertebrates (Davis 1988, pers. obs.). Although 

pairs had historically been reported to use wide schist platform at Taupeka Point, Okawa 

Point, Cape Pattisson and Te Raki Bay (see map Chapter 3, p. 35), use of schist was 

thought to have decreased in the late 1980s (Davis 1988). In the most recent counts CIO 

were found using these areas (Schmechel and O'Connor 1999; Moore et al. 2000). Schist 

use may vary with the total population of CIO, decreasing when numbers are lower. It 

may also be that monitoring has been historically insufficient to accurately detect use on 

schist coastlines, especially for floaters which move around more frequently than pairs. 

Much of the schist coastline is more difficult to access, and it would be easier for birds to 

remain undetected if they crouch down and are silent, which they sometimes do, than 

along sandy beaches. 

Pairs also used paddocks in lower proportions than available even though they were often 

used for foraging along the north coast. Much of the paddock area (70%) was along 

sections of coastline with intertidal habitat types general avoided by CIO such as 

boulder/cliff, sand or schist. Floaters used paddocks in proportions greater than available, 

suggesting that, although paddocks are selectively used for foraging, they are less 

important than the intertidal and storm-tide areas for breeding pairs. Use of paddocks 

probably varies depending on the season and the wetness of the paddocks. In lapwings 

(Vanellus vanellus), wetness was suggested as the most important factor in habitat 

selection, because earthworms were probably an important food item for lapwings early in 

the season (Klomp 1954 cited in Berg 1993). Earthworms were more difficult to catch 

when the soil dried up, when they move deeper into the soil (Gerard 1967). In mid­

Canterbury earthworms were abundant on farmland during July when the soil was wet 

(Lobb and Wood 1971). CIO were observed foraging on earthworms during this study, 

but may also have taken other invertebrates. Other oystercatcher species are also known 
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to feed on earthwonns (Heppleston 1972). On the New Zealand mainland oystercatchers 

on wet coastal fields ate grass grub beetle larvae (Baker 1974). 

Special features such as creeks, areas with kelp and wrack, bays and 'comers' (i.e., areas 

where long sandy beaches meet rocky points) were used in higher proportions than 

available. Creeks, when in areas with one or more special features, were selected more 

than twice as often as predicted from their availability. Creeks were frequently used for 

foraging and bathing, and kelp and wrack for foraging. Comers may be selected because 

of the variety of foraging substrates (i.e., sand and rock) and because they are sheltered 

and provide both nesting and foraging habitats. 

Differences in use of habitats by floaters compared with breeders may be because they 

have different habitat requirements. Floaters probably seek out food, safe roost sites, 

other floaters and, during stonny weather, possibly shelter. Breeders, in contrast, seek 

areas with nest-sites adjacent to foraging and chick-rearing habitat. Floaters are therefore 

more free than breeding pairs to move around and use a broader range of habitat types. 

Use of habitat by floaters was also probably influenced by breeding pairs excluding them 

from their territories, thereby forcing floaters into potentially less desirable habitat types. 

CIO used Te Whanga lagoon shoreline infrequently relative to its availability, and it was 

used only by nonterritorial nonbreeders. This may be because the lagoon does not 

provide critical resources such as good foraging habitat (either quality or quantity); or 

alternatively, non-habitat factors such as predator pressure, disturbance, or social factors 

(such as prospecting for mates and territories) may have affected use. Food supplies 

appeared, from limited observations, to be good for CIO based on feeding success rates 

for molluscs. However, Murray and Sanders (2000) found molluscs occurred only rarely 

and in low numbers in the five sites they sampled. Amphipods, oligochaete wonns and 

fly larvae were the main invertebrates present, all potential food for CIO (Baker 1969; 

Davis 1988, pers. obs). Food supplies around the lagoon are probably quite patchy and 

more extensive sampling would be needed to detennine foraging quality and availability 

for CIO. Winds and the water levels within the lagoon may also change food availability 

significantly from day to day, potentially rendering the lagoon shoreline unsuitable for 

chick-rearing due to changes in food availability. Changes in water levels because of 
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winds often dramatically change the amount of mudflat exposed along the northern 

lagoon edges over short periods of time (Murray and Sanders 2000, p. 3; pers. obs.). 

Moreover, the lagoon blocks and unblocks irregularly, therefore food supplies over years 

is likely to be unreliable due to changing salinities and water levels. Predator pressure or 

disturbance around the lagoon shorelines are unquantified. 

Breeding territories 

CIO showed a preference for foraging in sandy beach and rock platfonn habitats and most 

territories were established in this kind of habitat as well. Thus, CIO seem to select 

territories with a high proportion of foraging habitats, which included sites for nesting and 

possibly chick-rearing. Although use of sandy beach and rock platfonn was high, pairs 

also used a wide variety of other habitat types including paddock, schist, boulder, and 

shell. 

Contrary to expectations for CIO habitat use, five of the territories were predominantly 

sandy beach. These territories had several common features: all but one had a large 

stream running through it (the one exception had a small creek); all had wide sections that 

were not inundated by daily tides; and all had regular deposits of kelp and other wrack 

along the tide-line. CIO were regularly seen foraging along the wrack line on items such 

as mussels (Aulacomya ater and Mytilus edulis), sea tulips (Pyura pachydermatina), sand 

hoppers (Amphipoda: Talorchestia maorianus?) or, in one case, on kelp fly (Diptera: 

Coelopidae & Helcomyzidae) larvae. 

The highest densities recorded for CIO, of four pairs per kilometre, was less than half that 

reported for Australian pied (H. longirostris) and sooty oystercatchers (H.fuliginous) on 

Big Green Island, Australia, in their most preferred habitats. On Big Green Island the 

number of breeding pairs at sandy, mixed beach, rock beach and overall was: 4.8,8.8, 1.4 

and 3.1 per km respectively. Sooty oystercatchers per km at rock beach, mixed beach and 

overall was 4.6, 7.5 and 4.9 pairs respectively (Lauro and NoI1995). The average of 

between 1.0 and 1.7 CIO pairs/km in other areas of high density were lower or similar to 

densities of variable oystercatcher (H. unicolor) on Mana Island (2.5 pairs/km) (Colin 

Miskelli, pers. comm.) and black oystercatcher (H. bachmani) at Skidegate Inlet, B.C., 

Canada (1.6 pairs/km of shoreline) (Venneer et al. 1992). The density of pairs perkm for 



the Chatham Islands was 0.4 on Chatham Island, 0.6 on Pitt and Mangere, and 1.2 on 

Rangatira (Chapter 2, Table 1). If food supplies are similar on the Chathams to other 

areas around the world, this suggests that CIO densities could increase significantly if 

other limiting factors were reduced or removed in preferred areas. 
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The length of territories in this study of 170-1540 m are similar to those reported by Davis 

(1988) of 200-760 m, but the longest territory was over twice as long as the longest one 

she reported. New territories in this study, as compared to those reported by Davis 

(1988), were WOC, WW, TE and TW which were three of the four longest territories 

measured. The four longest territories were those composed primarily of sandy beach and 

no rock platform (OTF, TE, WW, WOC). These territories may be longer because of the 

more linear nature of the foraging area, the distribution of streams and wide sandy beach 

areas, a more patchy distribution of foraging areas than the rock platform territories, or the 

habitat is not yet at carrying capacity and the current pairs have expanded their territories 

to cover the space present. 

Territory size was probably a compromise between the area birds need to feed their young 

and the area they can defend (Harris 1970; Davies and Houston 1984). Sutherland (1996) 

further expands this concept to show that there is little reason to expect a simple 

relationship between territory size and reproductive success or the quality of individuals, 

because territory size is a tradeoff between the costs of defending a territory and the 

benefits gained from a larger territory and these change depending on population size. 

Nevertheless, food was probably a significant factor in determining territory size and 

there is often a negative correlation between territory size and food abundance and 

experimentally increasing food abundance often reduces territory size (Myers et al. 1979; 

Enoksson and Nilsson 1983; Gauthier 1987a; Newton 1989; Watson et al. 1992), but not 

always (see Yom-Tov 1974; Franzblau and Collins 1980; Moss and Watson 1985; 

Gauthier 1987b; Enoksson 1988). 

Habitat use within territories 

Although CIO have been considered only one of two pied coloured oystercatcher species 

to specialise on rocky shore habitat (Hockey 1996b), most pairs along the north coast, 
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Chatham Island, used sandy beaches extensively, and several pairs used sandy beaches 

almost exclusively for foraging and other activities. In territories with rocky platform, it 

was used extensively for foraging (12-60%), and in territories composed primarily of 

sandy beach, it was used almost exclusively for foraging (76-95%). Paddock was used up 

to 22% of the time for foraging by some pairs, but not at all by others. 

Within their territories, pairs used intertidal boulder areas less often than most other 

habitat types, and those that were used for foraging tended to be interspersed with sand. 

The birds foraged on both the boulders, primarily for limpets (Patelloidea corticata or 

Cellana strigilis) and chitons (Sypharochiton pelliserpens), and also in the sand around 

the boulders (often on marine worms, probably Polychaeta and/or Nermertea). Boulder 

areas were used mainly for foraging in the intertidal zone. In one territory (TE) the 

boulder platform was only exposed some parts of the year, depending on sand 

movements. The shell areas that were used for foraging were a mix of sand and shell 

(with more shell than sand). All of the foraging observed occurred in the sandy portions 

of the substrate. No foraging was recorded in areas composed predominantly of shell. 

CIO pairs spent from 5-16% of their diurnal time using fresh water. Oystercatchers have 

well developed salt glands (Hockey 1996a), so fresh water may not be required for 

drinking, but was perhaps preferred if available. The stream areas were associated with, 

and may help create, the wider beach areas. Streams seem to provide a mix of resources 

including water, a good foraging substrate, bathing, and wider areas for nesting and 

roosting. However, there were at least two areas with streams (Ngatikitiki and Okahu) 

that, although often used by CIO, have not been occupied by successful pairs for much of 

the 1990s. This may be because of a lack of suitable nest-sites, as both areas are backed 

by large dunes and have little high ground clear of marram grass. 

Paddocks were used for foraging between 4% and 22% of the time by about half the pairs. 

During this study pairs never attempted to nest in paddock; however, Moore et. al (2000) 

did report one instance ofCIO nesting in paddock more recently. Davis (1988) reported 

only one occasion of CIO using paddock which was for foraging. Reasons for these 

differences in use of paddocks by CIO between the two studies could be because of 

changes in paddock availability, differences in weather, changing behaviour by CIO as 
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they learn to use paddock for foraging, or, mostly likely, differences in observation 

methods (e.g., observations during different times of the year or in different locations). A 

combination of any of these factors was also possible. Davis found no pairs during the 

1987 seasons in the areas between WW and OTF (see Figure 1, Chapter 3). The pairs in 

the Tioriori area were observed twice a month from mid-October until mid-December and 

once a month until March. These were the pairs which were observed using paddocks 

most extensively during this study. Possibly the observations during 1987 were not 

frequent enough or extensive enough to detect use of paddocks by the Tioriori pairs, or it 

was an especially dry or cold year making the paddocks less suitable for foraging. 

Extensive use of paddocks have been a relatively recent adaptation by some other 

oystercatcher species (reviewed in Hockey 1996a), and this may also be the case for CIO. 

Limitations 

Observations of foraging behaviour in CIO were only made during the day. Night 

foraging is very widespread in waders and in other species of oystercatcher (Evans 1976; 

Dugan 1981; Zwarts et ai. 1990; McNeil et ai. 1992; Kersten and W. 1996; Rohweder and 

Baverstock 1996), and almost certainly occurs in CIO. If so, they may use different 

habitats at night, or for different amounts of time. In those Eurasian oystercatchers which 

breed near tidal areas, feeding activity was as high at night as during the day. Radio­

tracking indicated similar ranges were used day and night, and that food intake rates were 

similar. South Island pied oystercatcher are also active at night (R. Maloney, pers. 

comm.). In contrast, activity patterns of inland-breeding oystercatchers seemed to be 

determined by the light-dark cycle with no activity occurring at night (Exo 1998). 

Feeding at night may occur only when food availability during day-time is restricted. In 

CIO, night-time foraging activities may depend on how much they depend on intertidal 

areas for feeding, with those in the rock platform territories feeding the most at night, and 

those in mixed or sandy beach type habitats or that use paddocks extensively needing to -

feed less at night. 

The potential to over- or underestimate habitat use and selection was minimised as much 

as possible but some habitats were more difficult to observe CIO in, such as broken 

boulders and rocky areas. Therefore, these habitat types may be slightly under-
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represented in the use figures. Pairs with chicks were more difficult to observe as they 

were very alert, and changed behaviours at a greater distance as I approached than pairs 

without chicks. Pairs in some territories were especially difficult to approach and/or 

observe, such as in the Island territory which could only be observed during low tides or 

with difficulty from off the island at high tide. At least one pair (WaC) was observed 

foraging in paddock at times other than during the observations. If pairs were away from 

their territories during high tides, or observations of particular pairs happened to occur by 

chance primarily during low tides, this would overestimate time spent using intertidal 

habitats, which could be the case with, for example, the Rock territory. 

Although the time observations of habitat use were from a significant percentage of the 

total CIa territories on the Chathams (about a third), they were not from a random sample 

of territories, as they included only north coast territories, and therefore the results may 

not be representative of other areas. 

During this study territory defence was never recorded during incubation (even though it 

was commonly seen at other times), but it has been observed during the incubation period 

in other oystercatcher species (e.g., Nol and Humphrey 1994). The behavioural recording 

method used for this study (instantaneous sampling) is better for estimating common, 

longer-duration, behaviours rather than uncommon, shorter-duration, behaviours (Martin 

and Bateson 1986). The sampling intervals were 5 minutes, and although territory 

defence behaviours usually lasted at least this long, occasionally bouts were shorter than 

this (pers. obs.). Also, the way behaviours were classified, only the more intensive 

behaviours were classified as territory defence and not the behaviours that were often 

associated with them like walking or standing. 

The impacts of excluding the southern cliffs and Mangere Island in the calculations for 

habitat use may result in the amount of cliff and some rock or rock platform habitat 

available (and possibly used) to be under- or overestimated, as occasionally a few CIa 

have been sighted along the southern cliffs, and two to three pairs of CIa breed on 

Mangere. However, the number of CIa using these areas and the amount of coastline 

excluded was a small percent of the total. There was some error because of rounding or 

measurement methods, but totals were within 11 kms (4%) for Chatham Island, 5 kms 



(5%) for the lagoon, 6 (13%) for Pitt, and 0.7 (8%) for Rangatira of estimates obtained 

from the 1998 CIa census and those calculated by A. Davis (pers. comm.). 
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The use of broad classifications of habitat types has several limitations. Most habitats are 

a mix of features. The classification simplifies this, and CIO may be using small patches 

of one habitat type within a section of habitat that has been classified as another type. In 

the analysis of habitat use by zone, some habitat types may seem to be favoured, but this 

could be because some habitat types are often association with each other. For example, 

marram dunes (classified as 'vegetation ') were almost alway associated with wide sandy 

beaches. CIa often used these beaches; in the analysis it appears they preferred 

vegetation when it was the beaches they were selecting. CIa do much of their foraging at 

mid- to low tides on marine invertebrates (Davis 1988; pers. obs). The use/availability 

calculations probably tend to underestimate the selection for these intertidal areas because 

they are only available for a few hours per day, further confirming the trend that they are 

highly selected for, and used in relation to, their availability, possibly up to two or three 

times as much as my data indicated. 

Care must be made in interpreting habitat selection information. Habitats may appear 

suitable for CIO, but are not, because of predation or disturbance, and short term 

limitations of habitat suitability may be difficult to detect. For example, food may be 

unavailable because of storms and wind for a couple of days which could be fatal for 

young chicks. Large storm events, which flood nests, may only occur in some years, and 

some areas may be more susceptible than others, but may not be easily measured or 

assessed. 

Non habitat factors may influence habitat selection, factors such as social cues, predator 

pressure, or disturbance (Stamps 1987; Stamps 1988; Smith and Peacock 1990; Reed and 

Dobson 1993; Baptista and Gaunt 1997; Newton 1998; see also Chapter 3). Therefore, 

areas with good habitat for CIO may be unoccupied and individuals may be found only in 

less preferred habitats because of predator pressure. For example, Takahe were thought to 

prefer high altitude tussock grassland, but they may be found only in these areas because 

of predator pressures elsewhere in their more preferred habitats (Newton 1998). 



131 

Birds may avoid nesting in areas when predators or disturbance are present, or may select 

different types of nesting habitat depending on the type of predator present (i.e., aerial 

versus ground). Several experiments have shown when predators are reduced or 

eliminated from areas, breeding pair densities may quickly increase from new 

immigration and settlement (reviewed in Newton 1998). Terrestrial predator pressure and 

disturbance on Chatham and Pitt Island may have discouraged CIO from settling in what 

were otherwise suitable or preferred habitats, and skua or disturbance may influence 

habitat use on Rangatira. Predators may also influence the choice of habitat used. 

Disturbance may cause otherwise suitable habitat to be abandoned or avoided (reviewed 

in Newton 1988, see also Chapter 3). Livestock have been video-taped harassing nesting 

birds (Moore et al. 2000), and some CIO territories are subject to periodic high levels of 

human use (e.g., OhiraBay and Te Awanui Island) (see map Chapter 3, p 35) (pers. obs). 

Areas such as around Waitangi, Owenga and possibly Kaingaroa may receive little or no 

use from CIO because of disturbance from humans rather than from a lack of suitable 

physical habitat. 

This study provides some understanding of habitat selection by CIO, that is which 

habitats are used under current conditions, but not preference. This is because the least 

dominant floater might prefer an area with intertidal rock platform and wide sandy 

beaches, for example, but it may select other areas because territorial pairs exclude it from 

using its most preferred areas. Density is also not necessarily a better indicator ofhabitat 

preference or quality for a variety of reasons (Fretwell 1972; Van Home 1983). 

Sequential filling of habitats is a good indication of preference. Ideally, to determine 

preference, all the CIO would be removed and reintroduced one at a time. Obviously this 

is impractical. Some indication of preference might be gained by determining whi'ch 

habitats are most consistently occupied, over seasons and over years. 

Summary 

CIO selected habitats along the entire coastline which provided critical resources, such as 

food and nest-sites. CIO use and have territories at high densities in areas of rock 

platform (e.g., Tioriori), mixed sand/rock (e.g., Wharekauri), and wide schist platform 

(e.g., Whangamoe); and also some sections of sandy beach, especially around river 
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mouths, were high (e.g., Washout Creek to Tutuiri Creek). Breeding pairs tended to 

select breeding territories which included rock platform and wide sandy beaches. Floaters 

selected habitats in somewhat different ratios than breeders, probably in part because they 

were more free to move around, they were excluded from breeding territories, and they 

can use areas which are have good foraging habitat but are not good for breeding. Use of 

the lagoon shoreline by CIO was low and restricted to floaters. This may be because 

availability of food supplies are unpredictable due to fluctuating water and salinity levels 

within the lagoon. Paddocks tended to be in sections of coastline that were avoided by 

CIO, such as cliff areas, which may explain why they were used less than expected as the 

intertidal and storm-tide zones may be contain more critical habitats, especially for 

breeding pairs. 

The highest density of territories (4 pairs/km) was at Tioriori, along the north coast, 

Chatham Island. The 15 territories within the north coast study area tended to be of three 

main types: primarily sandy beach, territories with rock platform, or those which were a 

mix of habitat types. The longest territories were those composed primarily of sandy 

beach, with no rock platform within their boundaries. 

Although CIO have been considered only one of two pied coloured oystercatcher species 

to specialise on rocky shore habitat (Hockey 1996b), most pairs along the north coast, 

Chatham Island, used sandy beaches extensively, and several pairs used sandy beaches 

almost exclusively for foraging and other activities. The extensive use of sandy beaches 

was either previously under-detected or is a recent development. Sandy beaches provided 

foraging habitat even when rock platforms are covered by the tides, and were often used 

for nesting. Streams seem to be a preferred feature, especially along sections of sandy 

beach. Some pairs used paddocks for foraging quite extensively (up to 22%). Paddock 

and sandy beaches provided forage even during high tides for many pairs. 

Some caution must be used in interpreting habitat use data as birds may be avoiding 

preferred habitat areas because of factors such as disturbance or predation pressure. 

Predicting future use from current use is difficult because as popUlations increase, less 

preferred habitats may be used which are not used at lower densities. 



133 

ACKNOWLEDGMENTS 

Thanks to those who reviewed and provided many helpful suggestions on the manuscripts 

including Adrian Paterson and Richard Maloney. For statistical advice thanks to Chris 

Frampton and Andrew McLachlan. For assistance with field work thanks to: Rachael 

Peach, Alastair Freeman, Nicky Eade, and Eugenie Sage. Special thanks to all the 

Chathams landowners who allowed access through their property and who provided moral 

support. For support throughout the project from New Zealand Department of 

Conservation staff at the Canterbury and Wellington Conservancies and the Chatham 

Islands Area Office, with special thanks to Andy Grant (Canterbury Conservancy) who 

had the original vision for this project. This research was supported by funding from the 

Lincoln Fund for Excellence, Gordon Williams Scholarship, Lincoln University, and the 

New Zealand Department of Conservation Science and Research Division. 

REFERENCES 

Baker, A.J. 1969. The comparative biology of New Zealand Oystercatchers. Unpublished 

MSc, University of Canterbury, Christchurch, New Zealand. 

Baker, A.J. 1973. Distribution and numbers of New Zealand Oystercatchers. Notornis 

20:128-144. 

Baker, A.J. 1974. Ecological and Behavioural Evidencefor the Systematic Status of New 

Zealand Oystercatchers (Charadriiformes: Haematopodidae). R. Ont. Mus. Life 

Sci. Contrib. 96. Toronto, Canada. 

Baptista, L.F.; Gaunt, S.L.L. 1997. Bioacoustics as a tool in conservation studies. In: 

J.R. Clemmons and R. Buchholz (eds), Behavioral Approaches to Conservation 

in the Wild, pp 212-242. Cambridge University Press, Cambridge. 

Best, H.A. 1987. A survey of oystercatchers on Chatham Island. Unpublished report. 

New Zealand Department of Conservation. Wellington, New Zealand. 

Burger, J. 1985. Habitat selection in temperate marsh-nesting birds. In: M. Cody (ed.) 

Habitat Selection in Birds, pp 253-281. Academic Press, New York. 

Collar, N.J.; Crosby, M.J.; Statterfield, A.J. 1994. Birds to Watch 2: the World List of 

Threatened Birds. Birdlife International, Cambridge, UK. 

Davidson, N.C. 1981. Survival of shorebirds during severe weather: the role of 

nutritional reserves. In: N.V. Jones and W.J. Wolff (eds), Feeding and survival 

strategies of estuarine organisms, pp 231-249. Plenum, New York. 



134 

Davies, N.B.; Houston, A.I. 1984. Territory economics. In: lR Krebs and N.B. Davies 

(eds), Behavioural Ecology, 2nd ed., pp 148-169. Blackwell Scientific 

Publications, Oxford. 

Davis, A.M. 1988. Review of the Chatham Island Oystercatcher. Unpubl. Report for the 

Department of Conservation, Canterbury. 

Dugan, PJ. 1981. The importance of nocturnal foraging in shorebirds: a consequence of 

increased invertebrate prey activity. In: N.V. Jones and WJ. Wolff (eds), 

Feeding and survival strategy of estuarine organisms, pp 251-260. Plenum Press, 

New York. 

Enoksson, B. 1988. Prospective resource defence and its consequences in the Nuthatch 

Sitta europea L. Thesis, University of Uppsala, Sweden. 

Enoksson, B.; Nilsson, S.G. 1983. Territory size and population density in relation to 

food supply in the nuthatch Sitta europeae (Aves). Journal of Animal Ecology 

52:927-935. 

Ens, BJ. 1992. The social prisoner, causes of natural variation in reproductive success 

of the oystercatcher. Ph.D. Thesis, University of Groningen, Groningen, The 

Netherlands. 

Evans, P.R 1976. Energy balance and optimal foraging strategies: some implications for 

their distributions and movements during the non-breeding season. Ardea 64: 117-

139. 

Evans, P.R; Pienkowski, M.W. 1984. Population dynamics of shorebirds. In: J. 

Burger and B.L. Olla (eds), Shorebirds: Breeding Behavior and Populations, 

Volume 5, pp 83-123. Plenum, New York. 

Evans, P.R; Smith, C. 1975. Fat and pectoral muscle as indicators of body condition in 

the Bar-tailed godwit. Wildfowl 26:64-76. 

Exo, K-M. 1998. The significance of nocturnal feeding in waders. In: N.J. 

Adams and RH. Slotow (eds), Proceedings of the 22 International 

Ornithological Congress, 69 pp 121. Ostrich, Durban. 

Fleming, C.A. 1939. Birds of the Chatham Islands. Emu 38:380-413; 492-509. 

Franzblau, M.A.; Collins, J.P. 1980. Test of a hypothesis of territory regulation in an 

insectivorous bird by experimentally increasing prey abundance. Oecologia 

46: 164-170. 

Fretwell, S.D. 1972. Populations in a Seasonal Environment. Princeton University 

Press, Princeton, N.J., U.S.A. 

Gauthier, G.G. 1987a. The adaptive significance of territorial behaviour in breeding 

Buffleheads: a test of three hypotheses. Animal Behaviour 35:348-60. 



135 

Gauthier, G.G. 1987b. Brood territories in Buffleheads: determinants and correlates of 

territory size. Canadian Journal of Zoology 65:1402-10. 

Gerard, B.M. 1967. Factors affecting earthworms in pastures. Journal of Animal 

Ecology 36:235-252. 

Gliick, E. 1984. Habitat selection in birds and the role of early experience. Zietschrift 

fur Tierpsychologie 66:45-54. 

Goss-Custard, J.D.; Caldow, RW.G.; Clarde, RT.; Durell, S.E.A.l.V.D.; Urfi, J. et al. 

1994. Consequences of habitat loss and change to populations of wintering 

migratory birds: predicting the local and global effects from studies of 

individuals. Ibis 137(supplement):S56-S66. 

Goss-Custard, J.D.; Clarke, R.T.; Briggs, K.B.; Ens, B.; Exo, K.-M. et al. 1995a. 

Population consequences of winter habitat loss in a migratory shorebird. I. 

Estimating model parameters. Journal of Applied Ecology 32:317-333. 

Goss-Custard, J.D.; Clarke, R.T.; Durell, S.E.A.l.V.d.; Caldow, RW.G.; Ens, B.J. 1995b. 

Population consequences of winter habitat loss in a migratory shorebird. II. 

Model predictions. Journal of Applied Ecology 32:334-348. 

Grant, A. 1993. Chatham Island Oystercatcher (Torea) Recovery Plan. Department of 

Conservation. Christchurch, New Zealand. 

Harris, M.P. 1970. Territory limiting the size of the breeding population of the 

oystercatcher (Haematopus ostralegus) - a removal experiment. Journal of 

Animal Ecology 39:707-713. 

Hay, RF.; Mutch, A.R; Watters, W.A. 1970. Geology of the Chatham Islands. New 

Series 83. Bulletin. NZ Geological Survey. 

Hazlitt, S.L. 1999. Territory quality and parental behaviour of the black oystercatcher in 

the Strait of Georgia, British Columbia. M.Sc. Thesis, Simon Fraser University, 

Heg, D. 1999. Life history decisions in oystercatchers. Ph.D. Thesis, Rijksuniversiteit, 

Groningen, The Netherlands. 

Heg, D.; Ens, BJ.; Van der Jeugd, H.P.; Bruinzeel, L.W. 2000. Local dominance and 

territorial settlement of non breeding oystercatchers. Behaviour 137 (Part 4):473-

530. 

Heppleston, P.B. 1971. Nest site selection by oystercatchers (Haematopus ostralegus) in 

the Netherlands and Scotland. Netherlands Journal of Zoology 21 :208-21l. 

Heppleston, P.B. 1972. The comparative breeding ecology of oystercatchers 

(Haematopus ostralegus) in inland and coastal habitats. Journal of Animal 

Ecology 41 :23-52. 



Hockey, P.A.R 1982. Adaptiveness of nest site selection and egg coloration in the 

African Black Oystercatcher Haematopus moquini. Behavioural Ecology and 

Sociobiology 11: 117 -123. 

136 

Hockey, P.A.R 1996a. Family Haematopodidae. In: l del Hoyo; A. Elliott; l Sargatal 

(eds), Handbook of the Birds of the World, Vol. IlL pp 308-325. Lynx Edicions, 

Barcelona. 

Hockey, P.A.R 1996b. Haematopus ostralegus in perspective: comparisons with other 

oystercatchers. In: J.D. Goss-Custard (ed.) The Oystercatcher: from Individuals 

to Populations, pp 251-285. Oxford University Press, Oxford. 

Holdaway, RN.; Worthy, T.H.; Tennyson, AlD. 2000. A working list of breeding bird 

species of the New Zealand region at first human contact. New Zealand Journal 

of Zoology: in press. 

Johnson, D.H. 1980. The comparison of usage and availability measurements for 

evaluating' resource preference. Ecology 61 :65-71. 

Kersten, M.; W., V. 1996. Food intake of Oyster catchers Haematopus ostralegus by day 

and by night measured with an electronic nest balance. Ardea 84A:57-72. 

Klomp, H. 1954. De terreinkeus van de Kievit Vanellus vanellus. Ardea 42:1-139. 

Klopfer, P.H.; Ganzhorn, lU. 1985. Habitat selection: behavioral aspects. In: M. Cody 

(ed.) Habitat selection in birds, pp 435-453. Academic Press, New York. 

Lauro, B.; Nol, E. 1993. The effect of prevailing wind direction and tidal flooding on the 

reproductive success of pied oystercatchers Haematopus longirostris. Emu 

93:199-202. 

Lauro, B.; Nol, E. 1995. Patterns of habitat use for Pied and Sooty Oystercatchers 

nesting at the Furneaux Islands, Australia. Condor 97:920-934. 

Lobb, W.R; Wood, l 1971. Insects in the food supply of starlings in mid-Canterbury. 

New Zealand entomologist 5: 17-24. 

Martin, P.; Bateson, P. 1986. Measuring behaviour: an introductory guide. Cambridge 

Univ. Press, Cambridge. 

McNeil, R; Drapeau, P.; Goss-Custard, lD. 1992. The occurrence and adaptive 

significance of nocturnal habits in waterfowl. BioI. Riv. 67:381-419. 

Moore, P.; O'Connor, S.; Hedley, G.; Goomes, R 2000. Chatham Island Oystercatcher: 

draft report of 199912000 field season. Unpublished report. Department of 

Conservation. Wellington. 

Moss, R; Watson, A 1985. Adaptive value of spacing behaviour in population cycles of 

Red Grouse and other animals. In: RM. Sibly and R.H. Smith (eds), Behavioural 

ecology: Ecological consequences of adaptive behaviour, pp 275-94. Blackwell, 

Oxford. 



Murray, D.P.; Sanders, M.D. 2000. Assessment of Chatham Island as a locationfor 

liberation of black stilts. Unpublished report. Dept. of Conservation. Twizel, 

New Zealand. 

137 

Myers, lP.; Connors, P.G.; Pitelka, F.A. 1979. Territory size in wintering sanderlings: 

the effects of prey abundance and intruder density. Auk 96:551-561. 

Newton,1. (ed.) 1989. Lifetime Reproduction in Birds. Academic Press, London. 

Newton,1. 1998. Population Limitation in Birds. Academic Press, London. 

Nol, E.; Humphrey, R.C. 1994. American oystercatcher (Haematopus palliatus). In: A. 

Poole and F. Gill (eds), The Birds of North America, No. 82 pp 24. The Academy 

of Natural Sciences; Washington, D.C.: The American Ornithologists' Union, 

Philadelphia. 

Pugh, nT. 1987. Tides, Surges and Mean Sea-level. John Wiley & Sons, Chichester. 

Reed, lM.; Dobson, A. 1993. Behavioral constraints and conservation biology: 

conspecific attraction and recruitment. Trends in Ecology and Evolution 8:253-

256. 

Rohweder, D.A.; Baverstock, P.R. 1996. Preliminary Investigation Of Nocturnal Habitat 

Use By Migratory Waders (Order Charadriformes) In Northern New South Wales. 

Wildlife Research 23: 169-184. 

Schmechel, F.A. 1999. Chatham Island Oystercatcher census. Wader Study Group 

Bulletin 88:26-27. 

Schmechel, F.A.; O'Connor, S. 1999. Distribution and abundance of the Chatham Island 

Oystercatcher (Haematopus chathamensis). Notormis 46:155-165. 

Sherry, T.W.; Holmes, R.T. 1985. Dispersion patterns and habitat responses of birds in 

northern hardwood forests. In: M. Cody (ed.) Habitat Selection in Birds, pp 283-

309. Academic Press, New York. 

Smith, A.T.; Peacock, M.M. 1990. Conspecific attraction and the determination of 

metapopulation colonization rates. Conservation Biology 4:320-323. 

Stamps, l 1987. Conspecifics as cues to territory quality: a preference of juvenile lizards 

CAnolis aeneus) for previously used territories. American Naturalist 129:629-642. 

Stamps, lA. 1988. Conspecific attraction and aggression in territorial species. American 

Naturalist 131 :329-347. 

Sutherland, W.l 1996. From Individual Behaviour to Population Ecology. Oxford 

University Press, Oxford. 

Thompson, C.S. 1983. The weather and climate of the Chatham Islands. NZ Met 

Service. Misc. Publication. Wellington. 



138 

Travers, H.H.; Travers, W.T.L. 1872. On the birds of the Chatham Islands with 

introductory remarks on the avifauna and flora of the islands in relation to those of 

New Zealand. Trans. Proc. NZ. Inst.: 5: 212-222. 

Van Horne, B. 1983. Density as a misleading indicator of habitat quality. Journal of 

Wildlife Management 47:893-901. 

Vermeer, K.; Morgan, K.H.; Smith, G.EJ. 1992. Black Oystercatcher habitat selection, 

reproductive success, and their relationship with Glaucous-Winged Gulls. 

Colonial waterbirds 15:14-23. 

Watson, J.; Warman, C.; todd, D.; Laboudallon, V. 1992. The Seychelles magpie robin 

Copsychus sechallarum: ecology and conservation of an endangered species. 

Biological Conservation 61 :93-106. 

Yom-Tov, Y. 1974. The effect of food and predation on breeding density and success, 

clutch size and laying date of the crow (Corvus corone L.). Journal of Animal 

Ecology 43:479-498. 

Zwarts, L.; Blomert, A.-M.; Hupkes, R. 1990. Increase of feeding time in waders 

preparing for spring migration from the Ba c d'Arguin, Mauritania. Ardea 78:237-

256. 



APPENDICES 

Appendix 1 

North coast territory categories and characteristics. Categories: MX - mixed, SB -

sandy beach, RP - rock platform. Habitat types: SB - sandy beach, FW - fresh 

water RP - rock platform, OTH - other, UNK - unknown. Numbers in bold -

habitats used for a high percentage (top third) of the time by the CIO breeding 

pair in residence. N = number of observation sets. In order by geographic 

distribution from southwest to northeast. 

Territory Category SB+FW RP OTH UNK (n) 

Whanga MX 10% 6% 81% 3% 7 

WW SB 96% 0% 4% 8 

WoC SB 94% 0% 6% 15 

TW SB 86% 8% 6% 13 

TE SB 85% 12% 3% 13 

OTF MX 76% 22% 2% 11 

Creek MX 82% 17% 0% 2% 12 

Pounamu MX 73% 14% 8% 5% 12 

Dune RP 47% 29% 21% 4% 14 

Cliff RP 60% 28% 4% 7% 11 

Cape RP 59% 32% 0% 9% 7 

Mairangi MX 66% 14% 16% 5% 10 

Wool shed SB 96% 2% 2% 9 

Rock RP 26% 55% 14% 6% 7 

Island RP 47% 50% 0% 3% 6 

Mean 70% 27% 11% 4% 155 
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Appendix 2 

Combinations o/habitat types that occur along the north coast study areas (Waitangi 

West to Okahu Point, and Whangamoe to Whangatete Bays). 

Intertidal Storm-tide Terrestrial Kms 

boulder/cliff/shell boulder/cliff vegetation 0.25 

rock or shell narrow vegetation 3.50 

sand or sand mix vegetation 1.75 

total 5.50 

rock or rock/sand mix sand or sand mix cliff 2.50 

sand or sand mix paddock 0.25 

sand narrow vegetation 0.25 

total 3.00 

rock platform boulder/cliff paddock 0.25 

rock or shell narrow paddock 0.25 

sand or sand mix vegetation 1.25 

sand narrow vegetation 1.75 

total 3.50 

sand no storm zone paddock 1.25 

sand or sand mix vegetation 10.50 

total 11.75 

schist rock or shell paddock 3.00 

rock or shell narrow paddock 0.75 

vegetation 0.75 

sand or sand mix vegetation 0.75 

total 5.25 

Grand total 28.00 
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Appendix 3 

Habitat categories by zone . . Wide or narrow categories (e.g. rock platform) were those 

section greater or less than 30 metres wide. 

Habitat categories Total no. of 

Zone within each zone Total kms sections 

terrestrial cliff 46.50 69 

paddock 68.75 76 

vegetation 152.25 151 

storm-tide boulder/cliff 35.50 64 

no storm zone 15.25 16 

rock/shell 75.25 96 

rock/shell narrow 36.00 41 

sand 47.50 54 

sand narrow 58.00 25 

intertidal boulder/cliff/shell 26.75 38 

rock/mix 45.25 70 

rock platform 34.75 69 

sand 96.25 50 

schist 64.5 69 
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Appendix 4 

Ratios of use versus availability for combinations of intertidal plus storm-tide zones for 

all CIO (pairs andfloaters combined). Bold print - habitat types with 5% or more 

availability and with ratios above or below 1.5 or 0.5 (indicating selection at least 50% 

higher or lower than would be expected based on availability), plus or minus signs 

indicate the nature of the selection. For habitat types with availability below 5% caution 

in interpretation is needed because of the small denominator, which may inflate the 

ratios. 

Intertidal Stonntide Use Availahle Ratio 

hlell hie 0.01 0.06 0.19 -

I 0.00 0.00 0.00 

In 0.00 0.01 0.00 

nsz 0.00 0.00 0.00 

r 0.00 0.01 0.00 

s 0.00 0.01 0.00 

h/e/l total 0.01 0.10 0.12 -

r/rnx hie 0.02 0.03 0.55 

I 0.01 0.00 2.91 

In 0.00 0.00 0.00 

rnx 0.00 0.00 1.09 

nsz 0.01 0.01 1.19 

r 0.07 0.09 0.74 

rn 0.01 0.01 1.25 

s 0.06 0.01 4.70 

sn 0.00 0.01 0.00 

r/rnx total 0.18 0.17 1.04 

rp hie 0.06 0.04 1.64 

1 0.01 0.00 8.73 

In 0.00 0.00 0.00 

rnx 0.02 0.01 4.37 

nsz 0.00 0.01 0.00 

r 0.17 0.04 3.81 

rn 0.02 0.01 1.46 

s 0.08 0.00 16.60 

sn 0.13 0.01 8.73 

rp total 0.49 0.13 3.74+ 

s hie 0.00 0.00 0.00 

I 0.00 0.00 0.00 

rnx 0.01 0.01 0.58 

nsz 0.00 0.03 0.00 

s 0.18 0.12 1.55 + 

sn 0.01 0.19 0.06 -

s total 0.20 0.36 0.56 

t 0.00 0.00 0.87 

mx 0.03 0.01 4.37 

r 0.06 0.12 0.50 

rn 0.01 0.10 0.12 -

s 0.02 0.01 3.12 

t total 0.13 0.24 0.52 
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Appendix Sa 

Habitat ratios by zone for the combination of mapping and census, mapping alone, and census alone. (See also Table 4.) 

MAPPING Floaters Pairs 

& CENSUS Use Available Use Available 

No. Prop. Kms Prop. Ratio No. Prop. Kms Prop. Ratio 

terrestrial 

c 4.00 0.13 46.50 0.17 0.73 5.50 0.12 46.50 0.17 0.70 

P 10.00 0.32 68.75 0.26 1.24 5.00 0.11 68.75 0.26 0.43-

v 17.50 0.56 152.25 0.57 0.98 35.00 0.77 152.25 0.57 1.35 

total 31.50 1.00 267.50 1.00 45.50 1.00 267.50 1.00 

stormtide 

h/c 3.00 0.10 35.50 0.13 0.72 4.00 0.09 35.50 0.13 0.66 

nsz 0.50 0.02 15.25 0.06 0.28 - 0.50 0.01 15.25 0.06 0.19 -

sn 2.50 0.08 58.00 0.22 0.37 - 7.50 0.16 58.00 0.22 0.76 

rll 13.00 0.41 75.25 0.28 1.47 13.00 0.29 75.25 0.28 1.02 

mlln 1.50 0.05 36.00 0.13 0.35 - 1.50 0.03 36.00 0.13 0.24 -

s/rnx 11.00 0.35 47.50 0.18 1.97+ 19.00 0.42 47.50 0.18 2.35+ 

total 31.50 1.00 267.50 1.00 45.50 1.00 267.50 1.00 

intertidal 

b/c/l 0.50 0.02 26.75 0.10 0.16 - 0.50 0.01 26.75 0.10 0.11-

r/rnx 7.50 0.24 45.25 0.17 1.41 7.00 0.15 45.25 0.17 0.91 

rp 10.50 0.33 34.75 0.13 2.57+ 24.50 0.54 34.75 0.13 4.14+ 

s 6.50 0.21 96.25 0.36 0.57 9.00 0.20 96.25 0.36 0.55 

t 6.50 0.21 64.50 0.24 0.86 4.50 0.10 64.50 0.24 0.41-

total 31.50 1.00 267.50 1.00 45.50 1.00 267.50 1.00 
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Appendix 5b 

MAPPING Floaters Pairs 

ONLY Use Available Use Available 

No. Prop. Kms Prop. Ratio No. Prop. Kms Prop. Ratio 

terrestrial 

c 2.00 0.06 55.00 0.20 0.32 - 7.00 0.17 55.00 0.20 0.86 

p 12.00 0.39 69.25 0.25 1.55 + 4.00 0.10 69.25 0.25 0.39 -

v 17.00 0.55 152.25 0.55 1.00 30.00 0.73 152.25 0.55 l.33 

total 3l.00 l.00 276.50 l.00 41.00 l.00 276.50 l.00 

storm tide 

b/c l.00 0.03 37.00 0.13 0.24 - 6.00 0.15 37.00 0.13 l.09 

nsz 0.00 0.00 15.25 0.06 0.00 - 0.00 0.00 15.25 0.06 0.00 -

sn l.00 0.03 58.00 0.21 0.15 - 5.00 0.12 58.00 0.21 0.58 

rll 15.00 0.48 80.75 0.29 1.66 + 13.00 0.32 80.75 0.29 l.09 

rnlln l.00 0.03 38.00 0.14 0.23 - l.00 0.02 38.00 0.14 0.18 -

s/rnx 13.00 0.42 47.50 0.17 2.44+ 16.00 0.39 47.50 0.17 2.27 + 

total 3l.00 1.00 276.50 l.00 41.00 l.00 276.50 1.00 

intertidal 

b/c/l 0.00 0.00 29.75 0.11 0.00 - 0.00 0.00 29.75 0.11 0.00 -

r/rnx 9.00 0.29 47.00 0.17 1.71 + 6.00 0.15 47.00 0.17 0.88 

rp 9.00 0.29 39.00 0.14 2.06 + 25.00 0.61 39.00 0.14 4.32+ 

s 4.00 0.13 96.25 0.35 0.37 - 6.00 0.15 96.25 0.35 0.42 -

t 9.00 0.29 64.50 0.23 1.24 4.00 0.10 64.50 0.23 0.42 -

total 3l.00 l.00 276.50 l.00 4l.00 l.00 276.50 l.00 
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Appendix 5c 

CENSUS Floaters Pairs 

ONLY Use Available Use Available 

No. Prop. Kms Prop. Ratio No. Prop. Kms Prop. Ratio 

terrestrial 

e 6.00 0.19 46.50 0.17 1.08 5.00 0.10 46.50 0.17 0.56 

P 8.00 0.25 68.75 0.26 0.97 6.00 0.12 68.75 0.26 0.46 -

v 18.00 0.56 152.25 0.57 0.99 40.00 0.78 152.25 0.57 1.38 

total 32.00 1.00 267.50 1.00 51.00 1.00 267.50 1.00 

stormtide 

b/e 5.00 0.16 35.50 0.13 1.18 2.00 0.04 35.50 0.13 0.30 -

nsz 1.00 0.03 15.25 0.06 0.55 1.00 0.02 15.25 0.06 0.34 -

sn 4.00 0.13 58.00 0.22 0.58 10.00 0.20 58.00 0.22 0.90 

rll 11.00 0.34 75.25 0.28 1.22 13.00 0.25 75.25 0.28 0.91 

mlin 2.00 0.06 36.00 0.13 0.46- 3.00 0.06 36.00 0.13 0.44 -

s/rnx 9.00 0.28 47.50 0.18 1.58 + 22.00 0.43 47.50 0.18 2.43+ 

total 32.00 1.00 267.50 1.00 51.00 1.00 267.50 1.00 

intertidal 

blell 1.00 0.03 26.75 0.10 0.31- 1.00 0.02 26.75 0.10 0.20 -

r/rnx 6.00 0.19 45.25 0.17 1.11 8.00 0.16 45.25 0.17 0.93 

rp 12.00 0.38 34.75 0.13 2.89+ 25.00 0.49 34.75 0.13 3.77 + 

s 9.00 0.28 96.25 0.36 0.78 12.00 0.24 96.25 0.36 0.65 

t 4.00 0.13 64.50 0.24 0.52 5.00 0.10 64.50 0.24 0.41-

total 32.00 1.00 267.50 1.00 51.00 1.00 267.50 1.00 



Appendix 6 

Features and dimensions ofCIO breeding territories, north coast, Chatham Island. X 

indicates the presence of the feature. Items in parenthesis indicate feature is outside 

territory boundaries but nearby. 

Coastline Rock Boulder/rock 

Territory Length (m) Widths (m) Paddock platform sand mix Stream 

Whanga 350 10 - 30 x x 

WW 1000 l3 - 67 x 

WOC 990 3 - 28 x x 

TW 700 4 - 25 x x 

TE 1310 30 - 64 x x x 

OTF 1540 10 - 16 x x 

Creek 180 15 - 37 x x x 

Pounamu 170 4-8 x x 

Dune 200 6 - 15 x x 

Cliff 200 18 - 24 x x 

Cape 450 1-9 (x)* x 

Mairangi 490 5 - 15 x x x 
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Woolshed 700 5 -70 x (x)** 

Rock 560 1 - 3 (x) x 

Island 360 2-4 (x) x ex) 

mean/ count 610 10 8 4 8 

* paddock use nearby and suspected use 

** minor creeks, rather than larger streams 
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To determine which limiting factors (e.g., nest-sites, foraging habitat, predators) were 

most likely to critical for the endangered Chatham Island oystercatcher (CIO), and during 

which season (breeding or nonbreeding), a study of several aspects of survival and 

breeding were examined in 15 pairs (about 25-33% of the estimated population) along the 

north coast, Chatham Island. In order to determine if lack of foraging habitat during the 

nonbreeding season was potentially a critically limiting factor to the population, over­

winter survival of first-year birds was monitored during the 1994/5 and 1995/6 breeding 

seasons. To examine the role of territory quality in the population dynamics of the 

species during the breeding season, productivity and habitat characteristic within the 

territories were compared from the 1994/5 to 199617 breeding seasons. Additional 

comparisons were made with three seasons of past and recent data from this same area in 

which management occurred (primarily in the form of predator control) to assess the 

effects of predator pressure and habitat quality on productivity in CIO. To determine the 

role of habitat in productivity, territories were classified according the predominant 

habitats present and used by the resident pairs, and productivity by territory type 

compared. 

Over-winter survival of first-year CIO was high (83% and 71% of6 and 7 fledglings in 

1994/5 and 1995/6 respectively), suggesting that the main regulating factors within the 

popUlation are more likely to be operating during the breeding season, rather than over 

winter. 

Several pairs in territories had breeding parameters predicted to reflect good quality 

habitat (e.g., large, early clutches; short clutch replacement intervals) but productivity was 

low or nil during the three seasons of this study. Some pairs in territories that produced 
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few or no fledglings during the three seasons of this study were highly productive in the 

three seasons before and after this study. The high number of multi-chick broods 

produced during nine seasons of monitoring suggests that quality and availability of food 

within territories along the north coast was very good, at least in some years. Hatching 

failure from tidal flooding was a major cause of breeding failure in some territories. Eight 

of fifteen pairs lost 50% or more of their clutches to flooding over three seasons, with one 

pair losing 83% (5/6) clutches to tidal flooding. 

Sandy beach type territories were by far the most productive (0.80 fledglings/pair/season), 

followed by mixed and rocky platform type territories (0.33 and 0.22 

fledglings/pair/season respectively). The differences between territory types were 

especially pronounced during the seasons of this study when there was little or no 

management. During periods of management, especially intensive predator control, these 

differences in productivity between territory types decreased. Under unmanaged 

conditions on the north coast of Chatham Islands, CIO may have to choose between good 

quality foraging habitat and low quality nest-sites; the areas with better nesting sites, and 

higher hatching success, may have less optimal foraging habitat as reflected in the 

breeding parameters examined. 

INTRODUCTION 

Two key questions need to be answered to effectively understand the population 

dynamics of CIO. What are the factors limiting the population and when do they occur 

(e.g., during the breeding or nonbreeding season)? To understand limiting factors and 

their effect on populations requires understanding recruitment and mortality rates. 

Factors that change either recruitment or mortality rates, and are not compensatory, will 

affect the total population size. The probable limiting factors include food availability, 

nest-sites, predation and disturbance. These factors probably interact to limit the CIO 

population and may vary from season to season and location to location. 

It is important to understand the effect of season when limiting factors are operating. 

Often the main density dependent regulatory influences may occur mostly or completely 

during one season ([Fretwell, 1972 #39]). This has important implications for 

conservation management and also determining when habitat quality may be limiting. 
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For example, in oystercatchers, over-winter survival rates are the lowest among first-year 

birds because of their lower dominance rank relative to the older birds (Goss-Custard et 

al. 1982; Goss-Custard 1985; Goss-Custard and Dure111988; Hulscher 1989; Hulscher 

1990; Goss-Custard et al. 1994b; Nol and Humphrey 1994; Andres and Falxa 1995; Ens 

and Cayford 1996; Goss-Custard et al. 1996; Hockey 1996). If over-winter survival is 

low and density dependent, this may be the main factor regulating the population and no 

amount of management to increase productivity during the breeding season will succeed 

in increasing the breeding population. However, if the main limiting factors are operating 

during the breeding season, it would then be crucial to target research and conservation 

management during this period. 

During the breeding season, limiting factors which have been found to affect productivity 

and survival of breeding oystercatchers include: 1) food - amount, availability, and 

location - especially proximity and access for chicks, 2) nest-sites - availability of sites 

which are free from flooding and provide good visibility, 3) predator pressures, and 

4) disturbance factors. The best quality breeding territories for CIa would therefore be 

predicted to have the following characteristics: 1) high quality and density of food which 

is easily accessible to both adults and chicks, 2) nesting areas that are safe from flooding 

and allow good visibility to allow for detection and escape from predators, 3) islands or 

areas with low predator pressure andlor little cover for predators, and 4) little or no 

disturbance from humans or livestock. 

Background 

Vegetation, predators, and disturbance factors have changed significantly on the 

Chathams since humans arrived, possibly changing habitat use patterns by CIa. In dune 

areas, grazing by stock, and competition with marram grass (Ammophila arenaria) has 

largely eliminated the original, more open dune community of pingao (Desmoschoenus 

spiralis) and endemic herbs (Atkinson 1996). Marram typically changes dune structure 

causing steeper dunes and thick vegetative cover (Heyligers 1985), reducing the 

availability of habitat for CIa (Best 1987; Park 1994). 

Many predator species have been introduced to Chatham and Pitt Islands, the most 

significant being cats (Felis catus) as they are known predators of eggs, chicks and adult 
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shorebirds including oystercatchers (see Table 18, Chapter 3). Other introduced predators 

include weka (Gallirallus australis) (a flightless rail endemic to the New Zealand 

mainland), possum (Trichosurus vulpecula), hedgehog (Erinaceus eruopaeus), rats 

(Rattus norvegicus, R. rattus), and dogs (Canusfamiliaris). High numbers of cats, weka, 

rats, and possum have been documented during recent control operations along the north 

coast of Chatham Island (see Chapter 3, Moore et al. 2000). All of these species, except 

rats, are known to attack CIO nests and disturb, or attack, incubating adults (Moore et al. 

2000). 

Habitat changes and human activities have probably resulted in establishment of spur­

winged plover (Vanellus miles), a potential predator/competitor, and higher densities of 

aerial predators such as black-backed gulls (Larus dominicanus) and harriers (Circus 

approximans). Harriers may attack oystercatchers with young chicks, and black-backed 

gulls are well documented predators of other species of oystercatcher chicks (Table 18, 

Chapter 3). 

Livestock, and other forms of non-historical disturbance (e.g. vehicles, dogs, humans) are 

frequent and widespread along portions of the coastline of the two main islands (pers. 

obs.). Conversely some forms of predation and disturbance may now be less because of 

human occupation of the islands, especially that from brown skua (Catharacta skua), 

which have been extirpated from Chatham Island where they were once common 

(E. Young, pers. comm.). 

Management to increase CIO productivity occurred in the three breeding seasons before 

and after this study (Murman 1991; Sawyer 1993; Sawyer 1994; Bell 1998; O'Connor 

1999; Moore et al. 2000). The intensity of the management varied, being lower in the 

1991/2-1993/4 breeding seasons (referred to hereafter as seasons), and higher during the 

1997/8-1999/0 breeding seasons (hereafter seasons are given as the year in which 

breeding begins). The primary management action was control of predators in both 

periods. Artificial incubation of eggs occurred during the 1991-1993 seasons, and 

exclusion of livestock in some areas in the 1997-1999 seasons. Two pairs, WW and 

Whanga, were outside the management areas in all seasons. See Chapter 3, Table 19 for 

details of predator control. 
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Objectives 

Ideally territory quality would be assessed by finding measures that accurately predict 

fitness of pairs within the territories (i.e., productivity and survival of the pair, and 

subsequent survival and productivity of their young) which is independent of the 

confounding factors of individual bird quality; and by understanding the critical 

resource(s) that are provided by these territories such as visibility to allow escape from 

predators, nest-sites, or food supplies. This is difficult however, and reviews by Cluton­

Brock (1988) and Newton (1989) yielded only three studies that reported critical 

resource(s) determining territory quality, and even then understanding was still 

incomplete. In this study, territory quality is inferred from habitat selection, preference, 

and breeding parameters. 

In the best quality breeding territories, the following responses might be predicted in 

breeding parameters: 1) high hatching success (few clutches flooded or lost to other 

causes); 2) large, early clutches (because of good food availability); 3) similar egg 

masses within a clutch; 4) high adult survival and 'high quality' pairs (i.e., older birds 

and a long pair bond); 5) a relatively high proportion of two or three-chick broods; 

6) high survival rates of chicks to fledging; 7) short fledging times for equal-size broods; 

and 8) short clutch replacement times (Ens 1992; Hockey 1996; Newton 1998; Hazlitt 

1999; Heg 1999). High quality territories should be preferred by CIO if they follow the 

same patterns as many other birds and, therefore, the highest quality territories would be 

predicted to have the following characteristics: 1) high rates of occupancy from year to 

year, 2) low pair turnover, and 3) be defended for as much of the year as conditions 

allow (Baeyens 1981; M0ller 1982; Matthysen 1987; Nilsson 1987; Andren 1990; Winker 

et al. 1995). 

The aims of this study were: 

1) to determine if over-winter habitat was a potentially critically limiting factor during 

the non-breeding season by estimating over-winter survival of first-year birds (these 

are the cohort most likely to starve if over-winter foraging habitat is limited, therefore, 

if first year survival was low and density dependent, it may be a critically limiting 

factor), 



2) to determine characteristics of territory quality by comparing breeding parameters 

between 15 pairs of CIa, 
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3) to determine correlations between habitat features of territories and breeding success, 

and 

4) to compare productivity of the study territories under three periods of varying 

management intensity to determine the effects of predator control (and other 

management) on breeding success in different territory types and thereby identify 

probable limiting factors. 

It would have been desirable to determine the role of storm patterns over the periods when 

management intervention was occurring (i.e, 1991-1993 and 1997-1999), compared to the 

seasons of this research would have been desirable, but was outside the scope of this 

study. 

Definitions 

Breeding success, unless otherwise defined, refers to successfully raising at least one 

chick to fledging. 

Floaters - nonterritorial, nonbreeders. 

METHODS AND LOCATION 

I studied habitat use within 15 breeding territories along the north coast of Chatham 

Island between Waitangi West and Okahu Point near Wharekauri, and between 

Whangamoe and Whangatete Bays (a total of about 28 kms of coastline). Names and 

locations of territories in the north coast of Chatham Island are given in Chapter 3, 

Figure 1. These sections of coastline are characterised by a mix of volcanic (or volcanic 

derived) intertidal rock platform, schist rock, sandy beaches, and small sections of shell or, 

boulder beaches. Terrestrial areas along the coastline include long sections of marram 

dunes, paddock, forest patches, rough vegetation and cliffs (Chapter 4, Table 1 and 

Appendix 1). 

In order to gather evidence on if the main factors limiting the popUlation were occurring 

during the breeding season, or over winter, some juveniles were colour banded with 
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powder-coated metal bands the first two seasons and records of any resightings kept in the 

following seasons. Minimum survival rates of first-year birds were then calculated from 

these sightings. Unfortunately the colours on the bands wore off to the point where 

resighting information was unreliable after the first year of wear on these bands. 

To determine breeding success within territories over longer time periods and under 

different management scenarios, productivity was compared over nine seasons for the 

territories within the north coast study area. 

To determine if differences in breeding success were because of the type of habitats 

predominantly available and used by pairs, territories were categorised into three types: 

sandy beach, rocky platform, and mixed. The third of territories which contained no rock 

platform and pairs used sandy beach (including the areas around fresh water) 85% ofthe 

time or more the territory was classified as 'sandy beach'; the third of territories where 

rock platform was available within the territory and was used over 25% of the time were 

classified as 'rock platform'; the other third of the territories, which contained a mix of 

habitat types, were classified as 'mixed' territories (Appendix 1). To determine if any of 

the territory types were more productive than the others, productivity was compared 

between the three major habitat types. Hatching success and losses to flooding were also 

calculated by territory type to determine variations in these parameters between habitats. 

A repeated measures ANOV A was used to test for significant differences between 

territory types, management level and productivity. 

To compare territory quality several breeding parameters were tabulated including: early 

clutch initiation dates, absences of pair members from territories during the breeding 

season, clutch replacement intervals, fledging times, suspected pair turnover, hatching 

success and losses to flooding. Because monitoring began late in the 1994 season, early 

clutch initiation was compared for only the 1995 and 1996 seasons. Data on presence or 

absent of pair members from their territories were collected for the last two seasons only. 

When unusual behaviours were seen that might indicate pair turnover, these were noted; 

for example an unusual amount of calling, chasing, and interactions between the two birds 

seen within the territory boundaries. For clutch replacement intervals and fledging times 

the mid-point of possible dates was used. 
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To determine if territories were defended during the nonbreeding season, territories were 

checked for pair occupancy in late winter (August). Unfortunately, due to logistic 

constraints, other areas could not be checked for comparison. To estimate potential pair 

turnover, notes on pair behaviour was noted ifpair turnover was suspected. Adult birds 

were not allowed to be individually marked by the banding office during this study due to 

past problems with colour bands. 

Pairs monitored less than seven times per season were excluded from all hatching success 

and flood loss calculations. Some clutches excluded from hatching success and flooding 

calculations in Chapter 3 were included in this chapter to give a better indication of 

differences between territories. Clutches of unknown final size (i.e., clutches only seen 

once) were included in hatch success calculations, but excluded from clutch size 

calculations. 

When calculating hatching success, the fate of some clutches was unknown because they 

may have been lost either before or after hatching. For those that were unknown, the 

likelihood of hatching was divided into three groups: high, low and unknown based on the 

available information about the clutch including estimated hatch date, dates of 

disappearance, and events which occurred around the time the clutch disappeared (e.g., 

eggs pipping and flooding events). Those with a high or low likelihood of having hatched 

were assumed to have hatched, or not, based on the likelihood assigned. For those 

assessed as having an equal probability of being lost before or after hatching were 

subdivided into two groups, with half being assumed to have hatched and half as not. 

Some nests were suspected, but not known, to have been lost to flooding. When 

calculating losses to flooding for these clutches, they were divided evenly into the two 

categories: flooded and non-flooded. 

Egg volume was calculated by using the volume formulae from Davis (1988): volume = 

O.507*(l*b\ where 1 = length (mm) and b = breadth (mm). 



RESULTS 

Over-winter survival of first-year birds 

Over-winter survival rates were high for the two years data were available. From the 

1994 season 5 of 6 fledglings were seen the next season (minimum 83% survival rate), 

and from the 1995 seasons 5 of 7 fledglings were seen the following season (minimum 

71 % survival rate). 

Territory quality 

Breeding parameters predicted to be associated with high quality territories for 15 

territories occupied along the north coast, Chatham Island from 1994 to 1996 were 

collated by territory and are reported below and summarised in Table 1. 
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Breeding attempts were high over the three seasons along the north coast (Table 1). All 

pairs attempted to breed in all breeding seasons except for the Dune pair during the first 

season. One territory, TE, was newly established in 1994 with a pair 'squeezing in' 

between the TW and OTF territories, primarily next to the TW territory. This pair did 

attempt to breed, but the male of this pair was probably only two years old (which may 

have resulted infertile eggs) (see Chapter 3). 

Pairs either initiated clutches early, or had large clutches, but not both, except for the 

Cape pair. Pairs in five territories (Whanga, WOC, TW, TE, and Cape) initiated clutches 

early in both seasons monitored (Table 1). Seven territories had large first clutches (i.e., 

2.33 eggs or more); of which three averaged 2.67 eggs/first clutch or more (Island, OTF, 

and Rock). In a few territories, pairs maintained relatively large clutch sizes for first, 

second, and third clutches (Island and Woolshed). Five territories (TW, TE, WW, 

Pounamu, and Dune) had pairs with consistently small first and second clutches 

(2.0 eggs/clutch or less). 

Differences in intraclutch egg volumes varied by clutch order, territory, and the number of 

eggs within the clutch. Of two-egg first clutches (n = 8) TW, TE, and Wool shed had the 

least differences between eggs respectively (1.00-1.60 cm\ However, eggs in the second 

two-egg clutches ofTE and TW had the largest differences (3.44 cm
3 

and 4.90 cm
3
), 



Table 1 

Territory 

Wbanga 

WW 

WoC 

TW 

TE 

OTF 

Creek 

Pounarnu 

Dune 

Cliff 

Cape 

Mairangi 

Woolshed 

,Rock 

Island 

mean/total 

(n) 

Summary of breeding parameters by territory. Bold numbers are those in the top third or more for parameters associated with high 

territory quality. Numbers in italics are those in the bottom third or less. +1- for clutch replacement intervals and fledging periods 

indicates range of possible dates events could have occurred (certainty measure). 

no. of 

seasons 199617 intraclutch 

initiated egg volume differences (cm
3

) replacement intervals for hatching success*** 

clutches mean clutch size** 2-egg clutch 3-egg clutch fIrst lost clutches (days) flooded hatched 

early* 1st (n) 2nd (n) 3rd (n) 1st 2nd 3rd 1st 2nd 94 (+/-) 95 (+/-) 96 (+/-) % % (+/-) 

2 2.00 1 2.35 0% 33% 0 

0 2.00 2 2.00 2 2.00 1 2.18 2.13 8 4 13 7 40% 40% 0 

2 2.00 3 2.00 1 17 9 50% 50% 0 

2 2.00 3 2.00 1 1.00 1 1.00 4.90 15 8 30% 60% 0 

2 2.00 3 2.00 1 1.00 1 1.23 3.44 12 6 0% 40% 0 

1 3.00 3 2.50 2 0.56 5.80 12 6 22 11 10 5 83% 17% 0 

0 2.33 3 2.00 1 2.91 19 10 25% 38% 1.5 

0 2.00 1 1.50 2 20 10 11 5 20% 40% 0 

0 2.00 2 2.00 1 2.84 15 8 50% 33% 1 

1 2.33 3 2.00 1 2.00 1 20 10 60% 30% 0.5 

2 2.33 3 2.50 2 5.05 9 5 50% 30% 1.5 

1 2.00 1 2.32 0% 100% 0 

1 2.33 3 2.50 2 2.00 1 1.60 1.22 12 6 50% 42% 0.5 

0 2.67 3 2.00 2 3.71 12 6 17 9 50% 20% 0.5 

0 3.00 3 3.00 1 2.00 1 3.00 11 6 50% 42% 0.5 

2.31 37 2.16 19 1.67 6 2.05 3.19 2.13 2.42 5.43 11 5 16 8 13 7 41% 38% 4.5 

15 15 13 6 8 3 1 3 2 3 9 6 

(n) 

3 

5 

4 

5 

5 

6 

4 

5 

3 

5 

5 

2 

6 

5 

6 

69 

* two seasons only monitored (Continue overleaf) 

** clutches of uncertain size excluded 

*** clutches of uncertain size included 



Table 1 

Territory 

Wbanga 

WW 

WoC 

TW 

TE 

OTF 

Creek 

Pounamu 

Dune 

Cliff 

Cape 

Mairangi 

Woolshed 

Rock 

Island 

mean/total 

(n) 

(cont...) 

fledglings 

mean 

peryr (n) 

0.33 1 

1.33 4 

1.00 3 

1.00 3 

0.33 1 

0.00 0 

0.00 0 

0.00 0 

0.00 0 

0.00 0 

0.00 0 

0.67 2 

0.33 1 

0.33 1 

1.33 4 

0.44 20 

Summary of breeding parameters by territory. Bold numbers are those in the top third or more for parameters associated with high 

territory quality. Numbers in italics are those in the bottom third or less. +/- for clutch replacement intervals and fledging periods 

indicates range of possible dates events could have occurred (certainty measure). 

absences by CIO 

multi-chick pair members no. 

broods successful time to fledge (days) from their of pair 

% of all seasons I-chick broods 2-chick broods breeding territories checks turn- new 

broods (n) % (n) 94 (+/-) 95 (+/-) 96 (+/-) 94 (+/-) 95 (+/-) mean 95/6 96/7 (n) over pair 

0% 0 33% 1 41 5 0% 0% 0% 17 ? 

33% 1 100% 3 39 2 39+* 6+ 42 11 0% 0% 0% 41 

50% 1 67% 2 47 10 53 16 4% 6% 3% 57 

50% 1 67% 2 30 8 47 1 2% 0% 3% 52 

0% 0 33% 1 36 7 0% 0% 0% 50 y 

0% 0 0% 0 10% 0% 14% 42 ? 

0% 0 0% 0 0% 0% 0% 45 y? 

0% 0 0% 0 3% 0% 4% 38 y 

0% 0 0% 0 7% 0% 11% 42 

0% 0 0% 0 20% 29% 13% 41 y? 

0% 0 0% 0 11% 10% 13% 18 

0% 0 67% 2 35 11 46 16 0% 0% 0% 22 y? 

0% 0 33% 1 39 4 4% 8% 0% 27 

0% 0 33% 1 33 31 13% 13% 13% 32 y? 

100% 2 67% 2 43 5 36 9 3% 0% 8% 29 

33% 5 33% 15 36 37 43 46 36 7% 7% 8% 553 

2 6 2 4 1 7 1 

* fledged sometime after last monitoring check, when it 

estimated to be close to flying based on size and plumage 

brding 

attmpts 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

67% 

100% 

100% 

100% 

100% 

100% 

100% 

98% 
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which was in contrast with the Woolshed pair, where differences in egg volume decreased 

slightly (1.22 cm
3
, n = 3). Egg volume differences within three-egg clutches (n = 5) 

tended to be greater than those within two-egg clutches, with one notable exception. The 

volume difference between the largest and smallest egg within OTF's first three-egg 

clutch was a mere 0.56 cm
3

, the smallest recorded of any clutch. After losing this clutch, 

the pair laid another three-egg clutch. In contrast to the previous clutch, the volume 

difference in this clutch was the largest recorded for the season of any clutch (5.80 cm3
). 

Hatching success varied widely between territories, ranging from 17-100% (n = 69 

clutches). Three territories had hatching success rates of 50% or more: Mairangi (100%), 

TW (60%), and WOC (50%); four had rates of 30% or less: OTF (17%), Rock (20%), 

Cliff and Cape (30% each). Losses to flooding varied from 0-83% (Table 1). The OTF 

territory pair lost five of its six clutches (83%) to flooding over the three seasons of the 

study. Three territories experienced no known losses to flooding (Whanga, TE, and 

Mairangi). In one territory (Pounamu) the pair attempted to nest behind a small set of 

dunes at the beginning of two seasons on bare sand and pebbles, but were unsuccessful 

both times because of trampling and disturbance. If hatching rates were below 40% on 

average, fledging success tended to be low (0-0.33 fledgling/pair/season). 

Overall success rates ranged from 0-1.33 fledglings/territory/season and 0-4 fledglings in 

total over the three seasons. The two most productive territories were Island and WW 

(four fledglings each). The percentage of successful breeding seasons (at least one chick 

raised to flying) varied from 0-100%. One territory (WW) was successful every season. 

Almost half of all pairs fledged no chicks during the three seasons (all those at Tioriori 

plus OTF and Cape). Pairs from only four territories had multi-chick broods, and no pair 

raised a three-chick brood to fledging. 

No single territory had consistently shorter replacement intervals than the others. The 

shortest replacement intervals were 8-12 days, the longest between 20-22 days. For the 

single pair with data for all three years (OTF), in two seasons the replacement intervals 

were short (12 and 10 days), but in the other season it had the longest replacement 

interval recorded (22 days). 
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Two-chick broods took longer to fledge than single-chick broods. Single-chick broods 

fledged in an estimated 30 to 47 days (mean 38.5, SD = 5.3) and two-chick broods took 

from 36 to 53 days to fly (mean 44.2, SD = 6.3). The shortest one-chick fledging times 

(n = 10) were in the TW and Mairangi territories (30 and 35 days respectively), and the 

shortest two-chick brood fledging times (n = 5) were in the Island (36 and 43 days) and 

WW (42 days) territories. 

In summary, five territories were the most successful in many breeding parameters over 

the three seasons of this study, including chicks fledged per season: WW, Island, WOC, 

TW and Mairangi. Six territories had no breeding success at all; and of these, two 

(Pounamu and Dune) were among the lower third of most clutch parameters. OTF, Cliff 

and Cape were notable for their large, early and numerous clutches, as well as their rapid 

replacement intervals (except OTF in one season), but very low hatching success in all 

three cases. 

Pair turnover was suspected in a number of territories (i.e., one or both members of a pair 

leaving or disappearing from the territory), but was mostly unconfirmed because oflack 

of individually marked birds. On one territory a banded bird disappeared during the first 

season and was replaced with a metal banded bird, and turnover was suspected (based on 

behaviours) for almost half of the others (7 of the 15 territories). 

When the 15 north coast territories were checked during the non breeding season in late 

winter (between 8 and 23 August 1995), pairs were found in all of them on almost all 

occasions that the territories were checked. The soft part colourations all appeared as 

bright as during the summer breeding season. Numerous pairs were seen to either evict 

neighbouring pairs, or floaters, that came into their territories, or defend territory 

boundaries with neighbouring pairs. In one case the TE and TW pairs spent over 20 

minutes in vigorous territory defence behaviours against one another. Flocks or 

individual floaters were occasionally tolerated for limited amounts of time within the 

territory boundaries. Mating by one pair was also observed, in spite of the fact that the 

earliest known nesting did not commence until mid-October. 

During the 1995 and 1996 seasons, absences of CIO breeding pair members from their 

territories were recorded. One, or both, members of a pair were absent over 10% of the 



time in four territories (Table 1). Five territories recorded no absences. There was a 

difference of 10% or more between years for three pairs. One of these (Cliff) was 

probably due to the discovery in the 1996 season of the use by this pair of an adjacent 

cove which I had not been aware of in 1995. Most of the absences (82%) were after 1 

January, rather than during the peak breeding period (October to December). 

Productivity of territories over nine seasons 

159 

Breeding success for the 14-17 territories over nine seasons from 1991 to 1999 varied 

widely between seasons and also between territories. Three new territories were 

established along the north coast between 1991 and 1999 (TE in 1994, and WOCe and 

Ngatikitiki after 1996). Some territories were not monitored, newly established, or only 

intermittently occupied during the 1991 to 1993 seasons (Whang a, WW, WoC and Rock). 

Successful pairs tended to either be successful over many seasons, or have a high 

proportion of multi-chick broods, but not both (the Island territory being the only 

exception). Three pairs had successful seasons over 70% of the time: wac, WOCe, and 

TW (Table 2). 

Four territories were notable for the large number of multi-chick broods, successfully 

raising three or four such broods to fledging over nine breeding seasons (TW, OTF, 

Island, and Woolshed) (Table 2). Some territories consistently had a high percentage (67-

100%) of multi-chick broods (Ngatikitiki, Dune, OTF, Woolshed, Rock and Island). 

Three-chick broods were extremely rare, but two territories had pairs which successfully 

raised three-chick broods to flying, Ngatikitiki and Wool shed, both in the 1999 season 

(Appendix 2). 

Overall, some territories were very productive. Two territories sustained especially high 

productivity rates over the nine seasons: TW (1.33 fledgling/season) and Island (1.11 

fledgling/season). WOCe averaged 1.50 fledgling/season over the two seasons the pair 

was in residence. Several other territories had an average of 1.00 fledgling/season over 

the nine seasons: WOC, TE, and OTF. Ngatikitiki also averaged 1.00 fledgling/season 

over the three seasons that a pair was in residence in this territory. 
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Table 2 Breeding success of CIO by territory over nine seasons, north coast Chatham 

Island. Successful seasons - the number of seasons a pair raised at least one 

chick to fledging. 

seasons 

territory seasons successful multi-chick broods fledglings 

known attempt seasons %of total mean total 

Territory occupied to breed % (n) all broods (n) peryr (n) 

Whanga 7 100% 33% 2 50% 1 0.43 3 

WW 8 100% 67% 4 25% 1 0.63 5 

WoC 8 100% 75% 6 33% 2 1.00 8 

WoCe 2 100% 100% 2 50% 1 1.50 3 

TW 9 100% 89% 8 50% 4 1.33 12 

TE 6 100% 67% 4 50% 2 1.00 6 

Ngatikitiki 3 100% 33% 1 100% 1 1.00 3 

OTF 9 100% 56% 5 80% 4 1.00 9 

Creek 9 100% 44% 4 25% 1 0.56 5 

Pounamu 9 89% 11% 1 0% 0 0.11 1 

Dune 9 89% 22% 2 100% 2 0.44 4 

Cliff 9 100% 33% 3 33% 1 0.44 4 

Cape 9 89% 11% 1 0% 0 0.11 1 

Mairangi 9 100% 67% 6 0% 0 0.67 6 

Woolshed 9 100% 44% 4 75% 3 0.89 8 

Rock 8 88% 38% 3 67% 2 0.63 5 

Island 9 100% 67% 6 67% 4 1.11 10 

totals 132 97% 48% 62 47% 29 0.70 93 

Many more territories reached high levels of productivity (i.e., 1.00 or more 

fledglings/season on average) during the periods with intensive management than in 

periods without management (Table 3). Five and four territories reached this level during 

the 1991-1993 and 1994-1996 periods respectively, compared with 11 during the most 

intensive management period (1997-1999). The very highest levels of productivity (1.67 

fledglings/pair/season) were achieved only during periods with management. A total of 

four pairs (TW, TE, OTF, and Island) reached this level in at least one season, three 

during the more intensive period of management (1997-1999). 

Some territories which were unsuccessful at producing fledglings during the three year 

study, were very successful in the seasons either before andlor after this study. If 

territories are ranked relative to one another, several pairs had higher rankings (i.e., top 

third versus bottom third) only in periods with some level of management (OTF, Dune, 

and Cliff). Across all years, regardless of management, only one territory (TW) was 

consistently in the top third (Appendix 3). Two were consistently in the bottom third, 
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Table 3 Average productivity of territories by three-season periods, north coast study 

area, in geographical order from western to eastern territories. Dashed lines (--) 

indicates no pair in residence. Management effort: 1991-1993 -low, 1994-1996-

none, and 1997-1999 - intensive; management included predator control, nest 

manipulation, and livestock control. Numbers in bold, where productivity was 

0.67 fledglingslpairlseason more in the managed seasons compared with the 

unmanaged seasons. Pairs in bold - those with higher rates of productivity during 

both periods with management; pairs in bold italics - higher rates in one period. 

Two territories were never managed: Whanga and ww. Numbers in parenthesis 

- number of seasons monitored (if less than 3). 

Territory 

Whanga 

WW 

WoC 

WoCe 

TW 

TE 

Ngatikitiki 

OTF 

Creek 

Pounamu 

Dune 

Cliff 

Cape 

Mairangi 

Woolshed 

Rock 

Island 

Totals/means 

fledglings 

no. pairs 

fl/pr/yr 

Average fledglings/pair/season 

1991-93 1994-96 1997-99 

2.00 (1) 

0.50 (2) 

1.00 (2) 

1.33 

1.67 

0.67 

0.00 

0.00 

1.33 

0.00 

0.33 

1.33 

0.00 (2) 

0.33 

26 
14 

0.62 

0.33 

1.33 

1.00 

1.00 

0.33 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.67 

0.33 

0.33 

1.33 

20 

15 

0.44 

0.00 

0.00 

1.00 

0.50 (2) 

1.67 

1.67 

1.00 

1.33 

1.00 

0.33 

1.33 

0.00 

0.33 

1.00 

1.00 

1.33 

1.67 

47 

17 

0.92 

Pounamu and Cape. Three pairs were in the top third only in the seasons with no 

management (Mairangi, Island, and WW). 

Habitat types and productivity 

Productivity in all three periods, and overall, was higher in the sandy beach territories 

than the mixed or rock platform territories (Figure 1), but not significantly so at the 0.05 

level (Table 4). Overall the sandy beach territories were almost twice as productive as the 



other two types, but the differences between habitat types was much less pronounced 

during the last period (1996-1999) of intensive management. 
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Figure 1 Average productivity (fledgling/pair/season) of CIa by territory type and by 

management period (each three breeding seasons long). Management intensity: 

1991-3 -low, 1994-6 - none, 1997-9 - high. N = 5 for each habitat type each 

period. Two territories were included in all three periods, but were outside the 

management areas. Error bar is the LSD (= 0.754). 

Table 4 Repeated measures ANa VA for territory types and season on productivity of 

CIo. (See also Figure 1). 

Source DF SS MS F P 

Territory type 2 1.7387 0.8693 2.52 0.095 

Period 2 1.6634 0.8317 2.41 0.104 

Territory type * Period 4 1.1402 0.2850 0.82 0.518 

Error 36 12.4395 0.3455 

Total 44 
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In the comparison of hatching success and losses to flooding by territory type for 1994-

1996, hatching success was higher in the sandy beach territories (46%, n = 5), compared 

with the mixed and rock platform territories (38%, n = 5 and 31 %, n = 5 respectively). 

Flooding losses were higher for the territories classified as rock platform (52%, n = 5), 

and similar for mixed and sandy beach territories (38%, n = 5 and 34%, n = 5 

respectively). 

DISCUSSION 

Seasons and limiting factors 

The critical limiting factors for the northern population of CIa are almost certainly 

operating primarily during the breeding season, rather than over-winter, at least in most 

seasons. If over-winter habitat were a significant limiting factor, survival of first-year 

birds should be low; however, minimum survival rates of first-year birds were high (71-

83%). The 1998 cohort had a similarly high survival rate of72% (O'Connor, pers. 

comm.). This suggests that foraging habitat for floaters over-winter is adequate for high 

survival rates of immature CIO, as they are the portion of the population most vulnerable 

to starvation if food is limited because of their low dominance ranks and inexperience 

(reviewed in Goss-Custard et ai. 1996; see also Goss-Custard et al. 1994a; Ens and 

Cayford 1996; Durell et al. 2000). If this is the case, at current densities the main factors 

limiting the population are operating during the breeding season through either low 

productivity andlor high mortality of breeding birds. 

Territory quality 

The most productive pairs over the three seasons were those in the Island and WW 

territories (1.33 fledgling/season), followed by WOC and TW (1.00 fledgling/season) (see 

Appendix 5 for detailed descriptions of each territory). All of the most productive pairs 

raised at least one multi-chick brood to fledging. Only one territory (WW) had a pair that 

was successful all three seasons (i.e., raised at least one chick to fledging per year). Pairs 

in six territories failed to fledge any chicks in the three seasons of the study (all the 

Tioriori pairs, OTF, and Cape). The most successful territories tended to be those with 

the highest average hatching success over the three seasons (40% or better), although 
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some successful pairs had lower hatching success than unsuccessful pairs. In territories 

with moderately high hatching success (40% or better) but no successful seasons, 

predators or other factors (e.g., food availability, disturbance) were probably more 

significant than flooding. 

Not attempting to breed was rare, only one pair in one season (Dune) did not nest. 

Possible causes for not attempting to breed include pair turnover, a combination of a low 

quality territory and poor year (i.e., bad weather), or monitoring frequencies which were 

too low to detect breeding attempts. Neither insufficient monitoring effort nor pair 

turnover can be ruled out for this territory. During the first season of the study 

monitoring was less frequent than other years, which was the season that the no breeding 

attempt was recorded. The pair was noted as acting suspicious (as if breeding) during one 

visit, but a nest was never found. It was also possible that this was a newly established 

pair or one of the pair members was too young to breed. The Dune territory may be one 

of the lower quality territories when there is no management intervention, but there is no 

reason to assume that 1994 was a poor year. On the contrary, it seemed to be an 

especially good year for other pairs as there were several two-chick broods produced and 

clutch replacement intervals were generally short. 

The best territories were predicted to have pairs which initiated first clutches early in the 

season, had large clutches, low volume differences between eggs within a clutch, and 

short replacement intervals between clutches. No territory had all the predicted clutch 

characteristics of high quality territories relative to the others. Four pairs had both early 

and large clutches, but unexpectedly only one of these territories were ever successful at 

producing fledglings during the study period. The three unsuccessful territories (OTF, 

Cliff, Cape) may be good quality territories except for factors influencing hatching 

success. All of these territories had low hatching success (33% or less) and high losses to 

tidal flooding (50% or more). 

Several pairs laid small, early first and second clutches, and if these were lost, they laid 

third clutches. Most of these pairs were successful. Early clutch initiation was associated 

with higher breeding success in Eurasian Oystercatchers, primarily because it allowed for 

more repeat breeding attempts if a nest or young chicks were lost (Heg 1999). Several 

factors were associated with earlier laying dates in Eurasian Oystercatchers including (in 
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order of importance): length of the pair bond, food, females not spending time during the 

prelaying period in territory defence, and age of females (Heg 1999). Some of these 

factors are probably related. For example, with increasing age females may become more 

efficient feeders, and so may in effect have a better food supply. Older females may also 

be more likely to be in a well established pair. Pairs with long pair bonds may know their 

neighbours well and, therefore, need to spend less time defending the territory. This may 

in tum translate into less energy spent by the female in territory defence and more in 

feeding and egg production. On the Chathams, several of the territories with early clutch 

initiation were those without adjacent territories, or the territory had only one set of 

neighbours which may have decreased time spent in territory defence. Alternatively, 

many of these were sandy beach territories, and perhaps had better food supplies, or better 

habitat for escaping predators and therefore pairs with longer pair bonds (due to lower 

pair turnover). 

Clutch characteristics may be influenced by a number of factors (turnover of pairs, 

differences in conditions between years, and interactions between factors), so no one set 

of breeding parameters alone may be accurate for assessing habitat quality. For example, 

based on the small, late clutches of the pairs in the Dune territory, low quality foraging 

habitat might have been assumed, yet the pair raised two multi-chick broods during the 

1998 and 1999 seasons. However, it is also possible that the clutch characteristics were 

an accurate indicator of foraging quality during those years, and differences in weather 

andlor reduction of predators (especially weka) affected food availability. 

Pairs can have relatively low hatching success and still be successful if they replace lost 

clutches, or if chicks have high survival rates after hatching. However, if hatching 

success is too low it can create a bottleneck, reducing or precluding breeding success 

regardless of how the quality of the territory and pair in other respects (e.g., excellent 

foraging habitat, or low predator pressure). Of the five territories with the highest average 

hatching success, four of these were the most successful at producing fledglings. Low 

hatching success appeared to impact one pair particularly during the period of this study, 

creating a bottleneck. The OTF pair only hatched 17% of its six clutches. Most of the 

clutches (83%) were lost to tidal flooding during storms. In the years before and after the 

study this pair had very high success raising fledglings (Table 2). In the three years 

before the study it was the most successful pair averaging 1.67 fledgling/season, and was 
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among the most in the three year period after this study (1.33 fledgling/season). Much of 

this success was because the pair produced a high proportion of two-chick broods (4 out 

of 5), indicating this was probably a very high quality territory lacking only in good 

nesting sites, at least in years of stormy weather. (However, length of the pair bond or 

quality of the individuals as the reason for the differences in productivity can not be ruled 

out as an alternative explanation.) 

Time to fledge is indicative offood availability. Four territories had short fledging 

periods (Island, WW, TW and Mairangi), indicating food availability was good. WOC 

had a long fledging period which, combined with the moderately high clutch replacement 

interval in 1996, suggests this territory may have lower quality foraging habitat than some 

of the other territories. Fledging periods might have been influenced by season as well as 

territory. The Mairangi territory, for example, had one of the shortest fledging times for 

one-chick broods during one season (35 days), but a relatively long one the next 

(46 days). Food availability may be influenced by predator or disturbance pressures. If 

these are high, chicks may not be able to spend as much time foraging as they would 

otherwise (Groves 1984). 

Two territories, Pounamu and Dune, had breeding parameters indicative of poor quality 

territories for most clutch parameters (i.e., small, late clutches, and large intraclutch egg 

volume difference). Possible causes include high pair turnover, low food availability, 

and/or high predator pressure. In the seasons before and after this study, pairs within the 

Pounamu territory were never very successful; although the Dune territory produced 

1.33 fledgling/season during the 1997-1999 seasons and, in both successful seasons, they 

raised multi-chick broods. This suggests food was abundant; as food abundance, rather 

than pair bond duration, is the best predictor of survival of multi-chick broods in 

oystercatchers (Groves 1984; Ens 1992; Hazlitt 1999; Heg 1999). Therefore, predator 

pressure and/or pair turnover were probably the prime limiting factors. 

The TE territory may be of higher quality than the breeding success rates indicate because 

this was a new pair, and the male was probably only two years old, possibly too young to 

breed. (There was a metal banded male in this territory in 1994 and 1995, but a method 

for reading the band number was not discovered until 1995 which involved drawing birds 

with a metal band in close enough to use binoculars to read the number. If it was the 



same bird both seasons, then it was only two years old during in 1994.) This pair 

'squeezed' in between the TW and OTF pairs. 
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The frequency of pair turnover during the three seasons of the study was potentially high, 

about 16% per season, but unfortunately data were limited because of lack of individually 

marked birds. Only one case of pair turnover was confirmed, which was in the Pounamu 

territory where a bird colour-banded on Rangatira Island in 1978 was in residence. If all 

the suspected or potential turnovers were accurately identified, this rate of turnover was 

high relative to other oystercatcher species, which is normally from about 8-15% from 

year to year (Hartwick 1974; Harris et al. 1987; Davis 1988; Ens 1992; Hockey 1996; 

Hazlitt 1999; Heg 1999). Populatioris are often more sensitive to the loss of breeding 

adults than to other factors (Hamilton and Moller 1995; Reed et al. 1998). Populations 

may also exhibit threshold responses to changes in mortality rates. In Hawaiian Stilts 

(Himantopus mexicanus knudseni), population modeling demonstrated that a 10% change 

in adult mortality could result in a drop in persistence probability from 100% to 0% (Reed 

et al. 1998). Population modeling could be used to explore these dynamics (but was 

outside the scope of this study). 

Consequences of pair turnover are potentially serious for breeding success, especially if 

the main cause of turnover was death of pair members. Loss of a breeding pair member 

often results in loss of the any productivity for that breeding season, and always loss of 

the pair bond. Loss of the pair bond decreases productivity because pairs that have been 

together for longer are more successful than pairs that are newly established, with the 

highest success rates reached after seven years of association (Heg 1999). Causes of pair 

turnover can include either death of a pair member or divorce. Either of these may reflect 

poorer quality habitat within territories, either because pairs exposed to higher predation 

pressure were experiencing lower breeding success and therefore abandoning the territory, 

which is more common in unsuccessful than successful pairs (Hartwick 1974; Gavin and· 

Bollinger 1978; Harvey et al. 1979; Roth and Johnson 1993; Winker et al. 1995; Ens et 

al. 1996) or incubating adults were being killed by predators. 

Some pairs apparently spent time outside their core territories, especially when they were 

not nesting or raising chicks suggesting resources within the territory were not optimal. 

One or both members of a pair were absent from four territories over 10% of the time. In 
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the Cliff territory some of the absences may have been because of pair turnover during the 

last season and/or the use of a nearby bay just east of the nesting territory which I did not 

discover the use of until the 1996 season. There was no significant source of fresh water 

in several territories so the Cliff pair (as well as other Tioriori birds) might have 

occasionally visited the mouth of Tutuiri Creek about 1 to 2 kms away to bath, drink and 

perhaps forage. Although CIa have well developed salt glands (Hockey 1996) and 

therefore probably do not require fresh water, they seem to use it frequently when 

available. CIO were often seen at the mouth of Tutuiri Creek, including some birds 

known to be from the Tioriori territories. Unsuccessful pairs were found less often than 

successful pairs, but since most of the absences were outside the main breeding season it 

seems unlikely that the absences were a prime cause of breeding failure. Possibly some 

factor affecting both breeding success and occupancy was common to unsuccessful 

territories, such as food availability. 

Pairs along the north coast, Chatham Island, appeared to defend territories at least nine 

months of the year (from August to April). Higher quality habitats and territories should 

be preferred over, and also occupied during more of the year, than lower quality ones 

(reviewed in Newton 1998, p 54-59). Davis (1988) reported that the majority of pairs 

occupied the same territory throughout the year, although defence of the territory was 

lessened in the non-breeding season and there may be some movements between islands, 

e.g., from Rangatira to Pitt and visa versa. Strength of territory defence and occupancy 

throughout the year may be good indicators of preference in CIO if variations between 

areas exist, but more detailed monitoring would be needed to detect these differences. 

Habitat types and productivity 

Sandy beaches were by far the most productive type of territory, especially during this 

study, possibly because of differences in management intensity between the different 

periods (see introduction for description). During periods of management, especially 

intensive predator control, these differences in productivity between territory types 

decreased. With conditions of no management, wide sandy beaches may offer better 

escape from predators for adults and/or chicks than the other two territory types, or 

predator pressure may be higher in the mixed and rock platform type habitats. 
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Alternatively, the study period may have been an especially stormy one relative to the 

other two periods and sandy beaches offered better nesting habitat on average than the 

other two types. There is some evidence to support this hypothesis, in that hatching 

success was highest, and losses to flooding lowest, on sandy beach territories compared 

with rock platform territories during the study period. Hatching success was higher on 

sandy beaches than mixed territories, but the losses to flooding were about the same for 

both the sandy beach and mixed territories. Therefore, losses of clutches were occurring 

in the mixed territories in addition to flooding losses, compared with the sandy beach 

territories. Future research should include examination of past storm patterns and 

comparing them to breeding success by territory. 

Limitations 

In determining territory quality, conditions may change from year to year and there may 

be large variation between years. Three years and 15 territories was a relatively small 

sample, especially if there is large variation within sets, or interactions between factors. 

Ultimately, it is lifetime reproductive success that is of interest and CIO are long lived, so 

even several years with no breeding success could be insignificant if other years were 

very successful. However, over the nine total seasons, there were large differences 

between the most and least productive territories (1 versus 12 fledglings), and it is 

difficult to imagine that all of these differences would be erased, even over an additional 

five or ten years. 

Some differences between territories may not have been detected because of large ranges 

for some of the parameters (especially clutch replacement intervals and fledging periods), 

and because for some parameters data were only available for one or two of the seasons. 

Some of the differences in the parameters could be because of various factors or a 

combination of them such as differences between territories, pairs, or years. Some factors. 

may interact, for example, in the Netherlands lower quality territories had average 

productivity in good years, but had very low productivity in poor years (Heg 1999). 

Caution must be used in interpreting habitat use data. Future, or even past habitat use is 

difficult to predict from current use. Determining habitat quality is best done from 

preference studies rather than selection or density data. The areas with the highest density 
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of pairs may often be, but are not always necessarily, the best quality habitat (Pienkowski 

and Evans 1982; Van Home 1983). High densities in some areas may be due to 

availability of habitats or other factors (e.g., predator pressure, disturbance, social cues), 

rather than the quality of habitat. Additionally, young birds may select the best areas 

available, changes in conditions occur, but due to strong site fidelity the birds stay in the 

same territories. To better determine preferences (as opposed to selection) a study of 

occupancy over time, including over-winter occupancy, would be needed. Even then it is 

difficult to predict preferences from current use - individuals may be using remnants of 

habitat that are less preferred because that is the only refuge from predators left available. 

In the portion of this study looking at correlations between breeding success and habitat 

characteristics of territories some of the parameters that may reveal high quality habitat in 

territories, such as adult survival, were not determined, and some parameters were 

measured only broadly. Many of the sample sizes were small, so for some parameters the 

patterns are not clear and some of the results are not necessarily representative of other 

areas. However, the overall trends and results for the north coast population, which is 

significant proportion of the population (about 25-33% of the breeding population of 

CIO), are useful for understanding the population dynamics and social organisation 

potential needed to identify, and ultimately alleviate, the limiting factors affecting CIO on 

the Chatham Islands. 

Productivity and management 

Pairs in some territories such as WW, WOC, TW, Island and Mairangi were relatively 

productive regardless of management intervention, or in the absence of any management. 

Territories that were successful in the seasons with little or no management tended to be 

those with nesting sites available some distance from extensive vegetation cover. All 

these areas had large amounts of sandy beach for nesting, or in the case of the Island 

territory, they were well away from the main dune vegetation. The characteristics of 

these territories may have increased breeding success in several ways. The most likely is 

that pairs may were at less risk of predation during incubation and they may have had 

more options for nesting in areas of lower flood risk. 



171 

Pairs in some territories appear to respond especially well to management (e.g., OTF, 

Creek, Dune, Cliff, Woolshed, and Rock). The territories where pairs seemed to respond 

best were, in general, in areas with higher densities of CIa and which used rock platform 

for foraging to a greater degree than other territories. They also all had limited areas for 

nesting far from thick dune vegetation. 

The very highest levels of productivity were only reached when there was at least some 

level of management. Four territories produced 1.67 fledglings/season on average with 

management, compared with the period without management where the highest level 

reached was 1.33 fledglings/season by two pairs. This suggests management was highly 

effective at increasing breeding success. In other bird species predator control is often 

highly successful. In a meta-analysis of 20 published studies of predator removal 

programs, removing predators had a large, positive effect on hatching success, with 

removal areas showing higher hatching success, on average, than 75% of control areas. 

Similarly, predator removal increased significantly post-breeding popUlation sizes (Cote 

and Sutherland 1995). However, it is possibly that the differences were not due to 

management but to differences between years (e.g., storms), and/or a combination of year 

and management or other factors. Because management included several different 

techniques (e.g., predator trapping, moving nests, etc.), there is no way to know if it was 

any particular technique, or a combination of them, caused these higher productivity rates. 

The role of stormy years was also unknown. Flooding can be a very significant cause of 

egg loss (this chapter and Chapter 3), and some of the variability in nesting success may 

be related to direction and intensity of prevailing storms during a particular season. For 

pairs such as aTF which lost most clutches to flooding over the three seasons, predator 

control may do little to increase productivity during stormy years. 

SUMMARY AND CONCLUSIONS 

The main limiting factors for the population of CIa on the Chatham Islands were almost 

certainly operating primarily during the breeding season, rather than over winter. This 

could change in the future if the popUlation increased. Based on the number of multi­

chick broods and other breeding parameters, it does not appear food was a critical limiting 

factor for CIa during the breeding season along the north coast. Lack of high quality 
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nest-sites, predator pressure, or disturbance were more likely causes of low productivity 

(and possibly high mortality among breeding adults). 

Sandy beach territories were the most productive under all management scenarios, but 

especially in periods when there was little or no management. Many of the most recently 

established territories along the northern coastline of Chatham Island (i.e., established 

within the last 10-15 years) were in sections of coastline that were predominantly sandy 

beach (e.g. WW, wac, TE, TW, Ngatikitiki). Many of the differences in habitat use 

reported in Davis (1988) and this study may be because of these newly established 

territories. Possibly CIa are expanding or changing their habitat preferences in response 

to changes on the Chathams. 

Six pairs failed to raise any chicks to fledging during the entire three seasons of the study. 

In spite ofloosing up to 50% of clutches, pairs were often successful at fledging chicks, 

but the more successful pairs tended to be those with higher hatching success. Among the 

15 breeding territories studied in detail, it appeared that different factors may have been 

the primary cause of breeding failures. It is also likely that factors are interacting. In at 

least one territory (OTF) the main limiting factor was probably the lack of good quality 

nest-sites as evidenced by its very low hatching success due to high flooding losses (83% 

of clutches). Other territories had reasonably high hatching success (40% or better), but 

no chicks surviving to fledging (Creek, Pounamu, and Cape). In these territories the most 

critical limiting factors were probably predator pressure, disturbance, or other factors, 

rather than lack of suitable nest-sites. 

All but three territories produced multi-chick broods, and some territories had multi-chick 

broods in up to four seasons of the nine. The ability of territories on the north coast to 

produce two- and even three-chick broods that survive to fledging suggests that food 

availability, at least in some years, was very good. 

Productivity tended to increased significantly with management intervention, especially 

in the rock and mixed type territories. The highest levels of productivity (1.67 

fledglings/pair/season) were reached only during periods of intensive management 

(including predator control, livestock exclusion, and nest manipulation), and overall 



fledging production was much higher (over twice as high per pair per year during the 

seasons with intensive management). 
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Habitat characteristics that make for high quality territories may change with 

circumstances or area. When ground predators are present, especially in high densities, 

then good visibility and open areas far from vegetation to avoid predators may be 

important. If ground predators are not present, or are in low densities, other habitat 

features may be more critical. Therefore, the most productive territories along the north 

coast may change depending on the management regime in place. 

Adult turnover or mortality could be an important factor in limiting the CIa population, 

but lack of individually marked birds prevented determining pair turnover conclusively. 

The role of stormy weather in affecting productivity for the periods before and after this 

study was outside the scope of this study. 

In summary - foraging habitat in either season is probably not a critical limiting factor, 

but predator pressure, lack of suitable nest-sites, disturbance, or a combination of these 

probably are critical factors limiting productivity and/or adult survival during the 

breeding season. Intensive management appears to be very successful at increasing 

productivity, especially in rock and mixed type territories. However, why this is the case 

is less clear, as is the role of stormy weather. Reasons for the success of intensive 

management could include: 1) reduced predator pressure resulting in less adult mortality 

and/or increased egg and chick survival, 2) reduced disturbance due to livestock and/or 

humans, 3) reduced food competition due to removal ofweka and gulls, 4) 

inconsistencies in data collectlbiased estimates or some combination of these factors. 

Many areas that currently have high quality foraging habitat may currently be unoccupied 

due to lack of good quality nesting-sites and/or due to low CIa population densities. 

Management implications 

The results of this study suggest that limiting factors on productivity may vary between 

areas and also between years. For example, some territories may suffer most from lack of 

suitable nesting habitat than from losses to predators, whereas others may have more 

problems with predators. The main cause of losses may also vary from year to year 

within the same territories because of storm patterns. It is possible that some of the 
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predators of CIa (e.g., weka, gulls) are also competitors for food, so that controlling their 

numbers may increase food supplies as well as lower the predation risks. 

Many of these factors probably interact with one another. For example, predators such as 

weka and black-backed gulls may also be food competitors. Marram grass may 

simultaneously decrease nesting sites and provide habitat for predators. If food 

availability is low in some years chicks may become more vulnerable to predators 

because, compared with well-fed chicks, hungry ones become more active and therefore 

more visible (Groves 1984; Ens et al. 1995; Heg 1999). As a result of these changing 

interactions, what is effective one year, may be less so in another year. For example, a 

low food year may lead to higher predation rates even though predator densities are kept 

the same. 

Although predator control appears to be very effective for increasing breeding success and 

breeding pair densities, it is expensive and only effective as long as control continues. 

Because predator control is labour intensive and expensive, and resources have been 

limited on the Chathams, there may be more gains per unit of effort from controlling 

predators around high quality habitats (i.e., those with the best food and nesting 

resources) than around lower quality ones. This is because there would be a better chance 

of eggs hatching, clutches would typically be larger and earlier, and there would be more 

chicks per brood, resulting in an overall higher numbers of chicks fledged/pair. If good 

nest-sites are lacking, creating a bottleneck in productivity, providing high ground for 

nesting may be more effective than predator control. 

The same results may be possible through habitat management, which is longer term and 

may be more cost effective in the long term (Cote and Sutherland 1997; Newton 1998). 

Removing marram grass may be an effective management option as marram may provide 

cover, and foraging and breeding habitat, for predators. Loss of nesting space because of 

changes in dune structure has occurred in other shore nesting species such as pied 

oystercatchers (H longirostris) and hooded plover (Thinornis runbricollis) in Australia. 

Both species nest on terrace shaped foredunes formed by native grasses. At Calverts 

Beach in southern Tasmania, both species historically nested in the foredunes into the 

1970s, but ceased nesting in the area after the dune system was stabilised with marram 

(Park 1994). 
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Future research 

Areas of future research that would provide infonnation for more effective conservation 

management and a better understanding of the relationships between habitat 

characteristics and limiting factors of CIa are suggested as follows: 

• Detennine the role of stonny weather in past productivity by comparing stonn 

patterns with productivity by territory type. 

• Monitor mortality and turnover of breeding pairs in different areas and under different 

types of management, attempt to detennine if predation is a significant factor and, if 

so, the type of predation. 

• Measure some of the breeding parameters more precisely, such as fledging times and 

clutch replacement intervals, and measure them for other areas. 

• Use population modeling to estimate which breeding and survival parameters are most 

likely to affect the populfltion size and to detennine where management and research 

could be most effectively targeted. 

• Detennine habitat preferences (rather than just selection) by detennining which areas 

are occupied every year and which territories are occupied over-winter. 

• Identify and confinn 'leapfrog' territories, and the movements of adults outside of 

core territory boundaries. When adults use areas outside core territories, detennine 

what resources they are seeking. 

• Detennine if food is limiting at any life stage, and if weka or other species are 

significant food competitors of CIa. 

• Detennine if removal ofMarram grass improves breeding success of CIa. 

• Analyse cat stomach contents to detennine their main food items. 
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APPENDICES 

Appendix 1 

North coast territory categories and time spent by pairs (all activities) in combined 

habitat types. Categories: MX - mixed, SB - sandy beach, RP - rock platform. Habitat 

types: SB - sandy beach, FW - fresh water RP - rock platform, OTH - other, UNK­

unknown. Numbers in bold - habitats used for a high percentage (top third) of the time by 

the CIa breeding pair in residence. N = number of observation sets. In order by 

geographic distribution from southwest to northeast. (See also Table 11, Chapter 4). 

Territory Category SB+FW RP OTH UNK (n) 

Whanga MX 10% 87% 3% 7 

WW SB 96% 0% 4% 8 

WoC SB 94% 0% 6% 15 

TW SB 86% 8% 6% 13 

TE SB 85% 12% 3% 13 

OTF MX 76% 22% 2% 11 

Creek MX 82% 17% 0% 2% 12 

Pounamu MX 73% 14% 8% 5% 12 

Dune RP 47% 29% 21% 4% 14 

Cliff RP 60% 28% 4% 7% 11 

Cape RP 59% 32% 0% 9% 7 

Mairangi MX 66% 14% 16% 5% 10 

Woolshed SB 96% 2% 2% 9 

Rock RP 26% 55% 14% 6% 7 

Island RP 47% 50% 0% 3% 6 

Mean 70% 30% 11% 4% 155 
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Appendix 2 

Number of fledglings for each territory, north coast, by breeding season from 1991 to 

1999. Codes: nba - no known breeding attempt, dashed line (--) - no pair in residence, ? 

- not monitored and/or not reported. Sources: a) G. Murman, b) S. Sawyer c) this study, 

d) M Bell, e) P. Moore et al. Assumption - ijpair present season before and after, 

assumed present in intervening year. 

Breeding season 

1991 1992 1993 1994 1995 1996 1997 1998 1999 
Territory 

Whanga ? ? 2 ** 0 1 0 0 o (?) 0 

WW ? 1 o (?) 2 1 1 0 o (?) 0 

WoC ? 2 0 2 1 0 1 1 1 

WoCe 1 2 

TW 1 1 2 2 1 0 2 2 1 

TE 0 1 0 2 1 2 

Ngatikitiki o (?) 0 3 

OTF 1 2 2 0 0 0 0 2 2 

Creek 1 0 1 0 0 0 0 1 2 

Pounamu 0 0 nba 0 0 0 0 1 0 

Dune 0 0 0 nba 0 0 0 2 2 

Cliff 1 2* 1 0 0 0 0 0 0 

Cape 0 nba 0 0 0 0 0 1 0 

Mairangi 0 1 0 0 1 1 1 1 1 

Woolshed 2 2 0 1 0 0 0 0 3 

Rock nba 0 0 0 0 2 2 

Island 0 1 0 2 2 0 2 2 

Totals 

fledglings 6 12 8 10 8 2 7 17 23 

paIrs 10 13 14 15 15 15 16 17 17 

fledges/pair 0.60 0.92 0.57 0.67 0.53 0.13 0.44 1.00 1.35 

nba 2 1 1 

? 3 1 

Source a b b c c c d d e 

* Unknown if chicks belonged to C4 or C5 (Dune or Cliff) 

** Reported by Tuanui family 
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Appendix 3 

Relative rankings of territories for productivity by management effort for three-season 

periods. *** - top third productivity in that period, ** -middle third, * bottom third. 

Number of periods in 

Territory Overall By season top bottom 

name average 1991-3 1994-6 1997-9 third third 

management low none high 

effort 

WoC *** ** *** *** 2 0 

WoCe *** ** 0 0 

TE *** ** *** 1 0 

TW *** *** *** *** 3 0 

Ngatikitiki *** ** 0 0 

OTF *** *** * *** 2 1 

Creek ** ** * ** 0 1 

Pounamu * * * * 0 3 

Dune * * * *** 1 2 

Cliff * *** * * 2 

Cape * * * * 0 3 

Mairangi ** ** *** ** 1 0 

Woolshed ** *** ** * 1 1 

Rock ** * ** *** 1 1 

Island ** ** *** ** 1 0 

Whanga ** *** ** * 0 

WW ** ** *** * 1 1 

management management 

effort fl/pr/yr symbol effort fl/pr/yr symbol 

none 0.67-1.33 *** high 1.33-1.67 *** 

1994-6 0,33 ** 1997-9 0.67-1.00 ** 

0.00 * 0.00-0.33 * 

low 1.33 - 1.67 *** Overall 1.00.-1.33 *** 

1991-3 0.33-0.67 ** 1991-9 0.44-0.89 ** 

0.00 * 0.11-0.33 * 
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Appendix 4 - Descriptions of high quality territories 

The Island territory had one of the highest breeding success rates under the conditions 

present during this study (1.33 fledglings/season). The pair in this territory had a high 

percentage of multi-chick broods (100%) and the chicks fledged in a short period oftime 

(Tables 13). Habitat factors which may have contributed to the success of this pair 

include the fact that the nest site, and most of the foraging area, was on a small island 

which was accessible only at low tides and had a rocky cliff face of about three metres 

had to be scaled to access the island, which would have discouraged cats and wekas, and 

decreased some of the disturbance pressures. Foraging habitat within this territory was 

varied, with a combination of intertidal rock platform, sandy beach and two small creeks 

within the territory boundaries. The dark, broken rock within the territory provided very 

good camouflage for the chicks to hide among. There were some factors which may have 

reduced the productivity of this territory. At times levels of disturbance were high around 

this area because of boat launching and recreational fishing activities. During the final 

season hatching success was nil for this pair because of unknown causes. 

The pair within the WW territory was the other most productive over the three seasons 

(also averaging 1.33 fledglings/season). This pair had few multi-chicks broods, but was 

successful fledging chicks every season. This pair's territory was composed only of sandy 

beach with no paddocks adjacent to it. There was a large river that was used frequently 

by the pair. The area near the river mouth included the widest section of beach and was 

the region where the pair consistently nested. This section of beach had a westerly aspect 

and extensive offshore reefs, and frequently had large amounts of kelp and wrack, 

especially after storms. The foraging quality in this territory may have varied from year 

to year depending on storm patterns and kelp/wrack deposits. The chicks in this territory 

had a short fledging time in 1994 (Table 13), which would indicate good foraging, at least 

during that season. There was a family resident near here, which may have meant lower 

weka numbers due to the presence of dogs along this stretch of dunes. 
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Pairs in the TW and woe territories both produced an average of one chick per season. 

Both pairs were successful in two of the three seasons, and each had one two-chick brood. 

TW had chicks that fledged in one of the shortest fledges periods, whereas chicks in the 

woe territory with one of the longest fledging periods. Both territories were sandy 

beach (with no rock platform) and had large streams running through them. The TW pair 

used paddock adjacent to the river extensively, especially during the early chick-rearing 

periods. Although the woe pair were seen to use the paddocks within their territory 

frequently for foraging, they were never seen using the paddocks during chick-rearing. 

The river and some broken dunes lay between the coast and paddocks, possibly making 

access difficult for the chicks. 

The pair in the Mairangi territory had no multi-chick broods but was successful two of the 

three seasons. In this territory both foraging and good nest-sites may be somewhat 

limiting. During one season this territory appeared to be unoccupied, or there was 

turnover of pair members. In the second season the pair was first seen with a very young 

chick, and the nest never found. The pair probably nested about halfway along the beach 

towards the Woolshed territory, as that was where the birds had been seen previously and 

near where the very young chick was first seen. Within a few days the pair and young 

chick had moved about a kilometre to the comer where they remained for the rest of the 

season. During the third season the pair in this territory nested in the comer near a stream 

and was one of only two pairs to successfully raise a chick to fledging. This comer area 

was frequently and completely inundated by high tides and the nest-site was flooded only 

a few days after hatching. There was a paddock near the territory which the pair had been 

observed to use for foraging, but marram grass between the coastline and paddock areas 

probably makes access difficult and potentially risky for young chicks. Time to fledging 

was short during one season, but not the other. There was probably good foraging in the 

'comer' where sandy beach, a creek mouth and rock all converged, but nest sites were 

limited due to the marram grass. 
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BETWEEN THE DEVIL AND THE DEEP BLUE SEA: 
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The endangered Chatham Island oystercatcher (CIO) is a coastal nesting species that loses 

a high percentage of clutches to tidal flooding (40-50% over three breeding seasons). 

This reduced productivity due to flooding appears to sometimes be a significant limiting 

factor within the population (Chapter 4), which raises the question: 'Why do CIO choose 

nest-sites so vulnerable to tidal flooding?' 

Nest-site selection of 15 pairs of CIO (25-33% of the total breeding population) was 

studied during the 1994-1996 breeding seasons along the north coast, Chatham Island. 

Data were collected for nest and random sites on distances from vegetation and the mean 

high tide line, elevation above the high tide line, substrate type and objects near nest-sites. 

CIO appeared to select sites to minimise predation and flooding risks within the 

constraints of their territories. They avoided nesting less than five metres from the high 

tide line or significant vegetation. Most pairs nested on sandy beaches (77% of nests), 

usually in the widest section available within the territory. However, they showed 

flexibility in their nest-site selection, with two pairs using rock outcrops where wide 

sandy beaches were not available within their territories. All nests were in relatively open 

areas that provided good visibility for the incubating bird to see approaching danger 

and/or conspecifics. CIO often nested near objects such as logs, kelp or rocks, which 

probably made the nest more cryptic to predators. 

Major changes have occurred on the Chathams over the last 200 years, especially on the 

main two breeding islands where 85-90% of the CIO population occurs. These changes 

include introduction of predators, such as cats and weka, and widespread establishment of 

marram grass (Ammophila arenaria), with subsequent changes in dune structure, i.e., 

increased risk of flooding and providing habitat for predators. CIO must balance trade­

offs between nesting too close to the high tide line with the risks of losing clutches to tidal 
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flooding, and nesting too close to marram-covered dunes with the increased risk of 

predation of incubating adults. Evolutionary selection pressures should favour losing 

clutches rather than adult predation, because clutches can be replaced quickly. 

Additionally, short-term selective pressures, such as flooding, can oscillate unpredictably 

so that nest-site selection may reflect long-term optima that are neutral or maladaptive in 

the short term. 

INTRODUCTION 

Tidal flooding is a major cause of nest loss of the Chatham Island oystercatcher (CIO). 

During a three-year study along the north coast of Chatham Island, at least 40-50% of 

clutches were lost when flooded; in one year almost all clutches were lost to storm tides 

(Chapters 3 and 4). Evidence suggests that productivity within the territories during the 

breeding season is one of the main factors currently limiting the CIO population, and that 

foraging and chick-rearing habitat is good to excellent for 25-33% of the breeding 

popUlation located along the north coast (Chapter 4). This raises the question: Why CIO 

select the risky sites that it does? 

Studies of various oystercatcher species have shown that the main factors that determine 

breeding success and influence nest-site selection appear to be flooding of nests, predation 

of nesting adults, and quality of chick-rearing habitat (e.g., foraging sites adjacent to or 

within the territories, plus food quality and abundance) (Hartwick 1974; Ens 1992; 

Vermeer et al. 1992; Lauro and No11995; Hockey 1996; Hazlitt 1999; Heg 1999). CIO is 

highly territorial and strictly coastal nester (Chapters 3 and 4). Within the constraints of 

their territories, CIO pairs must balance the above factors when choosing nest-sites. 

Proximity of nest-sites to food is desirable, but not essential for oystercatchers because 

adults can carry food to their precocious young. Territories where food is not adjacent 

have been coined 'leapfrog territories' but, compared with pairs in territories containing 

chick-reading habitat, leapfrog territories tend to have poor reproductive success in most 

cases where they occur (reviewed in Ens et al. 1992). In Schiermonnikoog, The 

Netherlands, adults on leapfrog territories often do not provide enough food so their 

chicks sometimes starved (ibid). On the Chathams, this type of territory is rare (fewer 

than 8) and occurs only on Rangatira (Davis 1988). 
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Since the arrival of humans on the Chathams, nesting habitat, as well as predators and 

disturbance levels, have changed dramatically along the coastline, especially on Chatham 

and Pitt Islands where 85-90% of CIO breed (Schmechel and O'Connor 1999; Moore et 

al. 2000). Marram grass (Ammophila arenaria), a European sand binding species, was 

introduced to the Chathams in the late l800s. Marram competes successfully with natives 

such as pingao (Desmoschoenus spiralis) (Partridge 1995), and now occupies about 95% 

of the sand dunes on Chatham and Pitt Islands (A. Baird and D. Given pers. comm.; pers 

obs). In contrast to the more open, less steep dunes created by pingao and other 

vegetation, marram effectively catches and binds sand, causing the dunes to become much 

steeper, at times almost cliff-like, with less or no open sand above the high tide line 

(Heyligers 1985) (Plate 1). 

Numerous predators have been introduced to Chatham and Pitt Islands (see Table 18, 

Chapter 3), the most significant for CIO are cats (Felis catus) because they are known 

predators of eggs, chicks and adult shorebirds including many species of oystercatchers. 

On the Chathams, cats have been video-taped almost catching incubating CIO, and eating 

eggs (Moore et al. 2000). Other introduced predators include weka (Gallirallus australis) 

(a flightless rail endemic to the New Zealand mainland), brush-tailed possum 

(Trichosurus vulpecula), and rats (Rattus norvegicus, R. rattus), all of which, except rats, 

are known to attack CIa incubating adults, eggs and young (Moore et al. 2000). High 

numbers of these predators have been documented in CIa territories during recent 

control operations along the north coast of Chatham Island (Chapter 3, Moore et al. 

2000). 

Marram dunes provide habitat for many of these predatory species. Marram dunes are 

used by weka for breeding, foraging, and roosting and by possum for denning (pers. obs.). 

Cat tracks were often seen along the edges of the dunes, and the dunes probably provide 

good hunting cover. Marram-covered dunes possibly also provide good habitat for rats 

which, by being an important prey item for cats (S. O'Connor and J. Dowding, pers. 

comm.), may enable cats to inhabit dunes in higher densities. 

These changes to the Chatham Islands have reduced the available nesting habitat for CIa 

(Best 1987) and increased the risk of predation, especially for incubating adults. Are CIa 

pairs now trapped between the devil and the deep blue sea? Nest too close to the ocean 
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and increase the risk of clutches being flooded, or nest close to vegetation and increase the 

risk of predation of incubating adults (especially by cats). 

Management to increase CIO productivity occurred before and after this study (Murman 

1991; Sawyer 1993; Sawyer 1994; Bell 1998; O'Connor 1999; Moore et al. 2000). 

Management during this study was minimal, limited to s?me predator control the first 

season. No control ofmarram grass was achieved before or during the course of this 

study. 

The objectives of this study were to: 

1) describe the characteristics of CIO nests and nest-sites along the north coast Chatham 

Island and compare them with other oystercatcher species, 

2) determine nest-site habitat selection in this portion of the CIO population, and 

3) attempt to explain the reasons for nest-site selection in CIO. 

METHODS AND LOCATION 

Nest-sites were located and assessed over three seasons for pairs in the study area along 

the north coast, Chatham Island (see Figure 1, Chapter 3). Distance to the mean high tide 

line (hereafter referred to as high tide line) and the nearest significant vegetation (defined 

as clumps of vegetation a minimum of 10 metres diameter and a minimum of a metre 

high), elevation above the high tide line, and the composition of the substrate within a 

metre around the nest scrape were recorded. Substrates within a metre of the nest-site 

were classified into sand, rock, vegetation, and other (kelp, wood, shell, etc.), and 

amounts estimated to the nearest 5%. A grid was used to improve consistency between 

estimates. Any objects such as a log, kelp base, clump of vegetation or rock immediately 

adjacent to each nest-site were noted. In 1996, the total beach width from the high tide to 

the vegetation line was measured to the nearest metre. 

To compare with the nest-sites, random sites within the territories were also measured for 

the same parameters as nest-sites in two of the three seasons (1994 and 1996). The 

random sites were chosen by starting at the nest-site, then using a random numbers table 

to determine distance and direction, up to 20 metres away, from the nest-site. These 

random sites were then measured for all the same parameters as the nest-sites. If the 



habitat in a site was clearly unsuitable (e.g., underwater), a new site was chosen to 

provide realistic comparisons. 
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Differences between distances of nest-sites and random sites from vegetation and high 

tide line, and elevation above the high tide line were tested using the Wilcoxon signed 

Rank Test for paired data. This test was also used to look for differences in amount of 

different substrate (vegetation, sand, rock, other) around nest-sites. A McNemar's chi­

squared test was used to test if nest-sites were located near objects compared with random 

sites. 

For details on location and description of habitats within the territories see Chapters 3 

and 4. 

RESULTS 

A total of 45 nest-sites and 26 random sites were measured. All nests were located either 

on sand (77%) or rock (23%) (see Plate 1 and 2). Nests in sandy beach territories and in 

mixed sandy beach/rock outcrop territories tended to be in the widest sections of the 

territories; that is, in the storm-tide zone in the widest areas free of vegetation (Le., no 

marram grass, but sometimes other fast growing, low mat species were present). The 

average width of beaches where nests were located was 40 metres (SD = 17 m, range = 

14-67 m, n = 11). 

Compared with random sites, CIO nests (1994 and 1996) were located further from 

vegetation (median = 13m) than random sites (median = 9 meters) (p < 0.05). There was 

no significant difference between nest-sites and random sites in distance to, or elevation 

above, the tide line. CIO, however, never nested within 5 m of vegetation or the high tide 

line, the majority of nests being 5-30 m away from significant vegetation, and 5-25 m 

from the high tide line (Figure I and 2); and more random sites were located at less than 

0.50 m above the tide line and more nest-sites were located at 1.00-1.49 m above the tide . 

line (Figure 3). The distributions of all three measures were clearly skewed. 



Plate 1. (A) Steep maram-covered dunes which leave little space for CIO !Jests (north coast); (B) & (C) use of an elevated site in a tyre by 

CIO at Wharekauri ; (D) & (E) a typical sandy beach nest-site near Tioriori. 



Plate 2. Examples of CIO nests: (A) on a rock outcrop (Island temtory, Wharekauri); (B) along a section of schist coast line (Whanga temtory); and 

(C) on a small sand hill (Maunganui Beach near Takehanga Stream). 
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Nests on sand or rock were surrounded primarily by such substrates (Table 1). The 

amount of vegetation within 1 m of sandy beach and rock nest-sites was 28% and 37% 

respectively. Nests on rock were typically located in cracks or depressions with the nest 

on a soft substrate, such as low matt vegetation (either alive or dead), usually glasswort 

(Salicornia australis) or sand daphne (Pimelea arenaria), which cushioned the eggs. In 

the microhabitats immediately surrounding nests-sites, there was were no significant 

differences detected between nest-sites and random sites in the other parameters measured 

(i.e., rock, vegetation, and other); although the amount of vegetation near nest sites did 

approach significance (p = 0.59). 

Table 1 Habitat composition within one metre around CIO nests, north coast, Chatham 

Island. 

sandy beach nests rock nests 

microhabitat (n = 35) (n = 10) 

type % SD % SD 

sand 76 20 3 0 

vegetation 28 16 37 28 

rock 9 4 66 16 

other 18 23 4 6 
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CIa often nested near three-dimensional objects such as logs, kelp or kelp bases, rocks, 

marram grass clumps, and boards. A higher percentage of nest-sites (66% of 45 nest­

sites) were located near an object (within one metre) compared with the random sites 

(15% of26 sites). Sandy beach nests were more likely to be located near objects than 

nests located on rocks, 74% and 40% respectively. 

All nests were scrapes in the sand or slight depressions in vegetation or shells if the nest 

was on rock. All but one replacement clutches were in nests located in new nest-sites. 

When available, pairs would sometimes use elevated sites within its territories for nesting. 

One pair (Woolshed territory) in 1996 laid two clutches, a first and a replacement clutch, 

on a raised platform of sand inside a tyre placed within their territory (Plate 2). Another 

pair nested on top ofa small hill (about a metre high) created by a clump ofmarram grass 

(Plate 2). 

DISCUSSION 

Where do CIO nest? 

Since survival and reproductive performance can depend on nest-site choices by birds 

(Burger 1985; Dow and Fredga 1985; Martin 1992; Badyaev 1995), this should create a 

basis for evolution of nest-site preferences. Since nest-site preferences are heritable 

(Klopfer 1963; Hilden 1965; Cink 1975; Sonerud 1985), natural selection should 

contribute to a species' current pattern of nest-site distribution. Short-term selection 

pressures, such as flooding, can oscillate unpredictably, both temporally and spatially 

(Wiens 1985; Burger 1987; Crabtree et al. 1989; Filliater et al. 1994; Hogstad 1995) 

affecting clutch survival. Therefore characteristics of successful nest-sites may vary in 

time and space (Austin 1975; Van Riper 1984), and nest-site selection may reflect long­

term optima that are neutral or maladaptive in the short term (Clark and Shutler 1999). 

The risk of predation of adults should create stronger selection pressure than the risk of 

losing clutches to flooding, if clutches are replaceable and the species is long-lived. 

It is believed that birds select habitats at three scales: general, territories, and nest-sites, in 

this order sequentially (Burger 1985; Klopfer and Ganzhorn 1985; Sherry and Holmes 

1985). Because CIO pairs are highly territorial, once they have established territories they 
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are then constrained to choose a site within their territory. This should be a site that 

maximises protection from predators, floods, and exposure to weather. Many factors may 

influence nest-site selection in oystercatchers such as vegetation, visibility, distance from 

the tide line, substrate, and objects (e.g.; Heppleston 1972; Hockey 1982; Lauro and 

Burger 1989; Andres and Falxa 1995; Lauro and No11995; Hockey 1996). 

CIa along the north coast, Chatham Island, showed patterns of nest-site selection that 

were very similar to other species of coastal breeding oystercatcher. They tended to nest 

predominantly on sand in open, high-visibility areas in the widest sections of beach within 

their territories, or on a soft substrate on rock outcrops if wide sandy beaches were 

unavailable. They avoided nesting close « 5 m) to either vegetation or the high tide line. 

They did not appear to select sites based on elevation, although they sometimes nested on 

high objects like rocks, sand-filled tyres, or small sand hills ifthere was a depression in 

which they could hide themselves. Nests, especially those on sandy beaches, were often 

sited near objects, such as logs, kelp, rocks, or clumps of vegetation. 

The habit of nesting in open coastal habitats above the high tide line is common to most 

oystercatcher species (Harris 1967; Heppleston 1972; Hartwick 1974; Nysewander 1977; 

Summers and Hockey 1977; Lauro and Burger 1989; Vermeer et al. 1992; Andres and 

Falxa 1995; Lauro and NoI1995). Oystercatcher nests are often located close to high tide 

lines or on the shore side of vegetation lines, even though the risk of flooding is higher in 

these sites (Hartwick 1974; Hockey 1982; Lauro and No11993; Andres and Falxa 1995). 

The predominance of CIa nests on sandy beaches fits well with the general pattern of 

pied species of oystercatcher usually nesting on sandy beaches that are light in colour, and 

black species usually nesting where beaches are dark and rocky (reviewed in Lauro and 

No11995, p 926). Also, CIO, like many oystercatcher species, chose nest-sites located 

near objects or clumps of vegetation (Vermeer et al. 1987; Andres and Falxa 1995; Lauro 

and No11995; Hockey 1996). 

All nests in sand were simple scrape, those on rock were a slight depression in soft 

vegetation. This contrasts with nest-sites recorded on Rangatira Island. In 1997, three 

nests were on soil and the birds had collected leaves and other material to create a 

substantial nest (pers. obs). Another scrape was located among boulders, and was 

constructed of hundreds of pieces of small shingle collected and arranged into a small 

hollow nest bowl. There are no sandy beaches on Rangatira; however, some CIa nests 



were located on rock and rock outcrops, often under overhangs or in areas with rock 

overhangs (pers. obs; E. Young, pers. comm.; Davis 1988). 
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Re-use of nest-sites in the same or different seasons was rare in CIO, only one pair in one 

season re-used the same site (2%). This may be due, in part, to the dynamic nature of 

sandy beaches. It is unusual for shorebirds to re-use the same nest scrape, though a 

number of wader species in New Zealand have been recorded using the same site in two 

consecutive seasons (reviewed in Crossland and Simamora 2000). American black 

oystercatchers (H bachmani) may create substantial nests on rock outcrops, and these 

nests are re-used in subsequent years (Andres and Falxa 1995), with pairs in the Strait of 

Georgia, British Columbia, re-using nest scrapes 50% of the time (Hazlitt 1999). 

Like CIO, there was no difference in elevation between nest-site and random sites for pied 

oystercatchers (H longirostris) in Australia (Lauro and NoI1993). This was because 

birds chose to nest near the shoreline and elevation rose inland. In contrast, American 

oystercatcher (H palliatus) nesting in salt marshes chose nest-sites that were significantly 

higher in elevation and farther away from a water body than random sites. This apparent 

selectivity in elevation was related to topography since preferred sandy sites on salt marsh 

were higher in elevation than the surrounding spartina grass (Spartina spp.) habitats 

(Lauro and Burger 1989). 

The differences found between CIO nests and random sites may have been less than that 

which would have been found if an alternative method for selecting random sites had been 

used. This is because random sites chosen in this study were selected by using the nest­

site as the starting point for logistical reasons, and therefore random sites may sometimes 

at distances not far from the nest-site, and could have been more similar than sites located 

farther away from the nest-site. A better method may have been to create a grid of 

potential nesting habitat within the territory and select random points within those areas, 

potentially resulting in a more even scattering of random sites throughout the entire 

territory, rather than clustered around the nest-site. If this method had been used, there 

might have been more differences between nest and random sites in the variables studied 

(e.g., substrate, distances to vegetation and high tide lines, and elevation). 
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Why CIO nest where they do? 

CIa pairs along the north coast nested primarily on sandy beaches. They may select nest­

sites on sandy beaches because they are pied, or they may be pied because they nest on 

sandy beaches, or are most closely related to species that nest on sandy beaches. Most 

pied species of oystercatcher nest on sandy beaches (Lauro and No11995; Hockey 1996), 

which could be advantageous to avoiding predators. Pied oystercatchers may be more 

cryptic on light coloured sand than black species due to the visual effects of 

countershading (Lauro and Nol1995 and references therein), especially when they are 

standing or moving to and from the nest. Jehl (1985) observed American black 

oystercatcher (a black species) and American oystercatchers (a pied species) both appear 

very cryptic in their nest habitats: dark rocky shores and light sandy beaches respectively. 

He suggested that this pattern of habitat use for the two species may have been a result of 

predator pressure. An experiment using oystercatcher models, conducted by Lauro 

(1994), found that on open, sand beaches oflight colour, a black standing model was 

detected by human observers at a greater distance than the pied model. As a result of 

current predator pressures, CIa may be using sandy beaches more, or rock sites less, than 

they would in the absence of predators. 

The average distances of nests from the tide line and vegetation were similar, and CIa 

often nested in the widest sections of coastline. This suggests they may be balancing the 

risks of nesting near the tide line (risk of nest being flooded), with the risk of nesting near 

dune vegetation ( increased risk of predation). CIa may avoid nesting too close to 

vegetation in order to reduce the risk of predators using dune vegetation as cover to 

approach incubating birds closely before attacking. 

Dune vegetation has been documented as providing shelter for mammalian predators. For 

example, Burger (1987) found that vegetated sand dunes provided shelter and 

concealment while stalking for mammalian predators of piping plover (Charadrius 

melodus), and in another study of the same species, predated nests were significantly 

closer to vegetation than successful ones (Espie et al. 1996). At Brigantine, New Jersey, 

predation was the primary cause of nest failure in least tern (Sterna antillarum) and 

distance from the dunes was the significant factor in egg and chick survival. Cats and 

foxes lived in the dunes and entered the colonies from there, preying heavily on the nests 

closest to the dunes (Burger and Gochfeld 1990). Lauro and Nol (1993) found that pied 
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(H. longirostris) and sooty oystercatchers (H. fuliginosus) in Australia selected high 

visibility sites, arguing that it was most probably to provide birds with the opportunity to 

detect and avoid predators. Alternatively, high visibility sites may have allowed the pair 

to detect other oystercatcher intruders or predators. These two alternative explanations 

are not mutually exclusive. However, the selective pressure by predation should be 

stronger since it may involve the death of a breeding adult and immediate cessation on 

any genetic contribution to future generations. 

Predator pressure may strongly influence nest-site selection in birds and is the most 

important selection force affecting nest success (reviewed in Newton 1998, see also 

Ricklefs 1969; Martin 1995). Many coastal birds and ground-nesting ducks commonly 

nest at higher densities on island, compared with mainland, sites and two important 

factors that may contribute to this pattern are reduced predation risk and lower human 

disturbance (Buckley and Buckley 1980; Williamson 1981; Blonde11985; Nilsson et al. 

1985; George 1987; Erwin et al. 1995; Clark and Shutler 1999). 

The trade-off hypothesis assumes that CIa pairs are able to recognise and respond to 

mammalian predator pressure, which has been present on these islands for only about the 

last 100 years, and that the risk of predation is real. CIa recognise humans and dogs as 

potential threats and show very strong anti-predator behaviours towards both, especially 

when chicks are present, displaying the full range of anti-predator strategies described for 

other oystercatcher species (pers. obs.). Indeed, humans have been predators of CIa eggs 

within the last 40 years on the Chathams (L. Tuanui, pers. comm.). Whether they 

recognise and respond similarly, the presence of cats or other mammalian predators is less 

obvious, but they have been videoed escaping from two attempted cat attacks (Moore et 

al. 2000). Presumably a strong anti-predator response either never disappeared, or has 

evolved very quickly, which seems feasible given that CIa would have inherited latent 

anti-predator behaviours from its ancestors and predation is a very strong selective force. 

The historical predators that would have been present on the Chathams were the New 

Zealand falcon (Falco novaeseelandiae) and brown skua (Catharacta skua) (Holdaway et 

al.2000). 

Most of the evidence for predator pressure is circumstantial because actual losses to, or 

pressures from, introduced mammalian predators are difficult to determine. Evidence to 

suggest the risk is significant includes the two videoed cat attacks on incubating CIa 
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during the 1999 season (Moore et al. 2000), and documentation of cat predation of other 

oystercatcher species around the world (see Chapter 3, and Table 18 Chapter 3). This 

information, combined with the historically high number of cats along the north coast 

based on trapping records of 47 and 51 cats trapped in 1998 and 1999 respectively (4.2 x 

10-4 cats/trap night/Ian for 1999) (Moore et al. 2000), would suggest that the predation 

risk to CIa has been a real danger. 

The risks of nesting too close to the tide line are clear, and many CIO nests were lost to 

tidal flooding (see Chapters 3 and 4); however, predation pressure may force CIa to nest 

close to the high tide line. Harwick (1974) suggested that American black oystercatchers 

nested close to the water's edge even though nests were commonly flooded, because these 

sites were less susceptible to predation by nesting gulls. Very similar trade-offs between 

nesting close to vegetation with associated predator risks and the coastline have been 

proposed for piping plover (Burger 1987; Espie et al. 1996). 

In addition to providing habitat to predators, the establishment of marram grass has 

almost certainly resulted in reduced nesting habitat for CIa on the Chathams (Best 1987). 

Loss of nesting space due to changes in dune structure has occurred for other shore 

nesting species such as Australian pied oystercatchers and hooded plover (Thinornis 

runbricollis) in Australia. Both species nest on terrace-shaped foredunes formed by 

native grasses. At Calverts Beach in southern Tasmania, both species historically nested 

in the foredunes into the 1970s, but ceased nesting in the area after the dune system was 

stabilised with marram (Park 1994). 

CIa nests and random sites did not differ significantly in elevation. This may be because 

suitable higher elevation sites were not available, CIO could not assess elevated areas 

very effectively, other factors (such as vegetation and distance to water) may have been 

more important for nest-site selection, or differences were not detected due to 

methodology (including sample sizes). In at least one other oystercatcher species, a lack 

of difference between nest-sites and random sites has been reported, suggesting that this 

lack of difference may be real. This lack of selection for elevated sites appears 

paradoxical since choosing open, high elevation sites would seem advantageous because 

of the decreased risk of flooding and depending on the site, increased visibility, which 

would allow CIO to see approaching danger or conspecifics. For example, Burger (1990) 

found that least terns, a coastal ground-nesting species, preferred ridges and slopes, and 
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argued this was probably because they could more easily detect approaching predators. 

This was supported by the fact that at least 18 adult terns were killed by predators, so this 

visibility was likely to be an important factor in nest-site selection. An additional 

advantage in these elevated sites for the terns was that they were less prone to flooding 

during storm tides (ibid). 

For CIa pairs to choose between sites at various elevations, they would have to be able to 

assess them. The beach areas tend to be relatively flat, so detection of elevation may be 

difficult. If CIa cannot assess elevation directly they may, however, be able to assess 

flooding risk, and thereby elevation, indirectly through their habit of building multiple 

nest scrapes. CIO and other oystercatcher species often make several scrapes for days or 

even weeks before choosing one to lay in (Hockey 1982; Andres and Falxa 1995). 

Scrapes that disappear through tidal flooding may then be eliminated as a choice for the 

final nesting site. In many of the CIO territories, higher sites were closer to dune 

vegetation because the elevation of the land increased inland. CIa probably choose nest­

sites based primarily on other criteria, such as distance from vegetation and the coastline, 

rather than elevation. However, if open, elevated sites were available, they were 

sometimes selected. CIO pairs often nested on higher ground or rock so long as the nests 

were in a slight depression. ane pair nested in a sand-filled tyre placed on the beach, 

which provided a site that was less likely to flood. Another pair nested on a small sand 

hill created by a clump of marram. Two pairs nested on rocks in a crack or depression. 

These rocky sites probably provide a good substrate for the eggs because they usually had 

some vegetation in them, and sufficient elevation to allow the birds to be hidden while 

also having a good view of approaching predators. 

Many species of oystercatcher and other shorebirds nest near objects, including small 

clumps of vegetation (summarised in Hockey 1996, see also (Hockey 1982). Several 

reasons have been offered for this including protection from weather, as a cue to nest 

location, and concealment from predators (see for example Page et al. 1985; Vermeer et 

al. 1987; Espie et al. 1996). The reasons and effectiveness probably vary from location to 

location and from species to species. Few data are available on the effectiveness of 

objects as cues to nest location, but Maclean and Moran (1965) concluded that white­

fronted sandplovers (C marginatus) did not need objects to find their nests. They 

watched birds return as directly and quickly to nests when an object was adjacent and 
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when it had been moved. Many authors considered, from other studies, that objects were 

too small to provide much protection from the elements for various species of nesting 

shorebird (e.g., Purdue 1976; Page et al. 1985; Vermeer et al. 1989). However, Hockey 

(1982) found that the aspect of the majority (76%) of African black oystercatcher nests 

fell in the 180
0 

arc facing away from prevailing winds and they preferred to nest in 

sheltered sites. Bergstrom (1982 in Page et al. 1985) suggested that microclimate was an 

important factor in the selection of nest-sites by Wilson's plover (c. wi/sonia) in a hot 

Texas environment. Most authors, however, have suggested concealment as the main 

reason for oystercatchers and other shorebirds often nesting near objects (Bunni 1959; 

Graul 1975; Hockey 1982; Vermeer et al. 1987; Vermeer and Smith 1989; but see Page et 

al. 1985). 

How flexible are CIO when choosing a nest-site? 

As Lauro and Burger (1989) convincingly argued, flexibility in habitat selection is 

important to the success of species because biological constraints like food availability, 

predation and competition, as well as the abiotic limitations of the physical environment 

(e.g. weather, space, physiognomy of habitat). When nesting habitat is limited, birds can 

forego breeding, or adapt to new habitats, expand into similar habitats elsewhere, if 

available, or adapt to a new habitat in other areas. Flexibility is an important aspect of 

adapting to new environments. Flexibility in nest-site choice can also minimise costs of 

tidal flooding or predation, thereby increasing reproductive success. 

Oystercatchers as a family are surprisingly versatile in their nest-site selection and have 

been reported nesting on rooftops, logs or other unusual substrates (Cramp and Simmons 

1983; Newman 1992; Andres and Falxa 1995). Due to their flexibility in nest-site 

selection, South Island pied oystercatcher and Eurasian oystercatcher now nest in 

paddocks and ploughed fields, expanding their numbers and range (Buxton 1961; Dobbs 

1970; Heppleston 1971; Baker 1973). Another indication of flexibility in nesting habitat _ 

selection has been the recent range expansion of American oystercatchers (Post and 

Raynor 1964; Zarudsky 1985), and American black oystercatchers (Eley 1976). 

Flexibility in nesting habitat has been critical to the reproductive success of American 

oystercatchers because they have had to adapt to differences in habitat physiognomy 

across their breeding range (Nol 1984). 
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CIO pairs show flexibility in their choice of nest-sites, although they are probably 

constrained by the presence of predators. Along the north coast, Chatham Island, in 1998 

one CIa pair nested on a large rotten log located among tall grass (pers. obs). During the 

1994 to 1996 seasons, none of the CIa pairs along the north coast nested in paddock 

areas, but in 1999 one pair nested in a paddock (P. Moore, pers. comm.). Pairs on 

Rangatira often select very different habitat for nesting in compared with CIa on 

Chatham and Pitt Islands. In January 1997, the three nests found were located near the 

coast, all underneath vegetation such as small trees or shrubs; all had good visibility of the 

coastline. 

Differences in habitat availability or predator avoidance may account for birds on 

Rangatira nesting in overhanging vegetation (i.e., shrubs and trees) when this has never 

been observed among Clas on Chatham or Pitt Islands. On Rangatira, there are no 

terrestrial mammalian predators such as cats, possum, or pig. This could lessen the 

predation risk to CIO incubating near or under vegetation. Newton (1998) found that 

most avian species accepted a fairly narrow range of nest-sites but, in some species, this 

can change under altered predation pressure; less safe sites become acceptable where 

mammalian predators are absent, which enables pairs to occupy areas that would 

otherwise be unsuitable. 

Another factor which may account for the differences in choice of nest-site habitat used 

by CIa is the presence of breeding brown skua on Rangatira. Skua might prey on nest 

contents more easily in open locations (E.C.Young, pers. comm.). Several other birds that 

normally nest in the open (e.g., red-billed gulls, white-fronted terns, and shore plover) 

also nest underneath vegetation on Rangatira (Davis 1994). From 1987 to 1990, Davis 

(pers. comm.) found CIa nest-sites sited among boulders or shingle, usually under the 

cover of rock overhangs or drift wood, although some were built in the open. 

Differences both in habitat type and in the predator suite between Rangatira and Chatham 

and Pitt Islands make it difficult to determine the causes of the differences in nest-site 

selection in CIO. There are no sandy beaches or marram grass on Rangatira, and much of 

the area adjacent to the wave-cut rock platform is vegetated with bush or trees. This 

vegetation, which CIa nested under on Rangatira, was open underneath, allowing good 

visibility and access. This is not the case with marram dunes, the most common 

vegetation near CIa nesting areas on the main islands. There is less open area above the 
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high tide available for nesting on Rangatira than on wide sandy beaches on the main 

islands. If these habitats were available on Rangatira, perhaps they would be the most 

preferred for nesting. Conversely, the currently used sites in the areas just under the 

vegetation behind the rock platforms offer many potential advantages: elevation for 

visibility, camouflage, some protection from skua predation, and no cats are present to 

compromise this choice (R. Powlesland, pers. comm.). The most likely explanation is a 

combination of which habitats are available and the types of predator pressures present 

which accounts for the differences in nesting habitats of CIO on Rangatira and the two 

main islands. 

The ideal nest-site 

The ideal nest-sites for CIO would include areas with low predator pressure and with 

topography that allows birds to escape predators, plus habitat that would allow nesting in 

areas that are safe from flooding of their clutches. These areas would be adjacent to good 

chick-rearing habitat and have low levels of disturbance. 

Lack of quality nest-sites can have profound ramifications for populations. Nest-site 

availability can clearly constrain breeding numbers and output in a density-dependent 

manner (Newton 1994; Rodenhouse et al. 1997; Newton 1998). Moreover, where 

shortages of nest-sites limit breeding density, they must also limit total population size; 

where the output of young is limited, no population can increase beyond a certain level 

(Rodenhouse et al. 1997; Newton 1998). Nest-site availability can be a much more 

significant limiting factor than others. Providing food or removing predators in 

experiments of factors limiting bird populations led, in extreme cases, to a doubling of 

breeding density compared with control areas, but provision of extra nest-sites often led to 

much bigger increases, up to 20-fold in the most extreme examples (Newton 1998). 

Predators are frequently a clear threat, but limiting factors often interact and, in grey 

partridge (Perdix perdix) in Europe, for example, a combination of habitat restoration to 

increase food for chicks and providing better nest cover combined with predator control to 

reduce egg and hen predation allowed for a 10-fold increase in nesting densities. 

Controlling predators without habitat improvement increased partridge numbers from 4.7 

to 13.4 pairs per km
2

, compared with an increase from 16.3 to 51.6 after habitat 

improvement (Aebishcer 1997). In both cases, the increase was approximately three-fold, 
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but while predator control added only 9 pairs per km
2
, habitat improvement followed by 

predator control added 35 pairs (described in Newton 1998, p 355.). 

SUMMARY/CONCLUSIONS 

Evidence suggests that the main limiting factors operating on the CIO population occur 

during the breeding season, rather than over winter, and foraging/chick-rearing habitat is 

good to excellent for 25-33% of the breeding population located along the north coast, 

Chatham Island. The main factors that appear to be limiting the population at this locality 

are the lack of high quality nesting sites and high predator pressure. Good nest-sites 

include areas that allow birds to escape predators and avoid flooding of their clutches, 

preferably adjacent to foraging areas for the chicks. Good nest-sites for CIO appeared to 

be very limited. This limitation probably imposes a significant constraint on productivity, 

and may also decrease survival of breeding CIO. 

When choosing where to nest, CIO balances the need to survive predator attacks with the 

risk of nest losses due to tidal flooding. If pairs nest too close to marram grass dunes to 

avoid loss of clutches to tidal flooding they increase their risk of being killed by 

predators, especially cats. If they nest too close to the high tide line, they risk losing 

clutches to tidal flooding. Selection pressures to avoid predation should be stronger than 

selection pressures to avoid losses of clutches because lost clutches can be quickly 

replaced and CIO are long-lived (at least 28 years old) allowing them the opportunity to 

attempt breeding over many years, maximising life-time reproductive success. 

Due to the changes brought about by human settlement, CIO may be caught "between the 

devil and the deep blue sea". Before human settlement, dunes were more open and the 

slopes more gradual with no mammalian predators and, consequently, CIO would have 

been able to nest at points above all but the worst storm tides. Now, lack of quality nest­

sites can be a strong density-dependent limiting factor in populations, and conservation 

management attempts to increase the CIO population should consider the factors which 

affect nesting success and the survival of incubating adults. Management 

recommendations include: 1) continued intense predator control, and 2) removal of 

marram and restoration of native dune communities so there is a wider beach with a 

gradual elevation so that CIO pairs have more opportunity to avoid tidal flooding of their 

clutches. 
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If marram grass is removed from some areas in the future it would be useful to determine 

ifnest site selection changes (i.e., do CIO then nest further from the tide line). Also it 

would be beneficial to examine the relationship between height above the high tide and 

probability of flooding, and distance to vegetation and probability of loss to predators. 

These habitat variables, if predictive, would provide support for management issues (e.g" 

if nests are significantly more likely to be lost to predators if close to marram grass than 

removal is warranted). 
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APPENDIX 

Distances from vegetation and high tide line of CIO nest sites and random sites and 

elevations of CIO nest sites and random sites along the north coast, Chatham Island. 

(Paired sites only used for statistical analysis,) 

Nest sites (m) Random sites (m) 

average range SD N average range SD 

1994/5 & 1996/7 

vegetation 21 5 - 92 19 26 14 0-54 11 

high tide line 23 6 - 102 20 24 27 1 - 114 26 

elevation 1.26 0.30 - 5,15 0,93 24 1.32 0.10 - 5,96 1.40 

All years 

vegetation 19 3 - 92 16 40 

high tide line 20 2 - 102 17 42 

elevation 1.18 0.30-5.15 0,75 42 

211 

N 

26 

25 

24 
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CHAPTER 7 

SPLITTING THE DUMMY: TERRITORIAL RESPONSES 

TO CARDBOARD MODELS IN THE CHATHAM ISLAND 

OYSTERCATCHER (HAEMATOPUS CHATHAMENSIS) 

ABSTRACT 

Territoriality is almost ubiquitous in monogamous bird species and, by excluding other 

pairs from breeding or forcing them to breed in lower quality habitat, almost certainly 

regulates the population of many species, including Chatham Island oystercatcher (CIO). 

CIO pairs are highly territorial during the breeding season, and responded to cardboard 

models placed within their territories. Cardboard models of oystercatchers of varying 

colour patterns and size were used to study the cues CIO were responding to when 

defending their territories early in the breeding season (October to December, 1996), on 

the north coast, Chatham Island. 

I argue that the strength and nature of the territorial response to the models was related to 

the perceived threat the models represented to the breeding pair, the quality of the 

territory, and the risks of defence. With only two exceptions, all oystercatcher-shaped 

models were approached to within one metre within three minutes of presentation (n = 40 

trials), suggesting shape is an important cue to species recognition in CIO. Models with 

the same colour patterns as breeding CIO were approached most quickly (range 1-2 

minutes) and physically attacked by the all the pairs (n = 7 pairs), suggesting that these 

CIO-coloured models represented a high risk to the pairs. Of the three CIO-coloured 

models, the time to attack was shortest for the smallest model, probably because it was 

perceived as the least risky to attack. 

Although the total proportion of time spent in attacking all the models was not 

significantly different (control excluded), the amount of time spent in warning behaviour 

was. The model that most closely represented a CIO in colour, shape and size elicited the 

most warning behaviours, suggesting that warning displays and calls may be very species­

specific and serve to minimise the risks of intra-specific fights, especially among closely 
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matched competitors, and where asymmetries in fighting ability are not obvious. Pairs in 

the lower quality territories (i.e., those with the lowest breeding success) were the least 

aggressive, suggesting that the pair members were less willing to invest in the costs of 

territory defence if the benefits were low. 

INTRODUCTION 

Territoriality in birds is almost ubiquitous in monogamous bird species (Lack 1968; 

Davies 1978; Moss and Watson 1985; Gauthier 1987). Reasons for, and benefits of, 

defending territories include exclusive access to resources (e.g., food and nest sites), mate 

guarding, access to chick rearing habitat, and lower predation risks (Davies 1978; Davies 

and Houston 1984; Carpenter 1987a; Carpenter 1987b; M0ller 1987; Davies 1991; 

Sutherland 1996; Newton 1998). Territory establishment and defence is essential for 

successful breeding in oystercatchers, and defence behaviours are very strong in 

oystercatchers, often including piping displays, ground and aerial chases, fights, and 

hovering flight ceremonies (Harris 1970; Davis 1988; Ens 1992; Reg 1999). CIa pair 

members will spend up to 20 minutes in continuous intense interactions which includes 

piping and fighting (pers. obs.). 

The main reasons proposed for territory defence in oystercatchers are access to and 

exclusive use of resources such as food, nest sites, and chick rearing habitat (Ens 1992; 

Banks 1998). Mate guarding in American oystercatchers has been suggested (NoI1985); 

however, the evidence against mate guarding as a reason for territory defence in Eurasian 

oystercatcher (H o. ostralegus) and South Island pied oystercatcher (H o.finschi) is 

convincing (Banks 1998; Reg 1999). Reg (1999) found that male Eurasian oystercatchers 

in the Netherlands whose mate was absent sometimes evicted soliciting female intruders 

instantly, suggesting that extra-pair copulations (EPCs) were not necessarily beneficial, 

even when there was no apparent risk of a penalty by the mate. Banks (1998), in a study 

investigating why South Island oystercatchers defend territories found that a mount was 

equally likely to elicit a territorial response from a breeding pair at all stages of the 

breeding season, suggesting mate guarding was not the reason for territoriality. He also 

found males initiated a similar number of responses at all stages of the breeding season 

and that both males and females spent similar amounts of time at the mount before 
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striking it, including at the pre-egg laying stage, which is the critical stage for protecting 

females from other males. 

There are costs of defending territories (Brown 1969; Heppleston 1972; Safriel et al. 

1984) and the implications of territorial behaviour are important for conservation 

management. Territorial behaviour or more specifically, site-dependent regulation as 

proposed by Rodenhouse (1997), is probably the key popUlation regulating factor for 

many birds, including oystercatchers (Harris 1970; Ens 1992; Goss-Custard et al. 1995; 

Newton 1998; Heg 1999). Some bird species may defend territories larger than required, 

creating a purely behavioural limitation on population density and size (Davies 1978; 

Beletsky 1992). Territory defence tends to be stronger in the middle, and may be weaker 

at the boundaries depending on the density of territories and pressures by conspecifics 

(Vines 1979; Beletsky 1992). This information may be used to determine how 

compressed territories are, and therefore how close to carrying capacity (Vines 1979). 

Territory defence may be aided by plumage and soft part colouration in oystercatchers. 

Similar male and female appearance (monomorphism) may aid in territory defence, and 

the plumage and colour patterns may be for signalling and warning, especially the 

brightly coloured eyes, bill and legs and the white of the plumage. The reasoning offered 

is that if females did not need to assist in territory defence and did most of the incubating 

her plumage would be more cryptic like that of chicks and eggs, similar to females of 

other wader species that do not assist in territory defence (Ens 1992). Alternative 

explanations for pied versus all-black plumage have been offered, suggesting that pied 

plumage is very cryptic on light sandy beaches where many oystercatcher species breed, 

and that all black plumage is cryptic on rocky shorelines (Lauro 1994; Lauro and Nol 

1995). These theories are not mutually exclusive. For juvenile oystercatchers, their 

colouration (e.g., dark bill and eyes, less coloured legs) has been suggested as a means to 

allow them access to territories with less risk of attack because they are not a direct threat 

to the current inhabitants, giving them the opportunity to assess these territories for future 

settlement (Zack and Stutchbury 1992). 

Models, stuffed dummies, and decoys have often been used to study behaviour in various 

species because the stimulus can be systematically varied, and behaviours can be elicited, 

instead of waiting for them to occur spontaneously. The terminology in this paper 
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follows Lehner (1996): 'models' are items constructed to mimic animals or parts of 

animals and 'mounts' as stuffed skins of animals. The term 'decoy' is used for live 

animals (e.g., Vines 1979). Most avian literature follows this usage (e.g., Beletsky 1992), 

although model is sometimes used to include mounts (e.g., Strausberger and Homing 

1998). 

aystercatchers often respond well to models. Two and three dimensional models have 

been used to test responses to varying colour patterns in Eurasian oystercatcher in Russia, 

with stronger responses elicited by three-dimensional models (L. Stepanova, pers. 

comm.). South Island pied oystercatcher in Canterbury did not respond to a two 

dimensional model, but did to a stuffed mount (Banks 1998). Vines (1979) found a live 

decoy was needed to obtain a sufficient response from Eurasian oystercatcher to study the 

strength of territory defence at different locations within territories. Two dimensional 

models were useful for determining the breeding status of CIa (Schmechel and O'Connor 

1999), territory boundaries in CIO (e.g., Chapter 4), and for luring territorial CIa into 

noose mats for capture (pers. obs) (Plate 1). 

Since CIa responded to two dimensional cardboard models as if they were other CIO 

(pers. obs.), and did not respond in the same way to other bird species, the models must 

represent a threat to which they react. We, and perhaps the CIO, can see that the models 

are not oystercatchers, which raises the question what cues cause them to react. Is it the 

colour, pattern, size or shape? The objectives of this study were to determine which cues 

elicit territorial defence behaviours in CIa and examine differences in responses to the 

models as predicted by the threat/risk hypothesis. 

METHODS AND LOCATION 

The pairs used in this study bred along the north coast, Chatham Island (see Chapters 2,3 . 

and 4 for details). 

To test the responses of CIO to models of different sizes and colour patterns, six two­

dimensional models and one control were made from cardboard (Table 1 and Plate 1). 

The purpose of the control was to determine ifCIO were responding to any foreign object 

placed in their territories that was a similar shape and size to the models, and if not, what 
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a neutral response by them was. The models were placed in the core portions of the 

territories (those areas that were near the nest sites and where the birds spent the majority 

of their time). The CIO were approached closely enough to ensure they had seen the 

model, but not so closely that it caused them to move away in alarm. The model was 

often waved for a few seconds and the reaction of the birds noted to see if they were 

aware of the model. When moving away from the model, it was kept between me and the 

CIO pair. A low profile was maintained (body near the ground) to minimise alarming the 

birds. I moved far enough away (usually about 20 metres) to ensure the birds were not 

reacting unduly to my presence. 

Table 1 Models used to test responses of CIO, north coast, Chatham Island. (See also 

Plate 1). 

Model 

CIO duplicate 

Half size 

Double size 

Black body 

Black bill 

All-black (silhouette) 

Control 

Description 

Size and colour like CIO 

Half normal size, CIO colours 

Double normal size, CIO colours 

Plumage all black; normal size; red bill, eyes and legs 

Bill, eyes, and legs all black, pied plumage, normal size 

Entire model black, normal size 

Irregular shaped cardboard shape 

The tests were conducted early in the 1996 breeding season (October to December). The 

total test time for each trial was 16 minutes or until the model was knocked over (KO), 

whichever occurred first. A Latin-square design was used in presenting models 

(Appendix 1) to minimise any order effect (i.e., all pairs were presented all models, all in 

a different order). Non-adjacent pairs were selected for the trials to minimise interactions 

between pairs. There was at least one day between trials. All behaviours for both birds 

were recorded continuously, and the time when the behaviours occurred. When pairs did -

not respond (i.e., the model was not approached), a latent period of 16 minutes was 

assigned to the trial (the maximum length of each test). Responses of either bird of the 

pair, or both, were recorded. The most aggressive responses of either bird at any 

particular point in time were used for analysis (e.g., if one bird was attacking the model 



Plate 1. (A) Models used to test cues for territory defence behaviours; (B) CIO responding to the double-sized model; (C) a CIO which has 

been lured into a noosemat by a model ; (D) CIO attacking the pied model ; (E) a CIO and model after the model has been knocked over. 



and the other bird standing back, the attacking behaviour was the one used for the 

analyses). Birds were not individually marked, and genders were unknown. 
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Behaviours were interpreted and coded into six levels of aggressiveness (see Appendix 2 

for a detailed list). The behaviours were coded into the following categories: (al) the 

highest category of aggressiveness involving direct, physical attacks that risked injury; 

(a2) 'warning' behaviours, which often immediately preceded attacks; (a3) a threat at a 

lower level, often seen before or after territorial displays between pairs, (a4) alert or 

alarmed, (a5) curiosity or awareness, and (a6) 'no approach' or lack of any indication of 

interest in the model. 

Behaviours were interpreted using a combination of information from the literature, and 

data collected during this study. I reviewed behaviours described as antagonistic for CIO 

as well as for several oystercatcher species (Davis 1988; Ens 1992; Marchant and Higgins 

1993; Nol and Humphrey 1994; Andres and Falxa 1995; Heg 1999). I also examined data 

collected during this study, which included observations of territorial disputes between 

pairs, attacks by pairs on intruding floaters, and attacks on models placed within 

territories. 

For each model the following was analysed: 1) time to initial approach of model (to 

within one metre) (latency), 2) top level of aggression (TLA) displayed (intensity) 

towards the model, 3) time to reach the TLA, 4) total percent of time spent in each 

behaviour category, 5) total times KOed and piped at. Pairs were analysed to determine if 

they varied in their overall responses. The following were analysed for each pair: 1) 

TLA reached, 2) time to TLA, 3) number ofKOs and piping displays, and 4) percent of 

time spent in each behaviour category (including a summary index). As a summation of 

the total proportion oftime spent in various aggressiveness levels, an 'aggression index' 

was calculated by multiplying the percent of minutes CIO pair members spent in the 

different aggression levels by 1.00. This results in a possible range of scores from 1.00 -

6.00. For example, if a pair spent 50% of its time in the allevel, and 50% at the a4level 

it would have a score of2.50 (1 x 50% + 4 x 50%), compared with a pair that spent 50% 

of its time in the al level and 50% at the a2 level which would receive a score of 1.50 (1 x 

50% = 2 x 50%). 
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I analysed the data using nonparametric statistics because the data were not normally 

distributed. For the models, the initial time to approach, time to first reach the top level of 

aggression (TLA), and the aggression index were compared using a Friedman's two-way 

ANOV A. When a significant difference (p < 0.05) was found, post hoc paired 

comparisons (Zar 1984) of each response between models were performed to identify the 

models that elicited significantly different responses (using an experiment-wise alpha = 

0.05). 

RESULTS 

The models were approached by at least one member of each pair in 94% of the trials 

(46/49) (see Plate 1). Only three times were the models not approached during the trials: 

the control twice, and the black bill once (Table 2). Almost an the models were 

approached within the first three minutes of presentation (44 of 49), but two (the control 

and the all-black silhouette) were not approach until after 10 and 13 minutes respectively. 

Those with oystercatcher type colouration and the silhouette were approached most 

quickly (all within 2 minutes) (Table 2). 

Table 2 Top level of aggression (TLA) and time for CIOs to reach top level of aggression 

during interactions with models. In order Jrom most to least aggression displayed 

towards the model, (as summarised in the aggression index, see Table 3). 

Behaviour categories: al - physical attack; a2 - warning; high level threat 

preceding attacks; a3 - lower level threats (not always Jollowed by physical 

attacks, always directed at conspecifics); a4 - alert or alarmed; as - interest, 

aware; a6 - no approach to within one metre oj model. See appendix I for 

detailed description and ranking of aggression levels. Median time and range of 

times to first reach the TLA displayed. Time to initially approach the model upon 

presentation to within one metre. 

Top TLAs reached TimetoTLA Time to approach 

(no. of pairs) (minutes) (minutes) 

Model al a3 a5 a6 Med. Min Max Med. Min Max N 

Half 7 0 0 0 2 1 9 1.0 1 2 7 

CIO duplicate 7 0 0 0 5 2 8 1.0 1 2 7 

Double 7 0 0 0 4 1 12 1.0 1 2 7 

Black bill 6 0 0 1 3 1 16 1.0 1 16 7 

Black plumage 6 0 1 0 3 1 13 1.0 1 13 7 

All black 5 1 1 0 1 1 5 1.0 1 2 7 

Control 0 2 3 2 12 1 16 1.0 1 16 7 
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Responses, once the model was approached, varied from apparent curiosity and walking 

away, to an almost immediate flight towards and physical attack of the model, resulting in 

the model being knocked-over (KO) (see Plate 1). (The full range of behaviours 

displayed, descriptions of these behaviours and interpretations are listed in Appendix 2.) 

Trials lasted from I to 16 minutes. Over half the trials (57%) were terminated by a KO of 

the model (28/49) (Table 3), the remainder ran the entire 16 minutes. 

Table 3 Summary of aggressiveness displayed towards models in order of most to least 

aggression elicited. Aggression (agro) index - a summation of aggression 

displayed (categories a1 to a6), with possible ranges from 1.00 (100% of time 

spent in top level of aggress ion, a1) to 6.00 (100% of time spent in a6 category­

no approach or interest shown in model). See methods sectionfor details. 

Percent of time CIG pair members reached various aggression categories. 

Number of times models were KOed or elicited piping displays. Behaviour 

categories: a1 - physical attack; a2 - warning,' high level threat preceding 

attacks; a3 - lower level threats (not always followed by physical attacks, always 

directed at conspecifics); a4 - alert or alarmed; a5 - interest, aware; a6 - no 

approach to within one metre of model. Letters after results indicate results of 

post hoc comparisons, groupings with the same letters are not significantly 

different. 

Agro Aggression categories (n = 7 all models 

Model index al a2-3 (a2) a4-5 a6 KO Piping 

Half 1.71 a 60% a 30% (29%) b,c 10% 0% 5 5 

CIa duplicate 1.99 a 41% a 46% (44%) b 13% 0% 5 5 

Double 2.40 a,b 45% a 32% (22%) b,c,d 17% 6% 4 6 

Black bill 2.41 a,b 47% a 32% (23%) b,c,d 8% 14% 5 5 

Black plumage 2.47 a,b 46% a 31% (18%) c,d 14% 10% 5 4 

All black 2.83 a,b 54% a 10% (7%) a,d 12% 25% 4 2 

Control 5.59 b 0% b 2% (0%) a,d 34% 64% 0 0 

Almost two-thirds of the time (61 %) both birds participated in defence behaviours 

together (i.e., both displayed the same top level of aggression) (30/49), but nearly a third 

of the time (31 % of the trials) only one bird responded (15/49). Behaviours were often 

synchronised between pair members, especially for piping displays. Of 27 piping 

displays, only two were performed by a single member of the pair, in all others both 

members participated. Two pairs were notable in the lack of participation by both 

members (Creek and Rock) (Table 4). 
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Table 4 Aggressiveness displayed by pairs and the number of pair members participating 

in the displays. Pairs listed in order of most to least aggression displayed overall. 

The aggressiveness (agro) index - a summary of aggression displayed (categories 

a1 to 16), possible range from 1.00 (100% of time spent in top level of aggression, 

a1) to 6.00 (100% of time spent in a6 category - no approach or interest shown in 

model). Percent of time CIO pair members reached various aggression categories. 

Behaviour categories: al - physical attack; a2 - warning; high level threat 

preceding attacks; a3 - lower level threats (not always followed by physical 

attacks, always directed at conspecifics); a4 - alert or alarmed; as - interest, 

aware; a6 - no approach to within one metre of model. See appendix I for 

detailed description and ranking of aggression levels. 

Agro Behaviour category No. defending 

Pair index a1-a3 (a1) a4-5 a6 both one n/a N 

WOC 1.96 85% (60%) 15% 0% 6 1 0 7 

TW 2.04 87% (50%) 0% 13% 6 1 0 7 

WW 2.06 82% (62%) 4% 13% 6 1 0 7 

Wool shed 2.59 75% (34%) 11% 14% 5 1 1 7 

Creek 2.69 69% (43%) 16% 15% 2 4 1 7 

Dune 3.42 55% (24%) 28% 17% 5 2 0 7 

Rock 4.64 23% (17%) 33% 45% 0 5 2 7 

The difference in the aggression index (overall proportion of time CIO spent in aggressive 

behaviours) (Table 2) was significantly different between models (S = 13.81, d.f. = 6, 

p = 0.033). The most overall aggressiveness was displayed towards the three CIO-like 

models, with the order from most to least proportion of time in higher levels of aggression 

being half, CIO-duplicate, then double. The lowest was for the all-black silhouette (and 

control). 

Although differences in overall aggression (the aggression index) varied between models, 

there was no significant difference in the proportion of time spent in physically attacking 

(i.e., a1 category) the various models (control excepted). If the control is included, then 

the difference was significant (S = 14.75, d.f. = 6, p = 0.023). 

There was a significant difference in the proportion of time CIO spent in warning 

behaviours (a2) between models (including the control) (S = 17.45, d.f. = 6, p = 0.008). 

In spite of high levels of aggression towards the silhouette (54% of the time spent 

attacking it), only 7% of time was spent in warning it (Table 2), which was significantly 

different from all other models (control excluded). (The differences in warning time 

between the control and silhouette were not significant.) This contrasts with the CIO-
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duplicate, which received the highest levels of warning; 44% of the time spent interacting 

was in warning (a2) behaviours towards it. There was no significant difference in 

proportion of time spent warning the four pied plumage models. This lack of warning 

behaviour towards the silhouette was also reflected in the number of pairs performing a 

piping display against it. Only two warned it this way, compared with four to five for all 

the other models (excluding the control). 

There was a significant difference for the top level of aggression (TLA) displayed towards 

the models (the significance was due to the control) (S = 21.51, d.f. = 6, p < 0.001). The 

highest levels of aggression (i.e., physical attacks) were displayed by every pair (n = 7) 

towards the CIO coloured models, followed by black body and black bill (6 of the 7 

times), and lastly the silhouette (5 or the 7 times) (Table 2). Only interest or alarm was 

displayed when the control was presented, and occasionally it was 'nibbled', but never 

aggressively attacked or 'warned' via pipping displays or other a2 warning behaviours. 

There were patterns in the responses to the other variables, but none were statistically 

significant (p > 0.5). The median time to reach the TLA (which varied by model and pair) 

was reached most quickly for the silhouette (1 min.) and half sized model (2 min.) and 

most slowly for the CIO-duplicate (5 min.) (Table 2). The minimum times to reach TLA 

were about the same for all models (1-2 min.), but the maximums varied from 5 to 16 

minutes, with all-black silhouette having the shortest maximum (5 min.). Although the 

TLA was reached most quickly with the silhouette, only five pairs or members of pairs 

attacked it, and virtually none 'warned' it. 

There were marked differences in the level of aggression displayed by various pairs. This 

was accounted for in the statistics (blocked by pairs), but it is nevertheless interesting to 

note. Some pairs were more cooperative (both members participated in defence of 

territory) (Table 4). Five pair members attacked all of the models (control excepted), and. 

KOed five or all six models (Table 5). In contrast, two pairs (Dune and Rock) were much 

less aggressive than the others. The Dune pair attacked five models and KOed only one, 

and the Rock pair attacked only three models and KOed none. The proportion of time 

spent in al or a2 levels of aggression (attacking or warning) also reflected these 

differences. 
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Table 5 Number of times particular levels of aggression were reached, median time to 

reach top level of aggression (TLA), number of KOs and number of times pipping 

displays occurred during presentation of six models and one control. Ordered by 

TLA and median times to reach TLA. Behaviour categories: al - physical attack; 

a3 - lower level threats (not always followed by physical attacks, always directed 

at conspecifics); as - interest, aware; a6 - no approach to within one metre of 

model. See appendix 1 for detailed description and ranking of aggression levels. 

Top TLAs reached for 7 models Median time 

Pair al a3 a5 a6 to TLA (min) KOs Piping N 

TW 6 1 0 0 2 6 6 7 

Creek 6 0 0 1 3 5 2 7 

woe 6 1 0 0 3 6 4 7 

Woolshed 6 0 0 0 4 5 5 7 

WW 6 0 1 0 4 5 5 7 

Dune 5 1 1 0 5 1 4 7 

Rock 3 0 2 2 12 0 0 7 

DISCUSSION 

CIO approached the three CIO-like models and the silhouette most quickly, but tended to 

be less aggressive towards the silhouette (only five physically attacked the silhouette, 

versus seven for the CIO-like models). The control, although not shaped like an 

oystercatcher, was also approached by five pair members, and two of those pairs briefly 

displayed behaviours often associated with low levels of aggression towards it (2% of the 

time). This might be because they associated it with the other models, or it was a strange 

unknown object and they were curious and/or alarmed. 

The three CIO-like models were the only models physically attacked by every pair. These 

models may represent the highest threat to the pairs due to their colouration, representing 

mature adults of the same species and therefore potentially competing for resources and/or 

a mate and even potentially displacing the pair members from the territory. That CIO 

pairs attacked the CIO-like models is perhaps not surprising, but that they attacked the 

other models as well (albeit with slightly less vigour) is interesting. The shape must play 

an important role in both recognition and as a cue to their response. Colour and size may 

then be secondary to the level of threat and risk posed. The black body and black bill 

models may appear to be less of a threat because they represent a different species (black 

body) or lack white signalling plumage, and a juvenile (black bill). In these cases, the 



threat may be only temporarily food resources, rather than something as serious as 

potential displacement. 
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The time to reach TLA might depend on the balance between the threat posed by the 

intruder and the risk involved in a fight. For models representing a high threat (i.e., all 

those with CIO-like colours), the model representing the lowest risk was attacked most 

quickly (e.g., the half-sized model), in contrast to the other two models, which 

represented a higher risk, and were therefore attacked after a longer time period (median 

times twice as long as the half size model). 

Direct physical attacks or fights entail the risk of injuries, therefore warning systems such 

as calls and displays are often used, presumably to minimise the risks of physical 

confrontations, especially with closely matched conspecifics (Harper 1991). Some of the 

warning behaviours in oystercatchers are quite distinctive and well described, such as the 

piping display (Harris 1970; Marchant and Higgins 1993). In song birds, calls were found 

to be effective in deterring conspecifics from attempting to settle in occupied territories 

(Davies 1978). 

The TLA never included the group of warning behaviours coded as a2 - those usually 

preceding an attack (Table 2). These warnings appeared to be 'in earnest' and were 

followed up with an attack. Although the silhouette was quickly approached and 

frequently attacked (five of7 pairs) it was almost never warned (a2) (only 7% compared 

with 22-44% for the other pied plumage models). The all-black silhouette also received 

fewer a2 warnings (18%). However, if a2 and a3 are combined (the highly aggressive 

warnings plus the generally antagonistic behaviours), the differences between all the 

models except the all-black and control almost disappear, except for the CIO-duplicate 

model. 

The CIO-duplicate elicited a higher proportion of time spent in warning behaviours ("a2") 

than all the other models (although not significant at the p = 0.05 level), and a 

significantly higher proportion of time spent in warning behaviours ("a2") than the 

silhouette and all-black plumage models. Perhaps these warning displays are very species 

specific and, even further than that, very specific to closely matched conspecifics. If the 

purposes of warning is to prevent injury, one might expect more warning towards the 
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double size model. However, if the asymmetry between individuals is high, and the 

warning displays serve primarily as communication about asymmetry (Harper 1991), then 

when these asymmetries are obvious the warning behaviours may become redundant and 

therefore reduced or eliminated. 

Some pairs were much less aggressive than others. Dune and Rock were lower than other 

pairs for most measures of aggression (Tables 3 & 4). The Rock pair was especially low. 

There are several possible reasons including low quality territories, pair turnover, 

impending divorce (Heg 1999), incubation, or some combination of these factors. The 

Rock pair was incubating during two trials. However, other pairs were also incubating 

during trials and still KOed all models presented except the control (n = 9). For four of 

the CIO pairs that were incubating and lost clutches, a repeat test was conducted and the 

responses were similar, or the response more aggressive, when incubating than when not 

incubating. In South Island pied oystercatcher, Banks (1998) found that response rate to a 

decoy were the same in all three different stages of the breeding cycles he tested (pre-egg, 

egg, and chick). Therefore it seems unlikely that incubation was the main reason for this 

lack of response in the Rock pair. 

If the quality of the territory, and therefore the benefits, are low then the costs invested in 

defence should also be lower. If territory quality is reflected by reproductive success, 

then these were lower quality territories. Compared with 13 other territories along the 

north coast during the nine breeding seasons from 1991 to 1999, both the Dune and Rock 

territories were in the bottom third in terms of reproductive success and breeding effort 

(i.e., season's pair attempted to breed, number of successful breeding seasons, and mean 

number of fledglings per year) (Chapter 4). There may also have been some turnover of 

pair members in the Rock territory because it was not occupied during one of the breeding 

seasons. If one of the pair members was considering divorce, it would probably be less 

likely to assist in territory defence (Heg 1999) but there is no way to confirm this for these­

pairs, and this would not prevent the other pair member from vigorously defending the 

territory unassisted. 

Zack and Stutchbury (1992) argued that subadult plumage is a reliable signal used for 

gaining access to high quality sites as a nonbreeder for the purpose of assessing territories, 

and establishing site dominance at high quality territories. This involves frequent 
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interactions with older territory owners, and avoiding aggression from them via sub adult 

plumage would presumably facilitate the maintenance of an 'assessment sphere'. This 

argument appears to be weakly supported by the results of this study. If the models with 

no adult colouration on the soft parts were perceived by the territory owners as juveniles, 

then the slightly lower level of aggression displayed towards them compared with the 

CIO-duplicate would allow them more access to the territories. However, since mate 

guarding is probably not a key function of territory defence in oystercatchers (Ens 1992; 

Banks 1998; Heg 1999), the main threats imposed by intruders are probably displacement 

and competition for food resources. An immature CIO would represent slightly less risk 

in terms of displacement than a mature CIO, but the same as an adult for food 

competition. An immature probably represents a lower risk in terms of fighting ability as 

well as a lower willingness to risk a physical fight. Therefore, in total, an immature 

intruder probably represents both a lower risk and a lower threat, reSUlting in a response 

similar to that of models with adult colouration which represent a higher threat, but also a 

higher risk. 

Both black plumage models tended to incur slightly less wrath from the territorial pairs, 

but only the all-black silhouette significantly less. Perhaps, as Ens (1992) suggested, the 

white plumage patterns playa role in territory defence, but most effectively in 

combination with the bright colouration of eyes, bill and legs. Alternatively, the slightly 

lower levels of aggression may be similar to how CIO would respond to a different 

species of oystercatcher. The cues may be similar enough to represent a threat to 

resources, but less of a threat than a mature CIO, and therefore attacked slightly less 

vigorously. 

Models, mounts and decoys have been helpful for testing theories of social stability, 

territory acquisition, strength of territory defence, changes in territorial behaviour across 

the breeding season, gender roles in territory defence, and many other behaviours in birds 

(see for example Beletsky 1992; Lehner 1996; Banks 1998). In oystercatchers, Vines 

(1979) suggested that the strength of defence near the perimeters of territories could 

provide clues of how close a loc~il population is to carrying capacity. Strength of territory 

defence may also provide clues to the quality of territories. Lauro (1992) found 

communally nesting oystercatchers all responded by piping at models, confirming that all 

the members nesting together participated and cooperated in territory defence. 
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In this study, models were also useful for drawing birds to noosemats for capture. This 

meant that, compared with other commonly used methods, birds that were not incubating 

could be captured, and work could be done during the day (as opposed to using spot-lights 

at night or drop-traps over the nest). The strongest responses, and the most warning 

behaviours, were directed at the CIO-duplicate model, which made it the most useful of 

the models for a capture lure. The warning behaviours lasted longer, with more walking 

around, and were therefore more likely to draw in both pair members and allowed more 

chance of capture. Indeed, the CIO-like model was so antagonising that the same 

individuals were sometimes caught several times in succession while attempting to 

capture their mates. 

If future research were undertaken into aspects of cue response, using territories that are 

similar as possible, and using fewer models and more pairs to increase the sample size, 

would increase the likelihood of detecting differences and make for a more powerful 

experiment. Eliminating differences in breeding stage would also be advisable. 

Examining gender differences in future research may also prove fruitful as well. 

SUMMARY/CONCLUSIONS 

Territoriality has important implications for the population dynamics of CIO. CIO pairs 

are fiercely territorial and, like other oystercatchers, holding a territory is essential for 

breeding. I argue that the response to the various models presented was a result of CIO 

members' assessment of the relative threat and risk these models represented. The CIO­

coloured models, with the same colour patterns as mature adults of the same species, 

represented the greatest threat to the pairs, potentially even displacing them from their 

territories. The normal and largest sized model represented the greatest risk, and the 

smallest model the least risk. All CIO-like models were physically attacked by all pairs 

(due to the high level of perceived threat), but the normal and double-sized models were 

attacked after the longest time, probably due to the higher risk of injury in a fight that it 

represented. The main cues to recognition seemed to be shape (silhouette) and colour 

patterns; therefore, these models were approached most quickly. The all-black silhouette 

and black plumage models were warned very little, perhaps because they represented a 

different species, and warning behaviours are very species specific. Of all the models, the 
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CIa-duplicate model received the largest proportion of time in warnings, suggesting one 

function of warning behaviour is to avoid physical fights when asymmetry is minimal. 

The pied plumage patterns of oystercatchers that use sandy beaches have been suggested 

as evolving to assist in defence and threats against intruding conspecifics in females or, 

alternatively, to maximise camouflage (especially for incubating birds), although these 

need not be mutually exclusive. In immature birds differences in co10uration have been 

suggested as a signal of non-breeding status to allow for easier access to territories for 

assessment. The more aggressive responses of CIa pairs to models with pied plumage 

and colored soft parts, over those with no colour or all black plumage, lends some support 

to these arguments. 

Models are very useful tools in studying a variety of behaviours because stimuli can be 

varied systematically and behaviours elicited, rather than having to wait for them to occur 

spontaneously. Models have also proved to be useful tools as a capture aid in CIO and for 

determining territory boundaries. With further research, the response of territorial pairs to 

models may also be able to provide clues to the quality of territories and how close a 

population is to carrying capacity. 
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APPENDICES 

Appendix 1 

Latin square design used for model experiment. Codes: OC - CIa duplicate, HS - half 

size, DS - double size, BD - black body, BL - black bill, AB - all-black (silhouette), and 

CT - control. (See Table 1 for descriptions and Plate 1 for a photo of the models). 

Models 

Territory OC HS DS BD BL AB CT 

WW 4 5 1 3 6 2 7 

WoC 5 1 6 4 7 3 2 

TW 2 4 3 6 5 7 1 

Creek 3 2 5 7 4 1 6 

Dune 6 3 7 2 1 5 4 

Woolshed 1 7 4 5 2 6 3 

Rock 7 6 2 1 3 4 5 
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Appendix 2 

Behaviours and aggression categories assigned. 

Level Behaviour Description 

al flying at Direct flying attack 

al feint at Move suddenly at from close range 

al ground attack Attacking the model on the ground after a KO 

al knock over (KO) Physical attack which knocks model over 

al peck Direct peck at model 

al pecking/lunging A quick lunge with bill from close range 

al wing beating Attacking with wings 

a2 aggressive approach Very direct approach with wings held out ('carpel flexure') 

a2 piping display, stand or walk Distinct rapid calling and zig-zag walk with bills pointed 

downwards, usually by both members of a pair 

a2 sidle Moving sideways to within striking distance 

a2 stand tall Standing up erect, often with feathers on back of head erect 

a3 body rocking Rocking body back and forth 

a3 bill tuck Bill tucked under scapulars, eyes open 

a3 carpel flex Wings held out from body 

a3 ground peck Pecking at the ground, different motions than foraging 

a3 head bobbing Head bobbing up and down 

a3 object toss Picking up objects and tossing them to the side 

a4 forage Normal foraging behaviours 

a4 false brooding Sitting down as if brooding or incubating 

as approach model Or re-approach model 

as nibble Gentle nibbles (as apposed to pecking) 

as standing near the model Within one metre 

a6 away from model More than one metre 

a6 no approach Never approached model to within one metre 

a6 walk away from model To further than one metre 



The original questions 

CHAPTER 8 

CONCLUSIONS 

Several key questions were posed at the beginning of this thesis including: 
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• What are the factors limiting the population of Chatham Island Oystercatcher (CIO) 

on the Chathams? 

• What is the abundance and distribution of the population and is it increasing, 

decreasing or stable? 

• What are the recruitment and mortality rates, and within which segments ofthe 

population are they acting and during which season(s)? 

• What habitats are CIO selecting at the general, territory and nest-site level? 

• What are the links between productivity and habitat characteristics (what is high 

quality habitat?) 

Specific management related questions from recovery planning ((Davis 1988a, Grant 

1993)) which inspired these questions included: 

• If management intervention increased productivity, would the breeding/total 

population increase? (Is there enough habitat to support increased productivity, 

especially over-winter?) 

• What are the primary causes of clutch and chick losses? 

• What recovery goal should be set, (when will the habitat on the Chathams be 'full', 

i.e., have reached carrying capacity?) 

• How can breeding habitat be improved and/or increased? 

To answer these questions, objectives for this study were set to collect and interpret data 

for CIO on: 1) population size, trends, and distribution across the Chathams, 2) basic 

breeding parameters for 15 pairs along the north coast, 3) recruitment and mortality 

rates, 4) habitat selection at the general, territorial and nest-site levels,S) habitat factors 



that are correlated with territory quality as reflected in breeding success, and 6) cues 

that elicit territorial behaviour in CIO. 

The findings 

Abundance and distribution 
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Chatham Island (CI), and to a lesser degree Pitt Island, are essential to CIO conservation 

as about 85% of breeding pairs occur on these two islands. It appears that the 

population has increased by about 20-40 individuals (20-39%) since the late 1980s, 

probably due in part to management intervention along the north coast. The total 

population was estimated at 140-150 adults in 1998, with all of the increase having 

occurred on the two main islands (Chatham and Pitt Islands). Comparisons with past 

counts were difficult due to differences in methodology. The numbers of breeding pairs 

on Rangatira appears to be slowly declining. On the surface this is surprising since 

Rangatira is free from introduced mammalian and avian predators, although the native, 

predatory skua breeds on the island; however, Rangatira may not be preferred habitat for 

CIO, and relative use is probably dependent on overall predator pressure and other 

factors around the whole of the Chathams archipelago. Future counts ofCIO should be 

conducted so comparisons can be made over time and changes in the population 

determined. 

Recruitment and breeding parameters 

Flooding was a major cause of clutch loss (40-50% of clutches) among the 15 pairs of 

CIO monitored over the three seasons of this study, but may only significantly decrease 

productivity in some pairs or in some years because pairs have the capacity to lay up to 

two replacement clutches. In one season (1996) tidal flooding destroyed most of the 

clutches. Damaged but whole eggs left in nests caused delayed or failed breeding in 

17% of the pair-seasons (n = 42 pair-seasons). Productivity was variable between 

seasons, but overall was low compared to many other oystercatcher species. Overall 

breeding effort was high (98% of pair-seasons). Risk of losses for eggs and chicks, 

especially non-flooding losses, were highest the week just before and after hatching. If 

chicks survived their first two weeks they had good chance of fledging: 75% oflosses 
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occurred within the first 11 days after hatching. Eviction of juveniles was about 33 days 

after fledging. 

Habitat selection 

CIa used the coastline almost exclusively. The shoreline of the lagoon received only 

2% use, compared with 26% availability and only by floaters (nonterritorial 

nonbreeders). Intertidal rock platform was selected by CIa over four times more than 

would have been predicted by their availability, and sandy beaches were selected over 

twice as often. Sections of coastline with wide storm-tide zones were selected more 

often than narrow zones in all cases except one (the little used boulder/cliff/shell 

sections of coastline). 

Contrary to past findings, paddocks and sandy beaches were used extensively by some 

pairs for foraging along the north coast, Chatham Island. Among the 15 study pairs, 

sandy beach territories (those territories with no rock platforms or boulders) were the 

most productive, especially during periods of no management. There were some 

indirect indications that pair turnover may be high. High quality nest-sites appear to be 

limiting due to the establishment of marram grass and high predator pressure, especially 

in some territories. CIO pairs on Chatham and Pitt Islands may be trapped 'between the 

devil and the deep blue sea', forced to balance the risks oflosing clutches to flooding 

with the risks of predation if they nest near the marram grass covered dunes. 

Territorial cues 

CIa responded well to two-dimensional models, and can be lured by them into noose­

mats for capture and to study territory boundaries. The most CIO-like models were 

attacked most vigorously, probably because they represented the highest threat and risk. 

Warning behaviours were displayed the most to the model that was the most similar in 

shape, size and colour to CIO. CIa seem to use shape first for recognition, then colour 

and size for threat/risk assessment. There appeared to be a positive correlation between 

aggression and territory quality; pairs seemed reluctant to invest high amounts of effort 

defending lower quality territories (as reflected by productivity). 
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What regulates or limits the population? 

A key objective of this study was to detennine if habitat during one season was 

critically limiting and, if productivity was increased through management intervention, 

would it result in an increase in the total population. The high survival of first-year 

birds over winter from this study suggests that foraging habitat is not critically limiting 

at the current population densities. Survival of immature first-year CIO is likely to be 

density dependent (see for example (Goss-Custard et at. 1994, Gass-Custard et at. 1995, 

Gass-Custard and Durell 1988, Gass-Custard et at. 1982)), and at higher densities might 

become a critically limiting factor. Population modelling could be used to explore this 

further, but was outside the scope of this study. 

Potential limiting factors on the CIO population include food, predators, competitors, 

weather, disturbance and pathogens. During the breeding season, foraging habitat did 

not appear to be critically limiting at current densities along the north coast, Chatham 

Island. Several territories had foraging habitat of high enough quality to support three­

chick broods, and many territories (9 of 15 along the north coast, Chatham Island) were 

able to produce l.33 or more fledglings/pair/season on average over one or more three­

season periods. 

It appears that high quality nest-sites and areas with low predator pressure (or good 

habitat for escaping predators) were the main limiting factors. These factors may vary 

from territory to territory. Some territories appeared to lack high quality nest-sites, 

resulting in significant losses to flooding. Other territories had good hatching success, 

but low chick survival, possibly due to predator pressure. Adult mortality rates, 

especially among the breeding population, may be a sensitive parameter, but could not 

be detennined during this study. 

Limiting factors may also vary from season to season. Productivity varied considerably 

because of weather patterns for some territories. In one case the pair in the OTF 

territory lost all but one clutch to tidal flooding over three seasons (n = 6), but in the 

three year periods before and after this study fledged 1.67 and 1.33 

fledglings/pair/season respectively. In other territories variations in predator pressure 

may be the main factoring limiting breeding success in some seasons. 
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CIO in context 

As a small worldwide family, with only a single genus, the oystercatchers tend to share 

many similarities. Therefore, much of information from other oystercatcher species 

may potentially be transferred to CIa, particularly from South Island pied oystercatcher 

and variable oystercatcher to which they are thought to be most closely related (Baker 

1972, Hayman et al. 1986, Hockey 1996a, Sibley and Monroe 1993»). Most of the 

comparative information in this section is drawn from two reviews of the oystercatcher 

family (Haematopodidae) by Hockey ((1986, 1996a»), plus work by Baker ((1972, 1975») 

on the New Zealand oystercatchers. 

Habitat use by CIO shared similarities with both South Island pied oystercatcher and 

variable oystercatcher, but was more similar to variable oystercatcher. The CIa, like 

variable oystercatcher was restricted to the coast with rare exceptions. However, CIO 

share the trait with South Island pied oystercatcher of foraging in paddocks, and 

subsequent to this study one pair was documented nesting in paddock adjacent to the 

coastline (Moore et al. 2000»). Similar to other pied oystercatcher species, CIO made 

extensive use of sandy beaches. 

In all oystercatchers fidelity to mate and breeding site tends to be strong (Hockey 

1996b»). This appears to be the case for CIa on Rangatira (Davis 1988b»), but is 

unknown for those in other parts of their territory. Some CIO pairs defended territories 

throughout the year, which is a trait also found in a couple of other oystercatcher 

species, the Australian pied (H. longirostris) and African black (H. moquini) 

oystercatchers. 

CIa along the north coast, Chatham Island, showed patterns of nest-site selection that 

were very similar to other species of coastal breeding oystercatcher. They tended to nest 

predominantly on sand in open, high visibility areas in the widest sections of beach 

within their territories, or on a soft substrate on rock outcrops if wide sandy beaches 

were unavailable. 

Modal clutch size of oystercatchers in the Northern Hemisphere is three, but in the 

southern hemisphere is two except for variable oystercatcher and South Island pied 

oystercatcher, which are also three. Interestingly the CIO modal clutch size is two, 
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rather than three, as would be expected by systematic affinities. The incubation period 

for CIO of28-29 days is in the modal range for most spp of27-30 days, and is similar to 

that for variable oystercatcher (28 days), and just slightly longer than that for South 

Island pied oystercatcher (26 days). All oystercatchers are single-brooded, but lay 

replacement clutches if the first clutch lost. Productivity of CIO was low compared to 

most other species. Causes of loss appeared to be similar, especially loss of eggs to 

flooding, which is common among many species of oystercatcher. CIO shared the 

habit, with other oystercatcher species, of incubating eggs after flooding and 

displacement. 

Average time to fledging ranges from 33-49 in oystercatchers. For CIO on the north 

coast, average fledging times were 39 days, and on Rangatira 48 days «(Davis 1988b)). 

Within a single species (e.g., Eurasian oystercatcher), fledging periods may range from 

27-52 days depending on brood size, chick growth rates, and food availability. 

Apparently unique to CIO on the north coast was the short time to juvenile 

eviction/dispersal (33 days, range 24-42). In most other species, the time is longer. For 

Eurasian oystercatcher the time is three months or longer, for American black 

oystercatcher (ll bachmani) five to six months, and for variable oystercatcher it is often 

through the winter (otherwise they join winter flocks three to four weeks after fledging). 

This may be because there is enough soft food (e.g., marine worms, sandhoppers) 

available that young CIO can feed themselves successfully. 

The piping call seems to have a similar function in all species, that of territory defense. 

In some species it is also used as a greeting call when one member of pair returns from 

being away. This was found in CIO as well. CIO responded vigorously to two­

dimensional oystercatcher-like models, attacking them within a minute or two of 

presentation and often knocking them down. Responses to models seem to vary among 

species. In South Island pied oystercatcher, a three-dimensional dummy was needed to 

elicit a vigorous response «(Banks 1998)). In Eurasian oystercatchers in Europe a live 

bird was used, as a dummy did not elicit the desired response «(Vines 1979)). However 

the same species in Russia responded to two- and three-dimensional models (A. 

Mosalov, pers. comm.). Unfortunately none of these communications described the 

response of oystercatchers to the various types of models tested in detail, making 
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comparisons difficult, as different types of response may have been sought in different 

studies. 

Management implications 

..... of site-dependent regulation 

Site-dependent regulation (Rodenhouse et al. 1997)) has important implications for 

conservation management. If there is a significant difference in the quality of different 

territories, some pairs will be very productive, while those in marginal habitats may 

only just replace themselves. There may even be population sinks where mortality rates 

are higher than recruitment rates (Pulliam 1988)), especially in areas with high adult 

mortality or where conditions change after the territory has been settled (Newton 1998)). 

Normally higher quality sites, with higher rates of productivity, should be occupied first, 

followed by lower quality sites as the popUlation increases (see for example (Ens 1992, 

Reg 1999); and the review by (Newton 1998)). If only high quality territories are 

monitored, changes in the breeding population may be missed. Overall estimates of 

productivity could also be significantly affected depending on which pairs are 

monitored. 

If productivity increases through management, there should be a corresponding increase 

in the total number of breeding pairs over time. However, these additional pairs may be 

forced to settle in lower quality habitat because the higher quality territories are already 

occupied, resulting in lower productivity for the pair and on average for the population. 

As a result the overall productivity per pair will probably decline. Monitoring and 

reporting the total number of fledges for specific areas (or per unit area) would reflect 

more accurately a total increase in breeding pairs. Otherwise, depending on which areas 

are monitored, a decline in average productivity per pair may be interpreted as a 

negative outcome, in spite of increased numbers of breeding pairs and an absolute 

increase in the population. 

Monitoring the composition of the nonbreeders may give indications as to the overall 

health of the population. Often mature birds, including oystercatchers, choose to delay 
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breeding rather than settle in lower quality territories ((Ens et al. 1995, Reg et al. 2000, 

Zack and Stutchbury 1992)). Floaters can provide a buffer to the population so that if 

breeders are lost the mature floaters can recruit into the breeding territories. At higher 

levels of productivity the numbers of floaters should increase, and the age structure of 

the floating population should change as well, with a higher proportion of mature 

individuals. In order to detect changes in the population it is important to monitoring 

the floater populations, as well as lower quality territories, as these are the ones that 

should respond first to changes in the overall numbers. 

The strong density dependent nature of site-dependent regulation means that increased 

population will not be self sustaining if there are no long term changes in limiting 

factors. In order for the increased numbers to be self sustaining there would need to be 

either increased numbers of territories, or increased productivity within existing 

territories, or some combination of the two. However, it may be more cost effective to 

temporarily increase productivity within existing territories through predator control, or 

other shorter-term management techniques, rather than implement more extensive long­

term measures such as habitat restoration. Some combination may also be quite 

effective. Modelling various scenarios could be useful for exploring the options and 

costlbenefits of various strategies. 

In summary, as productivity and the CIO population increases the following changes 

would be predicted: lower quality territories would be occupied, average productivity 

across the entire population would decrease as the newer pairs fledge fewer chicks, the 

proportion of floaters should increase, the average age of the floater population should 

increase and, eventually, first-year survival may decline. Many of these changes may be 

subtle and only detectable over long periods of time. Accurate assessment of territory 

quality by CIO is also essential for site-dependent regulation to occur. These responses 

in the popUlation have implications for monitoring. To detect where critical limiting 

factors are operating, monitoring of first-year survival is important, as is monitoring the 

proportion and composition of the floater population. As populations increase, average 

productivity per pair may be lower, but the total number of fledglings produced will be 

higher due to the additional breeding pairs. Therefore, reporting fledglings per unit area 

rather than (or in addition to) per pair may be more accurate. 
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..... of limiting factors and boUlenecks 

Limiting factors vary from area to area on the Chathams, with predation and nest-site 

habitat more important on the north coast; foraging habitat quality and possibly 

disturbance more important on Rangatira; and storms and nest-sites a major limitation 

along the exposed south and southeast coastline. Lack of nest-sites and disturbance, 

plus predator pressure may be significant on Pitt Island, especially around sandy beach 

areas. Disturbance alone, or in combination with other factors, may preclude CIO from 

using otherwise high quality habitat in areas such as around Owenga and Waitangi. 

Many variables contribute to recruitment including hatching success, fledging success, 

and brood size. Removing limiting factors which affect these recruitment variables 

should result in higher productivity or survival, and an increase in overall numbers. 

However, if any of these factors is creating a bottleneck, changing the other limiting 

factors will have no effect on overall recruitment. For example, if tidal flooding 

consistently destroys all the nests in an area, no amount of predator control to decrease 

chick losses will be effective. Conversely if predators remove all the young chicks in an 

area, no level of nesting effort or success will result in increased recruitment. 

If turnover of breeding pairs is high due to adult mortality, the impacts would probably 

be especially significant because it affects both recruitment and mortality. In addition to 

the death of an adult breeder, breeding effort for the season is often lost. The negative 

effects on recruitment may last over many seasons because the breeding pair bond is lost 

and fledging success is positively correlated with longer pair bonds in oystercatchers 

(Heg 1999) . 

..... ofvarious management options 

There are many options for recovery management as the path to recovery of a 

population need not be a reversal of the path leading to decline ((Green 1994)). Ideally 

management should result in the most fledglings and highest survival rates with the 

least cost and effort. Among the alternatives are the scale of management which might 

fall along a spectrum from very intensive management of just a few pairs to less 

intensive management of most pairs and variations thereof. 
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Because it appears that limiting factors may vary between areas, it may be more 

effective to manipulate different factors in different territories depending on the main 

factors limiting productivity. In some territories providing high quality nest-sites which 

reduce flooding and predation risk (e.g., by adding elevated areas for nesting or moving 

nests) may be most effective, whereas in others predator control might be more 

effective. Habitat restoration, and removal of marram grass, may simultaneous affect 

several factors (i.e., reduce flooding risk and decrease predator pressure) and over the 

long term could be more cost effective than predator control alone. It may be possible 

to refine predator control by removing just some predators or their prey species. For 

example, removal of rats, which in turn might reduce cat numbers, if rats are a main 

prey item of cats. Removing damaged eggs is probably an inexpensive and effective 

method to increase productivity over large areas by encouraging pairs to re-nest rather 

than incubate eggs that are not viable. 

If management refinements are made systematically, and carefully monitored, it may be 

possible to understand the various mechanisms driving the system and over time to 

target management more specifically and effectively. Modelling and a costlbenefit 

analysis could be helpful in analysing the options to determine the potential magnitude 

of various limiting factors, which management would be most effective, the range of 

possible responses of population to different types/amounts of management, and 

targeting of future research and monitoring . 

..... o/responsiveness to two-dimensional cardboard models 

Models proved to be useful for luring birds into noosemats for capture. This allows for 

capture of non-incubating birds during the daytime. The response of birds may vary 

with the season and quality of the territory. Sometimes one bird may respond more 

often or vigorously than an other. The CIO-like models also allow for determining 

approximate territory boundaries. With further research it may be possible to use 

responses of CIO to determine territory quality and how close an area is to carrying 

capacity. 



Future directions 

The following are suggested as some of the most important future research and 

management needs arising from the results of this study. Other management and 

research suggestions are listed at the end of each chapter. 
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• Use population modelling to explore the magnitude of various limiting factors, and 

to determine which management strategies are most likely to be effective, to predict 

potential responses of population to different types/amounts of management, and to 

test various costlbenefit scenarios. 

• Determine mortality rates for breeding adults and pair turnover in both managed and 

unmanaged areas. 

• Monitor first-year overwinter survival of CIO for several seasons and then 

periodically over the longer term. 

• Monitor the floater population and marginal habitats, and determine the age 

structure of the floater popUlation. 

The encouraging response of CIO productivity to recent predator control suggests that 

with sufficient resources this species' future can be ensured. With thoughtful 

coordination between research and management, much can be learned from the results 

of ongoing management and activities refined to be more effective. Insights into the 

mechanisms driving the system can also be gleaned, allowing for predictions to be made 

and tested, which can be a powerful tool, and the knowledge gleaned from the CIO used 

for conservation work with other species as well. 
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