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Abstract 

Exposed sand beaches are increasingly under pressure from human population growth and 

recreation. Activities, such as vehicle driving and horse riding, can pose a significant threat to 

specialist fauna living in the sediment. Few studies have evaluated how vehicles affect sand 

beach fauna and none have examined the impacts of horse users on burrowing bivalves. 

The research questions addressed were: do vehicles and/or horses on sand beaches impact on 

intertidal shellfish populations? Following on from this, can management policies mitigate 

any negative impacts from such activities on sand beaches? This research required an 

interdisciplinary approach utilising methodologies from coastal geomorphology, biological 

science and management. The intertidal distribution of the New Zealand surfclam Paphies 

donacina (southern tuatua) determined seasonally on six exposed surf beaches along Pegasus 

Bay. The impacts of vehicle and horse users on shellfish survival were experimentally 

investigated, and novel in situ methods were developed to examine the effects of horses on 

bivalve survival. 

Intertidal tuatua were small (< 30 mm) and shallowly buried. Found approximately 30 m 

below the last high tide line, they may be exposed to vehicle and horse users. There was a 

positive linear relationship between the number of vehicle passes and tuatua mortality (% 

tuatua mortality = 4.8 + 0.23 x number of vehicle passes). On average, horse riding resulted 

in 36.9% tuatua mortality within a single hoof print, but walking resulted in lower mortality 

than trotting or galloping. Extrapolative modelling predicted that the long-term presence of 

these users would be highly detrimental to shellfish. Reducing the temporal frequency and 

spatial extent of vehicle and horse users on sand beaches could decrease shellfish mortality. 

The thesis results were used to evaluate current management techniques and provide 

management options to minimise the potential impacts of beach users on shellfish resources. 
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Chapter 1 Introduction to sand beaches: 

fauna, dynamics, human use, and 

management 

1.1 Thesis statement 

Sand beaches play host to a wide range of human recreational activities which include 

fishing, swimming and walking as well as vehicle driving and horse training. With the rise in 

human populations living close to the coast and the frequency of these recreational activities 

increasing, sound beach management strategies become crucial to maintaining the many 

resources of coastal environments. Often public safety and geomorphologic issues take 

precedence in management policies for beaches. Diverse biota are present on sand beaches, 

often where recreational activities occur, making beach management an important tool for the 

prevention of ecological damage. In order for management to succeed, scientific information 

is needed that quantifies the damage inflicted to the biota and habitats of sand beaches as a 

result of human activities. 

The present research concerns vehicle and horse use on sand beaches; activities that may 

have high impacts on intertidal shellfish populations which inhabit sand beaches. In 

particular, it examines relationships between shellfish distribution and abundance with 

physical environmental factors, and the impacts of human activities on intertidal shellfish 

within Pegasus Bay, Canterbury, New Zealand (43°21'38.38"S 172°42'9.95"E). The damage 

resulting from the different types of activities are compared experimentally and extrapolated 

to make predictions of their long-term effects. Current sand beach management strategies are 

evaluated and recommendations are made for the protection of shellfish resources. 

Two key questions the present research seeks to answer are: do vehicles and/or horses on 

sand beaches impact on intertidal shellfish populations? Following on from this, can 

management policies mitigate any negative impacts from such activities on sand beaches? 

To answer these questions, three key objectives were devised:  

1. To examine the relationship between physical habitat properties and intertidal 

shellfish distribution and abundance;   

2. To experimentally evaluate the effects on shellfish survival of human use of vehicles 

and horses on sand beaches; 
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3. To review and evaluate sand beach management policies to minimise potential effects 

of vehicle and horse users. 

1.2 Introduction to sand beaches 

Sand beaches are the most widely spread intertidal habitat worldwide (Dexter, 1992). Such 

beaches are physically dynamic environments and can be defined by three interacting 

physical variables; wave energy, tidal range, and sand particle size (Pethick, 1984; 

McLachlan, 1996; McLachlan & Dorvlo, 2005). These three variables, as well as latitude, 

influence the species richness and community structure present on a sand beach (Dexter, 

1992; Dolbeth et al., 2007). 

Approximately 60% of the world’s population are forecasted to live within coastal 

floodplains by 2100 (Nicholls & Mimura, 1998), and because the size of the population is 

increasing (Hammond, 1992) there is increased development that alters the dynamics of sand 

beaches (Schlacher et al., 2007). While some developments, such as marinas and protection 

structures, are viewed as necessary to provide access to coastal resources and mitigate 

hazards, others are desired to support coastal economies. One of these is eco-tourism, which 

aims to have low environmental impact but often requires the use of Off-Road-Vehicles 

(ORVs) to gain access to areas. These vehicles cause coastal erosion as well as having 

immediate adverse effects on the benthos that are driven over (Wolcott & Wolcott, 1984; 

Schlacher et al., 2008a; Schlacher et al., 2008b; Thompson & Schlacher, 2008; Sheppard et 

al., 2009; Walker & Schlacher 2011). 

Throughout the world, sand beaches are spread across a wide range of tidal scales and wave 

exposures. In New Zealand, most sand beaches occur on meso-tidal coasts exposed to swell 

wave environments. Stating specific seasonal trends in erosion and accretion of sand beaches 

as well as the overall distribution of the beaches in New Zealand is difficult. This is because 

no organisation has been designated with the collection of ongoing data of this type. This 

type of data would be useful for referring back to, like that of hydrological data that regional 

councils are required to gather (Hesp et al., 1999).  

The National Institute of Water and Atmosphere (NIWA) Coastal Explorer is a database that 

currently summarises the available beach profile information, but it is still patchy along 

certain areas of the coast (NIWA, 2011b). Beach profile data gathering currently does not 

take place in a consistent manner across all regions of New Zealand. However, effects-based 
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decision making, an outcome of the Resource Management Act, 1991, has resulted in 

increased amounts of science being carried out which examine the physical processes and 

ecosystems of New Zealand’s sand beaches. 

1.3 Sand beach fauna 

Compared to rocky ecosystems, sand beaches are less diverse and have lower amounts of 

primary production (Knox, 2001). An overarching reason for lower diversity is that sand 

beaches lack habitat heterogeneity; a characteristic that facilitates species diversity by 

creating microclimates (Le Hir & Hily, 2005). On most sand beaches there are a wide range 

of biota, including crustaceans, amphipods, isopods, bivalves, and polychaete worms to name 

a few. Most functional feeding groups inhabit this area except grazers, which are usually 

absent due to no algal species being present (Knox, 2001). Sand beaches are frequently 

utilised by shorebirds, such as dotterels, which nest on, within or below sand dunes (Lord et 

al., 2001).  

As mentioned, sand beaches are physically dynamic environments with varying amounts of 

disturbance. To maintain populations in a habitat with such dynamics requires a wide range 

of adaptations for the biota present on these beaches. Wave action is the most dominant 

environmental factor on sand beaches, to which organisms must adapt (Nybakken & 

Bertness, 2005). A common adaptation to resist wave action is for organisms to burrow into 

the sediment (Dugan et al., 2000; Seike, 2008). Mobile organisms, such as crustaceans 

(crabs), often leave burrows to feed and mate. This is usually at night to avoid bird and fish 

predation (Williams, 1969). In contrast, more sedentary organisms, such as polychaete worms 

and bivalves, remain within the sediment and rarely become exposed to above ground 

conditions.  

Sand beach communities are important to neighbouring ecosystems because they provide a 

unique set of ecosystem services including filtration of large volumes of water and recycling 

of nutrients (Waldbusser et al., 2004). Unlike rocky shores, where primary production is 

carried out by algal species in the ecosystem, sand beaches receive nutrient inputs from 

phytoplankton in the water column and terrestrially derived organic inputs (Mclachlan & 

Erasmus, 1983). These nutrients are then consumed by zooplankton and bivalve filter-feeders 

and passed through the food web. These processes facilitate the high productivity of 

nearshore fisheries around sand beaches (Mclachlan et al., 1996). Facilitation of fisheries 

makes sand beaches a valuable economic resource worldwide. Sand beaches also contribute 
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economically through recreational uses, though these can be at odds with the beach’s 

ecological resources. 

1.3.1 Shellfish  

Shellfish belong to the phylum Mollusca, which includes over 50,000 described species and 

contains the class Bivalvia. This class includes animals enclosed in two shell valves (Gosling, 

2003) of which there are approximately 7500 species. Bivalves are responsible for high rates 

of filtration in the ecosystem (Dame, 1993; Marsden, 1999b; Gosling, 2003), making such 

species useful as indicators of environmental contamination by heavy metals (Boening, 

1999). In addition, shellfish are a significant food source for many predatory organisms in the 

ecosystem (Williams, 1969), as well as for humans.  

There are economic benefits in protecting sustainable shellfish populations. For example, in 

2007 bivalve fisheries generated US $13.6 billion of revenue worldwide (FAO, 2007). 

Traditional users, such as the iwi of New Zealand, also view shellfish as a valuable food 

resource. Accordingly, the sustainability of this valuable resource rests with a range of 

stakeholders. These groups include those directly focused on shellfish resources, such as 

fishermen, conservationists and territorial authorities, and those indirectly impacting 

populations, such as vehicle and horse users. The latter user groups may influence the 

outcomes of shellfish populations through the associated ecological impacts of their activity. 

Bivalve populations are highly abundant on sand beaches. Animals inhabit the surf zone as 

adults as well as juvenile stages in some species (Cranfield et al., 2002). Shellfish found in 

the surf zone are known as surfclams. These individuals have specific adaptations that allow 

inhabiting of this zone. The main adaptation is burrowing into the sediment using a muscular 

foot by carrying out a series of probing-anchoring sequences to pull the individual until it is 

buried (Dame, 1993; Hull et al., 1998; Gosling, 2003). Shellfish populations migrate within 

the beach; this can be on daily, seasonal, annual, and intertidal cycles (Marsden, 2002). In 

addition to these patterns of migration some species, such as Paphies donacina (tuatua), 

move seawards as they get older (Cranfield et al., 2002). There are several advantages of tidal 

migration; it allows bivalves to avoid desiccation by staying in a tidal zone where the 

moisture level is right; it keeps them too shallow for fish predators but safe from bird 

predators; and it also allows them to stay in a suitable zone for feeding (McLachlan & 

Erasmus, 1983).  
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New Zealand’s geographical isolation has led to a high level of endemism. There are two 

species of tuatua are present in New Zealand; Paphies donacina, found on the South Island 

and southern shores of the North Island, and P. subtriangulata, found mainly in the North 

Island (Richardson et al., 1982; Marsden, 1999a). Tuatua populations inhabit the intertidal 

zone of sand beaches as juveniles and move to the surf zone as adults. Tuatua (P. donacina) 

is the dominant species of shellfish on the beaches of Pegasus Bay (Marsden, 2010). Toheroa 

(P.ventricosa), another important species of surfclam, has recently had its fishery closed due 

to a large decline in its population (Ministry of Fisheries, 2012). These species are present 

intertidally, both as juveniles and adults (Cranfield et al., 2002; Marsden, 2002; Kingett 

Mitchell Ltd., 2003). Other species of surfclams inhabiting New Zealand’s sand beaches 

include Spisula aequilatera, Mactra murchisoni, M. discors, Dosinia anus, D. subrosea and 

Bassina yatei (Cranfield et al., 1996); however, many of these remain subtidal throughout 

their lifespan. Reproduction of surfclams is through broadcast spawning (Dawson, 1954; 

Cranfield et al., 2002). This process is largely seasonal in the South Island, with high 

production of gametes occurring in the warmer, summer months (Marsden, 2002). 

Historically the two species of tuatua and toheroa have been important to Māori who have 

gathered them as a customary food source, or mahinga kai (Moller et al., 2009). In some 

parts of New Zealand customary gathering has reduced. For example, it has been reported 

that local iwi no longer collect tuatua (P.donacina) from certain areas of Pegasus Bay, 

Canterbury, due cultural sensitivity to sewage outfalls in the area (Cranfield et al., 2002).  

1.4 Human use of sand beaches 

In many parts of the world, the most utilised sand beaches are usually dissipative allowing 

space for a wide range of on-beach activities. These activities include general recreation, such 

as walking, running and swimming. Activities also exist that have potential to be 

environmentally damaging if they were to continue uncontrolled such as vehicle driving, 

horse riding (including professional training), fishing, and shellfish gathering. The occurrence 

of these activities can vary temporally or spatially due to peoples’ perceptions. For example, 

shellfish collection often occurs away from the estuaries and sewage outfalls due to health 

concerns over potential contaminants.  

This thesis is focused on the effects of vehicles and horses on these ecosystems and hence 

these will be discussed in more depth than other activities. Off-road-vehicles (ORVs) are 

commonly used on sand beaches throughout the world for activities such as access to fishing 
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spots, launching of boats, four-wheel-drive recreation and eco-tourism. Most ORV traffic is 

concentrated in the intertidal zone where the sand is compact and easiest to drive on. The use 

of ORVs on sand beaches is of growing concern to conservationists and beach managers due 

to recent literature indicating a negative effect from vehicle traffic when driven over sand 

dunes and through the intertidal zone of sand beaches (Moss & McPhee, 2006; Schlacher & 

Thompson, 2007; Schlacher et al., 2008a; Sheppard et al., 2009). Vehicle speed is also a 

growing concern in relation to public safety. 

Previously, literature has focused on the effects of vehicles driven over sand dunes and the 

associated biota (Luckenbach & Bury, 1983; Anders & Leatherman, 1987; Priskin, 2003; 

Thompson & Schlacher, 2008). Emerging research evaluating the effects of vehicles on 

infaunal benthos in the intertidal zone of sand beaches has raised new issues for conservation 

and management. A majority of these studies show that with increasing vehicle traffic there is 

a higher mortality rate of the beach biota.  

Schlacher and Thompson (2007) conducted a study at several beaches in Queensland, 

Australia, and found beach traffic reached up to 500 vehicles per day for a particular area 

during a low tide period. That study also examined species distributions, including 

crustaceans, bivalves and polychaetes, on the beach and identified that as high as 65% of the 

total beach fauna was present in the area where vehicles had driven over. In light of such 

evidence, understanding the possible effects of these activities becomes essential. New 

Zealand beaches are unlikely to have sustained traffic volumes of this number; however, 

vehicle traffic is still likely to impact populations of infaunal organisms that are distributed in 

the intertidal zone. During some time periods, there may be unusually high impacts from 

vehicles as a result of special events that require beach driving for logistical purposes (e.g. 

the Northland marathon on 90 Mile Beach).  

In addition to vehicle use, horses are also commonly exercised on beaches throughout the 

world and in areas of New Zealand where equine sports are popular. From personal 

observations, horse use predominantly occurs in the intertidal zone of beaches where the sand 

is flattened; however, some beach users will swim their horse in the shallow swash zone area.  
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Figure 1.1: Horses being ridden on the intertidal zone of Sumner Beach, 

Canterbury. 

Perceptions of the ecological effects of vehicle and horse users differ. van Polanten Petel & 

Bunce (2012) conducted a survey of beach users and found that 77% of users rated vehicle 

use as highly disturbing to shore birds. However, the same participants were mixed in regards 

to perceptions of horse disturbance. These mixed perceptions may have driven the focus of 

earlier research which has focused largely on the ecological effects of vehicles and not of 

horses.  

There is no previous literature on the effects of horse riding on coastal ecosystems. Pikering 

et al. (2010) conducted a terrestrial study which identified the main effects of horse riding to 

be invasive species vectoring and addition of nutrients to the ecosystem via defecation. The 

introduction of invasive terrestrial plant species is less important in intertidal ecosystems due 

to high salinity levels on sand beaches, lower organic content, larger substrate, and frequent 

disturbance events; factors which make it difficult for terrestrial organisms to survive. 

Nutrient addition from horse droppings may have some highly localised short-term effects, 

but is likely to be minimised due to tidal cycles washing away the low volumes of deposits 



Chapter One: Introduction 

 

8 

 

made. The physical effects of horse hooves crushing infaunal species are likely to be the most 

important effects in a sand beach ecosystem. No studies have recorded the frequency of horse 

traffic on sand beaches in Pegasus Bay, but it is likely that high use areas are used by over 25 

horses per tidal cycle (Author observations).  

A study by Moffett et al. (1998) investigated the effects of human trampling during a series 

of volleyball games in East Cape, South Africa, and found that higher trampling intensities 

resulted in increased mortalities of the bivalve Donax serra and D.sordidus. Both of these 

species have similar shell morphology to P. donacina. These results indicate increased human 

trampling has adverse effects on organisms and this is likely to be a comparable trend for 

horses due to the similar nature of sediment disturbance (i.e. penetrating the sediment 

matrix). 

1.5 Management on sand beaches 

Current management of sand beaches employs policies and strategies which aim to mitigate 

the impact of activities on these beaches. There is no cosmopolitan law or standards for sand 

beach management, so it is up to a particular country to decide how to mitigate the negative 

impacts of beach activities on its coastal environment. This is often done by balancing many 

different values, including socio-economic, cultural and ecological. Traditionally, 

management approaches have been guided using singular scientific disciplines which can 

result in the coast becoming altered away from its natural state (Tintoré et al., 2009). Given 

that sand beaches are physically dynamic environments, utilisation of a single discipline may 

result in one issue being addressed while another is ignored or adversely affected. This makes 

use of a multidisciplinary approach increasingly important when considering implementation 

of bylaws that change the way the beach face is used. 

Coastal management strategies have traditionally focused on recreational and geomorphic 

issues and less on environmental issues (James, 2000). This is often due to a lack of suitable 

scientific information which can lead to difficulties in implementing successful management 

strategies. Stakeholder interests are another factor affecting management techniques, for 

example, democratic governments need to implement policies without being voted out for 

doing so. For environmental issues to be addressed in management strategies, scientific 

information must act as a voice in this debate. 
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Figure 1.2: The policy framework of New Zealand under the Resource 

Management Act, 1991. Arrows indicate to which policy another must be 

aligned 

In countries, such as New Zealand, there is often a set framework for development of 

management strategies (Figure 1.2). These can be imposed at a national, state/regional or a 

local level. In New Zealand, environmental and resource management policies are created 

within a framework stipulated by the Resource Management Act (RMA) 1991. This 

framework is designed to achieve a national consistency for identifying and resolving 

environmental issues. The RMA (1991) and the New Zealand Coastal Policy Statement are 

the two key pieces of legislation which guide councils in relation to coastal management. The 

Resource Management Act (1991) gives power to regional, district and unitary councils to 

decide which activities the general public can and can’t undertake. Activities which do not 

meet these standards require resource consent. Local bylaws can also be implemented to ban 

or put limits on the activity being carried out in its entirety.  

The territorial authorities in Pegasus Bay include the Christchurch City Council, Waimakariri 

District Council and Hurunui District Council. Environment Canterbury, the regional 

authority, oversees management of the air, land and water resources for the Canterbury 

region, including its coastal area. Environment Canterbury is responsible for producing a 
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Coastal Environment Plan and also makes suggestions to steering committees about possible 

changes to bylaws. This took place in 2009 when Environment Canterbury issued a non-

compulsory bylaw to the Waimakariri District Council and Hurunui District Council to 

change vehicle use on beaches in Pegasus Bay, Canterbury.  

One suggested recommendation aimed to prevent damage to the surrounding ecosystem 

including bird nests and sand dunes- “Vehicles may only travel along the beach below the 

last high tide mark”. To increase user safety, vehicles must not exceed 30 kmh
-1

, or 10 kmh
-1

 

within 50 m of people (The Northern Pegasus Bay Coastal Management Plan Steering 

Committee, 2008). This bylaw was adopted by the Hurunui and Waimakariri District 

Councils in 2010. It is not known if and how this management strategy has affected shellfish 

populations by changing the way in which vehicles and horses are used within the bay. 

1.6 Thesis Aims and Objectives 

Until recently, use of beaches in much of New Zealand, including Pegasus Bay, has been a 

free-for-all with little management being put in place in relation to vehicle driving and horse 

riding. The implementation of the New Zealand Coastal Policy Statement 2010 which 

specifically addresses the need to control vehicles on beaches in coastal management plans 

(e.g. the Northern Pegasus Bay Bylaw 2010). This has often resulted in activities being 

confined to the intertidal zone where infaunal biota, such as tuatua (P. donacina), are 

vulnerable. The initial question that this thesis sets out to answer was: do vehicles and/or 

horses on sand beaches impact on intertidal shellfish populations? Following on from this, 

can management policies mitigate any negative impacts from such activities on sand 

beaches? 

To answer these questions, three objectives have been devised: 

1. To examine the relationship between physical habitat properties and intertidal 

shellfish distribution and abundance;   

2. To experimentally evaluate the effects on shellfish survival of human use of vehicles 

and horses on sand beaches; 

3. To review and evaluate sand beach management policies to minimise potential effects 

of vehicle and horse users. 
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1.7 Study System: Pegasus Bay, Canterbury, New Zealand. 

Formation of Pegasus Bay 

Pegasus Bay is a large (55 km wide) eastern facing bay situated in the province of Canterbury 

in the South Island of New Zealand (Figure 1.3). The coastline is progradational. Underneath 

the surface of the coast, the plains are composed of Pleistocene fluvio-glacial outwash 

deposits, whereas the upper surface progradational plain is comprised of continental shelf and 

river deposits (Brown et al., 1988). The progradational shelf is 1 km wide in the north and 6 

km wide in the south (Shulmeister & Kirk, 1997). This progradation is said to have ceased in 

the north but continuing in the south at a rate of a few millimetres per year (Gabites, 2006). 

Overall, the Bay is said to be relatively stable and has changed little since 4000 years B.P. 

(Before Present) (Allan et al., 1999).  

The adjacent land mass that makes up the Canterbury Plains is predominantly made up of 

Quaternary sediments. The quaternary period extends from 2 million years ago until present 

day, and includes the earlier Pleistocene era (2 million years to approximately 11,500 years 

BP) (Bradshaw & Soons, 2008). The Quaternary may be divided up into 9 different stages 

using Marine Oxygen Isotope Stage to classify the bay’s sediments (Forsyth et al., 2008), 

with Q1 being the oldest and Q9 the most recent. These have been used to establish the 

movement of the shoreline around the Christchurch area (Forsyth et al., 2008). Using these 

classifications, the Pegasus Bay coastline was found to have migrated seawards between Q1 

and Q5, and Q5 and Q7. However, between Q7 and Q9 the coastline did not prograde over its 

entire length, but rather realigned its curvature to form a relatively stable platform shape 

under the prevailing current systems (Figure 1.4). In the present Holocene (beginning 11,500 

years ago) this coastline stabilised. As sea level dropped, coastal transgression halted and the 

beaches prograded further seaward, stabilising around 4,500 years BP in its present 

orientation and location.  
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Figure 1.3: Map of Pegasus Bay, Canterbury. Inset showing New Zealand 

(Red Star = position of Pegasus Bay). 
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Figure 1.4: Approximate limits of interglacial coastline in Christchurch area. 

Q= quaternary. mQ= mid quaternary (Adapted from Forsyth et al., 2008; 39). 

Today, a large amount of wave action influences the beaches of Pegasus Bay making this 

environment a physically dynamic area. In the past, wave action was responsible for the 

formation of beach deposit barriers between the alluvial fans of Canterbury and the sea 

(Soons, 1994). Continued presence of wave action is important as it acts to nourish the shore. 

This prevents erosion through losses of terrestrial derived sediment particularly that delivered 

to the coast by the Waimakariri River. 

Present state 

In its present state, Pegasus Bay extends approximately 55 km in length; from Banks 

Peninsula in the south, to the Waipara River in the north. The beaches within this bay include 

gravel, composite and sand types (Kingett Mitchell Ltd., 2003; Hart et al., 2008). Sand 

beaches start at the southern end of Pegasus Bay beside Banks Peninsula and extend 

northwards for approximately 40 km. Tuatua are abundant along most of this area, except 

adjacent to the mouth of the Waimakariri and Ashley Rivers (Marsden, 2010).  
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 Figure 1.5: Image showing the Southland Current (SC) moving up the east 

coast of the South Island, New Zealand. The eddy caused by the interference 

of this current causes sand to be swept south along the shore and deposited on 

at the southern end of Pegasus Bay (Hart et al., 2008; 657). 

The presence of sand beaches at the southern end of Pegasus Bay is due to sheltering by 

Banks Peninsula creating a lower energy wave climate (Goff et al., 2003; Reynolds-Fleming 

& Fleming, 2005). This results in disruption of the Southland Current that moves northwards 

on the east coast of the South Island (Figure 1.5) forming an eddy that transports sediment 

north to south from the river mouths. The profiles of these beaches lack significant seasonal 

variability but can change from year to year depending on the processes that have occurred in 

that year (Allan et al., 1999). Cusps are common on many of the beaches within the bay 

(Nolan et al., 1999), and storms frequently produce scarp formation (author observations) 

(Figure 1.6). 
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Figure 1.6: A scarp formed shortly after a storm event on South Waimakariri 

Beach (photo taken May 2010). 

The beaches in Pegasus Bay are semi-meso tidal on diurnal cycles (Goff et al., 2003). The 

intertidal zone of these beaches ranges in width from 30 m up to 160 m. Most beaches within 

Pegasus Bay are intermediate longshore bar-trough as determined using the morphodynamic 

beach model, as shown in 

 Figure 1.7 (Wright & Short, 1984; Short, 1999; NIWA, 2011b), but become more reflective 

as you travel north. Characteristics of Pegasus Bay beaches which place them in the 

intermediate category include: between one and three lines of breaking waves in the surf 

zone, cellular currents, profiles with cusps, and fine to medium sediment with a high 

shoreline mobility.  

 

 

 Figure 1.7: Diagram of a typical intermediate longshore bar-trough beach 

which represents that found in Pegasus Bay (Short, 1999; Pg. 179). 
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Figure 1.8: Density of 12 bivalve species in relation to beach type. Ο is the 

beach type where individual was collected and horizontal line shows other 

types of beaches where adult populations exist. (McLachlan et al., 1995). 

In addition, evidence presented by McLachlan et al. (1995) shows tuatua (P. donacina), one 

of the predominant species of shellfish in Pegasus Bay, to inhabit intermediate beach types. 

However, Figure 1.8 shows that P. donacina is found in a range of beach classes within the 

intermediate range unlike that of Donax faba, which is found exclusively in reflective 

beaches. This suggests that a range of adaptations are required and the adaptations of P. 

donacina are such that it can inhabit a wide variety of habitats. 

Freshwater inputs 

Pegasus Bay receives freshwater inputs from several natural and artificial sources. The two 

largest sources of freshwater input are from the Avon and Heathcote Rivers via the estuary 

and the Waimakariri River. Other rivers include the Ashley, Kowai, and the Waipara. 

Environment Canterbury river flow data has shown that the Waimakariri River can carry a 

large amount of suspended solids at times of high flows, which then get deposited in Pegasus 

Bay. The input of suspended sediment affects water clarity as the offshore water has lower 

turbidity than the river waters (Kingett Mitchell Ltd., 2003). The river mouths can be 

changeable especially after storm events. Non-natural inputs in the form of effluent outfalls 

are also present. These are the Christchurch City ocean outfall, which discharges 3 km 

offshore of New Brighton Beach, and the Kaiapoi-Rangiora outfall which discharges 1.5 km 
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offshore of Woodend Beach. These outfalls release treated wastewater on a daily basis 

(Christchurch City Council, 2010). 

Sediment sources 

Adjacent to Pegasus Bay are the Canterbury Plains, which are a broad plains made up of 

Tertiary and Quaternary sediments. These are believed to be up to 600 m thick (Wilson, 

1985) and are a result of alluvial fans from the Southern Alps (Shulmeister & Kirk, 1993). 

Three major rivers currently flow out into Pegasus Bay: the Waimakariri, Ashley and 

Hurunui Rivers. Each of these acts as a vector, transporting sediment from the Southern Alps 

to the open coast.  

Sediment from the continental shelf supplies 5% of the sediment in Pegasus Bay. The other 

95% is from the river systems, of that the Waimakariri River making up 77% of the total river 

input (Griffiths & Glasby, 1985). Overall, fine sand (2.5 to 3.5 phi) makes up a majority of 

the sediment that remains on the foreshore (Gabites, 2006). Blake (1967) previously 

determined the Waimakariri River was the source of most of the sediment that comprises the 

foreshore. The sediments from the Waimakariri River catchment are predominantly siltstone 

and sandstone (greywacke); while those from the Ashley River catchment are mostly 

greywacke, but also comprise some tertiary sediment. Historically, sediment supply was from 

offshore sources but presently it is largely made up of sediments supplied by the rivers in the 

bay.  

In addition to river inputs, some sediment is supplied from Banks Peninsula, in the southern 

end of Pegasus Bay. This sediment is transported north and deposited within the eddy created 

from disruption of the Southland current (Figure 1.5). Banks Peninsula is an extant volcanic 

land mass approximately 1170 km² in area. Therefore, the sediment supplied from this end of 

Pegasus Bay is of Tertiary and Pleistocene volcanic origin (Blake, 1967).  

1.7.1 Human use and management of beaches in Pegasus Bay  

The wide, low sloping sand beaches of Pegasus Bay make this a very useable environment 

for a wide range of beach activities. These activities include swimming, running, walking, 

fishing, horse riding, motorbike riding and vehicle driving. Some of these activities are 

correlated with others. For example, vehicle driving is often by fishermen wanting to access 

the river mouths. This is likely to occur more frequently during the whitebaiting season 

(August to November) and during times of salmon runs (October to April). Several 
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management authorities oversee the activities that take place on the beach in Pegasus Bay 

including regional and district councils, fisheries officers, and park rangers. This research is 

focused on activities that take place on the foreshore, so only those relevant authorities will 

be discussed in detail. 

Each local authority has their own area of coast which they are required to manage. These 

authorities are the Christchurch City Council which manages beaches to the south of the 

Waimakariri River mouth, the Waimakariri District Council which manages the beaches from 

the north bank of the Waimakariri River to the south bank of the Ashley River mouth, and the 

Hurunui District Council which manages the area extending north of the Ashley River mouth 

(Figure 1.9). Each Council must prepare a District Plan which must give effect to the 

objectives and policies of the New Zealand Coastal Policy Statement and the Canterbury 

Regional Policy Statement and must not be inconsistent with any objective, policy, rules or 

other methods in a regional plan (i.e. the Regional Coastal Environmental Plan). 

The District Councils are responsible for managing land use activities occurring landward of 

the Mean High Water Spring (MWHS) level. The Regional Council is instead responsible for 

managing activities occurring seaward of the MHWS to 12 nautical miles offshore (Gregory, 

2008). Of the recreational activities which take place on the foreshore of beaches in Pegasus 

Bay, horse riding and vehicle driving are the two most restricted by the Waimakariri 

Northern Pegasus Bay Bylaw 2010 and Hurunui Northern Pegasus Bay Bylaw 2010 (referred 

to as the Northern Pegasus Bay Bylaw 2010 from here on).  
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Figure 1.9: GIS map of the area that the Christchurch City Council, 

Waimakariri District Council, and Hurunui District Council manage within 

Pegasus Bay, Canterbury. The mouths of the Waimakariri and Ashley Rivers 

are also indicated. 

Vehicle use in Pegasus Bay 

Vehicles are commonly driven on the sand beaches of Pegasus Bay to carry fishing and 

whitebaiting gear and to access fishing spots and other off-road coastal areas. Vehicle driving 

is permitted; north of the Heyders Road entrance but south of the Waimakariri River mouth, 

Kairaki, south side of the Ashley River mouth and Ashworths Beach. The current bylaws in 

Pegasus Bay stipulate that vehicles should enter and drive directly to the intertidal zone and 

must not exceed a speed of 30 kmh⁻¹ or 10 kmh⁻¹ when within 50 m of people. Others areas 

of beach do get driven on but this is only done by park rangers, fishing officers or emergency 

services.  

This bylaw results in traffic being concentrated in the intertidal zone where shellfish and 

other intertidal organisms are vulnerable to being run over. No restrictions exist for the 

number, type or weight of vehicles that can be used; however, 4-wheel-drive Suburban 

Utility Vehicles (SUVs) are the most common, as seen in Figure 1.10. 
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Figure 1.10: Four-wheel-drive vehicles used by whitebaiters parked on the 

intertidal zone at the Waimakariri River Mouth, Pegasus Bay, Canterbury. 

Horse use in Pegasus Bay 

Along with vehicle driving, horse riding is also common on beaches within Pegasus Bay. The 

most frequent horse users on the beach are professional trainers which ride their trotters 

(horse with a sulkie) on the intertidal zone. This is more frequent when the track at the stud is 

too wet to be used. The recent bylaw adopted by the Waimakariri and Hurunui District 

Councils permits horses to be ridden across the whole beach but like vehicles, they must go 

directly to the intertidal zone upon entering. No speed limit is set for horse users. The 

implementation of this bylaw has acted to concentrate traffic towards the intertidal zone of 

Pegasus Bay. While this prevents erosion and damage to bird nests above the high tide line, 

little is known about the effects on animals in the intertidal zone.  
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1.8 Study species: southern tuatua (Paphies donacina). 

This thesis is focused on the southern tuatua (Paphies donacina); the most abundant surfclam 

on beaches within Pegasus Bay (Marsden, 2010). Tuatua populations inhabit sand beaches 

and are dispersed intertidally and subtidally (Cranfield et al., 2002). This species has 

relatively high ecological significance for these beaches. Tuatua are an important prey 

species for many individuals in the ecosystem, being commonly preyed on by fish, birds and 

crustaceans (Knox, 2001). They also filter large quantities of water which lowers turbidity, 

making the water more aesthetically pleasing to humans. This filtration also facilitates other 

benthic macrofaunal species (Gosling, 2003; Norkko et al., 2006). Filtration also allows 

humans to use shellfish populations as indicators of contamination by heavy metals which 

accumulate in the tissues of the animal (Boening, 1997).  

Morphology 

Like other bivalves, tuatua are completely enclosed by a hard shell which is predominantly 

made up of calcium carbonate (Gosling, 2003). The shell is symmetrical and flattened at the 

posterior end (Figure 1.11). The thickness of the shell strongly correlates with the length of 

the shell (Cranfield, 1996). Hydroids are commonly found attached to the shell of adults. 

These hydroids are often visible from above the sediment and aid seabirds in identifying 

shellfish. The shell has clearly visible concentric growth rings (Figure 1.11). A hinge 

ligament is present on its dorsal side and the shell is pulled closed using anterior and posterior 

adductor muscles (Figure 1.12).  

Like other surfclams, the foot of tuatua is far larger in size than in other hard shore bivalve 

species (Gosling, 2003). The foot is in the centre of the soft tissue and protrudes out from the 

gills (Figure 1.12). P. donacina breathe through four gills: these are separated by the foot, 

with two gills on either side of the animal. Feeding is done by taking water into the mantle 

through the inhalant siphon and directed to the stomach by the labial palps. The water is 

filtered and then released by the exhalant siphon (Figure 1.12).  
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Figure 1.11: The external features of an adult tuatua, Paphies donacina. 
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Figure 1.12: The internal features of tuatua, Paphies donacina, viewed with 

one half of the mantle removed. 

Growth and reproduction 

Shell growth in bivalve species is through the addition of material to the edge of the mantle. 

The calcium needed for this growth is obtained from the diet or from seawater (Gosling, 

2003). A study by Cranfield et al., (1996) compared the growth of P. donacina with other 

surfclams in Cloudy Bay, Marlborough, and found that growth rates are variable among 

shellfish. This study showed that growth rates were higher in smaller animals and slowed as 

individuals got larger. Growth rates were as high as 10.8 mmy¯¹ for P. donacina (Cranfield et 

al., 1996).  

Marsden, (1999), has showed that growth could vary depending on environmental conditions, 

as could reproduction. P. donacina have separate sexes that use broadcast spawning for 
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reproduction. Broadcast spawning occurs in the warmer summer months at the southern end 

of its geographical range, but can be continuous in warmer northern waters (Marsden, 1999a). 

Once successful reproduction has occurred, the larvae of P. donacina are planktonic for 18-

21 days (Cranfield et al., 1993) and are dispersed using passive mechanisms of transport 

(Marsden, 2002). There is a two month lag between the maturation of females and the 

settlement of recruits (Marsden, 2002). In this time the spat are planktonic. When this stage is 

completed, recruitment takes place in the intertidal zone; a process which is suggested to be 

greatest nearer to the high tide mark (Cranfield et al., 1996). 

Tuatua dispersal 

The dispersal of P. donacina populations in Pegasus Bay, Canterbury has been described in a 

few studies (Dawson, 1954; Cranfield et al., 2002; Kingett Mitchell Ltd., 2003; Marsden, 

2010). Most of these papers noted P. donacina was distributed in both the subtidal and 

intertidal zone of beaches in Pegasus Bay. Surveys by Kingett Mitchell Ltd. (2003), and 

Marsden (2010) found that there was a distinct band of individuals approximately 20-30 m 

below the high tide line. Tuatua present in this zone were generally juveniles of less than 30 

mm in length and buried at a depth up to 10 cm in the sediment (Marsden, 2010). However, 

adult individuals were distributed subtidally at depths of 2-3 m underwater (Cranfield et al., 

2002). Adults can also be present in the intertidal zone where they are often easily identified 

by the hydroids that attach to the posterior end of their shell (Marsden, 1999a). Gosselin and 

Qian, (1997) stated that bivalve species are subject to two major selection pressures; 

desiccation and predation. Desiccation is prevented by being burrowed in the sediment and 

closing the shell to retain moisture. Predation on juvenile tuatua is reduced by distributing 

higher on the shore, at levels where crab predators are unable to survive desiccation (Knox, 

2001). As tuatua grow, they exceed the critical size for predation by crabs but birds become a 

larger threat (Boulding, 1984). It is therefore expected that larger individuals distribute 

subtidally in order to escape bird predators. 

1.9 Conclusion 

Sand beaches play a host to a wide range of human activities. The increasing prevalence of 

these activities and the effects on the surrounding ecosystems requires management to 

prevent further damage. These beaches are physically dynamic environments containing 

species with specific adaptations to withstand such conditions. These ecosystems are often 

ignored in management decisions.  
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Tuatua have distinct morphological adaptations that allow it to inhabit both the subtidal and 

intertidal zones of sand beaches. The formation of a strong foot means that tuatua can burrow 

into the sediment, reducing the effects of desiccation and keeping the individual sheltered 

from strong wave forces. A strong calcareous shell also helps tuatua to withstand predation 

pressures. Some animals are still able to overcome this defence, making tuatua and important 

food source for many organisms in sand beach ecosystems. The filtration services that tuatua 

provide make it an important species for the ecosystem through reducing turbidity and 

facilitation of other species in the benthos. 

Many sand beaches worldwide are focal points for high frequencies of vehicle and horse 

users. Pegasus Bay is also utilised by such users. Some user groups may have minimal 

impacts on the surrounding ecosystem, whilst others may cause significant levels of damage. 

The impacts of vehicles have been studied by multiple authors internationally; however, 

horses have not. Vehicle studies have taken place in New Zealand on Toheroa beds, but not 

tuatua (P. donacina) and information is needed which quantifies such impacts. Horses are 

also likely to impact tuatua, and terrestrial studies indicate impacts could be relatively high. 

A key focus of sand beach management is safety and geomorphologic factors, and very little 

emphasis is placed on protecting the entire ecosystem. Through the provision of scientific 

information quantifying ecological impacts of current users of the coastal zone, managers can 

then be informed of the ramifications of their decisions. Essentially, this type of information 

will give a voice to the stakeholders without a voice; sand beach biota. Ultimately it is hoped 

that multidisciplinary information can be utilised to guide practitioners to develop robust 

management strategies and thereby sustain these valuable resources for future generations. 

This aspiration is a key purpose of the Resource Management Act, 1991. 
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1.10 Thesis outline 

This thesis aims to improve the management of recreational users in order to prevent 

ecological damage to intertidal shellfish. To successfully evaluate the impacts of beach users, 

the study species and ecosystem must be understood. Therefore chapters not only evaluate the 

impacts of users, but also understand the sand beaches of Pegasus Bay and tuatua populations 

within them. The final chapter provides management recommendations using all information 

presented in prior chapters. This is to provide a more robust management model compared to 

that produced using single-sources of information (Nicholson et al., 2009). 

An outline is shown in Figure 1.13 which shows how chapters are linked. 

Chapter 2: Management of vehicle and horse users on sand beaches. 

Chapter 2 reviews sand beach management of vehicle and horse users both locally and 

internationally. Literature is used to identify the effects of the identified management options 

on shellfish beds in the intertidal zone. 

Chapter 3: Habitat and tuatua distribution. 

Chapter 3 examines the relationship between physical beach dynamics and tuatua 

distribution. This comprised of a two year study of six beaches in Pegasus Bay measuring 

cross-sectional beach profiles, sedimentary analysis and tuatua distribution. 

Chapter 4: The potential vulnerability of tuatua in Pegasus Bay: size as an indicator of 

physical impacts 

Chapter 4 describes the size structure of tuatua populations in Pegasus Bay over the same two 

year period as in Chapter 3. Two experiments also evaluate size-burial depth relationships 

and test compression strength of the tuatua shell. The findings are discussed in relation to 

vulnerability of intertidal tuatua to heavy beach users. 

Chapter 5: The effects of vehicles on tuatua in Pegasus Bay. 

Chapter 5 presents an experimental in situ study of the impacts of vehicle passes on shellfish 

mortality and reburial success. The results are discussed and recommendations to mitigate 

such impacts are made. 
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Chapter 6: The effects of horses on tuatua in Pegasus Bay. 

Chapter 6 presents findings from observational and experimental in situ studies to evaluate 

the impact of horse users on tuatua. The results are used to determine possible implications of 

frequent horse use and mitigation measures are discussed. 

Chapter 7: Synthesis of chapter findings 

Each chapter prior to Chapter 7 has made management recommendations are made using a 

single source of information; however, this chapter utilises all information presented in this 

thesis to make robust recommendations. These recommendations are evaluated with 

extrapolative modelling to predict the outcomes for intertidal shellfish.  

 

 

 

 
Figure 1.13: Thesis structure and links between chapters. 
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Chapter 2 Management of vehicle and horse 

users on sand beaches: a review 

2.1 Introduction 

Management of sand beaches in regard to human activities does not usually have a high level 

of consideration for ecological implications. If ecology is considered, only easily visible 

species are protected, and ‘hidden’ infaunal intertidal biota is ignored. This often results in 

coastal assemblages being altered from their natural state. Designation of the intertidal zone 

for recreational activities, such as vehicle driving and horse riding, is a good example of how 

this could occur. Such designation protects bird nests, but the effects that this may have on 

intertidal biota is not considered. If this disregard for intertidal biota continues, the effects are 

likely to be felt by future generations. 

The aim of this chapter is to review and identify key drivers of management of vehicle and 

horse users which affect intertidal shellfish. This chapter discusses why ecological 

considerations are important (Section 0), reviews current management that exists for vehicle 

and horse users internationally (Section 2.4 and 2.5), and in New Zealand (Section 2.7). It 

then examines how intertidal shellfish may be affected by these methods (Section 2.6). The 

successfulness of New Zealand’s management system is evaluated in relation to shellfish 

(Section 2.8) and Pegasus Bay as a case study with implications for intertidal shellfish 

discussed (Section 2.9). 

2.2 Ecological impacts of beach management 

Sand beach management has a significant focus on physical, or geomorphic, hazard reduction 

and recreational safety; however, ecological protection is largely overlooked. This is perhaps 

most evident with physical hazard management which is used to both protect and enable 

human development. For example, seawalls and breakwaters, commonly built to enable 

shipping and reduce beach erosion, can drastically alter species assemblages. Beach 

nourishment, another method to combat erosion, can instead smother infaunal species. It is 

therefore important that management practitioners understand the impacts of the methods 

they choose to employ (Connell, 2001).  
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Figure 2.1: Flow diagram of the interaction between nature and humans that 

create resources and hazards which initiate response from management 

authorities (Adapted from Burton et al., 1978). 

A hazard cannot be easily defined; its definition depends on how humans are using 

environmental resources (Burton et al., 1978). Therefore, a hazard depends on the interaction 

between humans and the environment (Figure 2.1). Management involves identifying and 

mitigating these hazards.  

Methods used in hazard management can have detrimental effects on ecosystems such as 

smothering infaunal species, changing and disturbing substrate (Thrush et al., 2004; Bulleri, 

2005). Understanding of the effects of hazard reduction methods is important if ecosystems 

are to benefit. For example, Komar (1997) has classified management options for a receding 

coast into four categories: 

1) No action – the coast is allowed to encroach into development. 

2) Retreat and relocation – the human population and sometimes buildings are moved 

away from the coast. 

3) Beach nourishment – considered a ‘soft’ engineering option and involves depositing 

sand on the beach and allowing wave action to build the beach 

4) Stabilisation – a ‘hard’ engineering solution: solid structures are made that aim to take 

or dissipate wave energy and reduce erosion.  
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‘No action’ and ‘retreat and relocate’ responses to coastal erosion may be considered to be 

the best responses where ecosystems are concerned. This is because it allows for the 

ecosystem to be left as natural as possible and so it can continue to adapt to natural 

disturbances. However, this option is unpopular due to human developments being valuable 

and perceived as worthy of protection. 

Beach nourishment is another option considered to be successful in preventing coastal 

erosion in certain situations (Komar, 1997) and is deemed to be an aesthetically and 

ecologically favoured option over ‘hard’ solutions. Such methods include using similar 

sediment to the natural shore and dumping small amounts over time, or placing material on 

the backshore (Spreybroeck et al., 2006). However, literature shows that large deposits of 

sediment can have negative effects on intertidal ecosystems through smothering (Thrush et 

al., 2004). The quantity of the deposit also influences the rate of recovery (Zajac & Whitlach, 

2003). Beaches that contain shellfish populations are more likely to experience adverse 

effects from this sediment deposition.  

Predators, such as birds, are also affected by nourishment methods. A study found that beach 

use by shore birds was reduced by 70-90% on nourished beaches as a result of the reduction 

of prey species and habitat area (Peterson et al., 2006). Although this study found that the 

time taken for the bird population to recover may be as little as one season, this is still an 

unnecessary pressure. In New Zealand, beach nourishment occurs but is not a highly popular 

option due to high initial and ongoing maintenance costs. Beach nourishment has also been 

used to create recreational beaches as seen in Oriental Bay, Wellington. Often these 

nourishment projects are amenity driven, such that the methods used to construct these 

aesthetically pleasing beaches could result in detrimental effects the naturally occurring 

infaunal biota. 

One of New Zealand’s main ‘soft’ engineering methods of coastal protection is dune 

enhancement, primarily using planting programmes that trap sediment landward of the Mean 

High Water Springs (MHWS) line. This method attempts to mimic natural processes to create 

dunes; however, it can take a long time to build a dune that will provide sufficient protection 

from the coast. The plant species introduced in this process can also displace indigenous 

ecosystems and lead to dramatically different types of dune systems. 

‘Hard’ engineering solutions to coastal erosion are another popular option due to the 

perceived permanence and reliability of such structures. The two main types of ‘hard’ 
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defences are shore-paralleled seawalls and revetments, and shore-normal groynes and 

breakwaters (Komar, 1997). Seawalls are the most common method employed and are 

designed to take the full force of coastal waves. Groynes and breakwaters are used to create 

buffer zones by trapping sediment and dissipating coastal forces (Komar, 1997). These 

structures can have a range of adverse effects on coastal ecosystems and ecological 

implications associated with the nature of the structure. 

Breakwaters are situated in the subtidal zone and can alter species assemblages by increasing 

the heterogeneity of the environment through the addition of a new substrate. A breakwater 

designed to incorporate long-shore processes can be more beneficial than other hard solutions 

because sand builds up over time. This process allows shellfish to maintain a stable 

population, adapting to slow changes over time.  

Increased habitat heterogeneity created by breakwaters allows new organisms to enter an area 

that otherwise would not (Bulleri, 2005). Invasive species are known to use artificial 

structures, such as breakwaters, as vectors for transport (Floerl et al., 2009) and breakwater 

used in harbours facilitate invasive species dispersal via ship ballast discharges and other 

fouling organisms on the hull. Species assemblages may be altered and community success 

reduced.  

Breakwaters and groynes also have indirect effects on shellfish by facilitating other species. 

For example, artificial structures attract fish, increasing the presence of predator species 

(Clynick, 2008). Wave climates are also reduced, creating less turbidity and better vision for 

fish predators making the protruding siphons of shellfish in the sand more visible.  

The loss of suitable habitat is a large problem that exists when artificial structures are placed 

in coastal areas. This is caused by sea level rise induced by climate change. In New Zealand, 

seawalls are used to protect coastal infrastructure and as sea levels rise; these hardened 

backshores prevent intertidal and saltmarsh ecosystems from retreating via the process of 

succession. This process has been termed ‘Coastal Squeeze’; when sea level rise causes 

horizontal shrinkage and coastal retreat and erosion is stopped by hard defence structures 

resulting in a loss of habitat. A good example of this occurring is a boulder wall constructed 

at Scarborough Beach, Canterbury. Although this wall protects the Sumner Township, there 

is no beach face landward of the Mean High Water Spring (MHWS) because the wall is now 

positioned on the foreshore. The reduced habitat space prevents some species from being able 

to inhabit the area. 
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Future hazard management practices require both sub-aerial and intertidal/submarine 

ecological impacts to be considered. Failure to do so may result in direct impacts on 

populations from smothering in ‘soft’ solutions or replacement of habitat in ‘hard’ solutions. 

The facilitation of predators and invasive species can also have adverse effects on the 

shellfish population. 

Why beach management should consider intertidal shellfish 

Sand beach management must not only consider visible species, such as birds, but also 

infaunal biota because all components of an ecosystem are necessary for functioning. 

Bivalves are a major infaunal component of sand beach ecosystems and exert control of 

ecosystem function and structure (Vaughn & Hakenkamp, 2001). Intertidal biota, such as 

tuatua (Paphies donacina), carry out a range of ecosystem services and failure to recognise 

their importance can have flow-on effects for a coastal ecosystem. Such services include 

facilitation of other species, filter feeding and being an important food source. Facilitation is 

a key attribute of bivalves in an ecosystem. Bivalves burrow into the sediment of sand 

beaches (Hull et al., 1998) and facilitate microbial activity by increasing the oxygen levels of 

the sediment with bioturbation (Vaughn & Hakenkamp, 2001). Filter feeding by bivalves also 

recycles nutrients into the ecosystem by increasing nitrogen in the water column (Pfister, 

2007).  

The value of bivalves to humans is under appreciated; if their filtering of the water is 

disrupted this could result in more turbid water, which can be less appealing for human beach 

users (Vaughn & Hakenkamp, 2001). Water turbidity can influence tourism and coastal 

economies that are driven by beach visitors.  

The ecological importance of bivalves is also high. These animals occupy a low trophic level 

in the ecosystem, providing food for fish, crustaceans, and birds (Knox, 2001). Due to their 

importance in sand beach ecosystems bivalve changes have both bottom-up and top-down 

trophic effects when abundances are altered. A loss of a single species of bivalve can trigger 

trophic cascades which can have large impacts on ecosystem functioning. If bivalve 

abundance reduces then it would be expected that its predators of a higher in trophic status 

will also be reduced due to lack of food (Bhattacharya & Sarkar, 2003). Species that were 

previously facilitated by bivalves, such as polychaete worms, would be expected to be less 

abundant.  
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Management of shellfish is largely focused on two aspects; contamination and sustainable 

fisheries. However, while emphasis is placed on maintaining a healthy adult population of 

shellfish, no consideration is given to the juvenile stages (World Health Organization, 2010). 

Many species of bivalves are restricted to the subtidal zones of beaches, but some species 

utilise the intertidal zone at certain stages of their life cycle, usually at juvenile stages. As 

mentioned in Chapter 1, tuatua (P. donacina) are one example of these bivalves in New 

Zealand. Other species include Donax deltoides in Australia (Schlacher & Thompson, 2007), 

and Donax variabilis in North America (Ellers, 1995). Management practices need to 

consider juvenile intertidal shellfish because failure to do so would adversely affect the 

population if recruitment is reduced. 

2.3 Potential effects of vehicle and horse use on biota 

Recreational use of sand beaches often entails the use of vehicles and horses: each of which 

has the potential to detrimentally impact this delicate ecosystem. Amenity users and tourists 

use vehicles to access fishing spots or hard-to-reach areas. In Australia, tourist vehicles can 

reach traffic volumes of up to 500 per day and can affect up to 65% of species present on 

sand beaches (Schlacher & Thompson, 2007). Horses are used by tourists and locals who 

enjoy riding in the coastal environment. Commercial trainers also use beaches to train gallop 

and harness racers. A majority of vehicle and horse traffic occurs within the intertidal zone 

where the sand is more compact, making driving and horse riding easier. Management 

strategies that control vehicles and horses often focus on safety of other users and protection 

of shore bird species, such as the fairy tern (Sterna nereis davisae) (Department of 

Conservation, 2011). As shore birds nest above the high tide line, this results in vehicles and 

horses being restricted to the intertidal zone.  

The impact of vehicle users on shellfish populations has previously been underestimated 

(Wolcott and Wolcott, 1984); recent literature has quantified these relationships (Schlacher et 

al., 2008a; Schlacher et al., 2008b). Despite research on the distribution of bivalve species in 

the intertidal zone, shellfish are largely overlooked in management policies (Table 2.1). This 

could be due to perceptions of the shell providing sufficient protection to the individual from 

disturbance (Wolcott & Wolcott, 1984).  

 

 



Chapter Two: Management Review 

34 

 

Table 2.1: Table showing the focus of international literature sourced that 

examines the effects of recreational activities in coastal environments 

Impact 

type 

User 

Type 

No. of 

papers 
Crustaceans Bird Plant Shellfish Other 

Mortalities 

Vehicle 11 2 4 5 2 2 

Horse 0 0 0 0 0 0 

Both 0 0 0 0 0 0 

Other 2 0 1 1 0 0 

Sub-lethal 

Vehicle 12 8 0 3 3 3 

Horse 0 0 0 0 0 0 

Both 0 0 0 0 0 0 

Other 3 0 0 1 0 1 

 

Vehicles affect intertidal infaunal organisms, with higher traffic causing increased mortality 

(Foster-Smith et al., 2007; Schlacher et al., 2007; Schlacher et al., 2008a; Schlacher et al., 

2008b; Moller et al., 2009; Marsden & Taylor, 2010). There are sub-lethal effects on 

organisms such as changes in behaviour (Schlacher & Lucrezi, 2010) and the morphology of 

individuals (Lucrezi & Schlacher, 2010). Little is known of the effects of horse traffic in the 

intertidal zone. Previous studies in terrestrial environments have shown that trampling by 

horses has had significant effects on diversity and biomass of vegetation (Whinam & 

Comfort, 1996; Whinam & Chilcott, 1999; Torn et al., 2009). Quantifying the effects of 

vehicle and horse users on shellfish is vital for management plans to protect intertidal biota.  

2.4 Vehicle management issues and practices 

A study by Priskin (2003) found that tourists perceive vehicle driving on sand beaches as 

harmful for multiple reasons, but not due to crushing of biota in the intertidal zone. A lack of 

knowledge of biota on sand beaches is likely that this reason was not mentioned. Vehicle 

management on sand beaches is focused on three main issues including safety of beach users, 

erosion, and wildlife conservation, and employs a variety of options including permits, area 

and zone based designation, seasonal closures and complete bans. In most cases these 

methods are not used with the intent to benefit shellfish. Often perceptions of sand beaches 

are that of a ‘dead’ zone with very few living organisms. This may also be the view of 

management practitioners because in many places around the world vehicles are allowed on 

beaches with very little or no control. 
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Vehicle management for safety 

The safety of both vehicle and other types of beach users is a key concern in sand beach 

management. In New Zealand, bylaws are put in place to control vehicle users on beaches, 

but every country has their own legislative systems for managing activities. The two main 

options used worldwide to ensure user safety are permit systems and the designation of areas. 

Designating areas for certain activities allows a specific use to occur without compromising 

safety of other users. Area-based designation is good for addressing safety because some 

activities are not compatible in the presence of others, especially if they require similar 

environmental characteristics (Phillips & House, 2009). For example, the use of vehicles and 

horse riding requires low profile beaches with compact sand, so both activities usually occur 

in the intertidal zone. Safety can be compromised when both users are present so other 

methods of management may be needed to address this. Permit systems are another method 

that can be used to address safety of user groups. This allows management authorities to 

control traffic volumes on the beach and gives them the opportunity to inform users of the 

risks before they use the beach. 

Vehicle management for erosion prevention 

Erosion is a key concern with vehicle use on sand beaches and, if such effects are 

unmanaged, this could significantly impact on coastal settlements. This is because some 

coastal settlements may rely on sand dunes for protection. Previous studies on dune 

ecosystems have found the use of vehicles in sand dunes to be hugely detrimental. Vehicles 

reduce vegetation (Brodhead & Godfrey, 1977; Anders & Leatherman, 1987), result in high 

mortalities of dune biota (Luckenbach & Bury, 1983), decrease species richness (Hosier & 

Eaton, 1980), and accelerate shoreline erosion through vegetation damage and removal 

(Thompson & Schlacher, 2008). Importantly, if above ground vegetation is reduced then the 

sand trapping capacity of the dune system is decreased. Erosion effects occur indirectly from 

reduced dune vegetation not holding sediment together, rather than vehicles displacing 

sediment. Most countries recognise the effects of vehicles on dune vegetation so management 

policies aim to keep vehicles away from areas that are susceptible to erosion. Most policies 

permit traffic on the remainder of the beach which contains other vulnerable biota. This can 

be seen in the Waimakariri and Hurunui Northern Pegasus Bay Bylaw, 2010 which has 

pushed vehicles below the high tide line. 
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Vehicle management for ecological protection 

Ecological protection is also an issue that should be considered when controlling any activity 

that takes place on a beach (and any other natural resource). The two main methods 

commonly applied for reducing wildlife loss from vehicle use on beaches are, firstly, 

seasonally closing the beaches and, secondly, designating areas of the coastal zone: that is, 

only allowing vehicles below the high tide line. If vehicle use is considered to be too 

detrimental, a complete ban may be enforced. South Africa has opted for a complete ban but 

still allows the deputy-director general to grant exceptions (Department of Environmental 

Affairs and Tourism, 2004). South Africa is not unique in banning vehicles on beaches. The 

French coastal law (La Loi Littoral, 1986) also bans these users. The main benefit of keeping 

vehicles away from wildlife is that floral and faunal habitation of beaches can occur without 

disturbance from human activities. This allows for assemblages to remain in a natural state. 

2.5 Horse management issues and practices 

In many countries, including New Zealand, South Africa, and Australia, sand beaches are 

popular areas for horse riding by tourists and amenity users, but management of these users is 

less common than for vehicles. Where management does occur, similar methods are used. As 

such, management of horse use on beaches focuses on safety for other users and erosion. If 

ecological considerations are made, these typically disregard intertidal biota. For example, 

many coastal plans push traffic into the intertidal zone to protect other species above the high 

tide line.  

A significant problem is that many countries and relevant authorities have no management in 

relation to horses; these tend to be poorer countries such as Mozambique. A lack of 

management means that horses can be ridden at any speed, time, or location on the beach, 

which can result in widespread environmental damage and affect safety of other users. 

Literature suggests that horses are likely to cause similar damage to dunes and nesting birds 

as vehicles (Luckenbach & Bury, 1983). Whether the damage would be similar for shellfish 

is unknown and an aim of the present research is to determine this (see Chapter 6). 
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Figure 2.2: A trotting trainer running a horse on the Woodend Beach, 

Canterbury. 

Horse management for safety 

Safety of other users is a key concern in controlling horse riders. Permit systems are a reliable 

system for this and are used to control and monitor horse users. Permit systems can be 

informative to managers by providing knowledge as to the amount of users in a given day as 

well as to make users aware of regulations. This system is widely used for many beaches in 

the United States of America (U.S.A.) and is being developed for use in Sefton, UK (Fylde 

Borough Council, 2011). The permit system for Island Beach, USA, allows horse use of the 

beach to occur between 1
st
 October and the 30

th
 April (New Jersey Department of 

Environmental Protection, 2011). This is presumably when there are less people on the beach, 

making it the safest time for horse riding to take place. A permit system is also used for 

Crane Beach, USA, to prevent large amounts of horse users by only allowing 50 horses per 

day. Again, this is mostly for the safety of other users rather than ecological protection. 

Horse management for erosion prevention 

Horses have similar effects on dune systems as vehicles so the impacts on erosion are likely 

to be comparable. The effects include vegetation reduction, altered community composition 

(Törn et al., 2009) and accelerated erosion due to the churning of tracks (Whinam & 
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Comfort, 1996). For this reason, the horse management strategies are the same as for vehicles 

with horses not being allowing on sand dunes and in other erosion prone areas. 

Horse management for ecological protection 

Ecological protection is important in sand beach management but deciding which species to 

protect over others is a contentious issue. Past decisions have resulted in more visible species 

being protected over others. This prioritisation can be detrimental to ecosystems by altering 

natural abundances of certain species. In New Zealand, horse use is generally controlled by 

bylaws introduced by the territorial authority responsible for that beach. Unlike vehicles, 

horses tend to be allowed almost everywhere on some beaches and may be allowed to be 

ridden above the high tide line (Tauranga City Council, 2007). It is more beneficial for 

shellfish if horses are above the high tide line because aquatic fauna do not inhabit the dry 

beach face (Davenport & Macalister, 1996). However, avoidance of nesting birds above the 

high tide line at times of the year may encourage horse users to concentrate lower down the 

beach face. Horse users can be difficult to control in large expanses of coast and additional 

incentives may be needed help prevent environmental degradation. Awards, such as the 

Green Business Award given to Tassariki Ranch, Australia, in 2007 and 2008 (Tassariki 

Ranch, 2011), can encourage companies to participate in more environmentally practices. 

This company arranged horse treks during low tide so that riding was done on the intertidal 

zone; this was in order to protect the nesting bird populations.  

In the USA, nesting species such as hooded plovers and loggerhead turtles utilise the dry 

beach face and are protected by management policies that only permit horses on the intertidal 

zone (Cape Hatteras National Seashore Off-Road Vehicle Negotiated Rulemaking and 

Management Plan/EIS, 2010). Restricting horse users to the intertidal zone could be causing 

detrimental effects to the intertidal ecosystem. Nesting birds have also influenced the 

management of beaches in some areas of the USA by stipulating which seasons a beach can 

be ridden on. For example, at Crane Beach, Massachusetts, horses are only allowed on the 

beach by permit from the 1
st
 October to the 31

st
 of March and have to be ridden below the 

high tide line (Ipswich Council, 2011). Seasonally closing the beach to protect nesting 

species is very beneficial as it prevents destruction of nests during these times of 

vulnerability. These methods can achieve effective protection of native shorebirds, but 

protection of prey species, such as shellfish, crustaceans, and polychaetes, which inhabit the 
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intertidal zone should also be considered and incorporated in these plans to give beneficial 

outcomes for the ecosystem as a whole. 

2.6 How shellfish are affected by management techniques 

Management to mitigate the impacts of vehicles and horses on sand beaches often utilises 

similar methods due to the perceived similarity of the two activities. There are five main 

methods which are used to control horse and vehicle movements which have the potential to 

impact shellfish populations. These methods are issuing permits, designating areas for use, 

designation of specific zones of the beach face, seasonal closures, or complete banning of the 

activity (Table 2.2). To successfully manage shellfish populations it is necessary to 

understand the benefits and disadvantages of choosing a particular system. The following 

sections review the ecological effects each management method and discusses how these 

could be applied to protect shellfish. 
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Table 2.2: A summary of management papers found that control vehicle and 

horse use on beaches with number of documents listed. The overall effects of 

management of shellfish is rated as beneficial (+), neutral (0) and 

disadvantageous (-).  

 Areas benefited Areas disadvantaged  

Activity 

controlled 

Method of 

control and 

number of 

times employed 

Dunes Beach 

face 

Intertidal 

zone 

Dunes Beach 

face 

Intertidal 

zone 

Managements 

effect on 

shellfish 

(+/0/-) 

Vehicle 

only 

Permit 1       
   

+ 

Seasonal 

Closure 

 

       

Area 

Designation 

3 
            + 

Zone 

Designation 

1 

  
  

  
  + 

Banning 1       
   

+ 

Horse 

only 

Permit 1 
      

+ 

Seasonal 

Closure 

1 
      

   
+ 

Area 

Designation 

 

       

Zone 

Designation  

1 
    

   
  - 

Banning  
       

Both 

Vehicles 

and 

Horses 

Permit 1       
   

+ 

Seasonal 

Closure 

2 
      

   
+ 

Area 

Designation 

3 
            0 

Zone 

Designation  

3 
    

   
  - 

Banning  
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Permits 

Permit systems for vehicle and horse users is a method for monitoring and informing users of 

a particular area of coast. This system could be used to ensure safety of other users and the 

environment. By issuing daily permits, the management authority can easily monitor the 

number of vehicle and horse users on the beach for a given day. This data could then be used 

to identify seasonal trends in beach use. 

Permit systems are most widely used in the United States of America to control vehicle and 

horse users, and implementation of such systems varies between management and may only 

be focused on a single user group. At Cannon Beach, Oregon, the application for a permit 

must be for a specific reason such as retrieval of gear or to access hard-to-reach areas. This 

requirement is beneficial to shellfish beds because it would limit the amount of beach traffic 

by excluding ‘joy riders’ from accessing the beach. In Donegal County, Ireland, horse users 

require permits to use the beach during June, July and August between 11 am and 7 pm. 

These times are when beaches are busiest, so management of horse use is necessary to ensure 

safety of other users. 

Permit systems could also be utilised to allow authorities to ensure vehicles are not modified 

in a way that intertidal shellfish will be detrimentally affected. For example, vehicles fitted 

with off-road tyres dig deeper in the sediment and may cause more damage. The use of a 

permit system allows the authority to inform users of possible outcomes of their behaviour 

and how impacts can be mitigated. A permit system is beneficial for shellfish because it 

limits traffic and prevents unwanted behaviour, but it is often necessary to use other methods 

of control to ensure environmental protection. 

Seasonal or temporary closures 

Seasonal closures are used to ensure safety of other users or to protect wildlife at vulnerable 

life stages. A seasonal closure is when a particular activity is not allowed on the beach during 

certain months of the year. For example, when safety is the main issue, beaches are closed 

from vehicle and horse use during warmer months when more bathers are present. Seasonal 

closures for wildlife conservation largely focus on nesting species and do not include 

intertidal biota. In Cape Hatteras, U.S.A., vehicles are managed by a permit system which 

restricts use during certain months which are at times of birds and turtles nesting (Cape 

Hatteras National Seashore Off-Road Vehicle Negotiated Rulemaking and Management 

Plan/EIS, 2010). Protecting a species during this vulnerable life stage removes artificial 
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selection pressure (e.g. vehicle driving and horse riding). A study on birds found that up to 

81% of nests were run over by vehicles during the incumbent period (Buick & Paton, 1988). 

In addition to crushing, vehicle tracks can increase the effect of other selection pressures. For 

example, tyre tracks increase the time Loggerhead turtle (Caretta caretta caretta) hatchlings 

take to reach the sea, increasing the predation risk from birds (Hosier et al., 1981).  

Seasonal closures tend to focus on species that are visible, such as birds and turtles, and 

species hidden from human eyes are ignored. Bivalves are one of these species because when 

they inhabit the intertidal zone, are small, and buried shallowly in the sediment. Incorporating 

these ‘hidden’ species into sand beach management policies relies on obtaining reliable and 

in-depth scientific information.  

Using seasonal closures to protect shellfish during vulnerable life stages would be beneficial 

to the population because it would give them a chance to recruit without vehicle and horse 

traffic crushing individuals. The timing of seasonal closures could then align with shellfish 

recruitment. A key issue with this approach is that more investigation is needed to identify 

when recruitment takes place. Marsden (2002) suggests that recruitment of bivalves occurs 

during the warmer months, but often the difficulty in obtaining this can further stymie and 

delay efforts to understand their population and protect it.  

Area-based designation 

Area-based designation is a common option used by many management authorities 

worldwide, including those in New Zealand. The areas closed to vehicle and horse traffic 

tend to coincide with popular swimming areas. If areas closed for safety reasons contain 

shellfish populations, they are likely to benefit from this option. However, area-based control 

can result in traffic being condensed into smaller areas, which can bring with it additional 

safety issues and ecological damage for those areas. The main ecological benefit of this 

method is that there would be an area with no human activities, allowing the ecosystem to 

function naturally. Studies have shown that beaches that are open to vehicle traffic have 

altered and less-diverse assemblages than closed beaches. For example, ghost crabs (Ocypode 

spp.) change behaviour, compress home ranges, and even stop reproduction in areas with 

vehicle traffic (Steiner & Leatherman, 1981; Lucrezi & Schlacher, 2010; Schlacher & 

Lucrezi, 2010). A closed area would be likely to benefit all species that are protected from 

these users. However, if traffic is to continue at the same frequency but concentrated within a 
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smaller area, ecological damage could be increased to a level that species abundance is 

reduced. 

If area-based management was adapted to protect shellfish, there are a range of factors that 

need to be considered. It is difficult to designate specific areas for the protection of shellfish, 

and many other intertidal biota, because reproduction patterns can vary and are not easily 

detectable. The population is also hard to detect, with sampling techniques being labour 

intensive. When the population’s distribution is found, knowing what size area to close can 

be very contentious. Identifying the species that management strategies are to protect is 

important because the individuals’ mobility and dispersal range are two key factors in 

deciding the size of the area required (Halpern & Warner, 2003). The dispersal range of 

shellfish is very hard to determine because they have a planktonic life stage (Marsden, 2002) 

and dispersal patterns can depend on longshore processes like current speed and direction, 

factors which can vary day-to-day and year-to-year. If long shore processes result in juveniles 

being taken into neighbouring zones where high beach traffic exists, crushing may occur 

during this crucial time of recruitment. Restricting users to a certain zone of the beach, away 

from vulnerable species is another option to combat this issue. 

Zone-based designation 

Designating particular zones of the beach is another common method to control activities and 

prevent erosion and ecological damage. Under current management practices, this method 

has the most potential to be detrimental to intertidal biota because the majority of strategies in 

New Zealand and worldwide designate the intertidal zone for horse and vehicle use, usually 

to protect bird life (e.g. Waimakariri Northern Pegasus Bay Bylaw, 2010). Furthermore, the 

intertidal zone is likely to be selected because beach zones are difficult to define due to the 

dynamic nature of the coastal environment. The most recognisable part of beach zones is the 

high tide line, which can be easily identified by the visual change from dry to wet sand 

(Figure 2.3). 

The visibility of the last high tide line may be the reason it is used in many strategies that 

designate zones for activities. For example, on beaches that protect nesting birds, all vehicles 

and horses must be used below the high tide line. Permitting traffic below the high tide line is 

very common and is done on most beaches with vehicle management in place (Table 2.2). 

One exception to this is in Cape Cod, USA, where no vehicles are permitted below the high 

tide line. This is because marked vehicle tracks are in place above the high tide line. 
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Restricting traffic to below the last high tide line has the most potential to be harmful to 

intertidal biota including shellfish. This is because traffic effects get condensed so there is a 

higher frequency of disturbance to biota.  

In order to protect intertidal biota, traffic would have to be restricted to zones above the high 

tide line where nesting birds are present. This creates a conflict between which wildlife 

species are protected; a diverse intertidal population that is an important food source for 

many species versus a single bird species. If shellfish and birds are to be protected from 

vehicle and horse use, a dynamic plan catering for all would need to be created. In areas 

where environmental protection is a high priority, the banning of detrimental activities, such 

as vehicle and horse use on sand beaches, should be considered. 

 

 

 

Figure 2.3: The last high tide line, where the dry (light) sand meets the wet 

(dark) sand. 
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Complete banning of horses and vehicles 

A complete ban of activities which adversely affect sand beach ecosystems is by far the most 

favourable conservation outcome, especially in areas of high ecological value. This is 

because this method essentially removes vehicles and horses; a use which may have been 

acting as a selection pressure. A complete ban of vehicles would allow any organism living 

on a sand beach to be protected from human disturbances during all life stages. For shellfish, 

recruitment in the intertidal zone could take place without the risk of being crushed.  

If a ban was implemented on an area that previously was affected by horse and vehicle users, 

expected outcomes would be an increase in species diversity and abundance, and the size of 

individuals. The rate of recovery may be rapid because clean sand communities, like those 

found in exposed sand beaches, are found to have fast recovery times (Dernie et al., 2003). 

The benefit of increasing diversity is that communities can be more resilient to other 

environmental changes allowing faster recovery in the future (Loreau et al., 2001). By 

banning vehicles and horses, conservation goals can be easily achieved; however, this can 

create opposition from stakeholders that use coastal resources. It is necessary for scientific 

information which evaluates the effects these users on the environment in order for ecological 

stakeholders to have a larger voice.  

2.7 Management of Sand Beaches in New Zealand: recreational use vs. shellfish 

protection 

Management of recreational activities on New Zealand’s sand beaches, such as vehicle and 

horse use, is highly important to protect the unique ecosystems that the coastline facilitates. 

The New Zealand coastline is arguably made up of a network of every type of beach system 

that exists (Hesp et al., 1999). Sand beaches are widely distributed along the coastline and, 

using Short’s (1999) international classification scheme can be classified into three different 

types: dissipative, intermediate and reflective. Dissipative beaches are low flat beaches and 

wave energy is dissipated across the surf zone, whereas reflective beaches are steep with 

breakers that surge up the beach and reflect energy back out to sea. Such characteristics can 

make certain beaches more desirable to user groups than others. For example, surfers prefer 

reflective beaches with high profile waves in the surf zone, whereas families prefer more 

dissipative beaches (Phillips & House, 2009). These types of preference can be used to 

classify beaches according to their recreational purpose.  
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In New Zealand there is limited conflict between users, due to the 11,000 km of coastline 

(Woodroffe, 2002), which provides sufficient space for all activities without encroaching on 

each other. Tensions between beach users may however become more prevalent in 

centralised locations. In New Zealand 96.6% of the population is within 50 km and 64.6% are 

within 5 km of the coastline (Statistics New Zealand, 2011). For example, during the summer 

months Taylors Mistake Beach, Canterbury, is a popular swimming and bathing location for 

Christchurch residents, but surfers also use this beach in high numbers. Safety issues can 

occur if swimmers are in the surf zone; therefore, some form of management control is 

required. In this case, surfers are not allowed inside the flags which swimmers are required to 

swim between.  

New Zealand’s coastal systems contain unique endemic biota which is due to the country’s 

geographical isolation. The dispersal range of these species is not large enough to reach other 

land masses, allowing speciation to occur (Shluter, 2001). Consequently, many species have 

adapted independently to inhabit New Zealand’s beaches. For example, on wave exposed 

sand beaches, tuatua species (P. donacina and P. subtriangulata) bury into the sediment to 

avoid wave forces, and they filter water in order to feed (Cranfield et al., 2002).  

Unique biota inhabiting New Zealand influences the way in which some beaches are used. 

For example, whitebaiting is a common seasonal activity. Whitebait (Galaxiidae spp.) is 

caught using large nets and gear that are taken to the water’s edge by vehicles. High 

abundance of whitebait in certain rivers attracts higher numbers of people and vehicles. In 

Canterbury, the Waimakariri River is heavily populated during whitebait season and, on 

average, 50 vehicles are daily parked at the river’s mouth (personal observations). River 

mouths are important nesting areas for endangered seabirds, such as the Fairy Tern (Sterna 

nereis davisae), which nest on the ground camouflaged amongst shells (Department of 

Conservation, 2011). Protecting and preserving such species in their surrounding ecosystems 

makes sand beach management important to ensure environmental damage does not occur. 
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Figure 2.4: Whitebaiters and vehicles parked on the beach at the Waimakariri 

River mouth, Pegasus Bay. 

 

New Zealand’s coastal management system  

New Zealand uses a top-down system of coastal management; with statutory framework 

guided by the Resource Management Act (RMA) 1991. The purpose of the RMA 1991 is ‘to 

promote the sustainable management of natural and physical resources’. Sustainable 

management is further defined as ‘managing the use, development, and protection of natural 

and physical resources in a way, or at a rate, which enables people and communities to 

provide for their social, economic, and cultural wellbeing and for their health and safety 

while- (a) sustaining the potential of natural and physical resources (excluding minerals) to 

meet the reasonably foreseeable needs of future generations; and (b) safeguarding the life-

supporting capacity of air, water, soil, and ecosystems; and (c) avoiding, remedying, or 

mitigating any adverse effects of activities on the environment. 

Coastal policies focus on particular areas of the coast and are prepared and administered by 

the relevant local and central government authorities (Figure 2.5). The functions, powers and 

duties of these authorities are defined in Part 4 of the RMA 1991 and the Local Government 

Act 2002. This guiding piece of legislation has the key goal of using integrated effects-based 

decision making to achieve positive environmental outcomes for future generations. It seeks 
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to avoid, remedy or mitigate adverse effects of activities on the natural environment (e.g. 

sand beaches) and ensure that these resources are managed in a responsible manner. 

 

 

Figure 2.5: Management policies that control areas of the beach face and the 

relevant government agency responsible for their creation (in brackets) (figure 

taken from the Regional Coastal Environment Plan for Canterbury Region 

2005). 

The New Zealand Coastal Policy Statement (NZCPS) 2010, which sits beneath the RMA 

1991, is the main environmental policy that guides local authorities during development of 

coastal plans. This policy is prepared by the Department of Conservation and ultimately 

signed off by the Minister of Conservation. Each territorial authority has the responsibility for 

preparing their own coastal policies and plans. The plans and policies created for the coastal 

zone by local authorities must not be inconsistent with the NZCPS 2010 and more 

significantly, the purpose of the RMA, 1991 (Figure 1.2). 

In New Zealand, the responsibility for addressing regional coastal issues falls to local 

authorities. Each territorial authority has a set area over which they govern, the extent of 

these boundaries are often aligned with geographical features or around community structure. 
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For example, the Christchurch City Council’s northern boundary is set as the southern edge 

of the Waimakariri River, while Environment Canterbury’s boundary covers several 

catchments. Although different management techniques exist for managing coastal issues, 

many authorities enact bylaws for particular areas of beaches. Bylaws are perhaps the most 

commonly used tool to limit vehicle and horse use on beaches.  

Local New Zealand authorities have power to make create bylaws under the Local 

Government Act (2002) Part 8 Subpart 1. Under Section 145, territorial authorities, such as 

Waimakariri District Council, are empowered to make bylaws with the purpose to (a) protect 

the public from nuisance, (b) protecting, promoting and maintain public health and safety, 

and (c) to minimise potential for offensive behaviour in public places. It is this focus that has 

seen a range of bylaws which pay little attention to ecological protection which is often left 

up to the regional authorities, such as Environment Canterbury, to develop. Under Section 

149 Subsection 1, regional authorities can make bylaws for any land owned or controlled by 

the authority. In addition, the focus of such bylaws is not prescribed which allows ecological 

protecting from bylaws made by regional authorities. 

Vehicle and horse use on New Zealand’s sand beaches 

Low sloping sand beaches are used by vehicles and horses and unless controlled, have the 

potential to damage these unique coastal environments. Vehicles are driven to access fishing 

spots, joy ride and to access events. Horses are ridden on sand beaches for general recreation 

by amenity users as well as by professional trainers. Studies indicate that horse training on 

sand is beneficial for horse strength and rehabilitation (Crevier-Denoix et al., 2010). Horse 

racing generates a similar amount of revenue to the wine and seafood industry in New 

Zealand. Racing earns $1,635 million annually and has 52,732 people who are employed or 

participate in the industry. Most training occurs in Waikato (4,400 Thoroughbred & 364 

Harness horses) but Canterbury has the highest number of trainers of harness racers (2,229) 

and is second in thoroughbred training (1,025) (New Zealand Racing Board, 2010). The 

intertidal zone of the beaches is most commonly utilised by these trainers due to the compact 

nature of the sand. 

Traffic on the intertidal zone can disturb the many species that inhabit this zone, including the 

native toheroa (Paphies ventricosa), which has suffered a significant decline in numbers over 

recent decades causing the fishery to be closed (Ministry of Fisheries, 2011). Events such as 

the ‘Burt Munro Challenge’ (a motorcycle race) have caused detrimental effects on Toheroa, 
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destroying juvenile populations, and are still permitted (Moller et al., 2009). Other events, 

such as the ‘90 Mile Beach run’, a marathon event, and the ‘Snapper Classic’, a surfcasting 

fishing tournament, can be detrimental to beach fauna due to their associated logistics. 

Vehicles are driven on the beaches to access areas and carry equipment. If these activities are 

not controlled this has the potential for major environmental damage. Surf lifesaving national 

competitions also bring additional traffic to the beaches. In 2011, the Nationals were held in 

Mount Maunganui, Bay of Plenty. The Tauranga City Council Beaches Bylaw 2007 has a 

specific clause allowing vehicles to be used for such events. 

 

  

Figure 2.6: Pictures of various events throughout New Zealand. Clockwise 

from top left; 90 Mile beach run, Karekare Beach horse races, racers in the 

Burt Monro Challenge and competitors of the Surf Lifesaving Nationals, 2011. 

(http://www.90milebeachrun.com/procedures.cfm, www.karekare.co.nz, 

http://www.surflifesaving.org.nz/Article.aspx?ID=12675#galleries, 

http://www.burtmunrochallenge.com/. 
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The Karekare Race Day, an annual horse racing event, could have adverse impacts on the 

ecosystem because it is concentrated in the intertidal zone where shellfish and polychaetes 

are abundant. The Onetangi Race Day on Waiheke Island, Auckland, permits horse racing, 

tractor racing and amphibious vehicle races. The weight and penetrability of tractors would 

be likely to cause large amounts of damage to the infauna. There are similar exemptions in 

the bylaws for Pegasus Bay, Canterbury, that allow for these events to take place. The horse 

associated traffic is likely to cause major disturbance to intertidal populations and could have 

a range of long-term effects. 

2.8 Management of vehicle and horse users on New Zealand beaches 

Despite the NZCPS 2010 having particular mention to the control of vehicles in the coastal 

zone (Policy 20), issues relating to vehicle and horse use on sand beaches have not yet been 

addressed by all local authorities. Management strategies employed to control vehicles and 

horses differ between regions and each has its pros and cons. Utilisation of information from 

a range of sources is a key strength of New Zealand’s resource management system, but some 

aspects may be ignored resulting in environmental damage. Two of the most common 

methods used include banning vehicles on certain beaches (Tauranga City Council, 2007) or 

in certain areas (Whangarei District Council, 2008; Kapiti Coast District Council, 2009). 

Other authorities have designated certain parts of the beach face for vehicle use (e.g. the 

Northern Pegasus Bay Bylaw, 2010). In these situations, horse users are also confined to the 

intertidal zone.  

Adopting the precautionary approach 

Integrated management can be successful in achieving sustainable outcomes by using 

information from a wide range of sources. If this is done correctly an outcome will be 

achieved that balances stakeholder interests and achieves the purpose of the RMA 1991. 

Policy 3 of the New Zealand Coastal Policy Statement (NZCPS), clause 1 advocates that 

managers “adopt a precautionary approach towards proposed activities whose effects on the 

coastal environment are uncertain, unknown, or little understood, but potentially significantly 

adverse”.  

The precautionary approach has been ignored on all of New Zealand’s beaches that permit 

heavy traffic (e.g. vehicles and horses). When such management policies are ignored the 

outcome could fail to achieve its goals. As mentioned in Section 2.2, there are a wide range 
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of known effects from vehicles on flora and fauna of sand beaches. Horses are expected to 

have similar effects yet have very little or no control is placed on them in New Zealand. If the 

precautionary approach was used it would be expected that vehicles, horses and other such 

traffic would not be permitted on New Zealand’s sand beaches.  

The influence of defined management boundaries on ecological protection 

In the coastal zone, many ecological processes can take place over large spatial scales and 

will nearly always overlap management boundaries. As such, the populations within those 

boundaries may be subject to differing effects from recreation. An ecoregion is the term 

given to boundaries that a species can inhabit. Ecoregions are often defined by geographic 

boundaries, not boundaries defined by people (Bailey, 2005). Long-shore processes are a key 

factor in determining these for the coastal environment. Ecoregions overlapping management 

boundaries increases the importance of integration between neighbouring authorities. A lack 

of integration will mean that biological communities will receive protection in one part of its 

ecoregion and not in another. As such population dynamics would be altered.  

Policy 4 of the NZCPS 2010 aims to achieve consistency within regions by encouraging 

integration between management authorities. This form of management is particularly 

effective when authorities each have the capacity to fulfil its responsibilities (Lyver, 2005). 

When a neighbouring authority does not have the necessary resources, they will be unable to 

provide the same level of protection as their neighbour. As a result only areas of the coastal 

zone will be protected by those that can.  

Utilisation of integrated management could be used to ensure biological communities receive 

equal amounts of protection throughout New Zealand. Management efforts can focus on the 

same goals with ecological protection and resource use being balanced equally. Management 

needs to remain relative to the region; the idea that one-size-fits-all is not always applicable. 

For example, absence of sand beaches in a particular management authority’s boundary 

would see no need for them to be involved in development of policies of this type. Promoting 

integration between management authorities needs to continue for effective policy 

development and implementation. More importantly, these organisations, unbound of 

geographical boundaries, could achieve protection of ecoregions as a whole. 
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Consideration of intertidal biota for ecological protection  

Coastal management in New Zealand has largely focused on safety, erosion and protecting 

bird nests, so policies that control vehicle and horse users usually confine these activities to 

the intertidal zone. For example, the Kapiti Coast District Council Beach Bylaw 2009 permits 

traffic on the foreshore of beaches, but not above the high tide mark. However, some 

management authorities permit vehicle and horse use to occur in all areas of the beach face 

(e.g. Whangarei District Council Vehicles on Beaches Bylaw, 2008). Intertidal biota, such as 

shellfish, will benefit because traffic is spread over the whole beach reducing the probability 

of high levels of disturbance. New Zealand’s beaches contain diverse native fauna which 

fulfil important ecosystem services. For example, tuatua are a large prey species that reduce 

water turbidity (Vaghn & Hakenkamp, 2001).  

Increased traffic in the intertidal area may result in the functioning of sand beach organisms 

being reduced. This will not only affect the biological community, but also humans. For 

example, shellfish disturbed by vehicles may reduce the amount of filtration of water due to 

stress, which would result in more turbid water. This is not aesthetically appealing for 

humans, and could decrease phytoplankton production due to sunlight not penetrating as deep 

into the water column. Overall, less energy is then passed through trophic levels reducing 

productivity of the ecosystem.  

It could be argued that the most ecologically beneficial outcome for intertidal biota would be 

achieved by banning vehicle and horse users. As many stakeholders are unlikely to meet this 

option with enthusiasm, local authorities, in permitting vehicle and horse use, must aim to 

reduce the frequency and impact of these disturbances. Reducing the spatial distribution and 

volume of traffic on the foreshore of beaches would be two suitable methods to limit impacts. 

Currently, no management policies in New Zealand do this; an effective permit system would 

need to be implemented to ensure limited numbers of users are accessing the beach by 

vehicle or horse. 

The effects of frequent use of New Zealand’s sand beaches on intertidal fauna 

Vehicle and horse users can be found on beaches all year round, subjecting fauna to daily 

disturbance. The intensity of this disturbance also varies temporally and is likely to be most 

damaging during sensitive life stages such as reproduction and recruitment. For example, 

activities, such as whitebait and salmon fishing, occur in the warmer months, at the same time 

when many sand beach species reproduce. The majority of management policies in New 
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Zealand allow vehicle and horse users beach access all months of the year. Kapiti Coast 

District Council is the only known exception to this; they do not allow horses on beaches 

between 11am and 5pm from 1
st
 December to the end of daylight savings (around April).  

Intertidal species could be protected during important life stages, such as during reproduction, 

if management policies were designed to protect intertidal shellfish populations. Juvenile 

populations would be able to recruit without pressure from vehicles and horses. For this 

management option to work effectively, scientific information on the species life cycles is 

needed to identify appropriate timing of closures. The following section gives a brief 

summary of how management bylaws are used to control vehicle and horse users in Pegasus 

Bay, Canterbury. The environmental outcomes of these are discussed in relation to the 

impacts on shellfish populations. 

2.9 Case study: Management of vehicle and horse users in Pegasus Bay, Canterbury. 

Variation between regions of sand beach management makes it necessary to focus on one 

area of coast to evaluate the effects a particular strategy may have; Pegasus Bay, Canterbury. 

Pegasus Bay is eastern-facing bay which hosts a wide range of activities including vehicle 

driving and horse riding. Management that controls these activities aims to ensure safety of 

users and mitigate environmental damage. Beaches in Pegasus Bay are classified as wave 

dominated long-shore bar trough beaches (NIWA, 2011a). Horse riding most commonly 

occurs on Ashworths, Woodend and Spencerpark Beaches on a daily basis. Vehicles are 

usually driven around the river mouths (Waimakariri and Ashley) during the whitebait and 

salmon seasons, but are present at lower numbers outside of these times.  

2.9.1 Current management of users in Pegasus Bay 

Vehicle and horse users are controlled through bylaws that are implemented by the Councils 

that manage the area. Details on these Councils can be found in Chapter 1, section 1.7.1. 

These bylaws are known as the Waimakariri District Council Northern Pegasus Bay Bylaw 

2010 (Appendix 2.1) and the Hurunui District Council Northern Pegasus Bay Bylaw 2010. 

The Christchurch City Council does not have any bylaws directly relating to control of 

vehicles on its beaches; however, the Regional Coastal Environment Plan for the Canterbury 

Region 2005 (Policy 8.10) does cover this issue.  

Horse riding is permitted along most of the beach in these bylaws, however it is not allowed 

near the flags at surf lifesaving clubs dotted along the coastline. Vehicle use is not as widely 
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permitted. This is allowed north of the Heyders Road gate to the Woodend Beach access way, 

and on Ashworths Beach. If drivers have a permit they may drive along an access way at 

Waikuku Beach. Permits can also be granted for access to other areas as needed. Vehicles 

have speed restrictions of 30 kmh¯¹ and which is reduced to 10 kmh¯¹ when within 50 m of 

people. Vehicles must also give way to other users, including horse riders. Another key 

requirement of this plan is that all vehicles and horses must go directly to the marked track or 

below the last high tide line. This is mostly to protect shore birds that seasonally nest above 

the high tide line. This use pattern is likely to have large effects on the intertidal biota as well 

as those in the tracks to the intertidal zone.  

2.9.2 The expected effects of the Northern Pegasus Bay Bylaw 2010 on intertidal 

shellfish 

Like any management strategy, those for Pegasus Bay are likely to have a range of ecological 

effects on fauna. There are four main points of interest discussed for Pegasus Bay: the 

distribution of traffic on the beach face, free range of horses, high-use occurrence of traffic, 

and generally used definitions. The above management strategies have the potential to affect 

the success of shellfish populations on Pegasus Bay; the effects of these are examined below. 

Distribution of traffic on the beach face 

Shellfish, polychaetes and shorebirds inhabit and utilise the intertidal zone of these beaches. 

Frequent disturbances from vehicles and horses are perceived to have large effects on these 

populations but scientific research is needed to confirm this. A common species on these 

beaches, the South Island Pied Oystercatcher (Haematopus finschi) forages on polychaetes 

and other species in the intertidal zone. Human disturbance has been found to reduce the 

foraging potential of oystercatchers which could influence survival success (Stillman & 

Goss-Custard, 2002). Not only are visible species vulnerable, but also infaunal species, such 

as juvenile Tuatua (P. donacina), which are found in high numbers in the intertidal zone. The 

current management policies have condensed vehicle and horse use to a small area which will 

further exacerbate the effects discussed in Section 2.2. Traffic must enter and drive directly 

onto the intertidal zone; however, a defined path is not present which creates a fanning of 

vehicle tracks so that the effects of vehicles are spread over the beach face (Figure 2.8).  

This will not only affect birds, which this bylaw is trying to protect, but will also results in 

high volumes of vehicle traffic in several areas of the beach. If a prescribed track was made 

this would be mitigated by reducing the spatial area of disturbance. Whilst the area that is 
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selected for the track will likely suffer mortalities, the surrounding areas will benefit due to 

reduced disturbance. Mitigation of this would require for a set track to be established where 

low amounts of biota are present. The mobility of the river mouth, a key factor in the path’s 

longevity, would also need to be considered in the design stages. 

 

 

Figure 2.7: Satellite image showing the fanning of vehicle tracks (yellow lines) 

from the vehicle entrance point (red dot) at the Waimakariri River mouth, 

Pegasus Bay, New Zealand.  

The free-range of horse users 

Horses are currently used every day on the beaches of Pegasus Bay with no restrictions on the 

number of horses that can be brought onto the beach by an individual. For example, one 

person can run several horses on the beach multiple times with the potential to cause a large 

amount of damage to biota. It can be observed that many horse riders do not like to ride at 

speed over churned-up areas and will go higher or lower up the beach, depending on where 

existing tracks are situated, creating wider areas of disturbance (Figure 2.7). This results in 

disturbance to higher numbers of individuals than if the same tracks were to be used 

repeatedly. 

 

Scale: 1 cm= 30 m 

N 
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Figure 2.8: Horse tracks distributed on the intertidal zone of Woodend Beach 

in Pegasus Bay, Canterbury. 

High-use timing of vehicles 

Vehicles are used in higher frequencies between the months of August and April, during the 

whitebait and salmon seasons which coincides with many intertidal species’ vulnerable life 

stages. This includes recruitment and reproduction in shellfish populations (Marsden, 2002). 

Shellfish at recruitment stages are smaller, with weaker shells, making them more vulnerable 

to vehicle crushing. Recruitment takes place in the intertidal zone with individuals washing 

up and burying. A majority of the traffic is concentrated on the river mouths; however, the 

southern bank of the Waimakariri River mouth is 5 km north of the entrance, so vehicles are 

driven on the beach to access this area. Doing this would still allow access for whitebaiters 

and salmon fishermen but would reduce disturbance to the ecosystem. As a result, a small 

proportion of the ecosystem would be affected; however, river mouths have been shown to be 

areas where little recruitment takes place (Schoeman & Richardson, 2002). 
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Figure 2.9: Vehicles parked on Kairaki Beach by whitebaiters. 

Non-specific definitions: the potential for environmental damage  

Definitions that are used in bylaws are important. If definitions are too general, other 

undesired users could have free access due to the loop-hole created. This could occur in the 

Hurunui and Waimakariri District Councils Northern Pegasus Bay Bylaw, 2010, which uses 

the same definition given by the Land Transport Act 1988 for a motor vehicle. This is defined 

under section 2(1) of the Land Transport Act 1988 as: 

(a) means a vehicle drawn or propelled by mechanical power; and 

(b) includes a trailer; but 

(c) does not include— 

o (i) a vehicle running on rails; or 

o (ii) [Repealed] 

o (iii) a trailer (other than a trailer designed solely for the carriage of goods) 

that is designed and used exclusively as part of the armament of the New 

Zealand Defence Force; or 

o (iv) a trailer running on 1 wheel and designed exclusively as a speed 

measuring device or for testing the wear of vehicle tyres; or 

o (v) a vehicle designed for amusement purposes and used exclusively within a 

place of recreation, amusement, or entertainment to which the public does not 

have access with motor vehicles; or 

o (vi) a pedestrian-controlled machine; or 

o (vii) a vehicle that the Agency has declared under section 168A is not a motor 

vehicle; or 

o (viii) a mobility device 
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This definition covers a wide range of vehicles including bulldozers and other heavy 

machinery. If such machinery was driven on the intertidal zone it could only take one pass to 

cause large amounts of damage to shellfish populations. While it is unlikely that this is 

common, I have observed that bulldozers and diggers being driven on the beaches of Pegasus 

Bay to clear access roads and lift stranded boats onto trailers. A large amount of 

environmental damage could occur if this was to happen frequently. It is suggested here that 

the definition needs to be changed to only control private vehicles, and heavy machinery is 

addressed separately. 

2.10 Conclusion 

Internationally, ecological protection is a small focus of sand beach management policies and 

practices and is often superseded by physical and geomorphologic hazard management 

focusing on erosion protection and recreational safety. Where ecological protection does 

occur, policies are mostly focused on nesting shorebirds and turtles that are visible and no 

infaunal species are protected. Horses are less controlled on sand beaches than vehicles, but 

both have been shown to cause a wide range of effects on sand beach biota. If management is 

present, focus is on user safety, preventing erosion, and protecting nesting wildlife. Five 

common vehicle and horse management options have emerged. These include permit 

systems, seasonal closures, designation of beach areas or zones, and complete bans. Each of 

these systems has benefits for shellfish; however, most benefits are indirectly achieved. For 

shellfish populations to be protected from the adverse effects of vehicles and horses on sand 

beaches a dynamic system using a combination of management methods should be employed. 

Within New Zealand, management authorities are guided using an integrated effects-based 

framework set out by the Resource Management Act, 1991. As a result, some policies may be 

ignored amongst the plethora of information guiding management decisions. Some areas of 

New Zealand have developed policies that control vehicles and/or horses, but the method of 

control is not consistent. Variations occur in how vehicles and horses are controlled; 

however, a common method is to designate a zone of the beach for use; usually the intertidal 

zone. If vehicle and horse use is to continue on sand beaches throughout New Zealand more 

methods of control are needed to provide sufficient ecological protection. This may include 

permit systems to reduce traffic or seasonal closures at critical times of an organism’s 

lifecycle.  
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On the local scale, Pegasus Bay beaches are well managed when it comes to ensuring safety 

of users and erosion, but protection of intertidal biota is not addressed. Vehicles and horses 

are often used on a daily basis, and higher numbers of vehicles are used in the months 

between August and April. While most of this increased traffic is focused on the river mouths 

due to whitebait and salmon seasons, travel to and from these areas may be done over large 

stretches of beach which could be causing damage to shellfish populations. Management 

practitioners need to mitigate the effects of users by limiting the number of horses and/or 

vehicles on the beaches. In addition, seasonally closing beaches may be necessary. 

Definitions for vehicles in these management plans are not specific to cars, so heavy 

machinery such as bulldozers and diggers could be used on the beach. Definitions need to be 

made to be specific for the bylaw.  
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Chapter 3 Beach characteristics and 

abundance of intertidal tuatua (Paphies 

donacina) in Pegasus Bay, Canterbury. 

3.1 Introduction 

Sand beaches are physically dynamic environments which contain a wide range of biota that 

are adapted to survive in this hostile environment. It is the interrelated nature of this 

environment and the fauna that makes understanding of abiotic and biotic processes and their 

relationships necessary. In a South African study by Schoeman and Richardson (2002), 

geographic and biotic factors were used to identify where recruitment takes place for the surf 

clam Donax serra. This study identified beach gradient to be an important factor in 

recruitment; however, beach gradient is highly changeable due to the dynamic nature of 

exposed sand beach systems (Short, 1999). The surfclam, Paphies donacina (tuatua) is 

abundant on exposed sand beaches in New Zealand, but little is known of the drivers 

determining the abundance and distribution of this species. To accurately assess the 

population of tuatua (Paphies donacina) in Pegasus Bay, a range of factors must be 

considered. These include the distribution of individuals in relation to habitat characteristics 

such as stability and sediment properties. Each of these factors could influence the overall 

success of tuatua populations. Other factors such as human impacts could also be influencing 

populations.  

The coast of Pegasus Bay, Canterbury is made up of sand beaches in the south and composite 

or mixed sand and gravel beaches in the north beyond Ashworths Beach. Tuatua populations 

are mostly confined to open sand beaches. Tuatua (P. donacina) are the predominant shellfish 

species on the sand beaches of Pegasus Bay. Dispersal and abundance of juvenile tuatua in 

the intertidal zone of Pegasus Bay has been documented (Cranfield et al., 2003; Kingett 

Mitchell, 2003; Marsden, 2010), but no studies have examined the seasonal changes in the 

distribution of the population. It is not uncommon for shellfish species to be found in the 

intertidal zone. Other examples include; Paphies australis (pipi) (Cole et al., 2000), P. 

ventricosa (toheroa) (Akroyd et al., 2002), P. subtriangulata (Northern tuatua in New 

Zealand) (Richardson et al., 1982), Donax deltoides (pipi/goolwa cockle) in Australia (James 

& Fairweather, 1996), and D. variabilis (coquina) in North America (Wilson, 1999; Wolcott 

& Wolcott, 1984).  
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Characterisation of the beaches in Pegasus Bay in relation to factors that influence shellfish 

distribution is important. Tuatua are thought to be active dispersers, being able to leave the 

sediment to be moved by wave forces. Whilst shellfish cannot freely swim, they are able to 

resurface out of the sediment and ‘swash ride’ which allows individuals to move from 

unfavourable areas (Ellers, 1995). Such dispersal means that spatial distribution of tuatua is 

likely to be influenced by a range of factors, such as physical disturbance, freshwater inputs, 

competition and predation (Compton et al., 2009). If any of these factors are detrimental to 

tuatua, a reduction in densities would likely result. This reduction would occur due to tuatua 

mortality or active dispersal away from affected areas. Identifying differences in sedimentary 

beach processes between locations may help to identify trends in tuatua distribution in 

Pegasus Bay. If there is no difference in beach dynamics between locations, other 

environmental factors, such as water contamination, may be having an influence on the 

population.  

Tuatua have planktonic larval and post-settlement dispersal stages, both having importance 

for the subsequent adult population. Planktonic dispersal allows individuals to disperse over 

large distances, whereas post-settlement dispersal is more locally focused so the scale of 

movement is considerably smaller for shellfish. For this reason, the latter is considered to be 

less important (Norkko et al., 2001), but this may not always be the case. For example, on 

beaches heavily used by vehicles and horses, post-settlement dispersal could influence the 

success of an individual.  

Shellfish are known to be associated with particular sizes of sediment due to the physical 

dynamics that can be associated with sediment characteristics. For example, coarse sediment 

indicates high wave forces, so biota in this area must also be adapted for such forces. Sassa et 

al. (2011) found that shellfish change burrowing behaviour in relation to sediment 

compactness. If sediment properties change in a way that is less preferential, shellfish would 

be likely to move to areas where conditions are better suited. Burrowing time is also 

influenced by sediment size with sand sediments allowing the fastest burrowing times (Nel et 

al., 2001). Shellfish would be expected to be found where sediment properties are such that 

optimal burrowing can be achieved.  

A key assumption of this study is that, like sand, juvenile shellfish stocks build up in the 

offshore and are washed up onto the beach during accretion stages (Carter, 1995). Shellfish 

would remain in the intertidal zone until an erosion event occurs, then move offshore. 
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Identification of these events and the ability to relate them to shellfish abundance could prove 

an important tool in protecting these species. It would allow for a rapid assessment of 

shellfish populations without having to undertake the extensive labour associated with such 

research. This could allow management authorities to coordinate management plans 

according to the beach’s seasonal processes to better protect intertidal species. 

This study was conducted to not only evaluate the habitat of tuatua but also to describe the 

spatial and temporal distribution in Pegasus Bay over a two year period. Environmental 

variables such as sediment size are evaluated to assess its effect on shellfish distributions. 

Tuatua movement relies on long-shore transport, so it would be expected that densities would 

be influenced by environmental variables. For example, the Waimakariri River mouth would 

be likely to break the southward flowing current and cause high densities of tuatua to be held 

in the area. Other studies have found a distinct band of shellfish occurring on the shore 

(Cranfield et al., 2003; Kingett Mitchell Ltd., 2003; Marsden, 2010), so it was expected that 

this would be present, although the band may move up and down the shore seasonally. 

For population dynamics of tuatua to be understood, it is necessary for temporal studies to be 

conducted. This would identify important life stages, such as recruitment, which could allow 

for management to better protect the species. For example, recruitment events involve 

individuals washing up on the sediment surface where they are highly vulnerable to trampling 

from vehicle and horse users.  If timing of recruitment is identified, ecological damage could 

be prevented by restricting potentially harmful users during these times. 

3.2 Aims and Objectives 

The research presented in this chapter addresses the first aim of the thesis: to provide 

information on the shellfish resources in Pegasus Bay and to record any observed changes in 

the seasonal distribution of tuatua. The two objectives designed to achieve this aim were to 

evaluate the habitat of tuatua and describe the spatial and temporal distribution and 

abundances of the bivalves. This was achieved using cross-sectional profiling and sediment 

cores at six selected sites in which tuatua are abundant in Pegasus Bay, Canterbury. The 

overall distribution of juvenile tuatua on the beach face was described to identify important 

dispersal patterns.  

Other studies in Pegasus Bay have found juvenile tuatua to be in high densities further up the 

shore (Cranfield et al., 2002; Kingett Mitchell Ltd., 2003; Marsden, 2010), so it was expected 

that this would also be found in the present study. It was also expected that there would be 



Chapter Three: Beach Characteristics and Tuatua Distribution 

64 

 

small seasonal changes in measured beach profiles, and that sedimentary characteristics 

would stay relatively stable throughout the period of the study. 

3.3 Methods 

The methodology used in this research utilised established geomorphological and biological 

techniques to quantify the physical variables and tuatua distribution to understand the 

relationships between them. Physical beach characteristic results were combined with 

biological data to test for correlations. The methods provided seasonal qualitative and 

quantitative data on beach processes and tuatua dispersal patterns. 

In order to develop achievable and appropriate methodology, a pilot study was conducted. 

This had the primary aim of evaluating the required resources to complete a round of 

sampling at six sites in Pegasus Bay during one week of spring tides. The time period in 

which the beach face was exposed to complete a down-shore transect study in Pegasus Bay 

was found to be four to five hours. This was found to be enough time to complete and record 

two transects with 15 m quadrat spacing at one site with a single field person. This method 

would require six days to complete the sampling round, which did not leave time for 

environmental disruption such as storm events. Cross sectional surveying also could not be 

completed with one person, so methodology required two field workers for this portion of the 

study. The logistics of the study locations meant the second worker would remain on site, so 

methods were developed on the assumption that two field workers would also be transect 

sampling.   

The pilot study found that, between two field workers, two transects with quadrats every 15 

m, a single sediment sample, and a single measured beach profile line was achievable for 

each site in the time constraints of the spring tide period each quarter. It was found with two 

field workers a full sampling round could be completed over four days because the Spencer 

Park and South Waimakariri, and the Kairaki and Woodend sites could be completed together 

in one day respectively. The remaining sites, South Brighton and Waikuku, could only be 

sampled individually due to reduced accessibility. As this pilot was successful, the sampling 

methodology and sites continued unchanged for the duration of the study. 
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3.3.1 Study sites 

Six sites were selected for the purpose of cross section profiling and seasonal population 

sampling to examine spatial and temporal trends in shellfish distribution (Table 3.1). These 

sites were also used to indicate their suitability for use in other experiments. The criteria used 

to select sites were that they: 

1. contained a population of tuatua at the time of first sampling, 

2. were stable enough to provide data for all seasons, 

3. reflected a specific use for that area at the time of selection (e.g. horse, vehicle, 

control), 

4. were accessible without a vehicle, and 

5. were roughly equidistant from neighbouring sites along the coast of Southern Pegasus 

Bay. 

All sites generally fulfilled these criteria. In relation to criterion 3, there were two sites that 

were selected to represent each use based on the frequency of users in that area (Table 3.1). 

While most of the sites were evenly spread, Kairaki and South Waimakariri were closer 

together. This was because the presence of the Waimakariri River mouth is likely to serve as 

a geographical barrier to shellfish, resulting in independent tuatua populations. All the sites 

selected were gently sloping sand beaches on an open coast exposed to a mixed local wind-

wave and refracted-swell environment. The sediments contained were generally well sorted. 

Using the morphodynamic model developed by Short (1999), all of the beach sites were 

classed as long-shore bar trough beaches; a sub category of the intermediate sand beach class. 
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Figure 3.1: The location of the six seasonal sampling sites on Pegasus Bay, 

Canterbury; South Brighton, Spencer Park, South Waimakariri, Kairaki, 

Woodend, and Waikuku.  

Table 3.1: Summary of study sites showing the relative levels of three different 

types of activity. Some activities take place despite bylaws prohibiting them, 

an X denotes where prohibited activity occurs. A sight with the absence of 

vehicles and horses was considered a control site. 
 Activity types occurring on site 

Site name GPS coordinates Vehicle Horse General recreation 

South Brighton 

(Control) 

43°31'24.06"S 

172°44'16.51"E 

Low-none 

X 

None 

 

High 

Spencer Park 43°26'7.51"S 

172°42'50.00"E 

Low-none 

X 

High Medium 

South Waimakariri 43°23'41.90"S 

172°42'42.57"E 

High Low-none Medium 

Kairaki 43°23'14.96"S 

172°42'37.87"E 

High Low-none Medium 

Woodend 43°21'33.87"S 

172°42'33.67"E 

Low-none 

X 

High Low 

Waikuku 

(Control) 

43°17'20.13"S 

172°43'16.35"E 

Low-none 

X 

Low-none High 

 

 

N 
10 km 
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South Brighton 

This is the most southern site of the six and situated approximately 2 km south of the New 

Brighton Pier. The width of the beach face (from the dune toe to low tide level) spans up to 

200 m with an intertidal zone approximately 160 m wide. Currently this area is used for light 

recreational activities such as walking and running, with vehicle use prohibited. An exception 

allows emergency and council vehicles to pass through on occasion. Dune vegetation in this 

area consists mostly of marram grass (Ammophila arenaria), with patches of ice plant 

(Disphyma australe) and yellow tree lupin (Lupinus arboreus) throughout the profile. While 

some of these species have dispersed and colonized the area naturally, others are present 

through dune planting programmes (Christchurch City Council, 2012).  

Figure 3.2: South Brighton Beach looking north. 

Spencer Park 

This site is situated approximately 9 km north of the South Brighton site and 500 m south of 

the Spencer Park Surf Lifesaving Club. This beach face spans approximately 150 m wide 

with an intertidal zone up to 100 m wide. The bylaws for this area currently allow horse use 

but prohibit vehicle use. However, council ranger vehicles are permitted to drive in this area, 

and do so a few times a week. Horse use in this area is light compared to other sites (e.g. 

Woodend). Dune vegetation for this area consists of species commonly found in Pegasus Bay 

(marram grass, ice plant, and yellow tree lupin), but there are some tree species that have 

spread from the neighbouring plantation forests. These are mostly small Pinus radiata 

seedlings.  
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Figure 3.3: Spencer Park Beach looking south. 

South Waimakariri 

This site is approximately 4.25 km north of the Spencer Park site and 500 m south of the 

Waimakariri River mouth. Access to this area is from a gate at the end of Heyders Road 

approximately 3.75 km south of the Waimakariri River mouth. This site has no above tide 

area due the river mouth inlet moving south and shifting the high tide line up to the toe of the 

sand dunes via erosion of beach width. The intertidal zone for this site is up to 75 m wide. 

Bylaws for this area allow for vehicles to be driven from the gate at Heyders Road north to 

the river mouth.  The dune vegetation in this area mainly consists of marram grass and yellow 

tree lupin but small wilding P. radiata seedlings are scattered amongst the dune area.  

 

Figure 3.4: South Waimakariri Beach looking south. 

Kairaki 

This site is approximately 1 km north of the South Waimakariri site and 1 km south of the 

Pines Beach Surf Lifesaving Club. Access to this area is via the entrance approximately 600 

m west, through the Kairaki Settlement. This is the widest and flattest site, up to 350 m wide 

with an intertidal zone up to 165 m wide. Bylaws in this area currently allow for vehicles to 

be driven in the intertidal zone. Most vehicle activity takes place around the river mouth in 

the whitebait and salmon seasons; however the river became contaminated after the 4
th

 

September 2010 earthquake, preventing usual activities from occurring. The Waimakariri 
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Northern Pegasus Bay Bylaw, 2010, permits horses in this area, but this use is likely to be 

minimal due to vehicles being a safety concern for riders. The dunes in this area are smaller 

than those at other sites and also contains embryonic dune. Where dunes are present, marram 

grass is the main plant species present. 

 

 

Figure 3.5: Kairaki Beach looking south. 

 

Woodend 

This site is approximately 3 km north of the Kairaki site and 2.5 km south of the main horse 

entrance way on Waikuku beach. Access to this area is via the horse trainer’s entrance at the 

end of Ferry Road, Woodend. The beach in this area spans up to 140 m wide with a 90 m 

wide intertidal zone. This is the most heavily used horse riding area due to bylaws permitting 

such activity and local horse training facilities being situated nearby. Trotting trainers are the 

largest users in this area and training mostly occurs in the intertidal zone. This site features 

established secondary dunes as well as embryonic types. Vegetation includes marram grass 

and yellow tree lupin but pine forests also neighbour the beaches of this area.  

 

Figure 3.6: Woodend Beach looking north. 
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Waikuku 

This is the northernmost site, situated approximately 1.5 km south of the Ashley River Mouth 

and 7.8 km north of the Woodend site. Access to this area is via the entrance at the Waikuku 

Surf Lifesaving Club, 150 m north of the site. The beach for this site spans up to 120 m with 

a 90 m wide intertidal zone. When this site was selected the area was allowed to be used only 

for general recreation but the implementation of the current bylaws in July 2010, allowed for 

horses to be used in this area except for when the surf patrol flags are out. Surf patrolling 

takes place only during the summer months from December to February (Waimakariri 

District Council Northern Pegasus Bay Bylaw 2010). Vehicles are prohibited from this area; 

however, to the north vehicles a have a designated track for accessing whitebait areas at the 

Ashley River mouth. The dunes in this area are large and well established with marram grass, 

yellow tree lupin, and pine seedlings making up the vegetation at this site. 

 

Figure 3.7: Waikuku Beach looking south. 

3.3.2 Characterisation of Pegasus Bay Sand Beach tuatua habitat 

Cross-sectional beach profiling 

Cross-sectional beach profiling was carried out at each site on the same day as intertidal 

shellfish population sampling. This was done using a SOKKIA Set 10(5) Total Station. The 

profile line was aligned at right angles to the shore and so that was in the middle of the two 

population sampling transect lines, with the Total Station on top of the highest seaward dune 

(Figure 3.9). A second benchmark was put in front of this to set angle of the line for the 

profiling, and a third benchmark was put behind the Total Station benchmark. These 

benchmarks were maintained at each site throughout the period of this study to keep the same 

profile line each time population sampling was conducted. All benchmarks were established 

using Virtual Reference Station (VRS) ibase data from a Trimble Global Positioning System 

(GPS) (Figure 3.8) and are recorded in relation to the New Zealand Vertical Datum 2009 

(NZVD09). Establishing benchmarks with this method has an approximate accuracy of 4 cm 
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horizontally and 10 cm vertically. Profiling was carried out along the beach face until the 

water became too deep for the prism to be reliably steadied and vertically aligned. This was 

usually at approximately 60 cm water depth. 

 

 

Figure 3.8: The Total Station (SOKKIA Set10/5) survey equipment set on top 

of a sand dune at South Waimakariri Beach (left) and the Trimble GPS set on 

an Environment Canterbury bench mark at Waikuku Surf Lifesaving Club 

(right). 

Sediment characteristics 

A 50 mm diameter corer was used to sample sediment to 50 mm depth from each profile 30 

m below the last high tide line. This was approximately at the upper mid tide level. The pore 

water, organic content, and sediment texture were measured. This location was chosen as it 

represented the peak shellfish band in the intertidal zone (Marsden, 2010). Sediment was 

returned to the laboratory and washed in freshwater before being dried in a 60˚C oven for 3 

days. The dried sediment was then put through a series of sieves from 0 to 4 phi increasing at 

0.5 phi intervals. After being shaken mechanically for 10 minutes, the sediment caught in 

each sieve was weighed and recorded according to the standard sieving method outlined in 

Lewis and McConchie (1994). 
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3.3.3  Tuatua abundance and distribution 

The distribution of the intertidal population of tuatua was sampled every three months from 

May 2010 to February 2012 (eight times in total). The sampling for each month was done on 

the spring tide to maximize sampling of the intertidal zone to lowest tidal levels. All sites 

were sampled over a period of four days when the low tides would be at their lowest levels 

for that spring tide period.  

Paired transect lines with quadrat sampling was used. The two transect lines 20 m apart were 

established at each site and their locations were recorded using GPS (Garmin: GPSmap 

60CSx). These positions were then reused at each sampling to relocate the transect lines.  

A 31.7 x 31.7 cm (0.1 m²) quadrat was sampled every 15 m along the transect line. The first 

quadrat was taken at the last high tide mark and the final at the swash zone with two 

replications at each sampling point (Figure 3.9). These were laid down and the sediment was 

dug to approximately 15 cm depth and put through a 5 mm mesh sieve. Shellfish that were 

caught in the sieve were recorded for numbers and the shell length of individuals. The 

number of shellfish per quadrat was multiplied by ten to give the density of shellfish per m². 

 

 

Figure 3.9: Diagram of the study setup at each site. The diagram shows the 

paired transect lines with the beach profile running parallel between the two. 

  

Subtidal Intertidal 

zone 

Beach face Sand dune 
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3.3.4 Data and statistical analyses 

All data were recorded in Microsoft Excel spreadsheets. Beach profiles were plotted in 

relation to the NZVD09. Measured horizontal excursions were calculated in relation to mean 

sea level and plotted. The sea level contour is approximately in line where juvenile tuatua are 

distributed, and so it provides the most relevant measure of beach profile changes which 

could affect tuatua populations. Sediment sizes were calculated for the average size (phi) and 

standard deviation (sorting value). For the shellfish distribution study, mean and standard 

error were calculated for each of the replicate samples. Regression analysis was used to 

investigate relationship between measured horizontal excursions and shellfish abundance, and 

temporal changes in measured horizontal excursion.  

Statistical testing was carried out using ‘Statistica 7’. An Analysis of Variance (ANOVA) 

was conducted using ‘Statistica 7’ to test the relationship between average sediment size and 

season in the beach characterisation study. Repeated measures Analysis of Variance 

(ANOVA) and multi-factorial ANOVAs were used to determine if there were seasonal 

differences in abundance, tuatua shell length, and dispersal. ANOVAs were used in this 

instance because data was grouped into categorical formats (e.g. site names). Grouped data 

were found to be normal through distribution fitting. Repeated measures ANOVA was used 

for data where the same population was sampled over time (i.e. seasonal distribution). T-tests 

were used to determine if there were differences in shellfish between sampling times.  

Additional tests were conducted to evaluate changes in sediment properties due to high 

earthquake activity in the Canterbury region starting on the 4
th

 September 2010. T-tests were 

conducted to test the difference between sediment size and sorting pre- and post- earthquake 

(4
th

 September 2010). ANOVAs were conducted to test if sediment properties changed 

between sites and season in light of earthquake activity. 

3.4 Results  

3.4.1 Characterisation of Pegasus Bay sand beaches 

Beach Profile Dynamics 

Over the two year study period, the study sites were found to be slightly accretional with 

exception to sites nearer to the Waimakariri River mouth, which showed variable dynamics. 

South Brighton was relatively stable over the period of the study. This site had a stable 

profile with a small envelope of change with the largest measured profile distance of 200 m. 
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Spencer Park showed similar stability to South Brighton with a slight period of building 

between August and November 2010 (Figure 3.11). The largest measured profile distance 

(i.e. horizontal beach width) was 181 m over this period. South Waimakariri Beach had a 

large scarp in existence for the duration of the study and appeared to be relatively stable, with 

only small amounts of erosion occurring (Figure 3.10). Kairaki exhibited the widest beach 

profile: 352 m from the benchmark on top of the most seaward sand dune to the subtidal 

zone. This site was found to be accreting at an average rate of approximately 20 myr¯¹ 

throughout the period of the study (Figure 3.11). Woodend was a stable site with no large 

erosion or accretion events and very little seasonality (Figure 3.10). Waikuku was also 

relatively stable over the two year study period. This site had small seasonality with periods 

of building between August and November and erosion during the rest of the year. 

Overall, there appeared to be a degree of seasonal variation throughout the two year study 

period. In the winter months (June to August), some sites were eroded, subsequently 

undergoing accretion in the spring and summer months (e.g. Spencerpark and Waikuku). In 

the present study, the small amount of net annual beach profile change, despite the seasonal 

dynamics, supports the idea that most of the study sites experience relatively stable periods 

over longer time scales. The similar sizes in the beach envelopes of change amongst the 

measured beach profiles indicate that all sites were subject to comparable dynamics over the 

study period. The exception to this pattern was Kairaki beach, where there were pronounced 

patterns of long-term accretion and the mean sea level excursions over the same period 

showed similar dynamics (Figure 3.11).  

Historically, the beaches of Pegasus Bay have been found to be relatively stable, with 

exception to those near to river mouths. For example, the Environment Canterbury bench 

mark at the south bank of the Waimakariri River mouth site, C2200, has exhibited large 

variations in beach width between seasons (Figure 3.11).  This site was eroding at a rate of 

2.26 myr¯¹ during the Environment Canterbury monitoring period (1991 to 2010), eventually 

being lost due to a large erosion event in 2010. At other sites, beach excursions showed a 

positive trend (accreting) with exceptions to site C2200 and C2300 where the Waimakariri 

River Mouth caused variation. Site C2545 (Woodend Beach) had a significant positive 

relationship (Figure 3.11). No other profile sites revealed a significant trend line relationship, 

due to the large variation caused between years and seasons.  
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Figure 3.10: Temporal beach profiles for six selected sites in Pegasus Bay, 

Canterbury. 
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Figure 3.11: Temporal horizontal excursion graphs using the Mean Sea Level 

contour (NZVD09) for six sites in Pegasus Bay, Canterbury paired with the 

nearest Environment Canterbury beach profile record measured over 

approximately 20 years. Trend lines show the overall erosional (negative 

slope) or accretional (positive slope) trend throughout the study period (left 

column plots) and longer profile record period (right column plots). 
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Sediment size 

Sediment samples included all the sand size classes (0 to 4 phi) (Figure 3.14) and were 

generally well sorted. Sediment grain size was coarser at sites closer to river mouths (~2.3 

phi at river mouths and ~2.5 phi away from rivers). As the study period progressed, the mean 

sediment size became finer and sorting became poorer, and towards the completion of the 

study, these became more similar to values at the beginning of the study period. As will be 

discussed later in this chapter, this was likely an effect of earthquake-released sediment 

pulses working their way through the beach system.  

Sediment from the earlier samples appeared to be unimodal (2.5 phi); however, samples 

became bimodal as the percentage of 3.5 phi sediment increased (Figure 3.14). The average 

size of sediment was significantly different between sites (ANOVA, F(5,41)= 2.50, p<0.04), 

and South Waimakariri Beach contained significantly larger sediment than South Brighton 

Beach (post-hoc Tukey’s HSD test: p=0.013): 2.2 to 2.54 phi range at South Waimakariri 

compared to 2.57 to 2.79 phi range at South Brighton.  
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Table 3.2: The average sediment size (phi) and its sorting value (standard 

deviation) and class over eight seasons at six sites in Pegasus Bay, Canterbury. 

N.B. Waikuku summer 2011 is not available due to the February 22
nd

 

earthquake occurring that day disrupting field work before the sample could be 

obtained. Note that all of the average sediment sizes in this table fall within the 

fine sand category. 

 
Autumn 

2010 

Winter 

2010 

Spring 

2010 

Summer 

2011 

Autumn 

2011 

Winter 

2011 

Spring 

2011 

Summer 

2012 

South 

Brighton 

Sediment 

size 

(Sorting) 

Sorting 

Class 

2.57 

(0.37) 

Well 

Sorted 

2.61 

(0.31) 

Very Well 

sorted 

2.65 

(0.31) 

Very Well 

sorted 

2.66 

(0.46) 

Well 

Sorted 

2.67 

(0.31) 

Very Well 

sorted 

2.79 

(0.5) 

Moderately 

well sorted 

2.58 

(0.36) 

Well 

Sorted 

2.58 

(0.31) 

Very Well 

sorted 

Spencer Park 

Sediment 

size 

 (Sorting) 

Sorting 

Class 

2.3 

(0.36) 

Well 

Sorted 

2.32 

(0.34) 

Very Well 

sorted 

2.41 

(0.34) 

Very Well 

sorted 

2.53 

(0.58) 

Moderately 

well sorted 

2.44 

(0.39) 

Well 

Sorted 

2.63 

(0.58) 

Moderately 

well sorted 

2.64 

(0.53) 

Moderately 

well sorted 

2.54 

(0.56) 

Moderately 

well sorted 

South 

Waimakariri 

Sediment 

size 

 (Sorting) 

Sorting 

Class 

2.28 

(0.38) 

Well 

Sorted 

2.31 

(0.37) 

Well 

Sorted 

2.43 

(0.34) 

Very Well 

sorted 

2.44 

(0.64) 

Moderately 

well sorted 

2.54 

(0.53) 

Moderately 

well sorted 

2.52 

(0.51) 

Moderately 

well sorted 

2.2 

(0.35) 

Well 

Sorted 

2.33 

(0.36) 

Well 

Sorted 

Kairaki 

Sediment 

size 

 (Sorting) 

Sorting 

Class 

2.27 

(0.38) 

Well 

Sorted 

2.37 

(0.33) 

Very Well 

sorted 

2.65 

(0.58) 

Moderately 

well sorted 

2.66 

(0.58) 

Moderately 

well sorted 

2.55 

(0.36) 

Well  

sorted 

2.54 

(0.56) 

Moderately 

well sorted 

2.48 

(0.59) 

Moderately 

well sorted 

2.55 

(0.58) 

Moderately 

well sorted 

Woodend 

Sediment 

size 

 (Sorting) 

Sorting 

Class 

2.53 

(0.34) 

Very Well 

sorted 

2.33 

(0.38) 

Well 

Sorted 

2.61 

(0.6) 

Moderately 

well sorted 

2.49 

(0.62) 

Moderately 

well sorted 

2.66 

(0.58) 

Moderately 

well sorted 

2.67 

(0.5) 

Moderately 

well sorted 

2.49 

(0.37) 

Well 

Sorted 

2.5 

(0.34) 

Very Well 

sorted 

Waikuku 

Sediment 

size 

 (Sorting) 

Sorting 

Class 

2.23 

(0.37) 

Well 

Sorted 

2.39 

(0.41) 

Well 

Sorted 

2.46 

(0.37) 

Well 

Sorted 

NA 

 

2.54 

(0.57) 

Moderately 

well sorted 

2.66 

(0.56) 

Moderately 

well sorted 

2.55 

(0.57) 

Moderately 

well sorted 

2.69 

(0.55) 

Moderately 

well sorted 
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Figure 3.12: The relationship between sorting and mean sediment size at six 

locations in Pegasus Bay, Canterbury, with data take over eight seasons 

(Autumn 2010-Summer 2012). 

 

 

Figure 3.13: The relationship between sorting value and mean sediment size 

over eight seasons at six locations in Pegasus Bay, Canterbury. Note that the 

later samples are generally separated from earlier samples due to their poorer 

sorting (higher standard deviation) and finer sediment sizes. 
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Figure 3.14: Cumulative frequency graphs of sediment cores taken from 

autumn 2010 to summer 2012 at six sites in Pegasus Bay, Canterbury. 
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Effects of the earthquake on sediment characteristics 

There was an increase in 3.5 phi sediment from spring (November) 2011 onwards at most 

sites (Figure 3.15). Winter 2011 (post-quake) samples were significantly different from 

winter 2010 (pre-quake) (F(5,41)=3.55, p=0.005, tukey’s HSD test). Sorting changed 

significantly between season but not site (site: F(5,41)= 1.510, p=0.208; season: F(7,39)= 

3.74, p=0.003). Summer 2011 and winter 2011 had poorer sorting (higher standard 

deviations) than winter and autumn 2010, and winter 2010 respectively (Tukey’s HSD test). 

In light of the sediment changes identified, data were grouped into pre- and post-earthquake 

categories. The mean size of pre-quake sediment (2.38 phi) was coarser than post-quake (2.55 

phi) (t(45)= -4.49, p<0.001). The mean post-quake sorting value was also was significantly 

higher (indicating poorer sorting) than the mean pre-quake sorting value (0.48 versus 0.36) 

(t(43)= -5.88, p<0.001), but both values remained within the well sorted class (Figure 3.16). 
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Figure 3.15: Fine sediment percentage and tuatua density at 30 m below the 

last high tide line sampled seasonally for two years in Pegasus Bay, 

Canterbury. Triangles denote significant liquefaction inducing earthquakes, a 

magnitude 7.1 on 4
th

 September 2010 and a 6.5 on 22
nd

 February 2011. 
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Figure 3.16: Mean size (phi) and sorting value of sediment cores taken from 

Pegasus Bay, Canterbury, pre- and post-earthquake (September, 2010). 

3.4.2 Tuatua abundance and distribution 

A total of 1008 shellfish were found during the study with higher abundances at the three 

northern sites (Kairaki, Woodend and Waikuku) (Figure 3.17). Using Richardson et al.’s 

(1982) identification key, these were all determined to be tuatua (Paphies donacina). The 

highest number of shellfish was found on Woodend Beach on the 5
th

 November 2010 (spring 

2010) with a total of 113 individuals. The greatest density of 550 individuals per m² was also 

found 30 m below the last high tide line at this time and location (Appendix 3). No tuatua 

were found at Spencer Park Beach on 17
th

 May 2011 (autumn 2011).  

Tuatua were found to be in a constant abundance between seasons and sites. An overall mean 

density of 11 shellfish per m
2 

 (SD= 13.8) was found; however, there were many quadrats 

where no shellfish were found lowering this value. The total number of individuals collected 

from samples spanning the intertidal zone at each site was not significantly different between 

seasons (ANOVA: F(3,39)= 0.392, p=0.760), or sites (F(5,39)= 0.788, p=0.565). From 

autumn 2010 to summer 2011 there were more tuatua present than between autumn 2011 and 

summer 2012 (t-test: t(46)= 4.496, p<0.001). When categorised into the prevalant use 

category (Horse, Vehicle, Pedestrian) of the site, an average density of 7 shellfish per m² 

(SE=1.4)  was found on Pedestrian areas and 13 tuatua per m² on both vehicle (SE= 3.7) and 

horse (SE= 4.3) use areas, but this was not found to be signficantly different (F(2, 44)= 

0.930, p= 0.402). 
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Table 3.3: Average density (tuatua per m²) (top) and standard deviation 

(bottom) of tuatua at each site and season and the number shellfish sampled 

(N) in Pegasus Bay, Canterbury. 

 

Autumn 

2010 
Winter 

2010 
Spring 

2010 
Summer 

2011 
Autumn 

2011 
Winter 

2011 
Spring 

2011 
Summer 

2012 

South 

Brighton 

Density 

(SE) 
5.5 

(15.7) 
9.0 

(12.6) 
1.5 

(3.4) 
13.0 

(15.5) 
10.0 

(13.9) 
4.0 

(5.2) 
6.5  

(17.2) 
3.0 

(4.8) 

N 11 18 3 26 20 8 13 6 

Spencer 

Park 

Density 

(SE) 
3.3 

(10.0) 
13.3 

(23.2) 
7.9 

(20.5) 
8.3 

(23.2) 
0.0 

7.2 

(8.3) 
3.9 

(7.0) 
2.8 

(5.1) 

N 6 24 16 17 0 13 7 5 

South 

Waimakariri 

Density 

(SE) 
2.0 

(3.5) 
13.6 

(37.9) 
52.5 

(153.8) 
26.3 

(34.6) 
2.0 

(4.8) 
3.0 

(6.3) 
0.5 

(1.6) 
3.5 

(6.3) 

N 4 27 105 52 4 6 1 7 

Kairaki 

Density 

(SE) 
10.4 

(20.0) 
34.6 

(96.4) 
27.5 

(79.0) 
12.1 

(15.3) 
4.2 

(5.6) 
2.9 

(4.0) 
3.3 

(6.2) 
4.6 

(9.2) 

N 25 83 66 29 10 7 8 11 

Woodend 

Density 

(SE) 
34.4 

(92.4) 
36.7 

(97.2) 
62.8 

(182.8) 
4.4 

(5.3) 
5.6 

(9.8) 
5.0 

(6.1) 
2.2 

(4.4) 
3.9 

(6.5) 

N 62 66 113 8 10 9 4 7 

Waikuku 

Density 

(SE) 
18.9 

(53.0) 
15.6 

(43.0) 
4.4 

(7.7) 
NA 

3.9 
(8.2) 

3.3 

(5.6) 
2.8 

(6.7) 
1.1 

(2.2) 

N 34 28 8 NA 7 6 5 2 

 

 

  

Figure 3.17: The total number of tuatua (Paphies donacina) at each site in 

Pegasus Bay, Canterbury, for each season from Autumn 2010 (May) to 

Summer 2012 (February). 
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Tuatua had a similar dispersal patterns at each site for the duration of the study. The position 

of individuals on the shore did not change between sites and seasons (ANOVA: site- 

F(5,353)= 0.374, p= 0.867; season- F(5,353)= 0.029, p= 0.994). A distinct banding, where 

shellfish were found at a maximum density within the transect, was observed at all sites 

(Appendix 2). A significantly higher percentage of individuals was found at the 30 m mark 

than any other position on the shore (ANOVA: F(11,353)= 10.895, p<0.001, Tukey’s HSD 

test) (Figure 3.18).  

 

 

Figure 3.18: The combined seasonal spatial distribution of tuatua on six 

beaches in Pegasus Bay, Canterbury. 

Physical beach characteristics as an indicator of abundance 

The total number of tuatua found at each site and season was plotted against the change in 

horizontal beach excursion (Figure 3.19) but no correlation was found using regression 

analysis. With the increase in fine sediment a change in tuatua abundance was not shown in 

the data (Figure 3.20). Regression analysis testing other variables including mean sediment 

size and sorting, percentage of fine sediment, and pore water content (%) also failed to yield a 

significant result. 
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Figure 3.19: The relationship between total number of tuatua (Paphies 

donacina) and the change in horizontal excursion between sampling times at 

mean sea level of beach profiles in Pegasus Bay study sites, Canterbury. Also 

included is the line equation and regression R. NS= not significant. 

 

 

Figure 3.20: The relationship between percentage of fine sediment (>3.5 phi) 

and tuatua density at mean sea level within the Pegasus Bay study sites, 

Canterbury. Also included is the line equation and regression R. NS= not 

significant. 

 

 

y = 0.2634x + 21.154 
R = 0.117 (NS) 

0 

20 

40 

60 

80 

100 

120 

-40 -30 -20 -10 0 10 20 30 40 50 60 

To
ta

l n
u

m
b

er
 o

f 
tu

at
u

a 

Change in horizontal excursion (m) 

y = 0.3738x + 47.965 
R = 0.057 (NS) 

0 

100 

200 

300 

400 

500 

600 

0 5 10 15 20 25 30 35 40 45 50 

Tu
at

u
a 

d
en

si
ty

 (
m

2
) 

Fine Sediment (%) 



Chapter Three: Beach Characteristics and Tuatua Distribution 

89 

 

3.5 Discussion  

The ability to use physical environmental data to predict ecological information could be a 

useful tool for sand beach managers. The present data confirms findings of earlier studies by 

Gabites (2006) and Allan (1999) that beaches in Pegasus Bay are very slightly accretional 

over decadal time scales. As with the genus Donax found on beaches in South Africa (Ansell, 

1983), tuatua in Pegasus Bay were the dominant surfclam in the intertidal zone. However, 

there was high spatial and temporal variation in the abundance of tuatua during the study 

period which could be due to a wide range of factors such as El Nino and La Nina 

oscillations, human impacts and high earthquake activity. The latter is not directly from the 

ground shaking, but rather the pulsed increase of finer sediment in the beach deposit which is 

known to have adverse effects on bivalve species (Nel et al., 2001). Understanding and acting 

based on the interrelatedness between the environment and the fauna is encouraged in 

ecosystem-based management. It is very difficult to clearly and quantitatively attribute 

environmental variables to shellfish populations, but if successful, doing so will provide 

information on the expected abundance of biota as result of measured physical variables. 

3.5.1 Characterisation of Pegasus Bay beaches 

The present study found that the majority of beach sites exhibited patterns of accretion; 

however, the two sites (South Waimakariri and Kairaki) in close proximity to the 

Waimakariri River were erosional. Further comparisons with Environment Canterbury’s 

twenty year cross-sectional surveys, measured on a yearly (or biannual in some areas) basis, 

indicate most sites have been relatively stable over an extended period (Figure 3.11). There 

was some variation from year to year, especially at site C2200 which is situated on the south 

side of the Waimakariri River mouth. A possible reason for this is the general variability of 

physical processes near to such areas. Instability created by the Waimakariri River mouth 

makes these areas unsuitable to sustain populations of intertidal shellfish, but most other 

areas of Pegasus Bay are likely to be highly suitable habitats due to their relative stability. In 

addition to instability created by the Waimakariri River mouth, earthquake activity changed 

the sediment composition of some sites which could have affected shellfish populations in 

Pegasus Bay. 

Historically, the Waimakariri River mouth flowed out of Brooklands Lagoon, with the inlet 

travelling up and down the coast to its southern end. An artificial cut was made through the 

beach in 1930 to locate the mouth opposite the main river channel, bypassing the lagoon 
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(Christchurch City Council 2010; Christchurch City Council, 2011). Since then, it has been 

observed that the Waimakariri River mouth has slowly migrated towards the south again 

from the main river channel cut. This process has eaten away at the sand dunes and uprooted 

large trees (Figure 3.21). The migration to the south and subsequent erosion is evidenced in 

the measured beach profile record, which shows that Kairaki Beach (north side of 

Waimakariri) has been consistently accreting, whereas South Waimakariri Beach has been 

eroding over the profile record period since 1994 (Figure 3.10). Gabites (2006) suggested this 

trend was not truly indicative of the area due to the short period of the study. However, the 

subsequent loss of this site, due to a large erosion event in 2011, suggests that this trend has 

persisted. In the present study, however, the South Waimakariri profile did not show an 

erosional trend from 2010 to 2012. A key reason may be because the site was far enough 

away from the shifting river mouth for it not to be subject to erosion caused by riverine 

processes.  

Gradual accretion was found at the majority of the sites sampled in the present study, 

conforming with the findings of Gabites (2006) who noted that the sand beach areas, that is 

the southern 40 km of Pegasus Bay, were moving seawards. Allan et al. (1999) also 

concluded that beaches were accreting in their study of the southern spit area of Pegasus Bay. 

In contrast, an erosional trend at the mixed sand and gravel beaches (north of Leithfield 

Beach) was found in Gabites’ study.  

Throughout the period of the present study (May 2010 – February 2012) it was observed that 

the Waimakariri River Mouth was moving south. A range of process variables could be 

responsible for this but the most likely are coastal storm events in combination with long-

shore processes. The predominant current system along the east coast of the South Island is 

northward moving, driven by swell waves moving up the coast of New Zealand from the 

Southern Ocean (Hart et al., 2008). Banks Peninsula interrupts this flow, resulting in a 

reverse eddy in the lee of the Peninsula. Reynolds-Fleming and Fleming (2005) established 

that the predominant current in Pegasus Bay is southward moving, with an average velocity 

of 2 cms¯¹ in the nearshore. This current system could be a large driver for the Waimakariri 

River migrating south. It is assisting the movement of sediment along the coastline past the 

river mouth as bars are formed before being deposited on the beach face. I observed a large 

bar of sediment had built up on the north side of the mouth in November 2010. The 

Waimakariri River mouth interrupts the current flow and associated southward sediment 

transport to the south close in the nearshore. When large storms driving swell from the north 
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occur, the bar would be broken and the sediment could bypass the mouth and continue 

moving south along the coastline. In between storms this area would continue to build if the 

present conditions permitted. 

 

 

Figure 3.21: Trees uprooted on the southern side of the Waimakariri River 

mouth from the river mouth shifting south and eroding the sand dunes. Photo 

taken in November 2010. 

3.5.2 Earthquake influences on beach characteristics 

During the period of the study (May 2010 to February 2012) there were 40 earthquakes over 

a magnitude five (ML) (Geonet, 2012). In the event of earthquakes with larger ground 

accelerations, volcanoes of liquefied sediment were produced from the ground (see Table 3.4 

for a list of these events). This not only occurred on land, but in waterways and coastal 

regions (author observations). Zeldis et al. (2011) found mounds to cover 35 – 65% of the 

estuary surface depending on the site sampled. The highest cover was found at the eastern 

edges of the estuary. In the present study, the data did not show a change in the open coast 

beach deposit sediment properties until four months after the September 4
th

 earthquake. Such 
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a time lag would be expected between the surface and waterway release of sediments and 

their reaching the study site beach deposits, particularly because the 4/09/2010 earthquake 

was centred west of Christchurch in the Darfield area (Table 3.4). The later earthquakes, from 

February 22
nd

 2011 onwards, were centred in or close to the coastal areas as the epicentres 

generally tracked eastward, so fine sediment may have been pushed up closer to the beach 

zones, both in the coastal reaches of rivers and across the terrestrial surfaces of the coastal 

suburbs with high water tables, resulting in a shorter time for the released sediments to reach 

the open coast environments.  

 

Table 3.4: A summary of large (>6.0 ML) earthquake activity in the 

Canterbury region during the study period (data taken from GNS, 26/01/12) 
Approximate 

epicentre 

location (town 

or suburb) 

Epicentre 

coordinates 

(longitude, 

latitude) 

Date Magnitude 

(ML) 

Epicentre 

depth (km) 

Approximate 

distance 

from open-

coast 

shoreline 

(km) 

Darfield 43.55°S 

172.18°E 

4
th

 

September 

2010 

7.1 11.04 45 

Hillsborough 43.5834°S 

172.7012°E 

22
nd

 

February 

2011 

6.3 5.92 5 

Redcliffs 43.56°S 

172.74°E 

13
th

 June 

2011 

6.3 6.92 2 

 

 

In the present study, mean sorting values increased by 33% post earthquake (indicating 

relatively poorer sorting) and mean sediment size decreased by 7%, but the mean values 

remained within the well-sorted fine sand classes. Such sudden changes in the sediment 

deposit have not been recorded for this coast under non-earthquake conditions. Unpublished 

data made available by Environment Canterbury, showed that sediment of a mean size of 

2.31 phi was found on the beaches of Pegasus Bay in 1997. This sediment size is very similar 

to that found at the start of the present study. In addition, Duns (2005) also found sediment to 

be similar in size and sorting to that found at all sites at the beginning of the present study. 

There was a notable increase in fine sand (3.5 phi) during the period of the study. Such a 

sudden and pronounced increase in fines is unprecedented when compared to three decades 
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of previous records and studies. It was, therefore, not likely to have been produced by wave 

climate variations in season or yearly processes, but is rather more likely to have been an 

outcome associated with the large amount of earthquake activity in the Canterbury region.  

Typically, sediment sizes and sorting can be associated with physical processes (Thrush et 

al., 2005). Furthermore, species assemblages can also be predicted through associations with 

sediment types and the process associated with them (Compton et al., 2008). However, these 

processes are relatively regular and predictable (operating over sub-annual to inter-decadal 

cycles) compared to the release of fine sediments from large earthquakes (e.g. the Canterbury 

earthquakes had return intervals in the tens of thousands of years). The addition of new 

sediment and changes to sorting value can influence bivalve biodiversity by creating higher 

habitat heterogeneity (Compton et al., 2008). However, any effects of these deposit changes 

may be less pronounced where shellfish species are concentrated in the surf zones due to 

rapid mixing, disturbance and transport of sediment in this high-energy part of the beach – 

compared to lower energy nearshore areas where extra pulses of fines released to the coast 

would be more likely to settle and remain for extended time periods. For tuatua, this means 

that both the subtidal adult and intertidal juvenile populations would have been less 

vulnerable to earthquake releases of fines compared to deeper, nearshore species. 

3.5.3 Tuatua abundance and distribution 

Tuatua abundances varied dramatically from year to year. For example, in spring Woodend 

Beach went from a total of 113 to just nine tuatua the following year. Marsden (2010) found 

denser populations in southern areas of Pegasus Bay compared to northern sites. Juvenile 

recruitment occurs from the subtidal adult population, but relating these intertidal densities to 

the offshore population is difficult. This is due to the planktonic dispersal of juveniles and 

also some juveniles remain subtidal (Cranfield et al., 2002). Anecdotal evidence suggests this 

distribution was not always the case in Pegasus Bay. Members of the public have mentioned 

that as children they could dig up adult tuatua everywhere in the lower shore. During the 

present study very few or no adult tuatua were found in the intertidal at study sites. 

Juvenile tuatua were located in a distinct band 30 m below the last high tide mark at all sites 

sampled. This pattern did not vary between seasons or site and indicates that constant 

zonation occurs for intertidal tuatua. Studies by other authors for tuatua populations in 

Pegasus Bay have also identified these high density bands (Cranfield et al., 2002; Kingett 

Mitchell Ltd., 2003; Marsden, 2010). In Marsden (2010), highest tuatua densities were found 
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in a band 20 m below the last high tide line, and Kingett Mitchell Ltd. (2003) determined the 

band to be in the upper 40 m of the shore. Therefore, the band found in the present study is 

within the parameters identified by other studies, but it may move vertically over a longer 

time period (e.g. year to year). 

The banding distribution identified for tuatua in the present study is likely to occur with a 

range of environmental tradeoffs. For example, banding low in the intertidal zone allows 

individuals to be submerged for longer duration to feed and grow but are more at vulnerable 

to predation; whereas, banding high results in less feeding time but lower predation risk. 

Banding patterns also have the potential to maximize damage to populations if damaging 

activities are focused at this tidal level. Banding distributions have been found in other New 

Zealand surfclam species such as toheroa (P. ventricosa); however, this species also has adult 

individuals found intertidally and has been found to be concentrated 20 m below the last high 

tide (Akroyd et al., 2002). Overseas species, such as Donax variablis in U.S.A, exhibit 

banding patterns within the intertidal zone (Wilson, 1999). 

Using evidence from previous studies of tuatua in Pegasus Bay- the tuatua band being 20 m 

below last high tide (Marsden, 2010), and in the top 40 m (Kingett Mitchell Ltd., 2003) - in 

combination with the present study, it could be estimated that the band may be approximately 

20 m wide and centred on the 30 m below last high tide mark. Therefore it would be 

appropriate to keep detrimental activities out of this zone; however, one must also keep in 

mind other biota is surrounding this area also. For example, polychaete holes were observed 

below the shellfish band during the study. Permitting traffic to this zone would simply 

created issues for other species. In all, this requires management which aims to limit the 

impact of heavy users for the entire beach ecosystem. Identifying and protecting vulnerable 

biota in certain areas allows for alternative areas which can be used for recreation where 

damage is negligible. 

Factors affecting abundance and distribution  

Juvenile tuatua densities were found to be highest 30 m below the last high tide line and 

abundances were generally higher at the northern sites. Attributing or correlating tuatua 

distribution patterns to environmental variables would be a useful tool if successful. It would 

allow beach managers to infer what the shellfish status should be through assessing physical 

environmental variables. The present study was unable to attribute shellfish abundance or 

density to any particular variable which suggests that a range of factors was influencing 
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dispersal of tuatua in Pegasus Bay. The beaches are all relatively similar in terms of sediment 

size, profile and physical processes, so beaches which contrast one another may reveal 

shellfish abundance-environmental factor relationships unable to be found in the present 

study. 

For the duration of the study, the abundances and distribution of tuatua were found to be 

highly variable and no physical property of the sand beaches was found to influence tuatua 

abundance. This is despite rapid changes in the population. For example, between winter and 

spring, 2010, there was a large increase in tuatua numbers at the three northern sites (Kairaki, 

Woodend and Waikuku) and this was not found the subsequent year. Such changes are not 

likely to be solely down to dispersal dynamics of tuatua, but could be due to environmental 

conditions.  

Three major environmental factors may have influenced the tuatua population: climatic 

patterns, high earthquake activity, and artificial extrogenous forces (i.e. the operation of a 

hydraulic shellfish dredge). If climatic conditions are not suitable for tuatua to grow and 

reproduce the subsequent recruitment will be affected negatively. Tuatua are subjected to a 

range of environmental conditions, such as high wave forces and changing water 

temperatures, which could influence reproduction and Dawson (1954) found that missing 

year classes indicated inter-annual differences in reproduction of tuatua. If this is the case for 

tuatua, reproduction may not occur at all one year, but large amounts of gametes could be 

produced the following year. 

Mast seeding is a term used largely by plant ecologists; however, the notion of this theory 

could be applied to shellfish populations, and could explain the differences in recruitment 

from year to year. Mast seeding is defined as the variable and synchronous production of 

seeds by a population of plants from year to year for either pollination or predator satiation 

benefits (Buonaccorsi et al., 2003). The reproductive cycles of shellfish can be compared to 

that of plants as they both spawn by releasing gametes and are synchronized by 

environmental cues (Marsden, 1999a). If mast seeding occurs in shellfish populations then it 

would be assumed that some years may have little or no recruitment but other years would 

have large amounts of recruitment when conditions are more favourable.  

Environmental conditions were warmer in 2010 and may have been more favourable for 

gonad production which could have resulted in higher levels of recruitment compared to in 

2011 (NIWA, 2011a). For example, temperatures were higher than average in Christchurch 
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during the summer of 2010/11 (NIWA, 2011a) which is likely to cause higher reproductive 

outputs in tuatua populations (Marsden, 2002). This would reflect in the following year’s 

recruitment which takes place approximately two months after gonad maturation (Marsden, 

2002). Furthermore, winter temperatures are usually cooler resulting in shellfish retaining 

tissue through a shutdown period for the following reproductive season. The 2011/12 summer 

was a lot cooler due to La Nina climate patterns and not as favourable for reproduction 

(NIWA, 2012). The pattern found during the present study had high levels of recruitment 

during the warmer months which was also identified by Marsden (2002). 

High earthquake activity occurred in the Canterbury area from 4
th

 of September 2010; these 

events included ground shaking, sediment movement and contamination of nearshore areas 

with sewerage pollutants as a consequence of damaged infrastructure. This may have caused 

large numbers of the populations to move, or large amounts of mortalities reducing 

reproduction the following year (2011). The effects of the earthquakes were felt throughout 

Canterbury and included ecological damage, especially in estuarine environments where 

organisms were smothered by introduced sediment (Author observations). The finer sediment 

deposits occurred in the warmer months when important life stages; when reproduction and 

recruitment occurs in Pegasus Bay tuatua (Marsden, 2002). The capacity of such processes 

may decrease as a result (i.e. reproductive outputs would be reduced).  

The ecological implications of introducing large quantities of sediment to an intertidal area 

can have a significant impact on communities. The immediate cause for concern is 

smothering, which occurs when sediment is rapidly deposited and settles on top of the 

existing substrate surface (Thrush et al., 2004). In surfclams, increased fine sediment can 

clog the gills and reduce feeding capability. It does not take a large amount of sediment for a 

population to be significantly affected. For example, Zajac and Whitlach (2003) deposited 1 

m² areas of sand 15 cm deep on the surface of infaunal communities and found that it took 

2.5 months for recovery to occur. Therefore deposition of foreign sediment over the entire 

coastal zone may cause recovery to take several months. In the long term it could result in 

reduced reproduction and ecological functioning of infaunal populations. This may result in 

other species, reliant on bivalve facilitation, decreasing in abundance. Overall, this could 

reduce the stability and resilience of the ecosystem until full recovery occurs.  

In regard to intertidal tuatua, this particular zone is highly disturbed by wave processes so 

sediment would not be likely to smother individuals in this zone. The subtidal zones (below 
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the MLWS) of surf beaches are observably less impacted by wave forces. Sediment would 

settle for longer and may cause smothering to the adult population in the area. This may 

cause disruption to behaviour by individuals of the population. For example, Nel et al. (2001) 

found that shellfish (Donax sordidus and D. serra) had longer burial times in finer sediment 

(≥ 3.5 phi). This response is likely to influence the overall success of the population. In a 

physically dynamic environment, such as the swash zone, an increase in burial time would 

result in individuals being exposed to stressors, such as desiccation, for longer.  

Fine sediment introduction has also been shown to adversely affect feeding by clogging of 

the feeding structures (Lohrer et al., 2006). This may have occurred for tuatua and would 

result in movement out of the affected area. Hull et al. (1998) found that a related species, 

Paphies australis, was able to resurface and resume feeding when covered by up to 10 cm of 

sediment. The fine sand deposits in Pegasus Bay would be likely to be shallower than this, so 

it would be expected that most tuatua would successfully able to resurface and disperse from 

the affected area. 

 “Tuatua are known to strictly avoid silt” (Morton & Miller, 1973) and may have moved 

away from affected areas as a result. Norkko et al. (2001) found small bivalves (Macomona 

liliana and Austrovenus stutchburyi) to have slower fall velocities and to be able to disperse 

significantly differently than sediment bed loads. This finding indicates that surfclams can 

actively disperse. Moreover, when new sediment enters the ecosystem affected individuals 

can move away from the area. The success of this dispersal will relate to fall velocities. As 

smaller individuals fall slower they would be predicted to disperse further than large faster 

falling shellfish. In addition surfclams, such as Donax variablis, can increase their surface 

area, reduce fall velocities, by extending siphons and its foot to swash ride using wave energy 

(Ellers, 1995). The level of increase in fine sediment was significant (Section 3.4.1), and if 

Morton & Miller are correct, energy may have been put into movement away from the new 

silty sediment. This could explain the reduction in shellfish densities between these years.  

Following disturbances, it may be beneficial to implement increased controls to protect the 

ecosystem. After the earthquakes, contamination, which could have toxic effects on marine 

biota, was released into waterways due to broken and blocked infrastructure. Protecting 

ecosystems during this period would result in a reduction of additional stress and decrease the 

toxicity of other contaminants (Holmstrup et al., 2010). This is because organisms will be 
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more likely to remain in homeostasis and increase chances of survival compared to those 

stressed before contamination. 

Additional extrogenous forces from humans could have altered shellfish distribution so that 

tuatua were in lower than usual abundances the second year. The earthquake activity resulted 

in damaged infrastructure which resulted in the release of untreated sewerage to the coastal 

zones (Environment Canterbury, 26/01/2013). This also disrupted many coastal activities 

both detrimental and beneficial to tuatua, which could further influence abundance and 

distribution. 

Raw sewerage was released as a result of damaged infrastructure which caused faecal 

contamination to rise to anthropogenically unsafe levels. In normal operation, tertiary treated 

effluent is released from two pipes. The largest of which is located in South Brighton and 

releases Christchurch City’s effluent 3 km offshore. The other is located at Woodend Beach 

and releases Waimakariri Districts effluent 1.5 km offshore (Waimakariri District Council, 

2012).  

The water from effluent outfalls has been shown to significantly alter marine communities 

(Reopanichkul et al., 2009; Smith, 1997). A key indication of community change is that 

polychaete and detritus feeders become more abundant (Hayward et al., 1997). This is often a 

result of increased nutrient and subsequent phytoplankton blooms. For bivalve species, water 

from outfalls also alters distribution and abundance. Provided waters are well mixed and 

sediments do not become anoxic, the increased abundance of phytoplankton could result of 

more food for shellfish and higher abundances as a result.  

Armstrong et al. (1980-81) found that abundance of such species was lower at an effluent 

outfall in Puget Sound, U.S.A., and increased rapidly with distance from the discharge. This 

was likely to be due to the increased biological oxygen demand as bacteria break down the 

sewerage. A study by de la Ossa Carretero et al. (2008) on Spisula subtruncata also found 

rapid increases in population numbers further from outfalls on the Castellon coast, 

Mediterranean Sea, with high abundances 1000 m from the outfall. It was also noted that the 

type of treatment could result in changes in abundance. Generally these findings are for 

shallow benthic communities. These effluent outfalls are likely to have minimal effects on the 

distribution of tuatua in Pegasus Bay because modelling has shown that the distance and 

depth of the pipes and the resultant effluent plumes are unlikely to reach the shore at 

sufficient concentrations to cause significant changes (Miller, 2011). 
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Prior to the earthquakes, water quality at beaches in Pegasus Bay was at safe swimming 

levels. However after the earthquakes, water quality was degraded from contaminants 

entering the waterways. For example, on the 3
rd

 of March 2011, Kairaki Beach was found to 

contain 1515 E. coli/100ml, with the safe swimming water value being below 260 

E.coli/100ml (Environment Canterbury, 2012). This level of contamination caused all 

beaches to be closed for swimming, fishing and whitebaiting. 

In regular use, the beaches of Pegasus Bay are also commercially fished for shellfish using a 

hydraulic dredge operated from a boat in the surf zone. This could artificially loosen juvenile 

tuatua from the sediment and cause them to wash up and survivors to inhabit the intertidal 

zone. This would explain the higher numbers on the northern beaches, where the dredge 

operator frequently fishes. This commercial operator had to stop harvesting following the 

earthquakes until water quality increased. The possible impacts of this dredge on the tuatua 

population came to light when a member of the public submitted photos to me and a member 

of Environment Canterbury showing large amounts of juvenile tuatua stranded on the swash 

line after dredging had occurred (Figure 3.22). These were all dead, but other shellfish may 

have survived and re-buried into the intertidal zone after being loosened from the sediment by 

the dredge. The high abundance of juvenile tuatua as sites become closer to the Waimakariri 

River mouth from Waikuku found in the present study suggests that the dredge could have 

contributed to this finding (Figure 3.17). Loosened juvenile tuatua may not have dispersed 

pass the Waimakariri River mouth because it acts as a geographic barrier by interrupting the 

predominant southerly current flow (see Chapter 1 section 1.7).  
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Figure 3.22: Stranded tuatua at Waikuku Beach shortly after the commercial 

dredge had been operating in the area (Photo courtesy of Tania Brill, 

13/07/2010). 

The dredge has not been in operation in Pegasus Bay since the September 4
th

 2010 

earthquake (Pers coms. Cloudy Bay Clams, 2012). The absence of dredge activity could have 

resulted in an increase of intertidal tuatua densities in the first round of sampling (i.e. the 

dredge artificially washed juvenile tuatua onto the intertidal zone of the beach). This is not 

beneficial for shellfish due to individuals being loosened from their natural area and being 

artificially moved out of the preferred habitat. Decreased feeding would result from reduced 

submerging times in the intertidal area. Further information on the exact dates of operation 

would be needed to allow a more informed decision to be made. Information of this type was 

difficult to access due to the Ministry of Primary Industries (formerly Ministry of Fisheries) 

not being able to legally disclose this data without permission from the dredging company. 

Suitability of sites for intertidal tuatua 

The beaches of Pegasus Bay were shown to be relatively stable intermediate beaches with 

well sorted sediment. Such properties make these beaches ideal habitat for shellfish species, 

such as tuatua (McLachlan et al., 1995). If undisturbed, tuatua would be expected to be in 

high abundance along the sandy parts of the bay. However, Dawson (1954) suggested that 

unstable parts of Pegasus Bay would be likely to have reduced populations. The profiles from 

the present study indicate variability around the Waimakariri River Mouth, so it would be 
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expected that areas near to river mouths could have unstable populations which can change 

drastically between years (Figure 3.11). Whilst such areas may be able to temporarily contain 

tuatua, it is unlikely these will be sustained for long periods of time due to the high amount of 

physical processes acting on these beaches. These areas are extensively disturbed, being 

influenced by inland storms discharging though the river, and coastal storms immediately in 

the vicinity of this environment. 

Shellfish are usually found in association with particular types of sediment (Compton et al., 

2009), and so it would be expected that tuatua would be found in association with sediment 

sized approximately 2.5 phi (fine sand). With the recent increase of 3.5 phi sediment, spatial 

changes in tuatua distribution may occur as a response. It would be likely that less shellfish 

would be found in areas higher in fine sediment. As a result of the earthquake activity and the 

introduction of finer sediments it may be that shellfish have moved away from affected 

beaches and into areas containing unchanged sediments.  Overall, the introduction of fine 

sediment to the coastal environment is likely to have some adverse effects on shellfish. 

Active dispersal will mitigate such effects, so this sediment addition will not be detrimental 

in the long-term if sufficient unaltered space is available. 

3.5.4 Vulnerability of tuatua to physical human impacts 

Tuatua had highest abundances approximately 30 m from the last high tide line, where sand is 

hardened and vehicle and horse traffic occurs. This distribution pattern makes tuatua 

vulnerable to being crushed by users, especially when traffic is high. The band of distribution 

moves vertically by small amounts from year to year. This is likely to be attributed to outside 

environmental factors, such as when a beach is accreting or eroding.  

Tuatua were not found exclusively within this band. During certain time periods individuals 

were spread throughout the intertidal zone. Changes in tuatua distribution pattern may make 

mitigation of vehicles difficult because evaluating tuatua densities is time consuming and 

labour intensive. Therefore, exclusion of vehicle and horse users from the intertidal zone 

would make it unnecessary to carry out monitoring of tuatua distribution and would be the 

most cost effective way to protect tuatua. 

Recruitment of juvenile tuatua on the shore occurred two months after gonad maturation 

(Marsden, 2002). For tuatua in Pegasus Bay this only occurs in the warmer months, unlike 

the related species P. subtriangulata in the North Island which can breed all-year-round 
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(Grant & Creese, 1995). The disadvantage of the recruitment pattern for shellfish in Pegasus 

Bay is that heavy vehicle use occurs at this time. Horse users use the beach all year round so 

shellfish are equally vulnerable to these users throughout the year. The main issue associated 

with this is that tuatua wash up on the beach where they are vulnerable to trampling. When 

higher numbers of vehicles are present, the risk of individual tuatua being injured increases. 

The tuatua which bury successfully may still be vulnerable due to having weaker shells and 

shallower burial depths than larger individuals (see Chapter 4). 

3.6 Conclusion 

Over the study period, the beaches of Pegasus Bay were stable with low rates of accretion, 

except for areas near to the Waimakariri River mouth. Dynamics of the river mouth makes 

these latter sites variable and less suitable for tuatua to inhabit. Sediment composition of 

Pegasus Bay was generally in the well sorted category, but finer sediment was found to enter 

the system as a result of the earthquake activity in the Canterbury region. The most likely 

vector of this sediment was the Waimakariri River mouth and upwelling in the coastal zone. 

Further investigation into the ecological effects of the earthquake-derived sediment in the 

coastal environment is needed to understand the subsequent impacts on sand beach biota. 

Juvenile tuatua were variable in abundance on both temporal and spatial scales; however, no 

relationship could be found in the data between tuatua abundance and physical beach 

characteristics. Further research into the beach erosion and accretion and other physical 

processes and their effects on shellfish populations is needed. This requires stable populations 

of shellfish and more intensive sampling to establish if such a relationship exists. A distinct 

banding pattern was found 30 m below the last high tide which indicates tuatua have a 

zonation preference. The exhibited banding pattern could cause additional vulnerability to 

vehicles and horses as this area is a preferred area for such users. It is most likely that tuatua 

dispersal and abundances are a result of a combination of active dispersal and physical beach 

dynamics; the former of which is yet to be evaluated. Understanding tuatua reproductive 

patterns will be likely to aid in understanding how abundances can be affected.
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Chapter 4 Using shell-length to identify 

recruitment, burial depth and shell strength 

of tuatua (Paphies donacina) in Pegasus 

Bay. 

4.1 Introduction  

Sand beaches are one of the most predominant coastal ecosystems in the world and are 

subjected to a large range of physical dynamics (Mclachlan, 1990). The biota that are present 

on such beaches are unique; requiring specific adaptations to live in such physically disturbed 

habitats. In New Zealand, the surfclam Paphies donacina (tuatua) makes up a large biomass 

of biota in the sand beaches it inhabits (Morrison et al., 2009). Despite this, little is known of 

the biology of tuatua. By examining the size distribution of shellfish, population dynamics 

can be understood through evaluating changes over extended time periods. Size data can be 

used to determine the age of individuals (Cranfield et al., 1996) and identify recruitment 

periods (Dawson, 1954). In addition, shell size is likely to be a key attribute in determining 

the potential impact of damage inflicted from human activities because it is known to be a 

key predictor of shell strength (Garden, 1999; Grefsrud & Strand, 2006; Nagarajan et al., 

2006) and burial depth (Zwarts et al., 1994; McLachlan et al., 1995).  

Tuatua (P. donacina) are a highly mobile and important member of sand beach ecosystems. 

A complex set of abiotic and biotic interactions occur, which dictate where individual 

shellfish may distribute at any time. For example, wave forces can move individuals within 

the surf zone and predation may reduce population abundance. As a result, the mean size of 

shellfish populations also has the potential to vary from day to day. Understanding this 

variation is necessary in order to identify the overall dynamics of a tuatua population. On the 

population level, spatial and temporal size data can be used to identify important events. 

Tuatua of a wide range of shell lengths are found on the beaches in Pegasus Bay, but more 

juveniles are present in the intertidal zone (Cranfield et al., 2002). Adults are distributed in 

the subtidal zone, but can also be found in the low tide swash during spring tides. Dawson 

(1954) used shell lengths to predict the age of tuatua populations in Pegasus Bay, and more 

importantly to infer when recruitment had occurred. Dawson (1954) found that recruitment in 

tuatua was not consistent between years, but occurs when environmental variables were 

suitable. With the exception of Marsden (2002) and Dawson (1954), tuatua (P. donacina) in 
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Pegasus Bay have had population surveys conducted at a single time period (Cranfield et al., 

2002; Kingett Mitchell, 2003; Marsden 2010). The present study sampled shellfish seasonally 

over a two year period providing replicated data to identify population changes during this 

time. 

Burying into the sediment is a vital adaptation for the survival of sand beach bivalves such as 

tuatua. The sediment provides sheltered moist conditions which protects individuals from 

desiccation during the low tide and from predators (Zwarts & Wanink, 1989). Humans are 

using sand beaches in higher numbers, so the sediment provides much needed cushioning 

when recreational activities take place on the sediment surface. Deeper burial within this 

sediment gives shellfish a buffer zone where forces can be dissipated before impacting on 

individuals. As a result, shellfish are more likely to survive being driven over by heavy beach 

users (i.e. vehicle and horse users). 

Schlacher et al. (2008b) found that when driven over by a vehicle there were more shellfish 

fatalities in softer sediment than compacted sediment. This is likely to be because vehicle 

tyres penetrate deeper in less compacted sediment. The deeper an individual is buried, the 

less likely it would be affected by forces exerted from vehicle and horse users. This is 

because the forces weaken as they are spread over and down through the sediment column.  

Generally, sand beach bivalves bury shallowly in the sediment. Sassa et al. (2011) found that 

sediment characteristics also influence the depth and angle at which shellfish bury. The 

findings of that study using Ruditapes philippinarum and Donax semigranosus indicated that 

compact sediment resulted in a reduced burrowing angle and overall depth. This reduction of 

depth with angle is of little surprise. After all, trigonometry highlights that to bury deeper 

below the surface at a lower angle you would have to move further on this angle to do so. 

However, these findings highlight that different sediment characteristics between locations 

will influence the depth and orientation of shellfish; both of which may influence the 

vulnerability of individuals to outside forces. 

To be successfully protected from forces above the sediment shellfish also have another asset 

that helps to reduce the damage inflicted; a shell. The development of a robust shell has 

important benefits for bivalves: increasing defence capability would be the largest benefit of 

this feature. Tuatua (P. donacina) are a major food source for many predators in sand beach 

ecosystems of Pegasus Bay, including crabs, birds, and fish (Williams, 1969). The main 

method of defence from these predators is use of a hard calcareous shell which encloses the 
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individual (Smith & Jennings, 2000). If applying ‘Optimal Foraging Theory’, strong shells 

increase predator handling time of an individual, making it less desirable to predators 

(Hughes, 1980).   

In the intertidal zone there are many activities that can result in shellfish mortality; these 

include vehicle traffic, horse riding, and general recreation, such as sporting activities. 

Juvenile tuatua are spread in the top 10 cm of sediment throughout the intertidal zone of New 

Zealand’s sand beaches, and are vulnerable to many stressors including human activity 

(Cranfield et al., 2002; Marsden, 2010). Therefore, it is very important for bivalve species to 

develop a strong shell to prevent damage and subsequent mortality. In addition, knowledge of 

the force that it takes to break these shells can be used in management as background 

information for a new activity to take place. For example, if a proposed activity includes 

using heavy equipment then the potential impacts on shellfish can be assessed.  

Testing of shell strength has been carried out on other bivalve species using a range of 

methods. Some provide direct measurements of shell strength (Garden, 1998; Grefsrud & 

Strand, 2006), while others give indirect measurements, such as the height taken to break the 

shell when dropped (Nagarajan et al., 2006). These experiments have calculated the force 

required to damage the shell but the orientation was not considered.  

Most experiments tested the shell when positioned so that the margin of the valves was 

horizontally aligned. However, orientation of the shell in its normal vertical position in a 

beach could produce differing results. Testing both axes is relevant for tuatua because when 

buried in the sediment tuatua are almost always aligned vertically, as shown in Figure 1.11. 

Despite this, testing shell strength for horizontal alignment was also performed because when 

tuatua are removed from the sediment from bird predation, or washed onto the shore, they are 

in this position. It has been observed in Donax spp., which has similar characteristics to 

tuatua, that individuals can actively surface and move across the sediment by leaping (Ansell, 

1983). As such, any force which is imposed on individuals will be of this nature. Horizontal 

tests are also comparable with previous work which performed tests on this axis of bivalve 

shell. 

4.2 Aims 

This study had three key aims which were, firstly, to describe the changes of individual size 

of a tuatua population at six selected sites within Pegasus Bay, Canterbury. Secondly, to 
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establish whether the burial depth of tuatua (P. donacina) changed with shell length, and, 

thirdly, to assess the effects of shell length and orientation on the shell strength of tuatua. 

 It was expected that the population structure of tuatua would be similar between sites due to 

being in close proximity and undergoing similar dynamics. Tuatua were expected recruit over 

a single time period and remain on the beach resulting in an increase in mean size throughout 

the study period. A positive relationship between and shell length and burial depth was 

expected, as was a positive trend between shell length and strength.  

4.3 Methods 

4.3.1 Size distributions 

The shell lengths of all individual tuatua were recorded during abundance sampling 

conducted in Chapter 3. This took place in every three months from May 2010 to February 

2012. Shell length was measured to the nearest millimetre using vernier callipers at the 

maximum distance across one side of the tuatua shell (Figure 4.1).  

 

 

Figure 4.1: The measurement of shell-length for tuatua.  

 

 

Anterior Posterior 
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4.3.2 Burial depth 

On the 1
st
 and 2

nd
 of August 2011, three beaches in Pegasus Bay, Canterbury (Waikuku, 

Spencer Park and Woodend) were sampled for this study because they contained high 

densities of tuatua (P. donacina). The other sites (Kairaki, South Waimakariri and South 

Brighton) were sampled but did not contain sufficient tuatua. The depth at which individuals 

were buried at the low-tide mark (0.2 m) was measured in the intertidal zone (approximately 

30 m below the high tide drift line). This was done like an archaeological dig - using a spade 

to lightly scrape away sediment until an individual was uncovered, but in its original position. 

The burial depth was measured for each individual. Depth was measured from the sediment 

surface down to the top edge of the shell. The individual was then removed and its shell 

length recorded. This was repeated until at least 15 individuals were found at each site. 

4.3.3 Shell strength 

The strength of the shell was tested on both the horizontal and vertical axis to examine if the 

force needed to cause a fatal breakage (i.e. a large crack through the shell) differed in relation 

to orientation. Tuatua of a range of shell lengths were collected from South Shore Beach, 

Canterbury, but tuatua greater than 80 mm were only found in the shallow subtidal zone at 

Taylors Mistake Beach, Canterbury (Figure 4.2). Shellfish were gathered three days before 

testing that took place on the 9
th

 of March and the 6
th

 of April, 2010. All individuals were 

kept in an aquarium with fresh running sea water at a temperature of 15°C. Only healthy 

individuals were used, those which, when undisturbed, had siphons protruding from the shell, 

and withdrew siphons and closed their shell when physically disturbed. 
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Figure 4.2: Map of showing sites where tuatua were gathered for compression 

experiments. 

Testing apparatus 

A textile compression machine (‘MTS 858’ with a 25 kN load cell) was adapted for use on 

tuatua shells. The smallest tuatua that could be assessed was 8 mm in shell length because the 

load cell was insensitive to force exerted on individuals below this shell length. This machine 

works by using two metal plates that exert a force for a given displacement. As displacement 

increases, so too does the force until the object breaks. For each tuatua tested, the plates were 

set so that they touched the shell then the machine was started. 

Horizontal axis experimental procedure 

Forces along the horizontal axis of the tuatua were measured when the shell was orientated 

with the valves margin lying horizontally. Tuatua were put in sealed plastic bags and laid 

between the two metal plates of the machine so that the widest part of the shell was touching 

the plates and sitting level. The machine compressed at a rate of 2 mms¯¹ until the shell 

cracked. The cracking point was determined by watching the force exerted on the shell which 

Pegasus Bay 

South Shore Beach 

Taylors Mistake 

Beach 

1 km 

N 
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was stopped when force fell suddenly, for example, when the force exerted dropped from 300 

N to 50 N.  

Vertical axis experimental procedure 

It was necessary to determine the force required to damage a vertically aligned shell because 

this is the orientation of tuatua when buried in its natural environment. Testing this 

orientation could not be done using the same method as for the horizontal axis due to the 

instability created by compression of the animal on this plane if unsupported. To provide 

support, three different sized holders were constructed to hold the animal in place at its 

posterior end. The holders were made from plastic plates that had openings cut in the middle 

and were filled with Plasticene™ to hold the individual. The dimensions of the gaps were; 

large- 70 mm x 40 mm, medium- 70 mm x 20 mm, small- 20 mm x 10 mm (Figure 4.3). The 

shell length class of tuatua put into each plate was; large- > 40 mm, medium- 21 mm to 40 

mm, small- 5 mm to 20 mm. In all 33 individual shellfish were tested with 14 in large 

holders, eight in medium and 11 in small. In the field, shell lengths were between 4 mm and 

30 mm.  

The individual tuatua and holder was put into the compression machine with the longest 

length of the shell touching the two plates. The rate of compression was 4 mms¯¹ for this 

series of testing. This was to increase the speed of the testing but still be at a rate that 

compression can be measured reliably, as shown by Garden (1998). The plates were adjusted 

so that they were touching the anterior and posterior end of the shell. The machine was 

started and was stopped when forces exerted reached a maximum, as done for the horizontal 

testing. Unlike the horizontal testing, sometimes the break would not be fatal (small crushed 

areas), so the compression was continued until deemed fatal (e.g. cracked through the shell, 

see Chapter 5). 
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Figure 4.3:  The three tuatua holders that were used for vertical compression 

testing. 

4.3.4 Data and analysis 

All data were recorded in Microsoft Excel. All statistical analyses were carried out using 

‘Statistica 7’. Analysis of Variance (ANOVA) was used to test differences in shell length 

between sites, season and position on the shore.  

The relationship between shell length and burial depth was tested using linear regression 

analysis. A one-way ANOVA was used to test if the shell lengths and burial depths at sites 

were significantly different. An Analysis of Covariance (ANCOVA) was carried out to test if 

the shell length and burial depth relationship was different between sites. 

For shell strength testing, displacement and force readings were recorded. Regression 

analysis was carried out to determine the relationships between variables. An ANCOVA was 

used to test the relationship between shell lengths and break force with different shell 

orientations.  
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4.4 Results 

4.4.1 Spatial and temporal changes in tuatua size 

Individual shell length 

During the period of the study, tuatua in a range of sizes from 4 mm up to 61 mm were 

collected. All sites appeared to contain similar lengthed individuals at each time period of 

sampling. Shell length of individuals had an overall mean of 16.9 mm (SE= 0.27) and rarely 

exceeded 30 mm. The largest individual found was 61 mm on in the near the swash zone of 

South Waimakariri Beach, and the smallest was 4 mm found at every site during the period of 

the study.  

At each site the mean shell length was significantly different between seasons and reduced 

between spring and summer of each year (Table 4.1). Generally most sites had larger 

individuals in the spring and summer months  than in autumn and winter (Figure 4.5). When 

seasonal data were grouped, tuatua were significantly smaller at South Brighton compared to 

other sites (F(5,1002)=23.000, p<0.001) (Table 4.1).  

Between the sampling periods (three months), tuatua of a starting length of 11 mm had a 

mean increase of 4.28 mm. This was extrapolated to a mean shell length increase of 17.1 mm 

yr¯¹. Where found, shellfish were a similar length within the sampling area (F(9,30)=0.954, 

p=0.496). The high tide line was not included in this analysis due to no tuatua being found at 

this location for the duration of the study. 

 
Figure 4.4: Juvenile tuatua caught during sampling.
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Table 4.1: Table of mean tuatua shell length at each site and season and the ANOVA p value (* p<0.001; NS, p>0.05). Use type 

at each site also noted, NVH, no vehicle or horse use; H, horse; V, vehicle. 

 

South 

Brighton 

 

(NVH) 

Spencer 

Park 

 

(H) 

South 

Waimakariri 

 

(V) 

Kairaki 

 

 

(V) 

Woodend 

 

 

(H) 

Waikuku 

 

 

(NVH) 

ANOVA 

Result 

2
0

1
0
 

Autumn 

Mean shell 

length (SE) 
10.5 (1.9) 10.5 (1.1) 15.7 (3.5) 

12.6 

(0.8) 
10.3 (0.4) 12.6 (0.4) 

p= 0.028 

N 11 6 4 25 62 34 

Winter 

Mean shell 

length (SE) 
8.2 (1.0) 11.2 (1.1) 16.6 (0.5) 

17.3 

(0.4) 
17.2 (0.6) 17.8 (0.9) 

* 

N 18 24 27 83 66 28 

Spring 

Mean shell 

length (SE) 
22.7 (0.7) 16.8 (1.1) 19.2 (0.4) 

20.6 

(0.4) 
22.9 (0.4) 18.0 (2.0) 

* 

N 3 16 105 66 113 8 

2
0

1
1
 

Summer 

Mean shell 

length (SE) 
7.5 (1.2) 27.3 (2.2) 21.1 (2.2) 

22.5 

(2.1) 
22.5 (5.1) - 

* 

N 26 17 52 29 8 - 

Autumn 

Mean shell 

length (SE) 
7.1 (0.8) - 7.3 (1.3) 7.9 (1.0) 12.1 (3.1) 7.4 (1.1) 

p= 0.165 

N 20 0 4 10 10 7 

Winter 

Mean shell 

length (SE) 
10.1 (2.4) 14.3 (3.7) 10.8 (0.7) 

12.0 

(1.7) 
10.2 (2.0) 27.2 (13.7) 

NS 

N 8 13 6 7 9 6 

Spring 

Mean shell 

length (SE) 
14.5 (1.7) 13.7 (2.0) 61.0 (NA) 

18.0 

(4.5) 
31.5 (11.5) 13.6 (1.5) 

* 

N 13 7 1 8 4 5 

2
0

1
2
 

Summer 

Mean shell 

length (SE) 
7.3 (1.8) 19.0 (8.5) 11.3 (3.5) 9.3 (2.0) 11.4 (3.5) 7.5 (0.5) 

NS 

N 6 5 7 11 7 2 

 

ANOVA 

Result 
* * * * * p= 0.005 

 

 

1
1
0
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Figure 4.5: Seasonal variation in the mean shell length of tuatua in Pegasus 

Bay, Canterbury, error bars denote standard error of mean values. 

Size distributions 

When size frequency data were collated into seasons, the size of tuatua populations was 

multimodal during most seasons (Figure 4.6). The data for each season was not normally 

distributed. Due to the multimodal distribution of the first round of sampling (autumn 2010- 

summer 2011) individuals were likely to be from more than one recruitment event. The shell 

length increased at a low rate over time which suggests that the same length cohort remained 

on the intertidal beach.  

Chapter 3 found that tuatua abundance varied between years; however, the modal shell 

lengths were similar to the previous year for each corresponding season (Figure 4.6). Again, 

the distribution appeared multimodal with a peak mode suggesting individuals were all of the 

same year class; most likely less than one year old. This distribution of sizes changed in the 

warmer months when smaller individuals were present in the sample. 
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Figure 4.6: Seasonal variation in size frequency distributions of tuatua in 

Pegasus Bay, Canterbury with all sites combined. 
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Vehicle and horse user effects 

When sites were grouped into prevalent use categories (no vehicle or horse, vehicle use and 

horse use) (Table 4.1), a significant difference in shell length was found between sites (F(2, 

1005)= 37.8, p<0.001). The sites used by horses and vehicles had significantly larger 

shellfish than sites without these users (Figure 4.7) (Tukey’s HSD test). 

 

Figure 4.7: Mean shell length of tuatua in areas of Pegasus Bay with differing 

users. Error bars denote standard error. See Table 4.1 for categorisation of 

sites. 

4.4.2 Burial depth 

Tuatua burial depth ranged from 8 mm to 40 mm and increased with shell length. At each 

location, tuatua were significantly different in mean shell length and burial depths (ANOVA: 

Shell length, F(2, 42) = 4.960, p<0.012; Depth, F(2, 42) = 25.454, p<0.001). At Waikuku, 

tuatua were largest and deepest buried, whereas at Woodend individuals were small and 

shallowly buried. The average shell length (size) of tuatua collected from the mid tide sites at 

Waikuku Beach was 46.7 mm (SE=3.6), Spencer Park Beach was 39.6 mm (SE=1.1) and 

Woodend was 36.4 mm (SE=1.6). Burial depth of tuatua was 27.9 mm (SE=1.6), 19.2 mm 

(SE=1.4), and 13.9 mm (SE=1.3) at each location respectively (Figure 4.8). Tuatua from all 

sites had the same positive relationship between shell length and burial depth (ANCOVA: F- 

Slope(2, 39)= 1.408, p=0.257; F-Elevation(1, 41) = 2.956, p=0.093), as shown in Figure 4.9.  
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Figure 4.8: The shell length and burial depth of individual tuatua (Paphies 

donacina) at Waikuku, Spencer Park and Woodend Beaches. 

 

 

 

Figure 4.9: The relationship between tuatua shell length and burial depth (mm) 

of individuals in the sediment (mm).  
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4.4.3 Shell strength 

The characteristics of the break type were similar to observed field breakages due to vehicles 

and horses (Chapter 5 and Chapter 6). That is, either a slip or a complete break in the shell 

was observed.  

Horizontal axis 

On the horizontal axis, a single break profile, ‘break’, occurred at a force when the shell 

broke with a single large crack. The compression force built exponentially prior to breaking 

the shell in this way. There was a significant logarithmic relationship between shell length 

and force required to break an individual (R = 0.91, p< 0.001, N=26) (Figure 4.10). All shells 

broke uniformly with a single fatal break through the middle. 

 

 

 

 
Figure 4.10: The relationship between shell length (mm) and force (N) 

required to break the shell of the southern tuatua (P. donacina) on its 

horizontal plane (R = 0.91, p< 0.001, N=26). 
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Vertical Axis 

There were two types of breakages, which were characterised as in Garden (1998), as ‘crush’ 

or ‘break’.  These two breakage types occurred at all shell lengths. A ‘crush’ occurred on 

weaker shells that did not require as much force to crack. Stronger shells had a ‘break’ type 

crack where the force built and a single sudden break would occur (Figure 4.12). The ‘crush’ 

profile increased in force at a constant rate as the shell continuously broke in multiple areas 

throughout testing. In contrast, a ‘break’ type individual withstood the force applied which 

caused it to build exponentially until a single break occurred. There was a significant positive 

linear relationship (R = 0.96, p< 0.001, N=33) between the shell length of the individual and 

the vertical force required to break its shell (Figure 4.11).  

 

 

 

 

Figure 4.11: The relationship between shell length (mm) and force (N) 

required to break the shell of the southern tuatua (P. donacina) on its vertical 

plane (R = 0.96, p< 0.001, N=33). 
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Figure 4.12: Two different profiles from breakage testing on the vertical axis 

of a tuatua (Paphies donacina) shell for individuals of similar shell length. 

This gives the force (N) and the shell displacement (mm). Profile titles are 

adapted from Garden (1998). 

Effects of shell orientation potential shell damage 

Both axes of orientation appeared to have similar strengths; however, the vertical axis was 

found to have two distinct break profiles (Figure 4.12). For the purpose of shell orientation 

comparisons, only the results of individuals that broke with the ‘break’ profile were used. 

This is because the ‘crush’ break profile, observed for some vertically aligned individuals, 

was not as strong (Figure 4.13). With ‘crush’ individuals removed from the vertical axis data, 

there was a positive relationship between shell length and strength of R = 0.95 (p< 0.001, 

N=21). The horizontal axis had a logarithmic relationship between shell length and strength, 

whereas the vertical axis had a linear relationship. On the horizontal axis smaller individuals 

were slightly stronger; however, shell strength was higher for vertically orientated individuals 

as lengths increased (Figure 4.13). 
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.  

Figure 4.13: The relationship between shell length of an individual (mm) and 

force (N) taken to break the shell on the horizontal (diamonds) and vertical 

(squares) axis of southern tuatua (P. donacina) with ‘crushed’ individuals 

removed. Horizontal line, R = 0.91, p< 0.001, N=26. Vertical line, R = 0.95, p< 

0.001, N=21. 

4.5 Discussion  

Intertidal surfclams of Pegasus Bay are vulnerable to selection pressures due to being small, 

which correlated with shallow burial depth and low shell strength; two key attributes which 

influence survival. Species on other continents filling a similar niche may also have such 

relationships. The intertidal zone of Pegasus Bay was found to be inhabited exclusively by 

juvenile tuatua. Such separation between adult and juvenile individuals is common in many 

species of surf clams (McLachlan et al., 1996). A similar species of New Zealand surfclam, 

toheroa (Paphies ventricosa) exhibits a similar separation; however, all ages of individuals of 

this species can be found in the intertidal zone, but juveniles are in high densities further up 

the shore (< 40 mm) and adults lower on the shore (Beentjes et al., 2006). Similar patterns 

are also found in the South African bivalve D. serra, with large individuals low on the shore 

and small individuals higher on the shore (Donn, 1990).  

In the present study, tuatua recruitment took place in the warmer months which was also 

found in Marsden’s (2002) findings. The results of the present research indicate that due to 

intertidal tuatua being small, shallowly buried and possessing weak shells they are highly 
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vulnerable to vehicle and horse users in Pegasus Bay. Furthermore, sediment characteristics 

may also increase vulnerability (Sassa et al., 2011). 

Consistent with findings of Cranfield (2002), who found only small tuatua in the intertidal 

zone, individuals caught in the present study were also small and very few exceeded 30 mm 

in shell length. Using age estimates from Cranfield et al. (1996), the shellfish were typically 

less than one year old (< 25 mm shell length) with some individuals over one year old.   

South Brighton Beach had significantly smaller tuatua than other sites, indicating that this 

area may be influenced by different environmental conditions. James (1999) found that sizes 

of the bivalve Donax deltoides changed over relatively small spatial scales at Catherine Hill 

Bay, New South Wales, Australia. His study found smaller individuals were present in   bays 

compared to cusp horns. Presumably this was due to smaller individuals being more exposed 

to water currents than larger shellfish and being deposited where currents are weaker. This 

could be a possible explanation for the present study’s findings of smaller sized tuatua on 

South Brighton Beach. The prevailing currents in Pegasus Bay move southwards (Reynolds-

Fleming & Fleming, 2005), so smaller individuals would be transported further hence, a 

smaller population would exist. 

Dawson (1954) found that intertidal tuatua got larger towards the southern end of Pegasus 

Bay. This finding was not supported in the present study, where no such relationship was 

found with latitude (Figure 4.14). In addition, in Dawson’s study the mean shell lengths of 

shellfish in the intertidal zone ranged from 25 to 55 mm. This was larger than found in the 

present study where the mean shell lengths ranged from 7 to 31 mm. A population made up 

of small sized individuals are of concern in the long-term because it could have reduced 

reproductive outputs (Haag & Staton, 2003). Reduced reproductive outputs will influence the 

success of the population by not supplying recruitment demand. This will eventually mean 

reduced adult tuatua and may require closure of the fishery. Smaller individuals are also more 

prone to predation (Boulding, 1984) and other physical forces.  
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Figure 4.14: The relationship between mean tuatua (P. donacina) shell length 

and density with latitude in Pegasus Bay, Canterbury. Also included is the line 

equation and regression R. NS= not significant. 

In surf clams, reproduction relies on environmental cues. Reproduction and subsequent 

recruitment occurred over the warmer months of the year in Pegasus Bay and Marsden (1999) 

suggested that this relies on warm sea temperatures, which also correlates with increased food 

sources. Size frequency data for the current population appeared as if the same cohorts 

remained throughout most of the year; however, this changed in the warmer months (between 

spring and summer) for each year.  

Mean shell length of individuals changed seasonally; which was expected from species which 

breed periodically such as tuatua (Dawson, 1954; Marsden 2002). The tuatua in Pegasus Bay 

had a multimodal size distribution in most seasons and included smaller individuals in the 

summer period. Marsden (1999) suggested that reproduction was continuous in the warmer 

summer months and followed by inactivity over the winter. The offspring then recruit onto 

the beach and remain until environmental events take place which move the individuals 

offshore to be replaced by new juvenile recruits. Similar reproductive mechanisms occur in 

many species of bivalves worldwide including the oyster, Crassotrea gigas, in France (Costil 

et al., 2005), the mussel, Atrina seminuda, in Venezuela (Freites et al., 2010), and the clam, 

Meretrix lusoria, in Japan (Nakamura et al., 2010). Utilising environmental cues to begin 

reproduction is an important adaptation for exploitive reproducers, such as tuatua (Marsden, 

1999a), because it ensures that gamete concentrations will be high, increasing the chances of 
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successful reproduction. Environmental cues are essential for the timing of these events and 

can range from small events, such as changes in water temperature (Minchin, 1992), to large 

events such as typhoons (Onitsuka et al., 2007).  

In addition to environmental cues for juvenile recruitment, warmer sea temperatures could 

also be used as a cue for sub-adult (~30 mm) tuatua downshore migration. Doing so would 

result in a benefit from increased food sources in the water column to maximise growth. Such 

cued movement is beneficial because space is made available for spat to recruit. Without such 

cueing, juvenile survival could be compromised. Hamner (1978) found that the distance to 

the nearest neighbour was a key factor in determining the success of a recruit in the boring 

clam, Tridacna crocea, in Great Barrier Reef, Townsville, Australia. Individuals within 4 cm 

of the nearest neighbour were found to result in death. The current densities in Pegasus Bay 

are low so space is not a large issue; however, as space becomes limited in high densities this 

cue would become more important.  

Juvenile bivalves exhibit rapid growth until reaching sexual maturity (McLachlan et al., 

1996). In the present study individuals had similar growth patterns to a study by Cranfield et 

al. (1996) using surfclams, including tuatua, from Cloudy Bay, Marlborough. In that study, 

Cranfield et al. (1996) found growth of tuatua (P. donacina) 25 mm in shell length increased 

by ca. 19 mm yr¯¹. In the present study, the shell length increase of tuatua 11 mm in shell 

length was 17.1 mm yr¯¹. The shell length increase in current study was slightly lower but 

with smaller shellfish; however, the rates are comparable. The increase in length of P. 

donacina is comparable to similar surfclams from similar latitudes on the eastern coast of 

their relative continents (Donax serra, Southern Africa; D. Deltoides, Australia) (Table 4.2). 
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Table 4.2: Species distribution, size and growth parameters of similar bivalve 

species found on eastern coasts of the southern hemisphere (information 

sourced from McLachlan et al., 1996, unless stated otherwise). (N.K.= not 

known) 
Species Geographic 

area 

Intertidal 

distribution 

Size at 

maturity 

 

(mm) 

Lifespan  

 

 

(years) 

Timing of 

reproduction 

Standar

d growth 

index  

(ɸ’) 

Size at one 

year 

 

(mm) 

Donax serra Southern 

Africa 

East and 

South: entirely 

intertidal. 

West: adults- 

subtidal 

44 3.5 Late summer 

and winter 

3.5 32-35 

Donax 

deltoides 

Australia Juvenile: 

intertidal 

Adults: Low 

shore to 

subtidal 

36 > 5 All year 3.7 33 

Paphies 

ventricosa 

New 

Zealand 

Small (<75 

mm): upper 

shore 

Larger: lower 

shore 

40 > 10 September to 

February 

3.83 45-59 

(Akroyd et 

al, 2012) 

Paphies 

subtriangulata 

New 

Zealand 

Juvenile: 

intertidal 

Adult: low 

shore to 

subtidal 

N.K. > 5 October to 

December 

3.3 N.K. 

Paphies 

donacina 

New 

Zealand 

Juvenile: 

intertidal 

Adult: subtidal 

N.K. 17 November to 

February (my 

study) 

3.47 25 

(Cranfield 

et al., 

1996) 

 

Comparing growth data is difficult because of the range of factors influencing growth of 

shellfish. For example, warmer sea temperatures correlate with increased food sources and 

correspond with higher growth rates. The surfclam Spisula solidissima has had its growth 

rates studied extensively (Weinberg & Helser, 1996; Davis et al., 1997; Walker et al., 1998; 

Weissberger & Grassle, 2003). Weissberger & Grassle (2003) found growth rates to vary 

between years and temperature. Cranfield et al. (1996) used tagging methods to record the 

shell length increase in the same individuals, whereas in the present study, the shell length 

increase was calculated from the mean of the samples. This would have had different 

individuals recorded due to the dynamic nature of shellfish populations. As a result, length 

increases reported in the present study would have some discrepancies in estimation due to 

this. Marsden (2002 found newly recruited individuals to increased by 1 mm per month (12 

mm yr¯¹), a value far less than the present and Cranfield et al.’s (1996) study. As Cranfield et 

al. (1996) and Marsden’s (2002) study took place in different time period and location; it is 
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plausible that the present studies estimation is correct and discrepancies have occurred due to 

environmental variables.  

It has been suggested that shellfish move to lower tidal levels as they get larger (Cranfield et 

al., 2002); however, the present study found no movement of the juvenile shellfish band 

despite individuals getting larger as time progressed (Figure 4.5). This population may move 

downshore suddenly and could be triggered by environmental cues. Through personal 

observations during other studies, it was noticed on one occasion during the summer months 

(December - February) a large amount of approximately 30 mm sized individuals were in the 

low tide swash zone (Figure 4.15). After this migration event, tuatua on the beach were small 

(5 - 10 mm) and no large ones were found. These observations, paired with data showing 

reductions in densities and shell length, indicate that, not only can movement be sudden and 

cued using environmental variables, but recruitment was likely to be environmentally cued 

and variable. 

By following the size distributions over time, the results show that tuatua spawning and 

recruitment were highly variable between years. For example, Figure 4.6 showed a large 

change in the abundance of shellfish between the two rounds of sampling whilst shell lengths 

did not change drastically. This indicates that recruitment took place in both years, but 

reproductive outputs of the population were significantly reduced in the second year. 
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Figure 4.15: Tuatua (Paphies donacina) in the swash zone migrating to 

subtidal regions during December, 2010. Shell length = approximately 30 mm. 

Burial depth 

Many surf clams are known to be buried in the top layers of sediment. Smaller tuatua were 

found here throughout the period of the study and the results showed that individuals of this 

size were most shallowly buried which makes them vulnerable to environmental variables. 

For example, James (1999) found smaller Donax deltoides in the surface sediment where they 

are influenced more by water currents than larger individuals. The toheroa (P. ventricosa) is 

another species of the surf clam which bury shallowly on New Zealand beaches (Cassie, 

1951); however, burial depth is also known to change in relatively short time periods. Roberts 

et al. (1989) found that in the intertidal clam, Mercenaria mercenaria, at Pines Island, North 

Carolina, U.S.A. burial depth changed with tidal level. During low tide clams were buried at 

a depth of 25 mm compared with 5 mm at high tide.  

The burial depth of an individual is at a trade-off between other factors which influence its 

success. For example, deep burying can inhibit growth by reducing feeding capacity; this will 

reduce the fitness of the individual (Goeij & Luttikhuizen, 1998). Zaklan and Ydenberg 
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(1997) confirmed three key assumptions when shellfish (Mya arenaria) bury deeply; (1) 

survival from predation increased with depth, (2) feeding rate is slowed down in deeply 

buried individuals, (3) large individuals fed more rapidly than small ones at all depths. These 

assumptions were found to be correct, but do not take into account the presence of 

anthropogenic pressures in these ecosystems (e.g. vehicle use). In relation to vehicle and 

horse traffic, an assumption could be made that burying deeply will increase survival by 

avoidance of the physical effects of these users. 

Other bivalve species exhibit positive correlations between shell length and burial depth. 

Zwarts et al. (1994) found a linear relationship using a different shellfish species, and that 

each species (Macoma balthica and Scrobicularia plana) had different burial depths and shell 

length-depth relationships. Both species were of similar shell length, but S. plana was able to 

extend its siphon further from its shell. Zwarts et al. (1994) also found burial depth and 

shellfish size increased with siphon size which in turn allowed deeper burial (weight and 

length). In the present study, burial depth of tuatua was a positively linear relationship with 

shell length of the individual (Burial depth= (0.3781 x Shell length) + 4.8426). Roberts et al. 

(1989) found no correlation between clam size and burial depth in M. mercenaria and 

possible reasons included sediment characteristics, wave currents and location being stronger 

influences on burial depth. 

In surfclams as in other bivalves, the burial depth of an individual is influenced by its siphon 

length (Hull et al., 1998). The present research also found shell length to be an indicator of 

burial depth. Smaller individuals have shorter siphons and bury closer to the surface than 

larger individuals. Larger individuals were most likely to be buried deeply because a larger 

siphon permits them to still be able to feed whilst maximizing protection. In addition, being 

buried deeply may increase the survival fitness of the individual as they are more protected 

from outside forces. Goej and Honkoop (2002) found that an individual’s burial depth could 

be correlated with immersion time; however, their results show that small individuals were 

present high on the shore (low immersion) and large individuals were low on the shore (high 

immersion). It is more likely this finding is due to the size of the individuals rather than a 

function of immersion. This suggestion is evidenced in the two previously mentioned studies 

as well as the present study. Overall, as burial depth increases with shell length, it would be 

expected that, despite the zone of shore shellfish are in, they will bury as deep as their 

siphons allow.  
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Shell strength 

As with other similar studies, the results of the present study confirmed that the force 

required to cause a fatal break increased with shell length of individuals (Grefsrud & Strand, 

2006; Nagaragan et al., 2006; Coffen-Smout, 1998). Small tuatua buried shallowly in the 

sediment which also puts them in closer proximity to predators and other physical forces. 

Boulding (1984) stated that the absence of other anti-predator structures may also indicate the 

refuge provided by the sediment, so shell strength becomes very important to reduce the 

impact of predation and other forces on individuals. Compression testing provided an 

indication of the forces needed to break a tuatua; however, other environmental factors are 

likely to be important in determining this also. For example, Zuschin and Stanton Jr. (2001) 

found that 32% of Mulinia lateralis shells broke when arranged in a shell bed touching each 

other whereas none broke when individually tested.  

When assessing shell strength, sediment properties should also be taken into consideration 

because this can influence the shell orientation due to burial angles changing with sediment 

compaction (Sassa et al., 2011). Schlacher et al. (2008b) found sediment compactness was 

important when assessing the impacts of vehicles on Donax deltoides. Softer sediment 

resulted in more shellfish mortality because the vehicle effects penetrated deeper into the 

sediment resulting in higher mortalities in the form of shell breakage. Sediment properties 

differ spatially, and localised sedimentary characteristics and environmental dynamics could 

influence the results of beach user impact assessments. 

In the present study, compression testing the strength of the shell on the horizontal axis of 

tuatua had a log relationship whereas the vertical axis was linear and had two distinct break 

profiles (Figure 4.12). Reasons for the two types of break profiles could be due to weakness 

in the shell caused by a range of processes. Smith & Jennings (2000) found that more growth 

went into the edge of the valve when a predator cue was present; this resulted in that region 

of shell being thicker and stronger. Predation may have some influence on the overall shell 

strength of the population as it has been shown that bird species can actively select for 

weaker shells (Nagarajan et al., 2006) which would leave the stronger shells present. Such 

growth would occur on the vertical axis rather than horizontal (i.e. valves edges are thicker 

rather than the entire shell). This could explain why vertical orientated individuals withstood 

higher forces. In addition, the vertical axis had two distinct break types which suggested 

perhaps that some shells were weaker than others. Weaker shelled individuals may not have 

developed a thick edge. Without a thick edge, pressure exerted on the shell is not able to 
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build up causing gradual smaller breakages. This break type would be likely to occur until the 

shell becomes thick enough to allow force to build up before breaking.  

In the present study, larger vertically orientated tuatua withstood higher forces than 

horizontal individuals, but this difference was not found in smaller individuals (< 30 mm) 

(Figure 4.13). Coffen-Smoult (1998) also observed that the orientation that a shell lands on 

when dropped can influence the amount of damage in the scallop Pecten maximus. 

Differences in shell strength with orientation could be due to morphological factors of the 

individual.  

Vulnerability  

The findings of the present research suggest that intertidal shellfish are vulnerable to a wide 

range of physical impacts. Many species of shellfish are known to inhabit the intertidal zone 

worldwide (McLachlan et al., 1996), so the vulnerability of shellfish to heavy beach 

activities, such as vehicle and horse users, is a key issue in conserving these species. The 

present study suggested that small tuatua (< 30 mm) in the intertidal zone would be highly 

vulnerable to damage from vehicle and horse users. Individuals of this size had weak shells 

and were buried shallowly in the sediment. Furthermore, studies have evaluated these 

individuals as being more vulnerable to predation (Boulding, 1984).  

Intertidal tuatua were buried between 5 and 40 mm deep, so if vehicle and/or horse tracks 

penetrate to these depths, damage would be expected. In our previous studies conducted on 

Pegasus Bay beaches, vehicle tracks were found to penetrate as deep as 64 mm after 80 

vehicle passes (Marsden & Taylor, 2010). Usually there will not be as many passes as 80 in 

one area, but as few as five vehicle passes created tracks approximately 10 mm deep. Horse 

hooves have also been measured to have an imprint 35 mm deep (Chapter 6), so any animal 

buried shallower than this could be impacted. If vehicle traffic is low, only the shallow 

smaller individuals would be affected and Marsden and Taylor (2010) found it only took 50 

passes to penetrate 35 mm deep. Generally the maximum shell length of individuals in the 

intertidal zone is 30 mm, and these are buried approximately 16 mm deep, so intertidal 

shellfish would appear to be highly vulnerable to both types of users. 

Shell strength testing showed as little as 8 N was needed to break a tuatua shell; however, the 

application of these findings is only relevant under situations that involve the individual 

being removed from the sediment. An off-road vehicle typically has a stationary down force 
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of 14,700 N and a horse of 5880 N; however, using the results to determine if such activities 

are likely to break an individual’s shell must also take into account sediment properties, such 

as compaction. The mechanics of movement of a horse or vehicle also needs to be accounted 

for as this could increase the point force of the user. For example, as the horse hoof impacts 

on the ground the force could exceed the stationary force of the horse itself, whereas a 

vehicle’s forces will be similar to its vertical down force. This is because a vehicle has 

relatively no vertical component to its movement so additional force is not added. 

Tuatua are a species which burrow to maintain position in the sediment, so substrate 

properties become important in influencing the depth and angle of burial. Sassa et al., (2011) 

found shellfish lowered their burial angle and burrow shallowly when sediment was more 

compact. This not only puts shellfish in a position where they have higher potential to be 

impacted through being closer to the sediment surface, but also changes the shell orientation. 

The outcome of which was found to result in weaker force resistance. Therefore the angle and 

depth an individual is buried in the sediment as well as sediment compactness must be 

considered before applying the results of laboratory experiments to the field. 

4.6 Conclusion 

The size distribution and recruitment patterns of tuatua in the intertidal zone of Pegasus Bay 

beaches makes them vulnerable to mortality. Recruitment occurred during the warmer 

months and juveniles remained in the intertidal zone for approximately one year before 

moving towards subtidal areas. Intertidal tuatua were small, shallowly buried and had weaker 

shells, which provide very little protection from predators and heavy beach users such as 

vehicle and horses. The depths at which intertidal tuatua were buried was not deep enough to 

protect the majority of individuals from crushing by vehicles, horses and other heavy traffic 

which penetrate the sediment surface. Shell strength was positively correlated with length of 

P. donacina and the orientation of the shell also influenced the force resisted before breaking. 

Larger (> 30 mm) vertically orientated individuals were able to resist the most force. 

Additional protection from the cushioning effect of sandy sediment and shell strength of 

individuals may aid in protection from these forces. Despite larger tuatua burying more 

deeply, this was often not deep enough to avoid vehicle and horse users. Further in situ 

evaluation of these users is needed to understand the impact of such activities. 
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Chapter 5 The effects of vehicles on juvenile 

tuatua (Paphies donacina) on an intertidal 

surf beach in Canterbury, New Zealand. 

5.1 Introduction 

As with many locations worldwide, vehicles are permitted to be driven on most sand beaches 

throughout New Zealand. How does this affect the biota in these ecosystems? Studies in 

Australia suggest that vehicles cause reductions in species diversity (Schlacher et al., 2008a), 

alter animal behaviour (Schlacher & Lucrezi, 2010) and result in shellfish mortalities 

(Schlacher et al., 2008b). These studies have highlighted the need to control vehicles and 

have led some authorities to implement complete bans, as seen in South Africa (Department 

of Environmental Affairs and Tourism, 2004), or stipulate where vehicles are permitted (e.g. 

Northern Pegasus Bay Bylaw, 2010). In New Zealand, vehicles are driven on sand beaches to 

access fishing areas, for organised events and tourism.  

The intertidal zone is often the focal point for activities, such as vehicle driving and horse 

riding, and the species present in this area are most vulnerable. New Zealand’s sand beaches 

contain a wide range of biota including shellfish, shore birds, polychaetes, amphipods, and 

other crustaceans. Shellfish have an important ecological role in nutrient cycling, increasing 

faunal diversity, and reducing water turbidity (Dame, 1993; Marsden, 1999b; Vaughn & 

Hakenkamp, 2001; Gosling, 2003). Shellfish are a food source for many predatory organisms 

in the ecosystem (Williams, 1969) as well as for humans. In New Zealand they are a valued 

source of mahinga kai.  

Aims 

The overall aim of this study was to quantify the relationship between vehicle traffic and 

shellfish mortality, and to evaluate the sub-lethal effects from these activities. This study 

extended the study undertaken by Marsden and Taylor (2010) by using experimental 

manipulation to quantify the relationship between intensity of vehicle traffic and shellfish 

mortality. Reburial success following runover was also investigated. Experiments were 

seasonally repeated to identify whether shellfish may be more vulnerable at certain times of 

the year. Seasonal vulnerability could be due to factors such as differences in shellfish burial 

depths or sediment texture.  
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A positive relationship between the number of vehicle passes and shellfish mortality and 

predicted a seasonal difference in mortality was expected. If increased vehicle passes resulted 

in more stress on surviving individuals, the burial success might be reduced. Reburial activity 

may be more successful in the summer due to individuals being more active and in better 

health and condition (Marsden, 1999b). 

5.2 Methods  

The method used was designed to minimise disturbance to the shellfish and sediment prior to 

testing. Other studies have transplanted shellfish into an area of the beach to be runover 

(Moller et al., 2009). Results from such experiments are unlikely to be indicative of 

undisturbed populations. Transplanted individuals may not rebury to their original depths and 

when burying the shellfish the sediment properties may be altered. Finally, the size of 

individuals used in experiments may not be representative of the natural assemblages for the 

area. To keep results indicative of natural population impacts, testing was undertaken where 

shellfish densities were high. Individuals and sediment were not disturbed prior to conducting 

the experiments. 

5.2.1 Site selection 

Pines Beach, Canterbury, was selected as the study site for both the winter (14
th

 - 17
th

 June 

2010) and summer (6
th

 - 9
th

 December 2010) experiments. Pines Beach is located 

approximately 4.3 km east of Kaiapoi and is a popular area for vehicle use as it is in close 

proximity of the Waimakariri River mouth (Figure 5.1). The beach in this area is up to 140 m 

wide with a 90 m wide intertidal zone. The sediment properties at this beach are similar to the 

other sand beaches in Pegasus Bay (see Chapter 3). All experiments were conducted on the 

ebbing tide on days when the Lyttelton tidal predictions ranged from 0.3 to 0.4 m in the 

winter and 0.4 to 0.5 m in the summer. A population survey confirmed there were more than 

ten tuatua individuals per 25 x 25 cm quadrat at this location. 
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Figure 5.1: Outline map showing the location of Pines Beach; where vehicle 

impact experiments took place. 

5.2.2 Experimental procedures 

Vehicle disturbance 

A 2008 Mitsubishi Triton fitted with semi-off-road tyres was used for the experiments 

(Figure 5.2). It weighed 1955 kg with a full fuel tank and was driven by a driver weighing 85 

kg. The pressure exerted by the vehicle was 21,230 kgm¯² was calculated using the following 

equation: 

  
 

 
 

P is pressure exerted by car tyre (kgm
-
²)  

F is weight of vehicle (kg) 

A is area of tyre tread (m²) 

 

The exact location on the beach was determined by finding where densities of shellfish were 

highest. This was done by scraping the sediment surface seaward of the most recent high tide 

mark. The driving line was marked out where most shellfish were found. The vehicle track 

was marked by measuring out a 20 m line parallel to and approximately 20 m to 30 m below 

the last high tide mark. The driver’s side tyre was aligned with this line, and was on the 
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landward side in each experiment. The vehicle was driven at speeds between 10 and 30 kmph 

north to south until the desired level of passes was reached. Each pass took approximately 30 

seconds to complete. To ensure accuracy, a person was used to guide the driver through the 

same tracks. The same number of designated passes was completed for each day in both 

seasons with a control each day of zero passes. This was taken in the undisturbed 

experimental area before vehicle driving was started. 

After the designated number of passes, tyre treads, shellfish population and sediment pore 

water levels were measured. Sediment cores were taken as quickly as possible so that water 

could not re-enter the sample.  

 

 
Figure 5.2: The Mitsubishi Triton used for shellfish runover experiments. 
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Table 5.1: Designated number of vehicle passes on each day of testing. 

Day Number of vehicle passes 

1 0, 1, 10, 25, 40, 50 

2 0, 5, 10, 25, 30, 50 

3 0, 1, 20, 30, 40, 50 

4 0, 5, 15, 20, 35, 50 

 

Sampling of the disturbed population 

A quadrat 625 cm² (25 cm x 25 cm) was laid down so that it was in the middle of the tyre 

track. Sediment within the quadrat was removed carefully to a depth of 15 cm to minimise 

damage to the tuatua. The sediment was sieved through a 5 mm screen with the number of 

tuatua retained on the screen counted. Quadrats in the driver’s side tyre track were sampled 

before those on the passenger’s side track. The shell length of each individual was measured 

and any damage recorded until at least 15 non-fatally damaged individuals were found.  

Sediment samples  

Sediment samples were collected from the middle of the driver’s (landward) side tyre tracks 

using a 50 mm diameter corer. This was taken within ten seconds of the vehicle finishing its 

passes to ensure that water displaced would not refill the sediment. The sediment sample was 

bagged, sealed and returned to the lab where it was refrigerated at 4°C before processing. 

Pore water sample processing entailed breaking the core into three pieces to get an average, 

measuring the wet weight of the sample, then drying it in a 60°C oven for three days. After 

three days, samples were removed from the oven and reweighed (dry weight). The difference 

between the dry and wet weight of the sediment gives the weight of pore water. The overall 

pore water content was calculated as a percentage of the wet weight and recorded. 

Tyre tracks 

Tyre tracks were measured for each level of vehicle passes to give an indirect measurement 

sediment compaction. The width and depth of tyre treads on each side of the vehicle were 

measured in the same area of the tracks at each time. Tyre track width was measured from the 

widest part of the tread. Tyre track depth was measured by placing a ruler over the tyre tracks 

which was assumed to be the original ground level then a ruler was used to measure from the 

middle of the base of the tyre track up to the flat object. These measurements were then 

recorded for each tyre track (landward and seaward) (Figure 5.3).  
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Figure 5.3: Measuring tyre track depth (in mm) and width (in mm). 

Reburial testing 

The 15 individuals picked for the reburial test were those that appeared undamaged (i.e. there 

were no cracked or slipped shells). They were placed in a plastic container that contained 5 

cm depth sediment, taken from the area that individuals were collected, and seawater added 

to a depth of 5 cm. Individuals were placed on the sediment surface so that they were lying 

on their side (horizontal axis). Timing for reburial success started when all individuals were 

on top of the sediment surface. At the end of each minute for 15 minutes, the numbers of 

individuals remaining on the surface were counted and recorded. An individual was 

considered to be buried when it was completely in the sediment, or only the siphons could be 

seen protruding.  

The bivalves were then kept in a laboratory refrigerator in containers of sediment and fresh 

seawater at 15°C and were retested for burial 24 hours after they were run over. The method 

described above was used for this testing.   

5.2.3 Data and Statistical Analyses 

All data were recorded in Microsoft Excel spreadsheets. Mean and standard error were 

calculated for each of the replicate samples. Generalised Linear Models (GLM) and 

Regression analyses were used to investigate relationships between vehicle passes and 

shellfish mortality, reburial success and tyre track characteristics. Statistical testing was 

carried out using ‘Statistica 7’. Analysis of Covariance (ANCOVA) and tests for 

homogeneity were used to determine if there were seasonal differences in relationships. The 
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slope of the lines were tested first, if these were the same elevation was tested. If slopes of the 

lines were different, no further testing was needed because the relationships were different. 

T-tests were used to determine if there were differences in reburial success after 24 hours.  

 

 

Figure 5.4: Field assistant timing and counting tuatua reburying into the 

sediment. 

5.3 Results  

Tuatua densities and mortality 

The tuatua collected on the 5 mm mesh in winter ranged in length from 5- 28 mm with a 

mean of 15 mm (June, 2010), and in summer ranged in length from 5- 32 mm with a mean of 

21 mm (December, 2010). Densities of 17 and 107 individuals per quadrat (272-1712 m¯²) 

occurred in the summer, and 15-87 per quadrat (240-1392 m¯²) occurred in the winter.  

The most common damage caused by vehicles was a slipped shell for the larger individuals, 

and the smaller individuals had broken shells (Figure 5.5). 
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Figure 5.5: Photos of the two common fatal damages caused by vehicles, (a) 

broken shell (b) slipped shell. 

Effects of vehicle passes on shellfish mortality 

The percent mortality after 50 passes ranged from 2.3% to 20% in the summer and 13.5% to 

29.8% in the winter (Figure 5.6). Tuatua mortalities were variable in both seasons, but 

individuals of all lengths were affected except from those of shell length 5 to 7 mm. Mortality 

rates were the same in both summer and winter ANCOVA, F- slope (1,45)= 0.313, p<0.579; 

F-level (1, 45) =3.008, p<0.09). The overall rate of increase in shellfish mortality was 0.27% 

per vehicle pass (line equation: y=0.27x + 4.79, R= 0.58, p<0.001). 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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Figure 5.6: The relationship between vehicle passes and individual tuatua 

mortalities in (a) winter (June, 2010), and (b) summer (December, 2010). Also 

included are the regression equation, correlation coefficient R and probability 

p. 
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Reburial 

The results from this study were variable with 26.7% to 93.3% of individuals re-burying 

successfully after exposure to 50 vehicle passes. In summer there was a statistically 

significant negative relationship between number of vehicle passes and percentage reburial 

immediately after the vehicles passes (p<0.001). This could be due to individuals being more 

active and so exhibit faster reactions (i.e. reburying faster). There was no relationship in 

winter (Figure 5.7). There was a seasonal difference in reburial (ANCOVA, F-Rate (1, 45) = 

2.987, p<0.001). 

Reburial success after 24 hours had a negative relationship with increased vehicle passes for 

the summer (p<0.05), but not in the winter (Figure 5.7). This relationship was significantly 

different between the winter and summer (F-Rate (1, 45) = 6.5176, p<0.014). There was no 

significant difference between winter and summer average reburial success after 24 hours 

(Figure 5.8). Reburial success after 24 hours higher than immediately tested individuals in the 

winter (t test: t(23) =-3.823, p<0.001), but not significantly different in the summer (t test: 

t(23) =1.531, p<0.139). 
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Figure 5.7: The relationship between percentage of tuatua reburied 

immediately (a) and 24 hours (b) after each number of vehicle passes in the 

winter (June) and summer (December) of 2010. Also included are the 

regression equation, correlation coefficient R and probability p. NS= null 

relationship. 
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Figure 5.8: The average reburial percentage immediately and 24 hours after 

being runover in winter and summer of 2010. 

Tyre tracks 

Sediment displacement caused by vehicle tyres followed a log pattern (Figure 5.9). This 

showed that as passes increased, sediment became more compacted. This was up to 30 passes 

then the rate decreased. There was no significant difference to the pattern between seasons 

(ANCOVA: F-slope (1, 45) = 0.860, p=0.360; F-elevation (1,45)= 3.008, p<0.090).  

A positive correlation was found between sediment displacement and tuatua mortality 

(p<0.001) (Figure 5.10). There was no significant difference in sediment displacement 

between winter and summer experiments (ANCOVA, F-slope (1,36) = 0.033, p<0.857; F-

elevation(1,36)= 0.020, p<0.887). 
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Figure 5.9: The relationship between the number of vehicle passes and cross 

sectional area of sediment displaced in winter (a) and summer (b). Also 

included are the regression equation, the correlation coefficient R and 

probability p. 

 

Figure 5.10: The relationship between sediment displacement and tuatua 

mortality. Also included are the regression equation, correlation coefficient R 

and probability p. 

Pore water 

As the number of vehicle passes increased, pore water percentage decreased in both the 

summer and winter. The percentage pore water between winter and summer experiments 

were significantly different, with more pore water in the summer than the winter (ANCOVA, 

F-slope (1,44)= 1.44, p<0.237; F-elevation (1,44)=36.39, p<0.001). 
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Figure 5.11: The relationship between pore water percentage and vehicle 

passes during winter (a), and summer (b) of 2010. Also included are the 

regression equation, correlation coefficient R and probability p. 
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5.4 Discussion 

Juvenile tuatua (Paphies donacina) in the intertidal of a Pegasus bay surf beach where 

vehicles are driven were detrimentally affected. Schlacher et al. (2008b) also had similar 

findings in North Stradbroke Island, Australia, using Donax deltoides. The percent mortalities 

of P. donacina in the present study were similar to Schlacher et al. (2008b), although the 

damage rate for P. donacina was slightly higher (0.27) than the reported 0.16 for D. 

Deltoides found by Schlacher et al. (2008b). The levels of mortality reported in the present 

study were variable. This variation is likely to be due to factors including sediment 

properties, burial depth and the size and condition of shellfish. Burial depth could vary on a 

day-to-day basis because shellfish migrate up and down the beach with the tide. 

Mortality effects 

In the present study damage rates were similar to those reported by Marsden and Taylor 

(2010), and the same relationship was found between sediment displacement and tuatua 

mortality. Other studies on different species of shellfish have also found a similar 

relationship. Moller et al. (2009) conducted a study on Oreti Beach in Southland on toheroa 

(P. ventricosa) which evaluated the effects of different types of vehicles. That study only 

used five passes, but found that even with this low rate SUV vehicles resulted in 3% damage 

to toheroa individuals of similar length to the tuatua in the present study. With an average 

rate of 4.56% damage for five passes (SE=1.78), the damage in the present study is 

comparable to that of other New Zealand-based studies.  

Moller et al.’s (2009) methodology involved moving individuals to areas they where they 

were usually not found and this may have influenced the results. For example, the shellfish 

used in their study may have been in poor condition, may not be the size naturally found, and 

may have not buried to their normal depths below the sediment surface. If the individual was 

not buried as deep it would normally it might not be protected from vehicle exposure.  

In the present study, tuatua mortality increased linearly as the number of vehicle passes 

increased, indicating that higher frequencies of vehicles driving along the beach will 

exacerbate these effects. Thus, if vehicle numbers stay high over an extended time period, 

shellfish populations would sustain long-term damage. This could include altering species 

assemblages and reductions in population size (Schlacher et al., 2007; Schlacher et al., 

2008a). 
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Reburial 

Being able to bury in the sediment when disturbed is an important adaptation for bivalves that 

inhabit sand beaches, it protects them from stressors such as desiccation and predation. Using 

reburial success as a measurement of stress is not likely to be a clear indicator especially 

during times of low activity, such as in the winter months. This is because individuals are not 

as active so the rate of response would differ. These sublethal effects were not as easily 

identified using the methods chosen, but vehicle passes negatively affected reburial success 

in the summer- the period when tuatua are likely to be more active (Marsden, 1999b).  

Sheppard et al. (2009) found that after five vehicle passes the burial time of Donax deltoides 

doubled. The present study did not find this with burial time averaging 6.64 minutes at zero 

passes and 6.08 minutes at 50 passes. However, Sheppard et al. (2009) used transplanted 

shellfish which may have affected their results. Nonetheless, this dissimilarity may represent 

species specific differences or an environmental effect such as warmer temperatures. 

Reburying faster in warm climates is particularly important because the individual will 

desiccate more quickly if it remains exposed. During winter, desiccation will not be so 

important as temperatures are lower. Shellfish remain on the sediment surface are prone to 

predation by shore birds, this will influence the bivalve population size.  

Reburial after 24 hours was more successful with on average 79.2% of individuals reburying 

during the winter testing compared to 62.2% immediately after vehicle passes. Summer 

results showed no significant difference. The summer sample showed a slight decrease in 

reburial after 24 hours (immediate= 89.4%, after 24 hours= 85.3%) which could have been 

caused by the laboratory temperatures being lower than the outside temperature. This could 

cause shellfish activity to decrease slightly. This response may be as a consequence of 

individuals being kept in a laboratory 15˚C fridge for 24 hours. The temperature would have 

been higher than the natural night time temperature in June, and may have allowed the 

bivalves to become more active.  

Sediment properties 

Sediment pore water was similar in the winter and summer, with average pore water being 

21.84% (SE=0.36) and 21.89% (SE=0.48) respectively. In the present experiments, changes 

in pore water are unlikely to influence shellfish survival because the reduction observed was 

a fraction of a percent and water refills the sediment within minutes of being disturbed. As 



Chapter Five: The Effects of Vehicles on Tuatua 

147 

 

the sediment became more compacted, the displacement in the tyre tracks changed less, but 

pore water percentage reduced linearly.  

There was a positive relationship between sediment displacement and tuatua mortality (i.e. 

the volume of sediment a tyre displaces influences mortality rates); therefore, harder 

sediment would be likely to provide more protection to individuals. This finding was also 

found by Schlacher et al. (2008b), who showed that there were increased mortalities due to 

vehicle runovers in softer sediment when compared with medium compacted sediment. 

 In the present study, tyre tread depth increased less after compaction had reached 30 mm in 

depth, so tuatua buried below this would be less likely to suffer lethal damage. However, if a 

vehicle had off-road tyres which dug into the sediment, it would be expected that more 

damage would occur as more sediment would be displaced. Schlacher et al.’s (2008b) 

findings also support this idea because there were higher levels of mortality for shellfish in 

the vehicles turning circles, where the tyres had loosened the sediment. 

Research implications 

This study has shown that vehicles driven on sand beaches have immediate detrimental 

effects on intertidal tuatua in Pegasus Bay, Canterbury. The results may also be applied to 

other New Zealand sand beaches and species of shellfish, depending on the environmental 

characteristics of the beach. The other species of shellfish would need to be similar in size, 

morphology and burial depth to the individuals tested. The North Island tuatua (Paphies 

subtriangulata) has an almost identical morphology and distribution in the intertidal zone of 

sand beaches as P. donacina (Figure 5.12) and hence the results from this study could apply 

to both species. The toheroa (P. ventricosa) should also be considered; however, adults (> 80 

mm) are also found in the intertidal zone (Morton & Miller, 1973) and so experiments would 

need to be undertaken to quantify the effects of vehicles on larger individuals. 

The damage rate could also be used to determine the amount of mortality that would occur 

over a defined time period. Other factors would need to be taken into account for this 

assessment such as the distribution of the shellfish and frequency of vehicle disturbance. 

Overall, this could give predictions of the impacts of these users.  
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Figure 5.12: Photos of North Island tuatua (Paphies subtriangulata) (a), and 

Southern tuatua (P. donacina) (b). (Image a courtesy of NIWA). 

Management recommendations 

There is no current method of controlling vehicles on beaches in Pegasus Bay except for 

limiting where they can go. This also involves confinement to the intertidal zone where 

juvenile shellfish and other intertidal animals are vulnerable. In areas where vehicles are 

permitted, there is no control except near the Ashley River mouth. If protection of these 

bivalves is to be ensured, changes to this management method are required. Excluding 

vehicles from the intertidal zone, and the rest of the beach face, would be the most desirable 

option. This would allow all communities in the ecosystem to inhabit areas without vehicle 

disturbance. South Africa is one country where a complete ban of vehicles on beaches has 

occurred; however, there are exemptions that can be granted where necessary (Full 4x4 

Regulations, 2004). Enforcement would be required and many regions of New Zealand may 

be unable to afford the costs of enforcement over large expanses of coast. However, this 

could be recouped by reducing the costs associated with construction and maintenance of 

infrastructure which allow activities to occur.  

If driving vehicles is to continue on New Zealand’s beaches, mitigation is needed to reduce 

the detrimental effects on ecosystems. Management authorities have successfully prevented 

dune erosion and damage to bird nests by confining vehicles to the intertidal zone; however, 

there are several improvements than can be made. Reducing the impact of disturbance is 

required for ecological protection to improve in the presence of vehicles. If management 

authorities have sufficient funding, the most desirable option would be to confine vehicles to 

(a) (b) 
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set paths above the Mean High Water Spring level (MHWS). This would reduce the area of 

impact whilst still allowing access along the beach. Birds would be mostly protected apart 

from in the paths; however, the high vehicle traffic in this area would deter birds from 

nesting. This method of management is used in Cape Cod, USA, and only allows vehicles on 

the intertidal zone if the track is cut off (National Park Service, 2011).  

The hard sand of the intertidal zone makes it a highly desirable part of the beach for vehicle 

drivers, so if this is to continue, mitigation is needed. Options include; driving in the same 

tracks as other vehicles and/or reducing vehicle numbers. Driving in the same tracks would 

reduce the area of disturbance and impact a smaller percentage of the population. The present 

study found a shellfish mortality rate of 0.27% per vehicle pass. If vehicles follow the same 

track they would be continuing to apply pressure on the surviving individuals, but the overall 

impact would be less than in a previously undisturbed area. Thus, fewer individual tuatua 

would be affected than if vehicles were to make new tracks. The linear increase in mortality 

shows that there is no maximum damage reached within 50 passes. Marsden and Taylor 

(2010) found this at up to 100 passes, so it would be recommended that the number of 

vehicles would be limited to reduce the daily impact. This would require a permit, which 

would incur a cost to the council to carry out administration of these. These costs could be 

covered by payment systems for permits. For example, Cape Cod, USA, charges $150 for an 

annual permit or $50 for 7 day permits, which would help to recover costs and deter 

unnecessary driving.  

5.5 Conclusion 

This study clearly showed that vehicles cause detrimental damage to tuatua (P. donacina). 

The mortality levels recorded here were comparable to those found in other studies using 

similar methods and species (Sheppard et al., 2009; Moller et al., 2010). There was no 

significant difference in the seasonal rates of mortality. Sediment properties influenced the 

results of the study with higher mortalities found when more sediment was displaced. Results 

of this study can be applied to other shellfish species, especially the North Island tuatua (P. 

subtriangulata) whose morphology and distribution is similar to that of P. donacina. 

Management options to mitigate damage include reducing vehicle numbers and driving in the 

same tracks and directing vehicle use to areas where they are required (e.g. near river mouths 

for whitebaiting); although, completely banning vehicles from use on sand beaches would be 

the most ecologically preferable option. However, such methods of control may not be 
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acceptable to the general public who may want to maintain vehicle access to the beach. If 

these measures were implemented, shellfish populations are likely to be better protected for 

future generations. 
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Chapter 6 The effects of horse riding on 

tuatua (Paphies donacina) in Pegasus Bay, 

Canterbury. 

6.1 Introduction 

Horse riding is permitted on sand beaches throughout the world, often with little 

consideration given to potential impacts on the marine environment. This oversight can have 

serious implications, particularly for biota located in the intertidal zone, where horse use is 

greatest. One such species is the tuatua (Paphies donacina), a New Zealand shellfish which 

lives beneath the sand. Juvenile tuatua are buried at depths shallower than five centimetres, 

giving very little protection from activities occurring on the sediment surface (Chapter 4).  

Tuatua are subjected to daily stressors, which include human induced, biotic and abiotic 

types. Each of these can have effects from individual to ecosystem level. At an individual 

level, physical disturbance to shellfish can result in reduced activity (Maguire et al., 2002) as 

well as the suppressing of immune functions (Lacoste et al., 2002). These responses can 

create vulnerability to predation and disease. Ferns et al. (2001) noted in their study that 

individuals removed from the sediment had increased bird predation. Effects at the ecosystem 

level are likely to occur as a result of a catastrophic event. These events can deplete the 

shellfish population, triggering trophic cascades. Ferns et al. (2001) showed that harvesting 

of the cockle (Cerastoderma edule) using a tractor also resulted in reduced densities of non-

targeted invertebrates. Preventing such disturbances should be a key priority in maintaining 

ecosystems. Therefore it is important to assess stress caused by recreational users, such as 

horses, which potentially have similar impacts. 

A wide range of horse riding, both recreational and in racing events, occurs on the intertidal 

zone of sand beaches throughout New Zealand (see Section 2.7). Professional racing trainers 

use beaches to improve strength and rehabilitate their horses (Crevier-Denoix et al., 2010). 

Such users are likely to cause significant ecological effects due to a large amount of traffic 

focused on a small area. This could have flow-on effects for the ecosystem. 

Pegasus Bay tuatua are exposed to daily horse use. Professional trainers use the beaches all 

days of the week apart from Sunday (pers. coms. with a Professional Trainer, 26/06/2010). 

Recreational riders, in contrast, are more sporadic with their use patterns. Higher recreational 



Chapter Six: The Effects of Horse Riding on Tuatua 

152 

 

use is expected in weekends. There is less of an area of focus for recreational use but, 

generally, it occurs near to access points. Trainers will run horses on the beaches for three 

hours either side of the high tide and during this time as many horses as possible will be run. 

One trainer also stated that the beach is only used when the home track is wet. However, this 

same trainer was observed running horses on the beach during periods of dry weather. The 

key beach locations used by trainers are Spencer Park, Woodend and Ashworths Beach.  

Despite their differences, both commercial and recreational users have a preference for parts 

of the intertidal zone where the sand is harder and hazardous ground objects such as 

driftwood are sparse and easily identified. Management authorities also encourage the 

utilisation of the intertidal zone. This measure is to mitigate dune erosion and prevent damage 

to bird nests. Such measures have resulted in potentially high amounts of shellfish-damaging 

traffic in the intertidal zone (Figure 6.1).  

Among the plethora of studies evaluating the environmental effects of horses (Cubit, 1990; 

Liddle, 1991; Ostermann-Kelm et al., 2009; Marion et al., 2010), no research has yet been 

undertaken evaluating the effects on the coastal environment. These land-based studies have 

found that trampling by horses reduces biodiversity and biomass of terrestrial floral and 

faunal communities (Whinam & Comfort, 1996; Whinam & Chilcott, 1999; Torn et al., 

2009). A human trampling study by Moffett et al. (1998) provides insight into the possible 

effects of horses on shellfish beds. Moffett et al. (1998) found that high human trampling was 

sufficient enough to cause significant mortality to the infaunal biota including Donax serra 

and D. sordidus. It would therefore be expected that horses, being heavier, would be likely to 

have similarly damaging, if not greater, effects. 
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Figure 6.1: The horse track covered intertidal zone of Woodend Beach, 

Canterbury. 

Aims 

The experimental and observational findings contained in Chapters 3 and 4 indicate that 

horse use is likely to affect intertidal shellfish. The evidence that leads to this conclusion is 

that the depth of hoof penetration is such that tuatua burial depths are within range, and the 

weight of a horse exceeds that needed to break any shell length of tuatua (Paphies donacina).  

The aim of this chapter is to quantify the effects of horses on intertidal shellfish beds in 

Pegasus Bay, Canterbury. This will be achieved through the use of observational and 

experimental methods. Mortalities were expected to occur where horses pass over shellfish 

buried within range of the hoof penetration depth. Different riding styles were tested to see if 

they result in differing mortality rates. Reburial success was also measured to evaluate 

sublethal effects on tuatua following disturbance by horses. 

6.2 Methodology 

This study used in situ methods to evaluate the effects of horses on tuatua mortality on 

beaches where horse use was common. The methods employed aim to provide in situ results 

from unaltered environmental conditions. Observational testing was carried out to evaluate 
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the impacts of actual use by horse riders. Experimental testing was also used to identify any 

immediate impacts which occurred (e.g. sublethal stress effects). Such testing was necessary 

because reburial testing is not possible with observational recording. This is because the exact 

time of shellfish disturbance is unknown. Thus, results may not be indicative because 

individuals would have had unequal recovery time prior to testing. 

Manipulation of environmental conditions may produce results that are non-indicative of real 

world relationships. For example, transplanting shellfish to new sand plot would loosen the 

sediment matrix, causing a horse hoof to penetrate deeper, resulting in higher mortality to 

shellfish. In addition, holes in the sediment would compromise the safety of the horse and 

rider if the horse was to injure itself. The main weakness of collecting in situ data of this type 

is that it relies on high densities of shellfish which cannot always be ensured.  

6.2.1 Observational study procedure 

To investigate the impacts of horse riding on intertidal tuatua, observational data were 

collected between November 2010 and March 2011 to record tuatua mortality occurring in 

areas currently used for horse riding. Two areas were selected: Woodend Beach 

(43°20'51.49"S, 172°42'43.09"E) and Spencer Park Beach (43°27'3.37"S, 172°43'6.80"E) 

(Figure 6.2), see Chapter 3 for descriptions of these areas. A hand-held GPS (Garmin 

GPSmap 60CSx) was used to mark the route that the horses had taken. This route was then 

plotted using satellite imagery and the distance of the track was recorded. After the route had 

been recorded, three points along the track were selected randomly for further sampling and 

marked using GPS. Firstly, the distance from the last high tide mark to the most landward 

track was measured and recorded. The track width was taken from the two widest points 

using a measuring tape. After this, a 10 m area was marked out and three tracks were counted 

for the number of hoof prints over this distance. This was to provide an indication of the 

speed the horse had been travelling (i.e. less hoof prints indicate the horse is moving faster). 

Three hoof prints were randomly selected and the sediment below the track was removed to 

15 cm depth. The sediment was put through a 5 mm sieve and tuatua collected from the hoof 

prints were recorded for shell length and damage. 



Chapter Six: The Effects of Horse Riding on Tuatua 

155 

 

 

Figure 6.2: Map showing Spencer Park and Woodend Beach in Pegasus Bay, 

Canterbury. 

 

Figure 6.3: The experimental horse study site at Pines Beach, Pegasus Bay, 

Canterbury. 
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6.2.2 Experimental study procedure 

Experimental trials were conducted to gather data on the direct impact of horses running over 

shellfish beds. Testing was conducted on Pines Beach, Canterbury (43°23'0.96"S, 

172°42'44.55"E) (Figure 6.3) where shellfish populations were high.  

Preliminary experiment 

A preliminary trial was conducted on the 25
th

 of August 2010 to test the relationship between 

shellfish mortality and different horse riding styles. The experimental area had sufficient 

densities of juvenile tuatua (> 10 per 625 cm² quadrat). This trial involved a 600 kg 

(approximate weight) horse being rode by a 48 kg female rider, over a distance of 20 m, 

using three different riding styles; walk (approx 5 kmh¯¹), trot (approx 13 kmh¯¹), gallop 

(approx 24 kmh¯¹). Each riding style was done 2 m above the last track. Sediment cores were 

taken within 10 seconds of the horse riding over the experimental area, with cores taken from 

two hoof prints of each style. The cores were 10 cm in diameter, and pushed into the 

sediment to a depth of 5 cm. Cores were bagged, sealed and refrigerated until they could be 

processed for pore water. The size of the overall hoof print was measured to provide the area 

of impact. The number of hoof prints for each riding style was measured over the 20 m area.  

A control was taken near to the trot treatment before testing (Figure 6.4). After riding was 

completed, three hoof prints were selected at random for each riding style. The sediment in 

these hoof prints was removed to 10 cm depth by hand to avoid further damage to shellfish. 

The sediment was sieved through a 5 mm mesh and tuatua caught were recorded for shell 

length (mm) and type of damage. If the damage was considered fatal, individuals were not 

used for reburial testing.  
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Figure 6.4: Bird’s eye view of the layout for preliminary horse impact 

experiments. 

Disturbance intensity experiments 

Based on the preliminary trial, methods were refined to test the effects of multiple passes 

using certain riding styles. Given that commercial harness trainers and recreational riders are 

the most common users in Pegasus Bay, the two riding styles selected were walking and 

trotting. These were tested in two treatments; one pass and five passes. Most methods were 

the same as in the preliminary testing including identification of the 20 m test area, pore 

water, timing of passes, and reburial testing. A new 626 kg horse, ‘Cliff’, was used (height of 

16.1 hands at the wither) and was ridden by an 80 kg male rider (Figure 6.6). The key 

difference between the two horses was that ‘Cliff’ was unshodden (no horse shoes). 

The main difference between the preliminary and later trials was that the number of horse 

tracks was measured by counting the total hooves within a 1 m² area, rather than in a straight 

line. Treatment areas were set at the same vertical position on the shore as in the preliminary 

experiments but were spread 20 m apart (Figure 6.5). These experiments were conducted in 

February and April 2012.   
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Figure 6.5: Birds eye view of the layout for disturbance intensity horse impact 

experiments. 

 

 

Figure 6.6: The horse, “Cliff”, being ridden at walking pace through the 

defined test area. 
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Reburial testing 

The 15 individual tuatua selected for the reburial test were those that appeared undamaged, 

that is with no cracked or slipped shells. Individuals were placed in a plastic container which 

included sediment from the collection area as well as fresh seawater. Sediment within this 

container had a depth of 5 cm and the seawater a depth of 5 cm above the sediment. 

Individuals were placed on the sediment surface so that they were lying on their side 

(horizontal axis). Timing for reburial success started when all individuals has been placed on 

top of the sediment surface. At the end of each minute for 15 minutes, the numbers of 

individuals remaining on the surface were counted and recorded. An individual was 

considered to be buried when it was completely submerged under the sediment, or only the 

siphons could be seen protruding.  

The sample tuatua were then kept in a 15°C laboratory refrigerator in containers of sediment 

and fresh seawater and were retested for burial 24 hours after disturbance using the methods 

described above.  

Pore water 

The sediment sample was bagged, sealed and returned to the lab where it was refrigerated at 

4°C before processing. Processing of the pore water samples involved breaking the core into 

three pieces to get an average, measuring the wet weight of the sample, and then drying it in a 

60°C oven for three days. After three days, samples were removed from the oven and 

reweighed (dry weight). The difference between the dry and wet weight of the sediment gives 

the weight of pore water. The overall pore water content was calculated as a percentage of the 

wet weight and recorded. 

6.2.3 Data and Statistical Analyses 

All data were recorded in Microsoft Excel spreadsheets. Mean and standard error were 

calculated for each of the replicate samples. Generalised Linear Models (GLM) and 

regression analyses were used to investigate relationships between horse traffic and shellfish 

mortality and track characteristics. Statistical testing was carried out using ‘Statistica 7’. 

Analysis of Covariance (ANCOVA) and tests for homogeneity were used to determine if 

there were spatial differences in relationships. The slopes of the lines were tested first, and, if 

these were the same, elevation was tested. If the slopes of the lines were different, no further 
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testing was required because the relationships were different. T-tests were used to determine 

if there were differences in reburial success after 24 hours.  

6.3 Results 

6.3.1 Observational results 

Horse track characteristics 

Observations showed that horse use was generally limited to beach areas near the access 

points. On Woodend Beach, the most frequently used section of beach was from 

approximately 3.3 km south of the access way to 1.4 km north of the access way. The longest 

track to the south ran 4.4 km from the access point while that in the north ran 3.43 km (Figure 

6.7). On Spencer Park Beach, the most used section of beach was 2.1 km south and 0.25 km 

north of the Heyders Road entrance point (Figure 6.7). The horse track farthest north ran 5.2 

km before terminating at the Waimakariri River mouth. The farthest south track to the south 

ran 2.8 km, stopping at a storm drain protruding in the intertidal zone. 

The horse tracks at both Spencer Park and Woodend beaches had the same position on the 

shore in relation to the high tide line, number of hoof prints over 10 m, and overall distance 

of the tracks along the beach (Table 6.1). Compared to Spencer Park Beach, Woodend Beach 

was used by larger numbers of horses, with traffic spread over a wider portion of the beach 

(Table 6.1). Track width positively increased with the number of horse tracks on both 

beaches (Figure 6.8); however, the relationship was found to be significantly different, with 

Spencer Park Beach having a faster increase in width (ANCOVA, F-slope (1, 26) = 39.928, 

p<0.001). 
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Figure 6.7: Horse tracks on Woodend Beach (a) and Spencer Park Beach (b), 

Pegasus Bay. The yellow line denotes the highest use during the period of the 

study. Inset showing location within Pegasus Bay (red star). 

  

1 cm= 1 km. 

1 cm= 1 km. 
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Table 6.1: Table showing the characteristics of tracks made by horse riders on 

Woodend and Spencer Park Beaches. 

Variable Woodend Beach 

Mean 

(SE) 

Spencer Park Beach 

Mean 

(SE) 

Significance using a 

T-test. 

(t value(df), 

probability) 

Number of horse 

tracks 

23.73 

(3.25) 

6.93 

(1.28) 

Significant 

(t(28)= 4.937, 

p<0.001) 

Distance from the 

high tide line (m) 

30.83 

(1.95) 

30.32 

(1.89) 

Not significant 

(t(28)= 0.211, 

p=0.835) 

Width of tracks (m) 
25.91 

(2.56) 

11.52 

(2.60) 

Significant 

(t(28)= 4.110, 

p<0.001) 

Hoof prints per 10 m 
13.29 

(0.92) 

14.37 

(1.02) 

Not significant  

(t(28)=0.693, p=0.494) 

Distance of tracks 

(km) 

5.38 

(0.56) 

5.62 

(0.67) 

Not significant 

(t(8)=0.313, p=0.762) 

 

 

 

 

 

Figure 6.8: The relationship between the number of horse tracks and total 

width of disturbed beach on Woodend and Spencer Park Beaches, Pegasus 

Bay. 
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Tuatua density and size 

Woodend Beach densities averaged 137 individual tuatua per m² (2.42 per hoof, SE= 0.98), 

and Spencer Park had 16 individuals per m² (0.29 per hoof, SE=0.23). Densities of shellfish 

during the period of the study were significantly higher at Woodend Beach (t-test, 

t(28)=2.148, p=0.041). The average shell length of individuals was significantly different 

between sites (t-test, t(122)= 4.817, p<0.001). Woodend Beach had larger tuatua, with an 

average shell length of 26 mm (SE=0.47), whilst individuals at Spencer Park had an average 

shell length of 19 mm (SE=1.92). 

Tuatua mortality 

There was a large variance in tuatua mortality ranging from 0% to 100%. No mortalities were 

recorded at Spencer Park Beach. Woodend Beach had a mean mortality rate of 36.9% (SE= 

14.1). Fatal damage sustained during this study was usually lethal in the form of broken and 

slipped shells - the same as that found in the vehicle experiments (Chapter 5). 

6.3.2 Experimental studies 

Preliminary experiments 

The horse included in the preliminary trial walked at a speed of 4.9 kmh¯¹, trotted at 12.8 

kmh¯¹ and galloped at 24.1 kmh¯¹. The number of hoof prints over the 20 m long area was 48, 

24 and 20 respectively. The densities of tuatua found during preliminary testing were 

relatively high at 895 individuals per m² (15.8 per hoof, SD=8.651). The average shell length 

was 14.32 mm (SD= 4.44). The typical break types were similar to those found in 

observational studies of broken and slipped shells. Walking resulted in 8.33% (SE= 4.81) 

mortality, trotting was 31.53% (SE= 7.96), and galloping 41.45% (SE= 9.98) (Figure 6.9). 

Riding style influenced the mortality (ANOVA: F(3,8)= 5.598, p=0.023). Galloping and 

trotting resulted in significant mortality compared to the control using a post-hoc Tukey’s 

test. Reburial success was not significantly different between the control and treatments 

(ANOVA: F(3,4)= 0.244, p=0.862), nor after 24 hours (t-test, t(6)= 1.806, p=0.121). 
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Figure 6.9: Percentage mortality within hoof prints caused by different horse 

riding styles when ridden over tuatua beds in Pegasus Bay. Error lines denote 

standard error. 

Disturbance intensity experiments 

Horse hoof prints were measured to give an average depth of the sediment disturbed. 

Walking hoof prints were found to be 35.8 mm deep (SE= 2.5), 154.2 mm long (SE= 3.8), 

and 162.5 mm wide (SE= 3.1). Trotting hoof prints were found to be 36.7 mm deep (SE= 

4.4), 155 mm long (SE= 5), and 165 mm wide (SE= 2.9). 

The horse included in this second trial walked at a speed of 3.8 kmh¯¹ and trotted at 13.1 

kmh¯¹. The number of hoof prints per m² was 2 for one pass of walking and trotting, 6 for 

five passes of walking, and 9 for five passes of trotting (Figure 6.10). During these 

experiments, densities of tuatua were very low, most quadrats contained no individuals. The 

highest number was three individuals, equivalent to 42 per m². The average shell length of 

tuatua was 19.60 mm (SD= 5.69). No damage or mortalities were found in any treatments 

(0%). Reburial was unaffected by any treatment immediately and 24 hours after being 

disturbed (ANOVA: F-immediate (4,10)= 0.344, p=0.843; F-24 hours(4,10)= 0.895, 

p=0.367). Reburial success was not significantly different after 24 hours (T-test: t(18)= 

0.861, p=0.400). 
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Figure 6.10: Hoof prints for experimental treatments - Walking 1 pass (a) and 

5 passes, and trotting (b), 1 pass (c), and 5 passes (d). Note photos were taken 

at different scales. 

6.4 Discussion 

Horses caused a large amount of disturbance to the sand beach sediment surface and this 

could result in significant mortality of tuatua. On average, 11 km of beach was used by horse 

riders on a given day within the study area. Horse tracks widened in intensively used 

locations, creating a large area of disturbance. High tuatua mortality occurred in areas with 

high shellfish densities. Preliminary trials indicated that riding style influences tuatua 

mortality; however, final trials failed to substantiate this. This may be due to low tuatua 

densities in all of Pegasus Bay’s beaches. Results from field observations are likely to be 

useful for further extrapolation, allowing outcomes from management recommendations to be 

evaluated as well as comparisons with other user groups, such as vehicle drivers. 

Woodend Beach was used in higher numbers than Spencer Park Beach. This preference is 

likely to be due to trainers being based in close proximity to the Woodend Beach access way. 

The combination of suitable land for horse stables and high accessibility to the beach has 

resulted in heavy use of the area. The spread of disturbance was found to increase with higher 

numbers of horse users, particularly near to the entrance (Figure 6.11). Both locations 

sampled had a significant relationship between horse numbers and track width. This finding 
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is likely to be due to rider preference for flat smooth areas of beach. This preference may 

exacerbate the effects of horses due to an increased proportion of intertidal biota being 

contained in these areas. The overall impacts of horses could easily be reduced by requiring 

users to stay within set boundaries; however, safety issues may ensue due to unpredictability 

of the animals when in close proximity to one another. 

Tuatua mortality ranged from 0 to 100% representing a large amount of variability both in 

experimental and observational data sets. The methods used in preliminary and final 

experiments were unchanged, yet no damage was found in the finalised experiments. It is 

predicted that some, if not all, of this could be explained by the density and distribution of 

tuatua in relation to horse users. Shellfish density is likely to be a key factor influencing this 

result as it reduced in the time period between preliminary and finalised trials. For example, 

tuatua densities reduced from 576 individual tuatua m
-
² in preliminary experiments, to a 

maximum of 48 individual tuatua m
-
² in finalised experiments. Ferns et al. (2002) evaluated 

the impacts of cockle (Cerastoderma edule) dredging using a tractor in Burry Inlet, South 

Wales, and found that when organisms are in high densities the impacts were far greater. 

Therefore, with less tuatua present, the impacts of horses are likely to be reduced. 

Furthermore, no mortality was found during observational studies on Spencer Park Beach 

which contained low densities (< 16 individual tuatua m
-²) and shellfish were found on only 

three occasions. However, higher mortality levels (36.9% per hoof) occurred at Woodend 

Beach where high densities (139 individual tuatua m
-²) of tuatua were found. Such findings 

indicate that horses are likely to have a large effect on tuatua and other intertidal biota when 

in high densities. 
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Figure 6.11: Horse tracks near to the horse entrance at Woodend Beach, 

Pegasus Bay. 

More horse traffic is likely to result in greater disturbance and increased shellfish mortality. 

Field results produced a mean mortality rate of 36.9% on Woodend Beach where shellfish 

densities were higher (137 individual tuatua m
-²) when compared to that of Spencer Park 

Beach (16 individual tuatua m
-²). This is a high level of mortality; however, it is based on the 

effect of an individual hoof print. Therefore more hoof prints will cause higher numbers of 

shellfish mortality, so consideration of the number of horses that use the beach is important.  

Over a long time period, horses could apply a significant selection pressure for shellfish 

(Figure 6.12). More importantly, tuatua subjected to this pressure are the future adult 

population that will move subtidally and breed to replenish shellfish stocks on the beaches. 

Reduction in the number of these important members of the population could result in 

decreased reproductive outputs over the long-term (Dame, 2012). If this has occurred in the 

past and continues, a decline in tuatua abundance in the area would be the most likely 

outcome. It is difficult to establish if this has already occurred due to a lack of studies 

providing descriptive data on tuatua populations or horse use and the variability of 

reproductive outputs between years (Marsden, 2002). However, personal observations on two 

North Island beaches (Takau Bay in 2011 and Mt Maunganui Beach in 2012), with absence 

Horse entrance 
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of heavy recreational users, were observed to contain high densities of shellfish in the 

intertidal zone compared to that found in Pegasus Bay. Chapter 3 showed that areas with 

different users had no influence on abundance; however, attributing this to horse users is not 

possible due to longshore processes being responsible for moving shellfish. A high degree of 

mixing between assemblages may occur, so shellfish abundance in Pegasus Bay must take a 

holistic view of impacts occurring. 

Horse riding occurs on sand beaches around the world, especially in affluent countries 

including U.S.A., Great Britain, and Australia, and is likely to have similar effects on infauna 

in the intertidal zone. In addition, popular tourist destinations, such as Spain, also promote 

riding on beaches as an activity available to visitors (Fantasia Adventure Holidays, 2012). 

Biota in a similar niche to that found in Pegasus Bay are also present on these beaches and 

are likely to suffer impacts from beach users. For example, Donax deltoides is widely present 

in the intertidal zone of Australia (Murray-Jones & Ayre, 1997) and Schlacher et al. (2008b) 

found vehicles to cause high levels of mortality to these clams buried in the top 10 cm of 

sediment. Tuatua are buried to a similar depth (Chapter 4), so it can be assumed that the 

effects of horses are relatable to other intertidal shellfish species. All beaches differ in 

physical and biological factors, often as a result of the interaction between each. Species shell 

morphologies may result in differing impacts and so too would the sediment characteristics 

through buffering the forces of horses. Further research on other nation’s beaches would be 

needed to understand the finite impact of horses at these locations. 

Pegasus Bay contains a wide range of infaunal biota, many species of which are soft-bodied 

(e.g. polychaete worms). Other nation’s beaches also contain high levels of soft-bodied 

invertebrate fauna. In relation to vehicles, such species have been evaluated as being highly 

vulnerable (Wolcott & Wolcott, 1984), so it is likely these will also be impacted by horses. 

As these individuals contain no form of protection, such as a shell, the level of force needed 

to injure an individual would be far less. In addition, many species are buried to low depths 

within the sediment. For example, polychaetes generally occur in the top 5-10 cm of sediment 

(Hutchings, 1998). This shallow burial allows little cushioning from the sediment when 

forces are applied at the surface and may result in increased damage compared to that of 

shellfish. 
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Research limitations  

This study has limitations caused by uncontrollable factors, such as low densities of tuatua 

during the study. In addition, other variables including the weight and speed of horses in the 

first, observational study are unknown. A large amount of variation in mortalities also 

occurred between days for the observational experiments. This indicates that there are a range 

of day-to-day factors which could influence the results. Such factors include dispersal of 

tuatua, sediment properties and hoof characteristics of horses ridden over the area. 

Identification and evaluation of these variables would help to narrow down the key factors 

that influence mortality of shellfish from horse users.  

Firstly, the dispersal of the shellfish in relation to horse tracks is a major factor in 

determining damage for an area of beach. If the shellfish are above or below the tracks then 

there will be no damage. However, if the band of shellfish (Chapter 3) was within the track, 

and densities are high, increased levels of mortally would be found (Ferns et al., 2002). This 

is because the probability of the horse hooves striking shellfish would increase. The position 

of shellfish within the horse’s hoof may also cause variation. The horse hooves were found to 

penetrate deepest at the front with angle shallower at the back. Therefore, it would be more 

likely for shellfish to be damaged if they are under the front of the hoof. This damage may be 

further exaggerated when horses are shod because the front of the hoof may penetrate further 

into the sediment. 

A second factor that varied between experiments was the change of horses between trials 

with the initial rider no longer available for the final experiments. The weights of the horses 

were relatively similar (626 kg as compared to 600 kg) with the latter horse slightly heavier 

and therefore equally likely to cause mortalities. There were other minor differences between 

horses, with the second horse being unshodden. This lack of horseshoe may have meant that 

the hoof may not have penetrated as deep in the sediment. The gait of the second horse was 

also observed to be smoother than that of the first horse; hence the force impact may not have 

been as high. However, sediment disturbance by the hooves of the two horses was relatively 

similar. Therefore, the most probable reason for nil damage in finalised experiments is likely 

to be due to low densities of tuatua.  

Unfortunately, tuatua densities decreased during the period of this research, and never 

returned in time for experiments to be carried out successfully. Reasons for this decrease in 

tuatua abundance are discussed in Chapter 3. Shellfish densities would need to be high for 
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these experiments to be repeated. If tuatua densities never become high again in Pegasus Bay, 

use of alternative locations and species of shellfish may be required for future research. An 

ideal location for such experiments has been identified in Takau Bay, Northland, where high 

densities of North Island tuatua (Paphies subtriangulata) were observed (approx. 1000 

individuals m
-²) in April 2011 (author observations). A key issue with this location is 

transporting equipment to the site because it is accessed via a steep narrow gravel road. The 

beach is also in a Māori owned settlement, so permission from the local iwi would be needed. 

Horses moving at higher speeds may impact the ground more; however, different riding 

styles can change in ground force. Rubin & Lanyon (1982) found horse strain load of tibia 

and radius to increase by 59% between a walk and a trot and a reduction of 42% between a 

trot and a canter. This also resulted in similar changes in ground force. Knowing the weight 

and speed of the horse which created the tracks sample in the earlier observational study is 

also important if effects are to be clearly determined. Observational results were taken after 

horses had been ridden through an area; the weight and speed of these horses therefore 

remained unknown. The preliminary results showed that lower numbers of horse hooves per 

length of beach indicated higher speeds. The number of hooves averaged 13.3 prints per 10 

m, so it could be assumed the styles ridden were likely to be faster types, such as trotting, 

cantering, or galloping. Overall mortality may have varied due to not knowing which of these 

styles was used. 

Management recommendations 

Currently, the Northern Pegasus Bay Bylaw 2010 permits horse use across all beaches. The 

results of this study suggest however, that the permitted area needs to be reduced if Pegasus 

Bay ecosystems are to recover. One option would be to identify and designate a particular 

area in which horse riders are permitted. Identification of this area would need to balance 

safety, erosion prevention and ecological implications. Woodend Beach, near the existing 

horse user entrance, would be a suitable area for this option. This area is already in high horse 

use and no signs of significant erosion have been observed (Chapter 3). Ecological damage 

from horses would have already occurred in the area. Low pedestrian traffic and vehicles not 

being permitted here make this a suitable option. An absence of vehicle users reduces conflict 

and mitigates risk associated with horse riding in public areas.  

This study showed that horses can have detrimental effects on intertidal shellfish and 

mitigation is needed. The mortality rate was found to be 36.9% on Woodend Beach which 
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has the potential to severely impact the population. Furthermore, if there was high horse 

traffic on a daily basis impacts could be similar to that indicated in Figure 6.12 for recreation 

and ORVs. However, evidence presented in this thesis suggests that both vehicle and horse 

users are more likely to impact over a much longer time period - this is further discussed in 

Chapter 7.  

 

 
Figure 6.12: Conceptual model and schematic diagram showing the relative 

spatio-temporal scales in which different impacts reviewed here generally 

operate on sand beach macrofaunal communities. Envelopes indicate the 

potential extent of individual impacts in space and time, with the lower curve 

reflecting the lower limit of impacts in time and space, whereas the upper 

curve reflects the corresponding maximum (sourced from Defeo et al., 2009). 

While a complete ban of horses would be most ideal from an ecological perspective, more 

permissive measures could seek to limit the daily number of horses able to use the beach. 

This could be enacted through a permit system where riders must seek a license before 

entering the beach. Enforcement of this permit system would also be manageable in terms of 

identifying those with or without a permit. The results of such scenarios are presented in 

Chapter 7 through the use of extrapolation modelling. 
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Another measure to limit shellfish damage could be to restrict horse access to certain days 

(e.g. horses only allowed on Wednesdays). Horse use would be high for one day of the week 

and non-existent the rest, equating to a maximum of 52 times in a year. While damage on this 

one day may be more significant, it could be coupled with other mitigation measures to create 

an overall improvement for affected populations. This would most likely need to include 

limiting horse numbers on these days. If this is not done, more opportunistic trainers may 

train high numbers of horses on the permitted days. Future research should be conducted to 

survey beach users and horse communities to investigate the feasibility of such proposed 

management changes.  

6.5 Conclusion 

Results from this study reveal that tuatua in Pegasus Bay are affected by horses. Observation 

studies found an average mortality of 36.9% within a hoof print. The significance of this 

number becomes especially important where there are large numbers of horses over a large 

expanse of beach. Flow-on effects are likely to occur which could reduce the success of the 

population. In addition, soft bodied biota are likely to suffer increased impacts due to a lack 

of protection. To prevent further damage, management is required that aims to reduce user 

numbers and the permitted area. A secondary option is to designate a section of beach which 

is appropriate for horse use. Identification of a permitted area would need to focus on 

ensuring safety, erosion prevention and ecological protection. If implementation is successful 

it would be expected for there to be higher levels of intertidal tuatua on the beaches of 

Pegasus Bay. Overall, this would allow for shellfish to be protected in the rest of Pegasus 

Bay.  

Further research would be advised due to no mortality or damage being found during the 

disturbance intensity experiments. Low densities of tuatua make in situ experiments difficult 

to be carried out, so it would be recommended for experiments to be repeated at a location 

with high shellfish densities or when Pegasus Bay populations increase. Local accounts 

suggest that shellfish densities are in decline, so the former would be most recommended. 

The effect of horses on other organisms in the intertidal zone also needs to be evaluated. 

Lastly, observational results could be extrapolated to devise a model which evaluates the 

overall percentage mortality of shellfish temporally. The overall impact of users could be 

determined over set time periods and would open the door for new dynamic management 

options to take place. 
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Chapter 7 Sand beach management: a 

synthesis of scientific information for robust 

outcomes. 

7.1 Introduction 

Throughout this thesis, an interdisciplinary approach has been utilised to answer two key 

questions which are critical for successful ecological management on sand beaches: firstly, 

do vehicles and/or horses on sand beaches impact on intertidal shellfish populations, and, 

secondly, how can management policies be utilised to mitigate any negative impacts from 

such activities on intertidal ecosystems? This final chapter provides a synthesis of the 

information presented regarding the potential effects of vehicle and horse users and makes 

management recommendations to successfully protect intertidal shellfish. Earlier chapters in 

this thesis characterised six beaches in Pegasus Bay, described their intertidal shellfish 

populations and evaluated the vulnerability of intertidal shellfish to human activities. Local 

and international sand beach management was evaluated to determine the level of protection 

shellfish currently receive. Vehicle and horse effects on shellfish were quantified to show that 

significant levels of immediate damage can occur for each of these users.  

Sand beaches are dynamic ecosystems which contain unique biota that are vulnerable to 

human activities. Like others worldwide, the sand beaches of Pegasus Bay are utilised by a 

wide range of users. Whilst most of these users are likely to have negligible impact on these 

ecosystems, other activities, such as vehicle driving and horse riding, may be more 

significant. Beach users are known to accelerate beach erosion, impact user safety and 

adversely affect wildlife. A key finding of the management review presented in Chapter 2 of 

this thesis was that biological values are largely underrepresented in sand beach management 

policies. As a result, management policies often restrict these users to the intertidal zone; an 

area perceived as being devoid of life. However, this zone is important to the ecosystem and 

contains diverse intertidal biota which has an important role in ecosystem functioning 

(Armonies & Reise, 2000). Ignoring biological values in this manner could have adverse 

impacts on the ecosystem. In order to address this, a holistic approach must be taken by sand 

beach managers. 

Successful sand beach management requires an integrated multidisciplinary approach. 

Moreover, ecological protection on sand beaches should be an equal priority alongside other 
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facets of coastal management. Protection of species within these areas should utilise 

information available, and employ a precautionary principle (e.g. NZCPS, 2010) when such 

information is not available. Use of quality information will not only guide management 

practitioners, but also allow a synthesis of ideas and lead to the creation of dynamic 

management plans. Ultimately, it is hoped this approach will result in robust management 

strategies which protect natural resources for future generations. 

Acknowledgement of the limitations of information for decision making should also be made 

in management considerations. For example, earlier studies by Wolcott & Wolcott (1984) 

predicted that vehicles would not affect the clam Donax variablis because of its hard shell 

and sediment cushioning providing sufficient protection. This evaluation was based solely on 

their vehicle impact study using ghost crabs (Ocypode quadrata) in Cape Lookout National 

Seashore, North Carolina, U.S.A, rather than findings from investigations using shellfish. 

However, subsequent studies have shown negative impacts from vehicles on similar clam 

species (Schlacher & Thompson, 2007; Schlacher et al., 2008a; Schlacher et al., 2008b; 

Moller et al., 2009; Sheppard et al., 2009; Marsden & Taylor, 2010).  

In this chapter, the importance of considering ecological outcomes in sand beach 

management and the necessity of detrimental recreational activities is discussed. The 

Northern Pegasus Bay Bylaw 2010 is evaluated in light of information presented in prior 

chapters. This information is then used to make key recommendations to beach managers 

based on extrapolative modelling. Finally limitations of the present research are discussed. 

7.2 The impacts of current beach use of intertidal ecosystems 

Sand beaches play host to a wide range of activities, each of which is likely to differ in its 

environmental impacts. Being able to compare the impacts of one activity to that of another is 

important when making decisions as to which activities are permitted, and where and when 

they are allowed to take place. The overall impacts of vehicles and horses in sand beaches are 

difficult to compare. The key difference is that a vehicle continually rolls over the surface, 

whilst horse hooves lift off the ground as it runs. Horses resulted in an average of 36.9% 

mortality in the area under the hoof whilst vehicles resulted in 4.8% mortality in the area 

under the tyre and 0.27% mortality for each subsequent pass within the already impacted 

area. At first glance, horses appear to result in far higher mortality than vehicles; however, 

due to the nature of movement of each user, the impacts become similar when extrapolated 

over time and area of beach impacted. 
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Comparing mortality due to vehicle and horse users with the results presented in Chapters 5 

and 6 requires the use of a mortality rate. For vehicles, this rate is a 0.27% increase per 

vehicle pass; however, data from horse studies were not in this form and extrapolation was 

required to calculate this rate. At Woodend Beach, it was found that there was an average of 

36.9% mortality per hoof. This rate must be extrapolated over a known distance, so that it can 

be used to compare with vehicles (Equation 2). 

Overall, these equations are not to be used as a singular tool for impact evaluation, but simply 

a comparative indication of the potential impact on tuatua by certain user groups. This allows 

for different users to be evaluated using the same parameters. Moreover, these equations can 

be applied to other users and bivalve or target species. 

This model has been designed to be universally applied, that is the mortality to infaunal 

species can be compared between different activities for any beach. For another region to use 

this model requires a small amount of impact evaluation. This is because every organism and 

beach could have differing levels of impact. For example, a beach with coarser sediment 

grain size may have higher levels of mortality from an activity due to less cushioning being 

provided to the organism. Therefore it is advisable that the following are completed when 

using the model; activity impact assessments which evaluates the mortality after one pass and 

the mortality rate for multiple passes (as many as applicable for the region), survey of the 

distribution of the organism being evaluated, and measurements of the physical parameters of 

the beach and the activity. Overall, this data gathering could be successfully completed 

within four days, allowing impact assessments to be replicated. 

Equation 1: Track area for a 4x4 vehicle over 1 m longshore beach distance 

Tarea for 4x4             

                                   

                               

Tarea- area of the tyre tacks (m²) 

Twr- width of right tyre (m) 

Twl- width of left tyre (m) 

A- 1 m longshore beach distance 
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Equation 2: Track area for a horse of 1 m longshore beach distance 

 

Tarea for horse=          x A 

                                            x 1 

                                     

 

Tarea- area of the tyre tacks (m²) 

r- radius of hoof print (m) 

Nh- average number of hoof prints in 1m of beach length longshore 

A- 1 m long-shore beach distance 

 

 

 

Equation 3: The remaining population after disturbance by one user 

 

                                          
  

  
    

S- standing population (%) 

d1- damage rate of one user (0.048 for vehicles, 0.36 for horses) 

L- likelihood of moving over the shellfish band 

Ta- track area (m²) 

Bw- width of usable beach (m) 
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Equation 4: The remaining population after one day of disturbance 

 

Vehicle: 

                                                
       

  
     

 

Horse: 

                               
         

  
   

 

dr - damage rate (0.0027 for vehicles, not available for horses) 

d1- damage after one pass (0.048 for vehicles, 0.36 for horses) 

Vs- Vehicles driving on the same tracks 

Vd- Vehicles driving in different tracks  

H- Number of horses 

L- Likelihood of hitting the shellfish band  

Ta- tyre track area per m
2 

Bw- Beach width (m
2
) 
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Equation 5: The remaining population after more than one day 

 

Remaining population (%)                               

 

M2- Equation 4: The remaining population after one day of disturbance. 

Nd- Number of days from the start 

 

 

In order to utilise these equations some key assumptions are made. Firstly, it is assumed that 

shellfish are distributed uniformly throughout half of the usable beach area, and secondly the 

damage rate of each user was assumed to be the same each day. These are both realistic 

assumptions as field observations and experiments demonstrated that tuatua were dispersed 

over half the beach and damage rates did not significantly change between seasons for 

vehicles (see Chapter 5).  

For the purpose of this evaluation, the beach width (MLWS to MHWS) was fixed at 100 m – 

the approximate size of the intertidal zone at most beaches in Pegasus Bay - and the 

likelihood of hitting the shellfish band was standardised at 50%. For multiple vehicle pass 

scenarios, the number of vehicles following the same/different tracks; it was assumed that at 

least one vehicle had to make a new track each day and, thus, cause the initial 4.8% damage 

in the first track.  

To compare the effects of these different users over time we must assess them under equal 

parameters. Using Equation 3, one vehicle results in 0.0096% mortality whilst a single horse 

results in 0.0045% mortality. This appears to be very low; however, when this is extrapolated 

for more than one user, and over a longer period of time, these users have very different 

levels of impact. Using Equation 4, with 50 vehicles and horses per day there is 0.36% or 

0.23% mortality respectively. Furthermore, if the same amount of use occurs throughout a 

year (365 days) there is 49% or 43.8% mortality caused by vehicles or horses respectively 

(Figure 7.1). These numbers clearly show that despite mortality levels being small for one 

pass, as passes and days increase, the cumulative impact of these users can become 

substantial.  
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Figure 7.1: The percentage of remaining tuatua after being runover by (a) 25 

vehicles, (b) 50 vehicles, (c) 13 horses or (d) 26 horses per day, and combined 

user impacts in (e) current use and (f) double the current use. 
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In Pegasus Bay, vehicles are used daily during the whitebait and salmon seasons, which run 

from 15
th

 August to 30
th

 November and over the summer months to April respectively. This 

is a total of 258 days when high numbers of vehicles (50+) are driven on the beach in a single 

tide cycle. Using Equation 5, it was found that after 258 days 37.4% of shellfish on a vehicle 

impacted beach would have been fatally injured (Figure 7.1). 

The second scenario is that on average 13 horses are used daily on Woodend Beach which is 

consistent with field observations. The equation given above finds that after one year this 

would result in 19.3% of shellfish mortality (Figure 7.1). This is a significant proportion of 

the shellfish to be destroyed by a single user group on the beach. 

Human populations living within the vicinity of the coastal zone is increasing (Baird, 2009) 

and so too is coastal tourism and recreation (Hall, 2001). Thus, coastal managers must be 

prepared for an increased demand for coastal resources. To evaluate the effects that this may 

have on tuatua in Pegasus Bay, predictions can be made using the equations in Equation 5. 

No values are available for the increase of beach use in Canterbury, so for the purposes of 

this analysis, it was assumed that user numbers could double from current user patterns (i.e. 

100 vehicles and 26 horses per day). Vehicles could result in 98.8% shellfish mortality, and 

26 horses a day resulted in 34.8% shellfish mortality in one year. Furthermore, if horse users 

were to increase to 100 users per day, 81.8% shellfish mortality would occur after one year, 

making vehicle users more detrimental to shellfish populations when in high numbers. While 

these numbers are based on assumptions, they provide an indication of the potential impact of 

these two user groups. It must be noted that these predictions are to be taken as an indication 

only and in situ results may show other mortality patterns not accounted for. 
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Table 7.1: Table showing the predicted mortality for tuatua under the different 

beach user scenarios discussed throughout this chapter (Sections 7.2 – 7.4). 

Vehicle users No. Scenario Total days Tuatua mortality 

(%) 

Uncontrolled 1 

Free range within 

the intertidal zone 

 

1 0.0096 

50 1 0.36 

10 365 9.1 

25 365 35.8 

50 365 49 

100 365 98.8 

Controlled 25 Using the same 

tracks 

365 8.9 

50 Using the same 

tracks 

365 12.4 

50 Limit to Salmon 

season 

107 17.8 

50 Limit to Salmon + 

Whitebait 

258 37.4 

Horse users No. Scenario Total days Tuatua mortality 

(%) 

Uncontrolled 1 

Free range within 

the intertidal zone 

 

1 0.0045 

50 1 0.23 

5 365 7.9 

10 365 15.2 

13 365 19.3 

26 365 34.8 

50 365 43.8 

100 365 81.8 

Controlled 13 One day a week 52 3.0 

13 Three days a week 156 8.8 

13 Five days a week 260 14.2 

Combined 

users 

No. Scenario Total days Tuatua mortality 

(%) 

 13 horses and 50 

vehicles 
Free range within 

the intertidal zone 

 

365 33.9 

26 horses and 100 

vehicles 

365 66.7 
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7.2.1 Northern Pegasus Bay Bylaw 2010: successes and weaknesses 

The Northern Pegasus Bay Bylaw 2010 currently permits vehicles to be driven on the beach 

from access points near to the river mouths, whilst horses have unrestricted access along the 

coast. Evidence presented in Chapters 5 and 6 showed these activities were ecologically 

damaging. In addition, both vehicles and horses have the same environmental requirements 

and could conflict when they occur together. Compared to many other locations around the 

world, management authorities in Pegasus Bay have few restrictions on users. For example, 

authorities at Cannon Beach give permits only for users that have specific reasons to use the 

beach. In comparison, beach users of Pegasus Bay can freely access beaches for any activity. 

Vehicle users on beaches of Stradbroke Island, Australia have free access and traffic volumes 

often reach 500 vehicles a day (Schlacher & Thompson, 2007). However, this high use is not 

typical for all beaches around the world. New South Wales legislation does not support the 

use of vehicles on beaches, and South Africa has a complete ban of vehicle use on its beaches 

(Department of Environmental Affairs and Tourism, 2004), as does France (La Loi Littoral, 

1986).  

The Northern Pegasus Bay Bylaw 2010 has strengths and weaknesses in relation to the three 

main areas of coastal management identified in Chapter 2: erosion prevention, ensuring user 

safety and ecological protection. Beach erosion can be successfully prevented by keeping 

users away from the sand dunes by permitting vehicles in the intertidal zone as in the 

Northern Pegasus Bay Bylaw 2010. However, my observations of tyre tracks provide 

evidence that some vehicle users are still driving above the high tide line and sometimes 

within the dunes. Further enforcement of the bylaws are needed to prevent this; however, a 

ban of vehicles would be most effective. Another measure would be similar to that of Cape 

Cod, U.S.A, where fenced vehicle tracks force users to follow a set path. This could be 

applied to Pegasus Bay to give users a set track to follow with little possibility of deviation. 

Safety around vehicle users has increased as a result of a speed limit of 30 kmh¯¹ and 10 

kmh¯¹ within 50 m of people. Vehicles and horses are also not allowed to pass through a surf 

lifesaving flagged area, ensuring greater safety of swimmers and other such beach users 

(Section 6.10, Waimakariri Northern Pegasus Bay Bylaw 2010). Overall, these two 

management steps increase safety of other users; however, horse user speed is not controlled 

which poses risk to both horse riders and other non-associated beach users.  
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Figure 7.2: Vehicle being driven near to the sand dunes at Kairaki Beach, 

Canterbury. 

In other parts of the world, horse users are recognised as being a hazard around other users. 

As such, on Crane Beach, Massachusetts, U.S.A. horse users are only permitted in off-peak 

times of the year being the 1
st
 October to the 31

st
 March. This mitigates the risk of pedestrian 

safety being compromised. In Pegasus Bay, horses have comparatively few restrictions 

placed on them. For example, a horse rider can use the entire stretch of Pegasus Bay beaches 

and travel as fast as they like. Horses are capable of travelling at speeds in excess of 40 

kmh¯¹. When travelling at high speed, risk is increased to both the horse rider and other users 

such as pedestrians. Therefore, it may be necessary to impose speed restrictions. This could 

be technically difficult for riders to follow due to the absence of speedometers on horses, but 

imposing a control-type rule may be an option. For instance, horses must be walked within 50 

m of people. This would allow greater control of the horse and ensure safety of pedestrians. 

An alternative option would be to only allow certain riding styles to be carried out (i.e. 

walking). 
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Figure 7.3: A harness racing horse being trained (trotting) on the intertidal 

zone. 

Ecological protection under the Northern Pegasus Bay Bylaw 2010 is largely focused on 

preventing disturbance to birds (Policy 6.8, Waimakariri Northern Pegasus Bay Bylaw 2010), 

including roosting, nesting, resting or feeding. As mentioned in Chapter 2, this is a common 

theme for wildlife management on sand beaches around the world. For example, beaches 

where turtles nest have seasonal bans on vehicle use during the nesting period. A second 

measure to prevent damage to bird nests on the dry beach face is to designate the intertidal 

zone for recreational use. However, I have observed vehicles and horses on the intertidal zone 

frequently disturbing shorebirds feeding on polychaetes and shellfish. Horse and vehicle 

users have potential to cause high levels of disturbance so careful management is needed. 

7.2.2 Consequences of beach activities 

All anthropogenic activities are likely to affect the surrounding ecosystems where they take 

place. Defeo et al. (2009) produced a figure proposing that recreation and vehicles are likely 

to have very little effect over space and time (months over hundreds of kilometers) compared 

to coastal engineering and urban development (decades to centuries over hundreds of 

kilometers, Figure 6.12). However, the findings of my thesis research suggested that vehicles 
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are more likely to impact beaches over larger time scales than Defeo et al. (2009) suggested. 

Moreover, horse riding fits into the recreation category and, paired with vehicle use, is likely 

to cause larger impacts over temporal scales.  

It is proposed that Defeo et al.’s (1999) figure be adjusted to show this potential impact with 

the ecological outcomes reflected (Figure 7.4). Tuatua in Pegasus Bay recruit over the 

summer period and move to the adult population after approximately one year (see Chapter 

4). During this year, individuals are exposed to vehicle and horse disturbance which could 

severely reduce the number of individuals which survive to become adults. A reduction in 

adult tuatua may result in fewer recruits in subsequent years (Peirsma et al., 2001). Overall, 

this could result in less abundant tuatua populations if use patterns are sustained over multiple 

years.  

 

 

Figure 7.4: Temporal and spatial scale of activities on beaches. Dotted line is 

the proposed change to Off Road Vehicles (ORVs) and horse impacts 

compared to that presented by Defeo et al. (2009) (see Figure 6.12 for the 

unmodified diagram). 
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The ecological cost of permitting vehicle or horse activities on sand beaches 

A key question an environmental manager should ask is: what ecological compromise is 

made when permitting an activity to occur? This compromise must balance a wide range of 

factors such as ecological impacts, monetary costs, safety and environmental degradation. In 

the coastal zones of New Zealand, an activity can be prohibited if information indicates that it 

could cause damage through application of the precautionary principle defined in the NZCS 

2010. So for an activity, such as vehicle driving, on sand beaches to be permitted the 

necessity of the activity must be considered (i.e. is the activity essential?). 

A form of objective assessment may be a useful tool for coastal managers to decide whether 

an activity should be allowed. An Environmental Impact Assessment (EIA) is an example of 

this, and aims to provide an objective measure of the impacts of an activity on the 

environment. Generally, similar assessments are carried out by environmental consultants and 

construction and engineering companies; and the Department of Conservation currently uses 

an EIA in granting concessions on conservation land. This kind of tool could be applied to 

recreational activities in the coastal zone. For example, an assessment of vehicle use would 

provide clear objective information to the coastal manager which would aid in decision 

making. Decision making using this type of assessment can be difficult when an absence of 

scientific information on the environmental impacts exists. In such cases the precautionary 

principle should be employed until research can provide the information needed. 

If such a framework was implemented for Pegasus Bay, and vehicles were no longer 

permitted on the beach, people would be forced to fish and whitebait further up the river (by 

approximately 750 m) or to carry fishing and whitebaiting gear to the water’s edge. This 

would not restrict access to less mobile users because at the Waimakariri River mouth there is 

a car park at the water’s edge before the gate. This parking facility has recently been 

improved by the Regional Council. Keen fisherman could still carry gear along the beach by 

foot to be closer to the sea. Currently, the Northern Pegasus Bay Bylaw 2010 has resulted in 

fanning over the dry beach causing large areas of disturbance (Chapter 2). Therefore 

restriction of vehicles to the car park would not only protect shellfish, but also the nesting 

seabirds which the current plans aim to protect.  

7.3 Ecological considerations in sand beach management 

Currently management plans for vehicle and horse use on sand beaches pay very little regard 

to intertidal organisms. Previous literature is often a driver in designing management plans. 
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For example, if literature showed high levels of mortality occurring for ground nesting birds 

in the presence of vehicles, the key method of mitigation used for such beaches would be to 

move vehicles away from these species. In addition, birds are iconic species with high public 

interest whereas other sand beach biota (e.g. polychaetes and shellfish) are not. Historically, 

this usually resulted in the confinement of heavy recreational users to the intertidal zone, 

away from nesting birds. However, shorebirds forage in the intertidal zone and are frequently 

disturbed by vehicles under such management plans. 

Considering ecological implications in sand beach management should be of high importance 

for environmental damage to be prevented. If these important ecosystems are not considered 

in management plans, the perceived value of the location may be compromised. Often it is 

the role and function of the organisms present in the ecosystem which provides aesthetically 

pleasing and healthful qualities for humans. For example, clear water through the reduction 

of turbidity by filter feeding bivalves makes coastal systems more desirable to human users. 

Effective management is needed which prevents unwanted environmental outcomes. For 

example, a reduction in water clarity and quality due to decreased filter feeder abundance as a 

result of uncontrolled vehicle users. 

Recommendations for ecological protection need to take into account all components of an 

ecosystem. After all, it is the interaction of all these species that forms the ecosystem. An 

ecosystem approach aims to ‘promote ecological integrity while allowing human use on a 

sustainable basis’ (Yaffee, 1998). This approach is far more favourable in ecological 

management as it takes a holistic view of the system and values all aspects of interaction. 

When a single-species approach is used to prevent environmental damage it does not protect 

the whole ecosystem; some species may benefit whilst others are negatively affected. For this 

reason, management practitioners should apply information in a holistic multidisciplinary 

approach.  

Nicholson et al. (2009) stated that use of multidisciplinary information would result in a more 

robust and informative model of environmental change. It is acknowledged by Nicholson et 

al. (2009) that progress may appear slower, but reduces the risk of misleading policy 

recommendations. This is the reason why recommendations in this chapter are made using a 

synthesis of information, rather than single-source recommendations in previous chapters. 
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7.3.1 The importance of mitigating ecological risk 

Ecosystem diversity and abundance significantly contribute towards a more resilient 

ecological community (Tilman et al., 2006) and future management plans need to aim to 

enhance both of these. A resilient community is able to recover from higher levels of 

disturbance compared to a less diverse one. Resilience is important when ecosystems are 

presented with other stressors, as well as horse and vehicle disturbance. During the period of 

this research these stressors included water contamination, changes in sediment composition 

from earthquake activity and commercial fishing pressure. All of these can significantly 

inhibit the function of individuals in the ecosystem which can influence human values of the 

resource. 

Diverse communities are more likely to continue ecosystem function when disturbed 

(Peterson et al., 1998). This is because other organisms may be able to fulfil the role of the 

disturbed species. For example, if filter feeding tuatua (P. donacina) abundance decreases 

another bivalve, such as Dosinia anus, may fill this role. Therefore, the function of the 

community is maintained. In the interest of human amenity values, this would ensure that 

water turbidity did not increase as result of reduced filtering. 

Whilst the focus of this thesis was on the impacts of beach users on intertidal organisms, such 

as tuatua, it is also important to consider other environmental outcomes when making 

management recommendations. For example, it would be unwise to suggest that vehicles and 

horses be designated to the same smaller area. Such suggestions would compromise safety of 

both users through spooking of horses from vehicle traffic, and the possibility of vehicle 

users being trampled by horses when getting in and out of their vehicles. Therefore it is 

necessary for these users to be spatially separated. This can be easily achieved in Pegasus 

Bay. There are approximately 55 km of sand beaches in Pegasus Bay, all of which have 

sufficient access for vehicle and horse users. However, designation of separate areas results 

in a wider spread of environmental damage. This creates a conundrum regarding which factor 

(i.e. safety or ecological protection) takes priority. 

If activities, such as vehicle and horse use, are deemed to be environmentally harmful using 

adapted EIA frame work, or similar, a complete ban may be the most beneficial outcome. As 

with any type of ban this would not be met with approval from everyone. This would need to 

be weighed up against the benefits gained. For example, the absence of vehicle and horse 

users may result in low disturbance to birds, relatively undisturbed intertidal biota and no 
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degradation to sand dunes. Enforcement would be needed, but could be carried out on an on-

call basis because public will be able to identify non-permitted users. Schlacher et al. (2008a) 

showed there to be an 87% decline in density of assemblages on the upper shore and 61% in 

the lower shore of vehicle impacted beaches when compared to non-impacted beaches. If a 

complete ban was put in place it would be expected that faunal diversity, density and 

abundance could increase in areas previously affected by vehicle and horse users. This would 

benefit the ecosystem which could eventually transpire to economic benefits by sustaining 

local fisheries. However, a complete ban may not be practical and further community 

consultation would be needed to choose a balanced outcome. 

7.3.2 Ecological protection and the role of communities 

Chapter 2, comprising of an extensive international review, identified three main focuses of 

sand beach management in respect to recreational activities: erosion prevention, ensuring user 

safety, and ecological protection. The weighting of these was unbalanced, with less emphasis 

placed on the latter. When ecological protection occurs, birds are often the main species 

being protected. One outcome of such management is that ‘hidden’ species are ignored and 

often negatively impacted by management plans.  

Identifying key species for protection is important if positive environmental outcomes are to 

be ensured, but indirect effects on other members of the ecosystem need to be understood and 

acknowledged. For example, trophic cascades could occur when a single species changes in 

abundance which could cause reduced or increased abundances of an associated species via 

ecosystem feedback loops and processes (Daskalov, 2002). Such changes in abundance could 

affect the protected species in the long-term. To avoid this, protection should take place 

which aims to sustain or increase target species abundances whilst maintaining equilibrium 

between species (i.e. holistic conservation). Why increase the abundance of one species when 

its food sources will be depleted as a result? 

Single sources of information to guide management decisions are considered to have limited 

scope for the overall interactions within the environment and often result in unwanted 

outcomes (Born & Sonzogni, 1995). Coastal margins are dynamic zones with a large range of 

ecological interactions, so multidisciplinary management strategies are required. The 

implementation of such strategies may have potential to affect the entire ecosystem. 

Therefore a range of information is needed to successfully address the conservation 

requirements of coastal ecosystems. 
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Five key options employed to control vehicle and horse users of sand beaches were 

considered; permit systems, seasonal closures, complete banning, and area- and zone-based 

designation. Each of these options has advantages and disadvantages. To provide the best 

possible environmental outcome, ecosystems must be protected as a whole. The ecologically 

best option to do this is to completely exclude all activities which are known (or have 

potential) to cause damage to the ecosystem. This option would be most likely to have a 

successful recovery and result in a more resilient ecosystem. In a democratic society, where 

general public can influence management outcomes, a complete ban is rarely likely to occur 

due to political backlash from stakeholders. The political climate must be conductive to the 

use of a ban as a management option to be successfully introduced. 

It is acknowledged that public awareness is hard to gauge, but can be a powerful driver in the 

mitigation of environmental issues (Winkler et al., 2007). Public awareness via education is a 

key aspect in mitigation of environmental impacts, and significant large scale initiatives have 

occurred as a result (e.g. the ban on ozone depleting chemicals or the introduction of carbon 

emissions schemes). Winkler et al., (2007) suggested that awareness can be increased 

through use of alternative media outlets in addition to purely science-based ones. These could 

include the use of social networking media such as ‘Facebook’. 

Implementing a complete ban on vehicle and horse use on sand beaches in Pegasus Bay 

would be difficult and requires community-based approach. Community settlements, such as 

Waikuku and Spencerville, make up a large proportion of beach users in this area, making 

local engagement particularly important. For example, the horse trainers which frequent 

Woodend Beach own stables within 2 km of the beach. With community involvement, 

management authorities may be more successful in achieving conflict-free compliance 

(Burger, 2000). Engaging the community through education to highlight the importance of 

shellfish and other such assemblages within an ecosystem would be required. This would 

improve public perception of the intertidal zone as being an area where important organisms 

are living, rather than that of a dead zone. With more people aware of the environmental 

impacts of these activities, it is hoped that unnecessary vehicle and horse use of the beaches 

would reduce. 
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7.4 Final management recommendations 

Shellfish were found to be adversely affected by vehicle and horse users so the need to 

control these users is pertinent for shellfish to be sustained. The following recommendations 

are based on all of the findings of the present research. Overall, the outcomes of these 

recommendations are difficult to predict due to the dynamic nature of the coastal 

environment; however, extrapolative modelling was utilised to provide an indication of the 

benefit for each option wherever possible. 

The results and findings of previous chapters can be brought together in the form of three key 

recommendations for beach managers which aim to protect intertidal shellfish populations 

by: 

1. reducing the permitted area for activities, 

2. putting limits on the frequency and types of users permitted, and 

3. requiring beach users to follow predefined tracks. 

These recommendations will benefit the infaunal biota in any sand beach ecosystem. The 

success of these recommendations for management practitioners requires assessment to 

understand what will be achieved. A key goal in implementing these options is to not only 

prevent further ecological damage, but to enhance the community abundance. As discussed, 

this will influence function and stability of the ecosystem as a whole. Data extrapolation from 

results presented in Chapter 5 and 6 and guidance from beach characteristics described in 

Chapter 3 can be used to derive equations which indicate differences in mortality. Evaluation 

of the enhancement in community abundance can only take place after these 

recommendations have been implemented. 

1. Spatially constrain the area permitted for vehicle and horse users 

Previous research found that beaches which allow vehicles contain altered and less diverse 

assemblages compared to those without such users (Schlacher et al., 2008a). As such, it is 

necessary for vehicles to have their area constrained on sand beaches to prevent widespread 

damage to the ecosystem. Because vehicles are not the only users on many beaches, it is 

important that users requiring similar resources be separated to avoid conflict (Phillips & 

House, 2009). In light of the evidence presented in Chapters 5 and 6 and the points discussed 

in this chapter, horses and vehicles are likely to require separate designated areas. These 
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might be spatially separated to allow sufficient space for intertidal shellfish populations to be 

protected and self sustaining.  

Area-based designation will need to take into account the possible environmental effects of 

doing so. The evidence presented in this thesis shows vehicle and horse users to cause 

significant mortality to tuatua, so it can be assumed that at least similar damage would occur 

to other infaunal organisms, specifically soft bodied polychaetes or small crustaceans. 

Designated areas would be ecologically beneficial (if not directly next to each other) because 

organisms outside of the permitted area would be undisturbed.  

The Waimakariri River mouth is the most popular fishing and whitebaiting location in 

Pegasus Bay (author observations), so this could be the permitted vehicle area. Woodend and 

Ashworths beach are the two most popular horse user areas, but it may be more beneficial to 

allow riding in only one area. This would reduce the disturbance caused by horses over 

Pegasus Bay. Either location would be suitable; however, if Woodend was chosen, spacing 

between that and the vehicle area would be needed.  

The configuration of permitted areas for vehicle and horse use needs to allow for shellfish 

protection and connectivity between populations. For example, if the disturbed area is too 

large, organisms will not be able to disperse past this area and have a lower chance of 

survival. In shellfish, dispersal of propagules is predicted to be between 20 and 500 km 

(Kinlan & Gaines, 2003). Therefore recruitment of juveniles is not likely to be affected; 

however, juvenile tuatua ride the swash and may not be able to disperse as far. This could 

reduce the connectivity between populations as tuatua become impacted when in the vehicle 

and horse permitted zones.  

Dispersal in shellfish can be influenced by a range of factors including ocean currents and 

temperature (O’Connor et al., 2007). The predominant nearshore currents in Pegasus Bay are 

southwards, so tuatua could disperse a large distance in that direction. However, geographical 

barriers such as the Waimakariri River mouth could break these currents and alter the supply 

of recruits. Evidence of this nearshore current and tuatua movement being broken was 

observed when large densities of adult tuatua were found built up on the north side of the 

Waimakariri River mouth but not the south (unpublished data). 

Overall, separating recreational vehicle and horse users would not only reduce ecological 

damage, but also increase safety by mitigating conflict between them. A smaller permissible 
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area would reduce the spread of environmental disturbance and allow for enforcement to be 

carried out effectively. Designing these areas would need to take into account the population 

dynamics of intertidal organisms if they are to be sufficiently protected. 

Firstly, reducing the permitted area for activities is very important in aiding recovery of 

intertidal biota. It must be acknowledged that traffic will be heavily concentrated in permitted 

areas and increased effects on biota will occur, but the beach zones outside of this will 

benefit. Providing areas free from heavy impacting activities will allow for individuals to be 

less disturbed and likely to grow faster, and larger with have higher reproductive outputs. The 

latter of which will allow replenishment of current populations. In addition to this the 

immediate outcome will be that lower numbers of individuals will be fatally injured in the 

absence of users. 

In an international review of studies, Lester et al. (2009) showed biota in marine reserves 

increased in biomass, size, density and richness. Similar outcomes are expected to occur in 

the intertidal zone if vehicle and horse users were removed. This would allow organisms to 

grow and respond to natural processes. Lester et al. (2009) also found temperate areas had an 

increased response rates compared to tropical areas, so it might be expected for these changes 

to be successful in Pegasus Bay. The expected timing for population’s recovery cannot be 

predicted as easily due to the processes of this recovery relying on a range of environmental 

cues.  

2. Limit the frequency and types of users 

It is recommended that control be put in place to limit the frequency of activities occurring on 

sand beaches. For example, setting limits for the numbers of users permitted in a day and/or 

the number of days a year in which the beach can be used. This would not be a new form of 

user management. For example, in the U.S.A. Crane Beach limits the number of horse users 

to 50 a day, and in Donegal County, Ireland, horse users need permits to be on the beach 

during certain periods of the day and year (see Chapter 2). Evidence presented in Chapters 5 

and 6 indicated that vehicles and horses are likely to significantly impact shellfish. Further 

extrapolation in this chapter has shown there is the potential for large amounts of mortality to 

occur over extended time periods. If all these measures are implemented intertidal 

populations will have a chance to recover and increase in abundance. 
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Firstly, types of activities need to be controlled. If large heavy vehicles are used on the beach 

they are far more likely to cause damage to infaunal biota. This would be especially likely if 

the vehicle penetrates deeply into the sediment. Currently vehicles are the most predominant 

recreational user in Pegasus Bay; however, there is potential for new events to be held as 

more people live near the beaches. For example, the increased development of Pegasus Town 

could result in novelty beach events similar to the Onetangi Beach Races, Waiheke Island, 

Auckland. In this event, tractors and bulldozers race on the beach which is likely to cause 

large impacts to the infauna. In Pegasus Bay, it is advised that a weight restriction be put on 

vehicles driven on the beach, unless special permission is granted. The weight limit could be 

set to include standard off-road vehicles, such as the Toyota Hilux or Mitsubishi Pajero. 

Granting permission should consider the necessity of using the vehicle (see Section 7.2.2). 

Secondly, vehicle and horse users could be limited in numbers of users per day. This would 

reduce the frequency of disturbance resulting in less damage per day and a lower level of 

damage would benefit tuatua populations. This would be likely to result in increased 

reproductive outputs for the population. Dawson (1954) predicted that for every tuatua 

35,000 spat would be produced. Therefore, every individual saved will result in increased 

levels of spat and recruits in future generations.  

Thirdly, the number of days for vehicle and horse use could be limited. The most common 

use of vehicles is for fishing and whitebaiting. Whitebait season runs from 15
th

 August to 30
th

 

of November. Salmon fishing runs over the summer months to April. The entire ecosystem 

will benefit if vehicles are prohibited from the beach outside of these times. Horse users 

could be limited in the number of days a week that the beach could be used. This would 

reduce the impact of these users in the long-term and allow for periods with no disturbance to 

intertidal biota. The results in Chapter 4 indicated that stress levels are reduced within 24 

hours, so it would be recommended for there to be a 48 hour period between permitted use 

days. This would allow recovery and undisturbed function of shellfish during such periods. 

The recommendation of limiting the frequency of activities on the beach is the most difficult 

option to implement, but is very important if ecological protection is to be ensured. There are 

options for management that could be effective for reducing the impacts of these users whilst 

still allowing some use. One option is to allow vehicles only on the beach during the 

whitebait season as the gear associated with whitebaiting is often large and heavy to carry. 

Salmon fishing gear is relatively light and can be carried in a backpack so there is really no 
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need for a vehicle to be used. This management option would reduce the number of days 

vehicles are driven on the beach down to 107 days and would result in 17.8% mortality - 

approximately one third of predicted current rates (49%).  

If horse users are limited to using the beach only on a certain number of days, there could be 

significant benefits to the shellfish population over the year. If the average of 13 horses were 

only allowed on the beach three days a week, it is predicted that there would be 16.8% 

mortality over the year (Table 7.1). Better still, if the same numbers of horses are allowed 

only one day a week (52 days a year) there would be 5.9% mortality. If horses are allowed 

only on weekdays (five days a week), there would be 26.4% mortality. The first two 

predictions are far lower than the prediction for the status quo (34.8%) and should achieve 

more positive outcomes than for five days of use. In addition, a weekday limit for horse users 

would avoid conflict from increased pedestrian users during weekends. 

 

 

Figure 7.5: The mortality rates of shellfish subjected to 13 horses a day with 

different numbers of days in a week. 

Reducing the number of users on the beach could also prove successful to protect shellfish 

populations. If user numbers are reduced to 10 vehicles and 10 horses a day, over a year there 

would be 9.1% and 15.2% mortality caused respectively. This impact for vehicles would be 

relatively low, but horse impacts are still high. Even five horses a day could result in 7.9% 
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mortality. Therefore, it is likely to be more beneficial to intertidal biota for horses to be 

limited in number of days of use in a week.  

3. Define vehicle tracks to be followed 

Many sand beaches in which permit vehicle use focus on confining vehicles to the intertidal 

zone. Once in this zone, vehicles usually have free-range and can drive anywhere they wish. 

Reducing the spread of disturbance is a key measure to mitigate the overall impact of 

vehicles on intertidal fauna. Shore birds nest and roost around river mouths and this spread of 

disturbance has the potential to be detrimental. Buick and Paton (1988) have shown vehicle 

traffic alone resulted in destruction to 81% of nests during the incumbent season. With 

studies showing less diverse and altered intertidal assemblages on beaches used by vehicles 

(Foster-Smith et al., 2007; Lucrezi & Schlacher, 2010; Schlacher et al., 2008), it is believed 

that vehicle impacts on intertidal shellfish could be similar. Therefore defining the route a 

vehicle must follow can reduce this spread of disturbance.  

Currently the defined route under the Northern Pegasus Bay Bylaw 2010 is that vehicles and 

horses must enter at set access points and move directly to below the last high tide line. 

However, the most direct route to the high tide line is left up to the user’s interpretation. This 

has resulted in fanning of tracks. Kairaki Beach has the largest amount of fanning from 

access ways (Figure 7.6). Fanning is likely to be as much of an issue for tuatua mortality due 

to the additive effect of creating new tracks on the beach face. Therefore stipulating how 

vehicles move in the intertidal zone, and limiting the area of disturbance, is advised to 

effectively reduce additional stress and mortality. The use of signage in the intertidal zone is 

difficult due to wave forces at high tide. Therefore, two management options would need to 

be incorporated to achieve a positive outcome for shore birds and intertidal biota.  
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Figure 7.6: Proposed vehicle track from the entrance point to the high tide line 

(Blue) at Kairaki Beach. Yellow lines denote current vehicle tracks. 

Firstly, it is advisable for tracks from the access way to the high water line to be defined and 

clearly marked (Figure 7.6). These could be marked in a similar way to dune system fences 

(e.g. rope and wood posts) on either side of the track to prevent any possibility of deviation 

from the track. The exit of this track should also be at one end of the permitted area to avoid 

fanning from the point (i.e. vehicles can only turn in one direction from this point). This 

recommendation would achieve two outcomes: the spread of disturbance from users would be 

reduced, and confusion over the most suitable track to use would be eliminated.  

Secondly, when below the high tide line, vehicles could be required to follow pre-existing 

tracks. This reduces the area of disturbance and also ensures vehicles do not get stuck in non-

driven areas of beach. These two options, when used in combination, should reduce the 

spread of disturbance to the entire beach environment. Whilst Schlacher & Thompson (2007) 

noted that vehicle use above the high tide line can cause deep rutting, this would not be the 

case in the intertidal zone. This is because wave processes during high tide would break down 

the tracks. The sediment is also far more compacted in the intertidal zone. Enforcement 

would be needed to ensure these rules are being obeyed. Utilisation of a user pays 

enforcement system, similar to that on Hatteras Island, North Carolina, U.S.A., could help to 

recoup the costs of this extra enforcement. 

The recommendation for users to follow predefined tracks is going to have benefits for 

intertidal organisms and shore birds. This is because the upper shore will be less disturbed by 

vehicles, resulting in a larger area for birds to roost, nest, rest and feed without disturbance. 

An outcome of this may be more birds on the beaches. It would also be expected that ground 
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nesting species would return to the area and maintain abundance. As a further measure, nests 

may need to be closed from pedestrians to prevent damage. 

In terms of benefits for the shellfish populations, reducing fanning will decrease the spread of 

disturbance to the area. Every new track results in 4.8% mortality within the track, with an 

increase of 0.27% for every subsequent pass within the same track after that. As creation of 

new tracks is an additive effect, vehicles following preexisting tracks would cause far less 

damage overall. This will benefit infaunal species as they will be disturbed less frequently. 

Those individuals that were disturbed the previous day will also be likely to recover between 

tides. 

To provide an indication of how beneficial the above discussed option could be, 25 vehicles 

going through the same tracks each day, over the course of one year is predicted to cause 

8.9% mortality. This is a large reduction from 35.8% mortality if they were to create their 

own tracks. High numbers of vehicle use still demonstrate an improvement with 50 vehicles 

using the same tracks resulting in 12.4% mortality over a year; a large reduction from 49% if 

given free reign (Figure 7.7).  

 

Figure 7.7: Comparative number of tuatua remaining after vehicle use when 

using the same tracks or allowed to make new tracks. 
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7.5 Research limitations 

7.5.1 Methodology  

Overall, the methodologies used in this thesis were successful in that qualitative and 

quantitative data were found to satisfy the objectives. A key objective within this research, 

setting it apart from prior studies in New Zealand (Moller et al., 2009), was for all results to 

be truly indicative of natural conditions. This meant all testing had to be done in situ. For use 

in future studies, some methods may need to allow for changing environmental conditions. 

For example, methods used to test the effects of horses may need to be devised so 

experiments can be carried out successfully with low densities of shellfish.  

Management review 

Reviewing the current management of vehicle and horse users on sand beaches was 

successful in that a range of policies were found from various regions of the world. However, 

identifying specific drivers of these is difficult. This is because these policies would have 

been developed for a multitude of reasons. The only way to do this would be to interview a 

representative of the authority that developed the policy. This would be time consuming and 

difficult due to the possibility of the relevant employee no longer working for that authority. 

Therefore, drivers had to be inferred from previous literature indicating environmental effects 

of certain types of use in beach environments.  

Many local authorities rely on information which is focused on their region and scientific 

studies may be commissioned for this purpose. Often these studies are in technical reports 

and other grey literature which is not always freely available. It can be assumed that in 

addition to the peer-reviewed literature indicating possible drivers for management plans, a 

large amount of unpublished of grey literature has been also produced. 

Some countries/regions do not have policies or specific plans for these users electronically 

available. This makes identification of trends hard to assess. Generally, less affluent nations 

had lower levels of management. This is expected due to prioritisation in other areas of 

resource management. Technology may also have an influence on this because some policies 

may exist but are not available online. 

Habitat evaluation and shellfish distribution 

Research describing spatial and temporal changes in distribution must seek to sample in 

absence of bias. Kingett Mitchell Ltd. (2003) focused more sampling in the higher shore 

levels and this may have some bias when describing distribution of these species. The present 
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study used systematic sampling to describe the dispersal of tuatua over a set time period. This 

methodology is ideal for a spatially variable population, such as tuatua, because it keeps the 

sampling design consistent and comparable temporally.  

Because shellfish distributions are variable, results may not accurately describe the 

population. The use of set position transect lines may miss shellfish which move along the 

shore. If further monitoring is to take place and sufficient resources are available, it would be 

advisable to reduce the spacing between quadrats and to use gridded sampling methods. This 

would reduce the likelihood of missing the shellfish in the 20-30 m band below last high tide 

range and should also take into account movement along the shore.  

The results from beach profiling and seasonal population sampling showed that shellfish were 

variable in dispersal and abundance whilst the profiles of beaches they inhabit are relatively 

stable. It was hoped that pairing shellfish abundance with erosion and accretion events would 

provide a useful tool for population prediction but no relationship was shown in the data 

(Chapter 3). In order to determine if beach face events of this type could influence 

populations, an intensive sampling effort would need to be focused on one location over a 

long period of time. This would still use the same methods as those in the study presented in 

Chapter 3. 

It is likely that the benchmarks used in this thesis would have moved slightly. Movement at 

individual benchmarks was not able to be assessed because these were not established with 

the NZVD09 until the end of the study. Originally, when benchmark locations were 

established no earthquakes had occurred, so it was assumed the position would not have 

changed during the study. As each major earthquake occurred, Environment Canterbury were 

required to reassess their own nearby benchmarks, which meant those that I used could not be 

established until this occurred. Final reassessment was completed in April 2012. Because of 

this the benchmarks and profiles in this study may not be completely true to the changes 

observed but were deemed adequate to show major beach face changes and trends. 

Horse impact experiments 

The experimental studies on vehicles were successfully conducted when there were sufficient 

densities of shellfish, but some of the horse impact experiments did not. This was scheduled 

to take place in the first year of sampling when tuatua densities were high; however, the horse 

rider was not available due to being busy as a result of the earthquake activity in the 

Canterbury region. The preliminary trial took place when shellfish were in high densities, 
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during which significant mortalities were found. However, finalised experiments took place 

the following year, when shellfish densities were low and no mortalities were found. If 

densities were high it would be expected that high levels of mortality would be found. This is 

evidenced by the burial range of tuatua and penetration depth of horse hooves presented in 

Chapter 3. It would be recommended that horse experiments are repeated when shellfish 

densities are high. 

It was observed that the horse hooves penetrate at an angle with the deepest part at the front. 

For future evaluations it may also be useful to understand the area of the hoof where most 

damage takes place. A vehicle’s force is comparatively easier to evaluate due to there being 

no vertical component of the movement; however, the stamping motion of a horse makes it 

difficult to evaluate. Doing this would involve getting a force profile of the hoof when the 

horse is moving, which was not able to be done in these experiments due to resources 

available. This would allow researchers to understand the forces being exerted on organisms 

below the activity.  

All research methods were designed with the assumption that there would be a location in 

Pegasus Bay with sufficient densities of shellfish. Other studies, such as Moller et al. (2009) 

and Sheppard et al. (2009), transplanted shellfish into the experimental area. However, this 

was one environmental factor that would not be compromised because transplanting shellfish 

may alter other environmental conditions, such as sediment compactness. Transplanting 

shellfish would be likely to result in shellfish that are not representative of those found 

naturally. For example, artificially placing shellfish would result in loosened sediment and 

unnatural burial depths. In addition, stress is placed on the animals through handling prior to 

the experimental procedure. 

To mimic natural shellfish assemblages and environmental conditions, transplanting of 

individuals would need to take place a couple of tide cycles prior to conducting experiments. 

A key issue with this is that shellfish may migrate out of the area in this time, so ensuring the 

transplanted individuals stay in the area is relatively difficult. As beaches where tuatua are 

abundant are sand beaches with large wave dynamics, construction of apparatus to retain 

shellfish is also difficult. 
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Vehicle impact research 

The vehicle experiments were very successful due to shellfish densities being sufficient and 

methods being simple and effective to give a clear damage rate. Having a clear damage rate is 

a useful tool in management as it allows for data to be extrapolated temporally in relation to 

the number of users on the beach.  

The vehicle experiments specifically examined the effects of increased vehicle passes when 

driven through the same tracks. Further studies would be needed that examine the effects of 

different driving patterns to understand how vehicle use could affect the beach. This is 

because most vehicle users in Pegasus Bay do not follow pre-existing vehicle tracks. Methods 

to evaluate this may involve examining turning vehicles and vehicles criss-crossing over 

other tracks. Differences in positioning of traffic may also be needed because the 

penetrability of the sediment may differ between shore levels (Heathershaw et al., 1981). 

Moller et al. (2009) found penetrability to be highest at high tidal levels due to sand being 

less compacted. 

Certain aspects of a vehicle may cause increased mortality. If these were identified managers 

could prevent further ecological damage. Moller et al. (2009) showed vehicles with narrower 

tyres with wider spaces between lugs were most detrimental when driven over toheroa beds. 

Use of different vehicle types should also be evaluated for tuatua. 

7.5.2 External variables 

On September 4
th

 2010, a 7.1 magnitude earthquake shook the Canterbury region. This 

resulted in significant disruption to the activities which commonly take place on the beaches 

of Pegasus Bay. This and two other large earthquakes on 22
nd

 February and 13
th

 June 2011 

liquefied the sediment producing silt in the Christchurch area. Silt was deposited both on the 

land surface and in waterways. 

Introduction of silty sediment to the ecosystem may have resulted in negative impacts for 

abundance and distribution of shellfish in Pegasus Bay. It was observed that sediment in the 

3.5 phi category increased during the study and appeared to be introduced after the 

September earthquakes. This sediment introduction may have resulted in smothering of 

shellfish populations; however, shellfish are also found to migrate constantly (Norkko et al., 

2001). Morton and Miller (1973) suggest that tuatua strictly avoid silt, so redistribution of the 

population may also have occurred. In addition to silt, habitat area for tuatua may also have 
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been lost due to ground movement. In a post earthquake study on the Chilean coast, Jaramillo 

et al. (2012) found that areas which subsided had reduced abundances of all taxa after the 

earthquake. 

Indirect impacts on shellfish may have occurred due to earthquake activity. For example, the 

remainder of the whitebait season and other commercial fisheries was closed due to water 

contamination (see Section 3.5.2, Chapter 3). As a result, the beaches were not used by 

vehicles in as high a numbers as previous years. This change in activity patterns could result 

in shellfish population surveys not reflecting the actual user impacts that the areas were 

selected to represent. This is because disturbance was lower and shellfish may have benefited 

from not having vehicles passing over them.  

7.5.3 Future research 

Further research is needed to expand on the findings of this thesis to expand on what is 

known for New Zealand sand beach user impacts. As human populations grow near to coastal 

boundaries, increased use of the coastal margins may occur so management practitioners 

must be proactive to avoid environmental degradation. Therefore, research conducted should 

provide information that is relevant to the area’s present use and likely uses to occur in the 

future.  

Additional research using findings presented in this thesis includes statistically testing models 

that extrapolate data to get robust predictions of damage occurring to these users. This will 

allow coastal managers to be assured that their management options are beneficial to the 

ecosystems which they aim to protect. The application of such models will provide clear 

outcomes to increase ecological protection as well as saving time for coastal managers. These 

models should be made as universal as possible so other species and users can be evaluated 

and compared with one another. 

Further research is needed to test vehicles and other heavy impact activities to prevent further 

damage to intertidal organisms of New Zealand’s sand beaches. Other species of shellfish 

need to be tested due to their differing dispersal patterns on the beaches. This would include 

toheroa which is of most concern because of its small population remaining. Organisms, such 

as polychaetes and sand hoppers, should be evaluated because they are important to the 

ecosystem as a significant food source. Management methods need to be devised which aim 
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to prevent further ecological damage occurring, and need be evaluated by ongoing 

monitoring after implementation. 

Another key area of research that needs to take place in New Zealand is quantifying the 

effects of vehicle and horse users on the entire ecosystem. This would not just include 

shellfish but other fauna that inhabit the intertidal zone of these beaches. Other activities also 

need to be quantified. This would need to include machinery, such as diggers, that are used in 

beach maintenance. In light of sea level rise with climate change, practices such as this may 

become more common in order to stabilise coastal margins. In addition more information is 

needed on tuatua dispersal within the sediment. As discussed in Chapter 4, other species of 

clam have been found to move vertically throughout tide cycles. If this is the case for tuatua, 

they may be less vulnerable to vehicles and horses during certain periods. 

As with all disturbance events, the subsequent recovery of the individual and population 

exposed is important. This could be examined at using biochemical assessments which will 

be able to provide a clear indication of the significance of the disturbance to surviving 

individuals. Particular enzymes could be used to indicate stress; these include metabolic 

enzyme activity, ribonucleic acid to deoxyribonucleic acid ratio (RNA:DNA), or heat shock 

proteins (Snyder et al., 2001; Dahlhoff, 2004). This would provide a measure of 

physiological response as opposed to physical response as used in the present methods (see 

reburial success methods, Chapter 5) which was not easily identifiable.  

Coastal areas are highly dynamic environments and it is expected for ecological communities 

to be influenced by this. Identifying ecological changes that are influenced by abiotic factors 

could also prove to be an important tool in coastal management. Studies would need to be 

designed which take a multidisciplinary approach in order to examine these factors. The 

study presented in Chapter 3 aimed to link beach profiles and total numbers of shellfish as a 

starting point; however, no significant relationship was found. If such a relationship does 

exist, it would be more likely to be identified using an intensive sampling regime at a single 

location. This methodology would identify causes of variability and allow detection of small 

changes in environment and shellfish abundance. 
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7.6 Thesis Conclusions 

The objectives of this thesis were: 

1. To examine the relationship between physical habitat properties and intertidal 

shellfish distribution and abundance;   

2. To experimentally evaluate the effects on shellfish survival of human use of vehicles 

and horses on sand beaches; 

3. To review and evaluate sand beach management policies to minimise potential effects 

of vehicle and horse users. 

The first objective was achieved by characterising the sand beaches of Pegasus Bay to 

evaluate their suitability as habitat for tuatua. Intertidal shellfish surveys were also conducted 

over a two year period which identified the density, species and position of shellfish on the 

intertidal zone of the beach. The beaches of Pegasus Bay were relatively stable and suitable 

habitat for tuatua. Fine sediment increased as result of earthquake activity; however, the long-

term effects of this sediment on tuatua are likely to be negligible. Tuatua exhibited a distinct 

banding pattern 30 m below the last high tide line and size of individuals changed with 

seasons. Tuatua densities were variable and changed between the years of sampling. 

Recruitment occurred over the warmer months and those individuals remain for the year until 

moving subtidally in the following summer. Overall, tuatua show a high degree of variability 

in distribution despite the beaches of Pegasus Bay being relatively stable. This finding is 

important because it demonstrates that despite the stable dynamics of beaches, the biota 

within these ecosystems can have high variability due to a range of abiotic and biotic factors. 

The second objective was achieved by assessing recreational beach activities that may affect 

intertidal shellfish and evaluating the characteristics which make individuals vulnerable. 

Experimental testing was then carried out on vehicles and horses which examined the lethal 

and sublethal effects of these users on shellfish. Prior to this research, the evaluation of 

horses in a coastal environment had not been evaluated. In addition, the impact of vehicles on 

P. donacina was unknown. Findings indicated that both users have the potential to 

significantly impact shellfish populations. Sublethal effects were not clearly identified using 

the methodology: however, summer testing indicated significant stress levels did occur. 

Overall, heavy beach users are likely to impact infaunal populations especially when tracks 

penetrate into the sediment within range of biota. Extrapolative modelling indicated a high 

levels of impacts from different use regimes by vehicle and horse users. Such modelling can 
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be universally translated to other beaches and species and compare the impacts of beach users 

on other species within the coastal environment. 

The final objective was achieved by carrying out a review of available management 

legislation that pertained to the use of vehicles and horses on sand beaches. It was important 

to understand how these beach users are controlled in order to evaluate the management 

options to protect tuatua of Pegasus Bay. Management legislation and literature was analysed 

and evaluated to provide an indication of the effects of management plans on intertidal 

ecosystems. Findings highlighted that management authorities have often overlooked 

intertidal biota when controlling activities and the effects of these may result in less diverse 

and altered assemblages. Management practitioners are urged to consider all biota and take an 

ecosystem-based approach to achieve positive ecological outcomes. Furthermore, disregard 

for biological values of these unique ecosystems will compromise these unique areas for 

future generations, so management practitioners must design policies which address such 

issues using a holistic approach. 

To conclude, consideration of ecology in sand beach management is often lower in priority 

compared to hazard reduction and increasing user safety; however, if such considerations are 

not made we will lose the fauna which make the beaches such a valuable amenity. This thesis 

has shown that tuatua populations are highly variable and can be influenced by a range of 

processes, yet this is not unique to this species. Other surfclam species around the world are 

likely to be influenced by similar processes. These similar species are also vulnerable to 

heavy recreational users. Three mitigation methods for managing vehicle and horse users in 

Pegasus Bay could be; reduce the permitted area for heavy recreational activities, put limits 

on the frequency and types of users permitted, and require users to follow predefined tracks. 

If such methods were implemented on sand beaches worldwide, intertidal shellfish 

populations and associated fauna at these locations would benefit.  
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Appendix 2.2 Table of peer-reviewed literature. V=Vehicle, H= Horse. 

 Activity literature covers 

Location V H Other Study species Purpose Findings 

Author (s), 

year 

published. 

Fire Island, 

New York, 

USA. 

X   Dune ecosystem To evaluate 

effects of 

ORVs on 

dune 

systems 

Vegetation 

severely 

reduced and 

erosion higher 

Anders & 

Leatherman, 

1987. 

Algodunes 

Dunes, 

California, 

USA. 

X   Dunes, Plants, 

mammals, birds 

To evaluate 

effects of 

ORVs on 

dune 

ecosystems 

Reduction in 

biota with low 

level passes. 

None in high 

use 

Luckenbuch 

& Bury, 1983. 

Queensland, 

Australia 

X   All beach fauna Quantify 

spatial and 

temporal 

trends in 

vehicle 

traffic 

Up to 65% of 

species are 

exposed to 

vehicle traffic 

Schlacher & 

Thompson, 

2007. 

Queensland, 

Australia 

X   Intertidal 

Macrobenthos 

Quantify 

ORV effects 

by 

comparing 

between 

beaches with 

different use 

ORV beaches 

have reduced, 

less diverse 

populations 

and altered 

assemblages. 

Schlacher, 

Richardson, 

& McLean, 

2008. 

Queensland, 

Australia 

X   Donax 

Deltoides, 

Bivalve 

Quantify the 

relationship 

between 

vehicle 

traffic and 

shellfish 

mortalities 

Increase in 

mortalities at 

higher levels 

of passes 

Schlacher, 

Thompson, & 

Walker, 2008. 

Fraser Island, 

Australia 

X   Dune, Fauna 

and Ghost Crab, 

Ocypode spp 

Quantify 

ORV effects 

on dunes 

and link to 

biota 

Accelerated 

erosion and 

shoreline 

retreat. No 

dune plants in 

tracks and 

reduced Ghost 

crab 

abundance 

Thompson & 

Schlacher, 

2008. 
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Queensland, 

Australia 

X   Donax 

Deltoides, 

Bivalve 

Evaluate the 

sub-lethal 

effects of 

ORVs 

Increased 

passes 

impaired 

burrowing 

performance  

Sheppard, 

Pitt, & 

Schlacher, 

2009. 

North 

Stradbroke 

Island, 

Australia 

X   Ocypode 

cordimanus & 

O. 

ceratophthalma 

(Ghost Crabs)  

 

Quantify 

magnitude 

and 

mechanism 

of ORVs on 

Ghost Crab 

populations 

Crabs with 

deeper 

burrows have 

lower 

mortality. 

Lower 

densities in 

high traffic 

area. More 

mortality at 

dusk. 

Schlacher, 

Thompson, & 

Price, 2007. 

North 

Stradbroke 

Island, 

Australia 

X   Ghost crabs 

(Ocypode spp.)  

Observe if 

movement 

patterns 

were 

affected by 

vehicle 

traffic 

Traffic halved 

pop. Densities 

and changed 

movement to 

be more 

erratic with 

compressed 

home ranges. 

Schlacher & 

Lucrezi, 

2010. 

North 

Carolina, USA 

X   Beach 

Macrofauna, 

including 

Donax 

variabilis 

Evaluating 

the potential 

and actual 

impacts of 

ORVs 

Most species 

predicted to be 

undamaged. 

Night driving 

would have 

largest effect 

on ghost 

crabs. 

Wolcott & 

Wolcott, 

1984. 

Cape Cod, 

Massachusetts, 

USA 

X   Dune vegetation Evaluating 

impact of 

vehicles on 

dune grasses 

All above 

ground is 

killed, but 

below ground 

biomass is 

enough to 

recover. 

Brodhead, & 

Godfrey, 

1977. 

Coorong, 

South 

Australia, 

Australia 

X   Hooded Plover, 

Chardrius 

rubricollis 

Evaluate the 

vulnerability 

of bird nests 

Over the 

incumbent 

period 81% of 

nests would be 

runover. Rate 

of 8% per day. 

Buick, & 

Paton, 1988. 
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Cable Beach, 

Western 

Australia, 

Australia 

X   Shore crabs, 

Ocypode spp. 

And sand 

bubbler, 

Scopimera 

inflata 

Testing the 

link between 

human 

usage and 

shore crab 

abundance 

Less dense 

crab 

populations in 

high vehicle 

use areas. 

Foster-Smith 

et al., 2007. 

Algodunes, 

California, 

USA 

X   Peirson’s milk-

vetch, 

Astragalus 

magdalenae 

var. peirsonii 

Identify 

differences 

of 

abundance 

between 

high/low use 

areas to 

decide 

impact was 

significant 

Reduced 

survival by 

33%, but 

recovery did 

occur in 

closed off 

areas. 

Groom et al., 

2007. 

Fort Fisher 

Beach, North 

Carolina, 

USA 

 

X  Pedestrians Loggerhead 

turtles, Caretta 

caretta caretta 

Evaluate the 

effects of 

vehicles and 

pedestrians 

on 

behaviour 

and sea-

approach 

Tyre tracks 

caused 

increased 

transit time to 

reach the sea 

reducing 

survival 

chances. 

Hosier et al., 

1981. 

Cape Fear, 

North 

Carolina, 

USA 

X   Dune and 

grassland 

vegetation 

Determine 

the effects of 

vehicles on 

dune and 

grassland 

ecosystems 

Vegetation 

cover and 

species 

richness 

decreased in 

vehicle area. 

Soil was more 

compacted in 

vehicle area. 

Hosier & 

Eaton, 1980. 

Sharon 

National 

Park, Israel 

  Pedestrian, 

Motorbike 

Dune vegetation Testing 

effects of 

passes and 

trampling on 

vegetation 

Trampling had 

low effect on 

plants. 

Motorcycles 

had large 

immediate 

effects, 

highest in 

wheel tracks. 

Kutiel et al., 

2000 

Eastern 

Australia, 

Australia 

X   Ghost crabs, 

Ocypode spp. 

To test 

whether 

burrow 

architecture 

is affected 

by vehicle 

traffic 

Vehicle 

beaches: 

Smaller crabs, 

deeper 

burrows, 

simplified 

shapes 

Lucrezi & 

Schlacher, 

2010. 
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Massachusetts, 

USA 

X   Piping plover, 

Charadrius 

melodus 

To 

document 

mortalities 

caused by 

vehicles on 

beaches 

Piping plover 

were killed by 

vehicles and 

recommended 

closure of area 

at hatch date 

of nests. 

Melvin et al., 

1994. 

Alexandria 

Coastal 

Dunefield and 

University of 

Port 

Elizabeth, 

South Africa 

X  Pedestrian Dune vegetation Investigate 

the effects of 

varying 

traffic 

intensities 

on 

vegetation 

height and 

cover for 

pioneer and 

climax dune 

Vehicle: 

Curved path 

more 

destruction. 

Pioneer 

communities 

recover 

quickly. 

Impacts may 

not be realised 

for 3months. 

 

Rickard et al., 

1994. 

Assateague 

Island, 

Maryland-

Virginia, USA 

X  Pedestrian Ghost crab, 

Ocypode 

quadrata Fab. 

Determine if 

relative 

number of 

crabs was 

subject to 

recreational 

use 

Vehicles 

likely to stop 

reproduction 

and crushing 

crabs. 

Pedestrians 

have no effect. 

Steiner & 

Leatherman, 

1981. 

Alexandria 

Coastal 

Dunefield, 

South Africa 

X  Fishermen Dune breeding 

birds 

Quantifying 

beach use 

through data 

and 

observations 

50% of 

activity was in 

dune bird 

area. Potential 

for impact is 

high above the 

MHWS. 

Watson et al., 

1996. 

San Francisco 

Bay, USA 

X   Vegetation and 

soil 

Investigate 

the impacts 

of vehicles 

on 

vegetation 

and soil 

Loss of 

vegetation 

cover 

promotes 

erosion. 

Erosion 

exceeds US 

standards. 

Wilshire et 

al., 1978. 
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Appendix 2.3 Table of reviewed management policies 

 Activity 

management covers 

Location 
Document 

name 
V H Other 

Management 

control 

method 

Positive 

outcomes for 

shellfish 

Negative outcomes for 

shellfish 

East of south 

Island, New 

Zealand 

Tuatua Quota 

for PDO3 

  Fisheries Sets TACC 

for adult 

tuatua 

Stops 

overfishing 

Limits could be too high 

for certain areas. Dredging 

is an acceptable method of 

gathering. 

Hurunui, New 

Zealand 

Hurunui 

District Plan 

  All district 

issues 

Puts policies 

in place to 

control 

activities 

Aims to 

maintain 

natural values 

and prevent 

contamination 

of water. 

No mention of shellfish in 

policies. 

Hurunui, New 

Zealand 

Hurunui 

Northern 

Pegasus Bay 

Bylaw 2010 

X X Pedestrians Defines 

where each 

activity can 

occur 

Does not 

allow vehicles 

in all areas of 

the beach. 

Horses are allowed 

everywhere. Vehicles and 

horses allowed in the 

intertidal zone= 

condensing of traffic 

Waimakariri 

district, New 

Zealand 

Waimakariri 

District Plan 

  All district 

issues 

Uses policies 

to control 

activities 

Prevents 

contamination. 

Aims to 

prevent loss of 

integrity 

No focus on vehicles, want 

to improve access. Only 

mention of vehicles is in 

the dune area. 

Waimakariri 

District, New 

Zealand 

Waimakariri 

Northern 

Pegasus Bay 

Bylaw, 2010 

X X Pedestrians Defines 

where each 

activity can 

take place 

Prevents 

vehicles from 

driving over 

all the beach 

Horses are allowed 

everywhere. Vehicles and 

horses allowed in the 

intertidal zone= 

condensing of traffic. 

Christchurch, 

New Zealand 

Christchurch 

City Council 

City Plan 

X  All city 

related 

issues 

Policies Aims to 

increase 

public access 

so vehicles are 

not needed 

No other mention of 

activities despite the 

zoning being extended 

below the MHWS line 

Canterbury, 

New Zealand 

Regional 

Coastal 

Environment 

Plan 

X  Other 

regional 

issues 

Policies Prohibits 

vehicles in 

certain areas. 

Give Pegasus 

Bay Beaches 

“Area of 

significant 

value” status. 

Large focus on dunes. Still 

allows 4wd clubs to use 

areas in winter when 

authorised 

Canterbury, 

New Zealand 

Regional 

Environment 

Statement 

  Regional 

Issues 

Policies Focuses on 

protection of 

indigenous 

species, 

biodiversity 

and erosion. 

No mention of shellfish 

protection, only mentioned 

in relation to mahinga kai 

New Zealand New Zealand 

Coastal Policy 

Statement 

  All national 

priorities 

Policies Precautionary 

approach to be 

taken. 

Mentions 

protection at 

vulnerable life 

No mention of horses. Left 

up to regions to decide 

how to interpret this. 
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stages. States 

vehicles to be 

controlled 

where 

ecological 

harm may be 

caused 

New Zealand Resource 

Management 

Act, 1991 

  All national 

priorities 

Policies that 

guide other 

documents 

Mention of 

shellfish for 

water quality 

and gathering. 

No specific mention of 

activities.  

New Zealand Fisheries Act, 

1996 

  Fisheries Policies  Stops 

overharvesting 

of shellfish for 

an area by 

setting a quota 

Areas are often large 

which could result in some 

areas becoming depleted 

Australia Coastal 

Protection and 

Management 

Act 1995 

  National 

coastal 

issues 

Give 

direction for 

management 

authorities to 

control 

activities 

States that 

conservation 

should also be 

taken into 

account 

States that public access 

must be considered. 

Queensland, 

Australia 

Queensland 

Coastal Plan, 

2011 

X X All state 

activities 

Policies and 

principles 

Vehicle use is 

unsupported 

and states that 

protection of 

foreshore 

species is 

important. 

Lists many 

beaches where 

it cannot occur 

due to erosion 

Still states that vehicles are 

allowed if managed. 

South-East 

Queensland, 

Australia 

South-East 

Queensland 

Regional 

Coastal 

Management 

Plan, 2006 

X  All regional 

activities 

Policies Vehicle use is 

same as for 

State coastal 

Plan 

 

New South 

Wales, 

Australia 

Vehicle Access 

general Policy, 

2010 

X   Policies Vehicle use is 

not to be 

expanded if a 

national park 

is gazetted. 

Not allowed if 

environmental 

damage will 

occur. 

Is still allowed, no mention 

of where it is allowed. 

South Africa Guidelines on 

the 

implementation 

of regulations 

pertaining to 

the control of 

vehicles in the 

coastal zone, 

2004 

X   Policies Complete ban 

on vehicles for 

recreational 

use. 

Exceptions are made, areas 

can be declared by the 

Deputy Director-General. 

France La Loi Littoral, X   Policies Complete ban  
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1986 of vehicles on 

beaches. 

Whangarei, 

New Zealand 

Vehicles on 

beaches bylaw, 

2008 

X   Bylaw Vehicles not 

allowed in 

Safe zones 

(Near surf 

clubs). Also 

allowed 

anywhere on 

the beach face. 

Allowed along most of the 

beach. 

Kapiti Coast, 

New Zealand 

Kapiti Coast 

District 

Council Beach 

Bylaw 2009 

X X Other beach 

activities 

Bylaw Some areas 

are prohibited 

from use by 

vehicle and 

horses (at 

certain times 

of the year). 

Motor bikes 

are prohibited 

everywhere. 

All traffic is on the 

foreshore. Horses are 

allowed everywhere apart 

from in the summer. 

Tauranga, 

New Zealand 

Tauranga City 

Council 

Beaches bylaw 

2007 

X X All other 

activities 

Bylaw No vehicles 

allowed, with 

few 

exceptions 

Activities 

allowed on 

whole beach 

face. 

Horses are allowed almost 

everywhere. 

Cape Cod, 

USA 

No name (Web 

page) 

X   Rules No vehicles 

allowed on the 

foreshore. 

Some allowed if track is 

cut off. 

Cape 

Hatteras, USA 

Cape Hatteras 

National 

Seashore Off-

Road Vehicle 

Negotiated 

Rulemaking 

and 

Management 

Plan/EIS, 2010 

X   Rules Vehicles 

managed by 

permits and 

are not 

allowed 

during certain 

months around 

bird and turtle 

nests. 

Horses are still allowed 

without permit. 

Cannon 

Beach, 

Oregon, USA 

Website X   Rules Vehicles only 

allowed with a 

permit for a 

specific 

reason. 

Permits could vary. 

Crane Beach, 

Massachusetts, 

USA 

Website  X  Policies Only allowed 

from Oct 1- 

Mar 31. 

Have to stay in the 

intertidal zone. Up to 

50per day. 

Donegal 

County, 

Ireland 

 Donegal 

County 

Council 

(Regulation 

and Control of 

certain 

Beaches) Bye-

Laws 2009 

X   Policies No vehicles 

allowed on 

most beaches. 

Horses not 

allowed in 

certain months 

without 

permit. 

Horses are allowed.  
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Appendix 3.1 Sieve graphs of sediment phi size in samples throughout the study period. 
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Appendix 3.2 Position of tuatua on shore graphs for each site 
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Appendix 3.3 Table of tuatua densities at each shore level within six sites 

Tuatua density (per m²) 

 
South Brighton 

Distance 
from high 
tide (m) 

Autumn 
2010 

Winter 
2010 

Spring 
2010 

Summer 
2011 

Autumn 
2011 

Winter 
2011 

Spring 
2011 

Summer 
2012 

0 0 0 0 0 0 0 0 0 

15 0 0 0 0 30 10 55 0 

30 50 30 10 40 5 0 0 5 

45 0 25 5 5 0 0 0 5 

60 5 10 0 30 5 5 5 15 

75 0 25 0 20 30 5 5 0 

90 0 0 0 5 0 0 0 0 

105 0 0 0 0 0 15 0 5 

120 0 0 0 30 30 5 0 0 

135 0 0 0 0 0 0 0 0 

Spencerpark 

Distance 
from high 
tide (m) 

Autumn 
2010 

Winter 
2010 

Spring 
2010 

Summer 
2011 

Autumn 
2011 

Winter 
2011 

Spring 
2011 

Summer 
2012 

0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 5 20 0 

30 30 65 62 70 0 25 10 15 

45 0 40 9 0 0 5 0 5 

60 0 5 0 0 0 0 0 0 

75 0 5 0 0 0 5 0 0 

90 0 5 0 5 0 0 5 5 

105 0 0 0 0 0 15 0 0 

120 0 0 0 0 0 10 0 0 
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Tuatua density (per m²) 

South Waimakariri 

Distance 
from high 
tide (m) 

Autumn 
2010 

Winter 
2010 

Spring 
2010 

Summer 
2011 

Autumn 
2011 

Winter 
2011 

Spring 
2011 

Summer 
2012 

0 0 0 0 0 0 0 0 0 

15 5 5 0 0 0 0 0 0 

30 10 121 490 15 0 20 0 15 

45 5 10 10 0 0 5 0 15 

60 0 0 0 54 0 5 5 5 

75 0 0 10 64 15 0 0 0 

90 0 0 5 15 0 0 0 0 

105 0 0 10 15 5 0 0 0 

120 0 0 0 0 0 0 0 0 

135 0 0 0 100 0 0 0 0 

Kairaki 

Distance 
from high 
tide (m) 

Autumn 
2010 

Winter 
2010 

Spring 
2010 

Summer 
2011 

Autumn 
2011 

Winter 
2011 

Spring 
2011 

Summer 
2012 

0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 10 20 0 

30 48 10 275 50 10 5 0 0 

45 53 340 45 0 0 5 5 15 

60 24 20 0 0 0 0 0 30 

75 0 10 0 15 0 0 0 0 

90 0 10 0 25 10 0 10 0 

105 0 5 0 25 10 0 0 5 

120 0 0 0 15 0 5 5 0 

135 0 0 10 10 5 10 0 5 

150 0 10 0 5 15 0 0 0 

165 0 10 0 0 0 0 0 0 

  



Appendices 

237 

 

Tuatua density (per m²) 

Woodend 

Distance 
from high 
tide (m) 

Autumn 
2010 

Winter 
2010 

Spring 
2010 

Summer 
2011 

Autumn 
2011 

Winter 
2011 

Spring 
2011 

Summer 
2012 

0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 10 0 

30 280 0 550 15 30 15 0 15 

45 25 20 15 5 5 5 0 5 

60 5 295 0 5 10 5 0 15 

75 0 15 0 10 5 5 0 0 

90 0 0 0 5 0 15 0 0 

105 0 0 0 0 0 0 10 0 

120 0 0 0 0 0 0 0 0 

Waikuku 

Distance 
from high 
tide (m) 

Autumn 
2010 

Winter 
2010 

Spring 
2010 

Summer 
2011 
(NA) 

Autumn 
2010 

Winter 
2011 

Spring 
2011 

Summer 
2012 

0 0 0 0 0 0 0 0 0 

15 160 5 0 0 5 0 20 0 

30 10 130 15 0 25 0 5 5 

45 0 5 20 0 5 5 0 0 

60 0 0 5 0 0 0 0 0 

75 0 0 0 0 0 10 0 0 

90 0 0 0 0 0 0 0 0 

105 0 0 0 0 0 0 0 5 

120 0 0 0 0 0 15 0 0 
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Appendix 4.1 Size class distributions at each site and season of sampling. 
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Appendix 5.1 Vehicle effects data 

Table of sediment and tyre characteristics 

No. of 
Passes 

Pore water (%) Width (mm) Depth (mm) Volume (mm²) 

Day 1 Winter Summer Winter Summer Winter Summer Winter Summer 

0 21.48055 22.31489 0 0 0 0 0.0 0.0 

1 20.68786 21.17477 187.5 195 2 3 37.5 58.5 

10 20.20878 21.35751 262.5 262.5 15.5 19 407.0 498.0 

25 20.08025 20.82663 270 270 29.5 30.5 796.5 822.8 

40 19.7227 20.00526 277.5 277.5 39.5 37 1096.5 1026.5 

50 20.17179 20.5322 280 282.5 40 41 1120.0 1158.0 

Day 2             0.0 0.0 

0 21.7911 20.65595 0 0 0 0 0.0 0.0 

5 20.97002 20.3952 255 255 11 11 280.5 282.0 

10 20.58855 20.64398 260 262.5 18 16 468.0 419.5 

25 20.34117 20.28618 285 270 29.5 25 840.8 675.0 

30 20.30571 20.98969 290 270 31.5 28.5 913.5 769.5 

50 19.43107 19.27889 290 275 35 37 1015.0 1019.0 

Day 3             0.0 0.0 

0 22.86353 21.7134 0 0 0 0 0.0 0.0 

1 20.42657 20.54039 200 187.5 3 3.5 60.0 65.8 

20 19.76314 20.81247 267.5 275 20 30 535.5 825.0 

30 19.69461 20.10596 277.5 290 25 36 693.8 1044.0 

40 19.4141 21.1383 287.5 295 31 45 891.5 1327.5 

50 19.13678 19.54115 287.5 295 32 45 920.3 1327.5 

Day 4             0.0 0.0 

0 21.21831 22.90656 0 0 0 0 0.0 0.0 

5 21.15257 23.07233 237.5 247.5 20 10 475.0 247.5 

15 19.97588 20.62563 270 255 27 20 734.0 510.0 

20 20.06527 21.01679 270 262.5 33 24 891.0 629.8 

35 19.66826 21.63394 275 287.5 33.5 31 921.3 891.0 

50 19.36526 21.06759 280 290 33 34 924.0 986.0 
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Table of tuatua mortality results 

No. of 
Passes 

 Tuatua Mortality 
(%) 

Reburied 
immediately (%) 

Reburied 24hrs (%) 

Day 1 Winter Summer Winter Summer Winter Summer 

0 11.76471 0 53.333 93.33333 60 86.66667 

1 9.52381 17.64706 80 100 86.667 100 

10 10 15 33.333 93.33333 80 80 

25 16 10.52632 53.333 100 100 86.66667 

40 14.28571 22.22222 80 93.33333 80 93.33333 

50 20 15.78947 26.667 86.66667 66.667 93.33333 

Day 2             

0 0 0 66.667 93.33333 93.333 100 

5 4.255319 9.677419 66.667 100 66.667 100 

10 3.846154 7.5 60 86.66667 66.667 100 

25 4.672897 8.333333 40 93.33333 86.667 100 

30 6.097561 23.80952 53.333 66.66667 93.333 93.33333 

50 2.298851 20 53.333 80 80 93.33333 

Day 3             

0 2.564103 3.846154 53.333 93.33333 66.667 93.33333 

1 7.692308 0 80 100 66.667 100 

20 12.82051 14.28571 40 73.33333 93.333 86.66667 

30 20 25.80645 73.333 93.33333 100 80 

40 20 33.33333 53.333 73.33333 66.667 40 

50 17.14286 29.78723 60 66.66667 93.333 80 

Day 4             

0 0 0 80 100 60 86.66667 

5 2 2.298851 73.333 100 86.667 86.66667 

15 8.695652 3.658537 80 93.33333 73.333 66.66667 

20 13.7931 4.255319 73.333 93.33333 80 80 

35 1.785714 13.63636 66.667 93.33333 80 33.33333 

50 3.658537 13.51351 93.333 80 73.333 40 
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Appendix 6.1 Summarised Observational Horse Data 

Woodend Beach 

Date 
sampled 

No. of 
horses 

Distance 
from HT 

(m) 

Width 
(m) 

No. of 
shellfish 

per 
hoof 

Average 
hoofs 

per 10 m 

Average 
mortality 

(%) 

Distance 
of tracks 

(km) 

5/11/2010 20 47 19 12 0 11 4.5 

39 24 50 0 15 NA 

37 39 32 3 14 0 

6/12/2010 2 39 7 0 12 NA 6 

32 19 27 9 22 11 

24 23 24 6 19 26 

31/01/2011 3 31 15 0 11 NA 5.6 

31 25 20 0 10 NA 

19 28 19 2 14 11 

19/04/2011 9 30 28 4 12 6 7 

39 25 35 0 17 NA 

17 36 20 0 10 NA 

30/06/2011 37 28 30 0 12 NA 3.8 

30 38 22 0.3 11 100 

17 31 27 0.3 10 100 

 
 

       

Spencer Park Beach 

Date 
sampled 

No. of 
horses 

Distance 
from HT 

(m) 

Width 
(m) 

No. of 
shellfish 

per 
hoof 

Average 
hoofs 

per 10m 

Average 
mortality 

(%) 

Distance 
of tracks 

(Km) 

6/11/2010 10 37.8 17  12 14 6.6 

10 31 16 0 9 NA 

12 38 23 1 16 0 

6/12/2010 4 30 4 0 19 NA 6 

14 25 26 0 9 NA 

10 25 19 0 13 NA 

31/01/2011 4 32 9 0 14 NA 4.1 

4 35 8 0 14 NA 

4 40 4 0 14 NA 

19/04/2011 8 29 17 0 11 NA 6.7 

10 19 10 1 19 0 

6 30 12 0 11 NA 

30/06/2011 2 27 1 0 10 NA 4.7 

2 30 3 0 27 NA 

4 26 4 0 19 NA 
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Appendix 6.2 Summarised horse preliminary and disturbance intensity data 

Preliminary experiments 

Table of mortality and reburial results from preliminary experiments. Reburial was tested 

using the same individuals immediately and 24 hours after being runover. 

  
Tuatua 

mortality 
(%) 

Standard 
Error 

Pore water 
content 

(%) 

Standard 
Error 

Tuatua 
buried 

immediately 
(%) 

Tuatua 
buried 

after 24 
hours (%) 

Control 0 0 21.3 0.5 60 73.3 

Walk 8.3 4.8 22.5 0.1 33.3 73.3 

Trot 31.5 8.0 22.2 0.1 40 66.7 

Gallop 31.5 10.0 22.0 0.2 66.7 53.3 

 

Disturbance intensity experiments 

Table of mortality and reburial results from finalised experiments. Reburial was tested using 

the same individuals immediately and 24 hours after being runover. 

  

Tuatua 
Buried 

immediate 
(%) 

Standard 
Error 

Tuatua 
Buried after 

24 hours 
(%) 

Standard 
Error 

Control 44.3 15.7 34.3 5.7 

Walk 1 29.2 29.2 70.8 29.2 

Walk 5 67.5 7.5 47.5 27.5 

Trot 1 70 3.3 44.4 22.2 

Trot 5 20.8 4.2 90 10 

 


