
ARTICLE IN PRESS 

JID: OCEMOD [m5G; August 11, 2017;19:21 ] 

Ocean Modelling 0 0 0 (2017) 1–14 

Contents lists available at ScienceDirect 

Ocean Modelling 

journal homepage: www.elsevier.com/locate/ocemod 

Virtual Special Issue 

COWCLIP 

Extreme waves in New Zealand waters 

Victor A. Godoi a , ∗, Karin R. Bryan 

a , Scott A. Stephens b , Richard M. Gorman 

b 

a School of Science, University of Waikato, Hillcrest Rd, Hamilton, Waikato, New Zealand, 3216 
b National Institute of Water and Atmospheric Research Ltd, Gate 10 Silverdale Rd, Hillcrest, Hamilton, Waikato, New Zealand, 3216 

a r t i c l e i n f o 

Article history: 

Received 19 December 2016 

Revised 27 July 2017 

Accepted 3 August 2017 

Available online xxx 

Keywords: 

Extreme waves 

New Zealand 

Wave climate 

Climatic change 

Continental shelf waters 

Wave hindcasting 

a b s t r a c t 

A detailed climatology of extreme wave events for New Zealand waters is presented, in addition to es- 

timates of significant wave height (Hs) for up to a 100-year return period. Extreme events were ex- 

plored using 44 years (1958–2001) of wave hindcast data. Comparisons to buoy data at three locations 

around New Zealand showed negative biases in the model, which nevertheless provided a suitable basis 

for trends, spatial distribution, and frequency analyses. Results indicate some similarities to patterns pre- 

viously shown in the mean wave climate, with the largest waves found in southern New Zealand, and 

the smallest ones observed in areas sheltered from southwesterly swells. The number of extreme events 

varies substantially throughout the year, while the differences in intensity are more consistent. Events oc- 

cur more/less frequently in winter/summer months. The greatest mean annual variability of extreme Hs 

is found on the north coasts of both the North and South Islands, where more locally-generated storms 

drive the extremes. The interannual variability is largest along the north coast of the country and on the 

east coast of the South Island, suggesting relationships with La Niña-like effects and the Southern Annu- 

lar Mode, respectively, which past work showed to be important drivers in these regions. Moreover, the 

known trend for a more positive Southern Annular Mode may explain the increasing number of extreme 

events shown in our study. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Extreme wave events have been recognised as a major issue for

afety in both coastal and offshore regions. With the ongoing con-

erns about changes in the frequency and magnitude of cyclones

cross the globe ( Simmonds and Keay, 20 0 0 ), and the high vul-

erability of coastal areas to wave attack as the sea level rises

 Hannah, 2004; Hannah and Bell, 2012; Hauer et al., 2016 ), there is

 need to understand and predict the behaviour of extreme wave

vents. 

Climatologies have generally been established for the mean

tate of the ocean, whereas the equivalent for extreme events

s not as common despite the valuable information that these

an provide for the management of coastal erosion and flooding

 Horrillo-Caraballo et al., 2012 ), for example. One impediment to

xamining extreme values is that the different statistical character-
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stics of extreme and non-extreme wave events ( Young et al., 2012 )

equire them to be analysed separately. 

One of the most common ways to assess extreme wave events

s to calculate return-period values for significant wave height (Hs)

e.g., Alves and Young 2003; Guedes Soares and Scotto, 2004 ). The

00-year return value of Hs, for example, is the Hs value exceeded,

n average, once in 100 years ( Carter and Draper, 1988 ). Such val-

es are required for engineering design because extreme waves can

ave major impacts on safety, operability of shipping and struc-

ures, and the economics of offshore facilities ( Young et al., 2012 ).

everal studies have estimated return values of Hs on a global

patial scale using modelled results (e.g., Caires and Sterl, 2005 ),

atellite altimetry data (e.g., Izaguirre et al., 2011; Vinoth and

oung, 2011; Young et al., 2012 ) and buoy measurements (e.g.,

emer, 2010 ). However, global models and satellite measurements

o not generally provide sufficiently high-resolution data for pre-

icting return values precisely near coastal areas. Although many

ocal studies have been conducted for specific areas (e.g., the Por-

uguese coast ( Ferreira and Guedes Soares, 1998 ), the Persian Gulf

 Moeini et al., 2010 ), the Australian region ( Hemer et al., 2016 ),

nd the Kuwaiti waters ( Neelamani et al., 2007 )), several regions in
aves in New Zealand waters, Ocean Modelling (2017), 
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Fig. 1. Regional grid domain of the 45-year wave hindcast. Green dots represent the 

model grid points on the 50 m isobath, whereas crosses indicate the buoy locations. 

NI and SI stand for North Island and South Island, respectively. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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the world still lack investigation, especially in the Southern Hemi-

sphere (e.g., New Zealand). 

The international interest in the water bodies surrounding New

Zealand has grown with the implementation of various trade

agreements ( World Bank Group, 2016 ), which increase traffic along

key shipping routes, and with the recognised importance of the

Southern Ocean in regulating the Earth’s climate ( Lavergne et al.,

2014 ). New Zealand is an island nation highly influenced by its

surrounding oceans. The country lies at the mid-latitudes of the

Southern Hemisphere and is affected by a range of atmospheric

systems. Large waves, generated by extratropical cyclones, prop-

agate without major obstacles through the Southern Ocean, and

affect a lar ge portion of the New Zealand coastline ( Godoi et al.,

2016; Gorman et al., 2003a, 2003b ). Additionally, waves formed

by tropical cyclones also play a significant role, especially on the

north coast. A recent study ( Godoi et al., 2016 ) showed the influ-

ence of climatic patterns on the average wave climate around New

Zealand in addition to an increasing trend in Hs along the coast.

New Zealand’s coastal population has been growing in the last

decades ( Bryan et al., 2008 ), and therefore, improved predictions

for coastal planning are required to deal with the threat posed by

extreme wave events in this complex environment. 

The paucity of wave data around New Zealand has made it

difficult to accurately provide an extreme wave climatology (syn-

thesis of extreme wave conditions based on long-term statis-

tics) and conduct extreme wave predictions ( Stephens and Gor-

man, 2006 ). Buoy measurements are generally taken as ground

truth (e.g., Hemer, 2010 ). However, short duration records and in-

sufficient number of buoys preclude reliable estimates of return

values in many cases. Satellite altimetry data can also be problem-

atic; among the drawbacks is the temporal coverage of measure-

ments: the infrequent revisit (typically 10 days) of the satellite to

a particular location makes it difficult to adequately capture storm

peaks. Stephens and Gorman (2006) conducted an extreme wave

analysis for six sites off the New Zealand coast by using results

from a 20-year hindcast, providing evidence of the importance of

modelled results when a long dataset is required. 

The accuracy of extreme predictions depends on the accu-

racy and length of input data ( Stephens and Gorman, 2006 ).

Using results from the 45-year (September 1957–August 2002)

high resolution wave hindcast (hereafter 45WH), conducted by

Gorman et al. (2010) , we have created an extreme wave climatol-

ogy for the New Zealand continental shelf waters, and analysed

trends and patterns in extreme events. In order to complement

our study, the extreme estimates carried out by Stephens and Gor-

man (2006) have been extended to shallower waters. The 45WH

covers a considerably longer time period than the hindcast used

by Stephens and Gorman (2006) and has higher space-time reso-

lution in shallow waters, which make the new modelled data more

suitable for predicting extreme events and establishing an extreme

wave climatology. 

2. Dataset 

In order to conduct the extreme wave analysis, modelled time

series of Hs and mean wave period (Tm-10, hereafter Tmean) were

extracted from the regional grid domain ( Fig. 1 ) of the 45WH.

Tmean was chosen over the peak wave period (Tpeak) because

the latter was sometimes undefined in the hindcast data because

of missing values close to the shore. As Tm-10 is more weighted

to lower frequencies than Tm-01 and Tm-02, it is more repre-

sentative of swell, and so a better proxy for Tpeak. Only the full

calendar years (1958–2001) of the 45WH have been used. The

45WH was conducted using the WAVEWATCH III v. 3.14 model

( Tolman, 2009 ) forced with 1.125 ° spatial resolution wind and ice

fields from the ERA-40 reanalysis project ( Uppala et al., 2005 ) on
Please cite this article as: V.A. Godoi et al., Extreme w
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 global grid at 1.125 °× 1.125 ° resolution. One-way nested within

he global grid, a regional grid domain, with 0.125 °× 0.09375 ° (ap-

roximately 10 km) resolution, encompassed part of the Tasman

ea and parts of the Southern and southwestern Pacific oceans.

he regional grid provided a higher-resolution representation of

earshore wave processes, although the same ERA-40 inputs were

sed as for the global simulation. Mean wave parameters were

utput at 1 h and 3 h intervals for the regional and global domains,

espectively. These have been validated against buoy measure-

ents, located mainly around New Zealand and North America,

nd satellite altimetry data, obtained from the TOPEX/Poseidon,

RS1 and ERS2 missions. A mean root-mean-square error of 0.50 m

nd mean correlation of 0.83 were obtained from comparisons of

s between the regional results and New Zealand buoy data ( Godoi

t al., 2016; Gorman et al., 2010 ). Comparisons to altimeter data

ver the regional hindcast area show positive bias in Hs, of up to

 0.3 m, in offshore waters of the Tasman Sea and Southern Ocean,

nd negative bias near the coast, of down to −0.3 m. The spatial

attern of bias is similar to the results of Chawla et al. (2013) . Ad-

itional details of the model simulation and its validation can be

ound in Gorman et al. (2010) and Godoi et al. (2016) . 

Large waves were generally underestimated by the model

n comparison to buoy measurements ( Gorman et al., 2010 ).

his is consistent with the triple-collocation study of Caires and

terl (2003) , who showed that ERA-40 tended to underpredict high

ind speeds compared to ERS-1 and TOPEX measurements, while

he wave model correspondingly underpredicted the upper range

f significant wave heights from buoy and altimeter records. The

nderestimation of large waves in the 45WH may have arisen from

wo factors. The first is the relatively low space-time resolution of

he ERA-40 winds, which does not take abrupt changes in direction

nd substantial wind speed gradients into account ( Godoi et al.,

016 ); and the second is the use of the formulation proposed by

olman and Chalikov (1996) in the hindcast, which underestimates

he energy input during intense storm conditions dominated by

oung wind-sea ( Ardhuin et al., 2007 ). Uppala et al. (2005) ob-

erved that the detection of tropical cyclones in the Southern

emisphere exceeded 90% in comparison to a best-track dataset

 Neumann, 1993 ) for the period from 1973 onwards. However,

he percentages of detection in ERA-40 for the periods 1958–66

nd 1967–72 were 75% and 82%, respectively. Furthermore, ERA-

0 tends to underestimate wind speeds above 14 m/s ( Caires et al.,

004 ). Regarding the second factor, Stopa et al. (2016) compared
aves in New Zealand waters, Ocean Modelling (2017), 
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Table 1 

Buoy deployments. NIWA stands for National Institute of Water and Atmospheric Research Ltd. 

Site Longitude ( °) Latitude ( °) Recording period Source 

Baring Head 174 .8467 −41 .4022 03 Aug 1998–19 Dec 2013 NIWA 

Banks Peninsula 173 .3348 −43 .7558 06 Feb 1999–28 Feb 2014 NIWA 

Maui 173 .45 −39 .55 31 Aug 1976–30 Apr 1987 Shell, BP, Todd University of Auckland 
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he performance of various sets of parameterisations for the same

ind input. The ST4 parameterisation ( Ardhuin et al., 2010 ) did

est across the Hs range, while ST2 ( Tolman and Chalikov, 1996 )

ad high positive bias in the lower range, decreasing for larger

ave heights. This seems consistent with insufficient swell dis-

ipation and underestimation of wind-sea, in ST2. It also shows

hat while ST4 is a better choice now that it is available, the de-

ciencies of ST2 are not as significant for extreme climate as for

ean climate. In order to determine properly the individual con-

ributions of the wind fields and the set of parameterisations used

n the present work to the underestimation of extreme waves, a

et of tests would be required. These include doing several model

uns using the same set of parameterisations combined with wind

elds from different sources (not only ERA-40), as well as testing

ifferent sets of parameterisations forced with ERA-40 wind fields

similar to what was done by Stopa et al. (2016) ). Then, the results

hould be compared to observed data. Another way of validating a

pecific set of parameterisations is to test them against other sets

hat have been validated already. Conducting these tests is beyond

he scope of the paper. 

Although the underestimation of large waves is acknowledged,

he lack of long buoy records to account for extreme events in

he study region forced the use of uncalibrated modelled data

n our study. A possible solution for calibrating the model data

ould have been estimating an approximate bias for extreme Hs

rom comparisons between model and buoy data. However, imple-

enting this solution in shallow waters based on just a few buoy

ecords is likely to lead to erroneous calibration, especially when

and-sheltering effects prevail due to buoy proximity to the coast

nd headlands. As a consequence of these effects in addition to

hort buoy records, the bias varies considerably around the coast,

nd so would have caused spurious calibrations (as shown by

tephens and Gorman (2006) ). Despite the recognised underpre-

iction of extreme events by the model, its results still allowed ex-

loration of the spatial distribution of extreme events, their trends

nd clustering patterns. Although a calibration procedure was not

erformed, model and buoy data were compared in terms of the

robability of occurrence of extremes at the locations where buoy

ata do exist and span more than 10 years ( Fig. 1 ). 

Buoy records from twelve sites around New Zealand were anal-

sed regarding their suitability for extreme wave predictions (not

hown), and only three of them ( Table 1 , Fig. 1 ) were considered

o be of sufficiently long duration. The others were short records

ue to either short recording periods or large gaps of missing data

fter spike removal, hence they will not be discussed further. Thus,

s time series were extracted from the buoy and model data at the

oordinates shown in Table 1 . 

Besides the Hs time series extracted at the buoy sites, two ad-

itional datasets from the model data have been used to assess

xtreme events, the annual maxima Hs and Peaks-Over-Threshold

POT) data. The latter are defined here as maxima Hs from inde-

endent storms, with maxima Hs being considered only if above

he 99th percentile (of the full hourly dataset) and separated by

 minimum interval of 72 h. The set of maxima of Hs identified

y the POT approach and the annual maxima Hs are also referred

o as “extreme Hs”. Due to computational costs, POT data have

een produced only at 247 model grid points on the 50 m isobath

round New Zealand ( Fig. 1 ). 
Please cite this article as: V.A. Godoi et al., Extreme w
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. Extreme wave climatology 

Monthly and seasonal climatologies of extreme events over the

4-year (1958–2001) period were defined using the POT dataset on

he 50 m isobath. Averages of extreme Hs and number of extreme

ave events were computed for the 12 months and 4 seasons over

ll years (summer: Dec, Jan, Feb; autumn: Mar, Apr, May; winter:

un, Jul, Aug; spring: Sep, Oct, Nov). The mean annual and interan-

ual variabilities (MAV and IAV, respectively) of extreme Hs were

lso calculated. The MAV of extreme Hs was computed by normal-

zing the average of the annual standard deviation of extreme Hs

y the annual average of extreme Hs, while the IAV was deter-

ined by the standard deviation of the annual means of extreme

s normalized by the overall mean of extreme Hs ( Godoi et al.,

016; Stopa et al., 2013 ). Lastly, monotonic trends in the values

f extreme Hs and in the number of extreme events were evalu-

ted using the Mann–Kendall test ( Mann, 1945; Kendall, 1955 ). The

agnitude of the trends was computed by employing the Theil–

en estimator ( Theil, 1950; Sen, 1968 ). Annual average extreme Hs

using POT data) and annual maxima Hs were used to calculate

eight trends, whilst number trends were computed using time se-

ies of the annual number of extreme Hs peaks (calculated using

he POT data). 

Fig. 2 shows the 44-year (1958–2001) mean annual maxima Hs

nd its corresponding Tmean (44-year mean annual Tmean associ-

ted with annual maxima Hs), providing an overview of different

xtreme wave climates around New Zealand. The spatial pattern

f mean annual maxima Hs ( Fig. 2 a) closely resembles the mean

ave climate ( Godoi et al., 2016; Laing, 20 0 0; Pickrill and Mitchell,

979 ), in which the roughest seas occur in southern New Zealand,

ssociated with largest Tmean ( Fig. 2 b), and calmer conditions oc-

ur in regions sheltered from southwesterly swells. Such swells are

bstructed by the landmass, creating a distinctive shadow zone

nd relatively smaller Tmean to the north of the country ( Fig. 2 b).

he largest waves on the north coast are generally associated with

ropical cyclones ( Gorman et al., 2003a ), and are considerably less

requent than the steady swells, originated by extratropical cy-

lones, that hit most other parts of the New Zealand coastline. 

A cluster analysis was performed to thoroughly characterise ex-

reme wave climates around the country ( Fig. 3 ) by using the 44-

ear mean annual maxima Hs (44Hs) and its corresponding Tmean

44Tmean) (standardised to a Gaussian distribution – zero mean

nd unit variance) and the k -means algorithm ( Hartigan and Wong,

979; Kanungo et al., 2002 ). The cluster analysis jointly examines

he input parameters and distinguishes clusters by grouping data

ith similar characteristics. Each colour of Fig. 3 represents one

luster, in which all grid points within can be thought as having a

imilar wave climate. The red cluster (spatial averages of 44Hs and

4Tmean equal to 8.94 m and 12.09 s, respectively – Fig. 3 a) rep-

esents areas dominated by large swells originated in the South-

rn Ocean. A shadow zone appears as soon as the propagation of

hese swells begins to be interrupted by the New Zealand land-

ass (grey cluster – spatial averages of 4 4Hs and 4 4Tmean equal

o 7.18 m and 11.11 s, respectively – Fig. 3 a). Further sheltering, as-

ociated with a lower-energy wave climate (orange cluster - spatial

verages of 44Hs and 44Tmean equal to 5.97 m and 9.87 s, respec-

ively – Fig. 3 a), is observed in the regions affected by a more pro-

ounced refraction of southwesterly swells (on the east and west
aves in New Zealand waters, Ocean Modelling (2017), 

http://dx.doi.org/10.1016/j.ocemod.2017.08.004
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Fig. 2. Forty-four year (1958–2001) mean (a) annual maxima significant wave height; (b) mean wave period associated with annual maxima significant wave height. 

Fig. 3. Cluster analysis results using 44-year (1958–2001) averages of annual maxima Hs and corresponding mean wave periods (a) 4 clusters; (b) 5 clusters. Each colour 

represents one cluster. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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H  
coasts), or where they are blocked by the landmass (to the north

of the northern coast). The most sheltered zone, dominated by low

(or infrequent large) swells and local wind-sea waves, is repre-

sented by the blue cluster (spatial averages of 44Hs and 44Tmean

equal to 2.69 m and 8.18 s, respectively – Fig. 3 a). The five clus-

ters in Fig. 3 b provide similar information, but also show an addi-

tional low-energy wind-sea-wave-dominated environment in shel-

tered embayed areas (yellow cluster - spatial averages of 44Hs

and 44Tmean equal to 1.88 m and 6.94 s, respectively). The pat-

terns described can also be observed in Fig. 2 a. Taking into account

both the cluster analysis results ( Fig. 3 ) and the long-term means

( Fig. 2 ), as well as the wave climate classification by Pickrill and

Mitchell (1979) and Godoi et al. (2016) , we divide the regions im-

mediately adjacent to the coastline into four main extreme wave

climates. These are basically demarcated by the coastline orien-
Please cite this article as: V.A. Godoi et al., Extreme w

http://dx.doi.org/10.1016/j.ocemod.2017.08.004 
ation, and can be roughly related to the four cardinal directions

north, east, south, and west). Thus, the analyses have been con-

ucted focusing on these four main wave climates. 

The annual average of extreme wave events was calculated at

he model grid points on the 50 m isobath using POT data ( Fig. 4 ).

ts values varied in the range of 2.8–6.4 events per year in the pe-

iod 1958–2001, with the highest values found in the region be-

ween the two main islands of New Zealand. A large number of

vents also took place on the northeastern part of the country and

n the central western coast of the South Island, meaning that ex-

reme events were more closely-spaced in these regions. The fre-

uency of extreme events is highly dependent on the time of the

ear (shown next) and coastline exposure to generating regions. 

Monthly climatologies of extreme wave events (magnitude of

s and number of events) calculated using the POT data can be
aves in New Zealand waters, Ocean Modelling (2017), 

http://dx.doi.org/10.1016/j.ocemod.2017.08.004
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Fig. 4. Annual average number of extreme wave events at the model grid points on the 50 m isobath (calculated using POT data). 
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ound in Figs. 5 and 6 . The southwestern and southern coasts

eceived the most energetic waves followed by the northwest-

rn coast. This can be associated with extratropical cyclones gen-

rated by the westerly air flow in mid-latitudes, which produce

arge wave events in all months. The southernmost region of the

orth Island also showed intense extreme wave activity through-

ut all months, which can be associated with southerly swells. The

ildest extreme waves were generally found in the sheltered strait

etween the North and South islands, where southwesterly swells

re blocked by the landmass. There was little variation throughout

he seasons in the spatial pattern of extreme Hs (not shown). De-

pite that, 47% of the examined sites received the largest waves

n winter, 33% in autumn, 11% in summer, and 9% in spring.

here was a remarkable contrast in the frequency of extreme wave

vents between the summer and winter months ( Fig. 6 ). Essen-

ially the whole country was affected by a great number of closely-

paced extreme Hs in winter time, whereas the opposite was true

or summer. In fact, the highest frequency of events on the west

nd south coasts occurred in May (an autumn month), while on

he east and north coasts it prevailed in June and July, respectively.

he frequency was also high in most parts of the coastline in Au-

ust. On the other hand, extreme events were least frequent in

anuary and February. Although the wave intensity did not change

onsiderably throughout the year, extreme events were more com-

only observed from May to August. This means that there is a

igher chance of erosion due to sequences of storms during those

onths, as well as a higher chance of extreme events coincide

ith a high tide, leading to multi-hazard effects. 

Like the MAV of mean Hs ( Godoi et al., 2016 ), the MAV of ex-

reme Hs was greatest in regions sheltered from southerly swells,

mphasising the role played by locally-generated storms ( Fig. 7 a).

xtreme waves generated by tropical cyclones propagating to the

orth of New Zealand hit the north coast, especially in summer

 Gorman et al., 2003a ), contributing to the large variability in the

egion. The largest IAV ( Fig. 7 b) was found in the central north

oast, denoting a relationship with La Niña-like effects (stronger

ortheasterly winds to the north of New Zealand). The east coast of
Please cite this article as: V.A. Godoi et al., Extreme w

http://dx.doi.org/10.1016/j.ocemod.2017.08.004 
he South Island had also relatively large IAV, which might be re-

ated to the Southern Annular Mode (SAM). Positive phases of the

AM result in strengthened westerly winds in the Southern Ocean

 Kushner et al., 2001; Marshall, 2003 ), and a trend toward its posi-

ive phase has been detected since the mid-1960s ( Marshall, 2003 ).

Trends in extreme Hs calculated from both annual maxima Hs

 Fig. 8 a) and the annual average extreme Hs (computed using the

OT data) ( Fig. 8 b) showed some similarities regarding the spa-

ial distribution along the coast. Notwithstanding, the ranges of

agnitude of their trends presented notable distinction, varying

rom −2.09 to 3.43 cm/yr in the first ( Fig. 8 a) and from −0.96

o 0.91 cm/yr in the second ( Fig. 8 b). Only statistically significant

rends at the 95% confidence level are displayed. There was no sta-

istically significant trend in extreme Hs at most locations around

he New Zealand coast. Increasing extreme Hs occurred on the

ortheastern part of the South Island, while a negative trend was

bserved in part of the west coast of the South Island in both

atasets. Notable increasing trends in annual maxima Hs were also

etected on the southeastern coast ( Fig. 8 a). Such trends and the

ncreasing extreme Hs observed on the northeastern coast of the

outh Island are consistent with the positive trend in the SAM,

hich has led to the strengthening of the westerly winds in the

outhern Ocean ( Gillett and Thompson, 2003; Hemer, 2010; Mar-

hall, 2003; Schott et al., 2009 ). Stronger westerly winds generate

ore intense extratropical cyclones, which also justify the posi-

ive trends in the number of extreme events on the south and east

oasts ( Fig. 8 c). These trends indicate that extreme events became

ore frequent over the 44 years (1958–2001) analysed. Quantita-

ively, 33.60% of the POT data showed positive trends in the an-

ual number of extreme events, 65.59% presented no statistically

ignificant trends, and only 0.81% showed negative trends. Regard-

ng the trends in the annual average extreme Hs, 2.02% of the

ites on the 50 m isobath had positive trends, whilst 6.48% had

egative trends. Only increasing wave heights, varying mostly in

he range of 1–6 cm/decade along the New Zealand coastline, were

ocumented by Godoi et al. (2016) when the mean of the whole

pectrum of waves was analysed. This supports the idea that ex-
aves in New Zealand waters, Ocean Modelling (2017), 
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Fig. 5. Monthly climatology of extreme Hs calculated using POT data on the 50 m isobath. 
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treme and mean wave conditions should be treated separately, like

in Ruggiero et al. (2010) . 

4. Extreme value analysis 

Extreme value theory has been widely used for estimating re-

turn values from Hs datasets (e.g., Caires and Sterl, 2005; Hemer,

2010; Izaguirre et al., 2011; Méndez et al., 2006, 2008; Menéndez

et al., 2009; Vinoth and Young, 2011 ). Although several methodolo-

gies are available, there is no universal approach that is suitable
Please cite this article as: V.A. Godoi et al., Extreme w
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or all datasets. However, there are two commonly-accepted meth-

ds in general use: the generalised extreme value (GEV) model fit-

ed to annual maxima (AM), and the generalised Pareto distribu-

ion (GPD) fitted to peaks-over-threshold (POT) ( Coles, 2001 ). The

eader is referred to the following literature for details of extreme

alue theory and the limitations and advantages of each method,

aires and Sterl (20 05), Coles (20 01), Ferreira and Guedes Soares

1998), Holthuijsen (2007), Mathiesen et al. (1994), Stephens and

orman (2006), Vinoth and Young (2011) , and Young et al. (2012) . 
aves in New Zealand waters, Ocean Modelling (2017), 
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Fig. 6. Monthly climatology of the number of extreme wave events calculated using POT data on the 50 m isobath. 
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The main drawbacks of the two aforementioned techniques are

hat the AM-GEV method requires long datasets to provide satis-

actory estimates, not being practical for many oceanographic pur-

oses ( Young et al., 2012 ), whereas the POT-GPD method needs

rbitrary thresholds to be established, which can be problematic

n certain circumstances (e.g., Mazas and Hamm, 2011 ). Consider-

ng the 45-year wave hindcast available, both methods seem to be

easonable candidates, hence they have been adopted here. In the

ase of the POT approach, a long dataset allows us to choose a high

hreshold in order to avoid its underestimation and ensure satis-

actory fitting of the model cumulative distribution function (CDF)
Please cite this article as: V.A. Godoi et al., Extreme w

http://dx.doi.org/10.1016/j.ocemod.2017.08.004 
o the empirical CDF. One should ideally select the lowest thresh-

ld at which the GPD is valid, because higher thresholds gener-

te fewer peaks with which the GPD parameters can be estimated,

ence reducing the confidence in the return values ( Caires and

terl, 2005; Coles, 2001 ). The selected threshold (discussed below)

rovided about 3–6 Hs peaks per year at the 247 sites along the

0 m isobath, which is a typical number for extreme value analy-

es of environmental variables (e.g., Coles, 2001 ). 

The use of percentiles to select thresholds is a common

ractice when dealing with several geographical locations and

ufficiently long datasets. Different percentiles have been used
aves in New Zealand waters, Ocean Modelling (2017), 
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Fig. 7. (a) Mean annual variability of extreme Hs; (b) Interannual variability of extreme Hs. Both statistics were calculated using POT data on the 50 m isobath. 
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in the literature, for example, the 90th and 97th used by

Caires and Sterl (2005) , the 90th and 93rd adopted by Vinoth and

Young (2011) , and the 99.5th used by Méndez et al. (2008) . Here,

the 99th percentile was selected to identify extreme events using

the POT approach. As specified in Section 2 , the POT data are de-

fined as maxima Hs (above the 99th percentile) from independent

storms separated by a minimum interval of 72 h. The 72-h interval

ensures independence between events, and was based on previ-

ous work, such as Alves and Young (2003), Méndez et al. (2006,

2008) , and Stephens and Gorman (2006) . Shorter intervals have

also been chosen in the literature, as for instance, the 48-h in-

terval considered by Harley et al. (2010) and Swail et al. (2006) .

The extreme value theory requires identical distribution of obser-

vations, which implies that waves generated by different atmo-

spheric sources (e.g., cyclone, anticyclone, and trade winds) should

be treated separately ( Vinoth and Young, 2011 ). Given the number

of sites and the relatively long period involved in the present anal-

ysis, it was not possible to meet the identical distribution criterion

(also the case in other studies, such as Alves and Young (2003) and

Stephens and Gorman (2006) ). Nevertheless, the coastline orienta-

tion facilitates, to a certain extent, that waves generated by differ-

ent atmospheric sources be separated into different populations,

since weather systems affect some coasts more than others. 

Finally, Hs return values were estimated for return periods of

up to 100 years in the whole regional grid domain using the AM-

GEV technique, and at the model grid points on the 50 m isobath

using the POT-GPD approach. Both extreme models (GEV and GPD)

were fitted to extreme Hs (annual maxima and POT data, respec-

tively) employing the maximum likelihood method. 

Very similar 100-year Hs return values were estimated by the

two methods at the model grid points on the 50 m isobath ( Fig. 9 ).

Their estimates were compared using two statistical metrics, the

Pearson’s correlation coefficient ( R ) and root-mean-square error

( RMSE ). Although the largest return values were slightly overes-

timated by the AM-GEV method in comparison to the POT-GPD

method, shown by the deviation of the points from the line of

equivalence (1:1) at highest quantiles ( Fig. 9 ), a high degree of

correlation was found ( R = 0.99) in addition to a relatively low

RMSE ( RMSE = 0.17), meaning satisfactory agreement between the

two datasets. Thus, the 100-year Hs return value estimates calcu-
Please cite this article as: V.A. Godoi et al., Extreme w

http://dx.doi.org/10.1016/j.ocemod.2017.08.004 
ated at the model grid points along the 50 m isobath are shown

nly for the POT-GPD method ( Fig. 10 a). The largest waves were

stimated on the southwestern coast, followed by the west coast

f the North Island. The southern and northeastern parts of the

orth Island also showed large wave estimates. On the other hand,

he lowest estimates were obtained near the coastlines surround-

ng the strait between the two main islands (Cook Strait). The spa-

ial pattern shown by the 100-year return values is similar to that

ound for the mean conditions, as seen in Godoi et al. (2016) . Given

he satisfactory agreement between both approaches for different

ave climates along the 50 m isobath, it is expected that the other

odel grid points of the regional domain behave likewise. Thus,

00-year Hs return values were estimated for the whole regional

omain using only the AM-GEV approach ( Fig. 10 b). 

The spatial distribution of Hs return values ( Fig. 10 b) again

howed similar patterns to the mean Hs ( Godoi et al., 2016 ), in

hich the smallest waves are seen in regions sheltered from south-

esterly swells, and the largest ones are observed south of New

ealand. Stephens and Gorman (2006) obtained the same result,

ut also reported smaller spatial variation compared to the spa-

ial variation in the average waves. We estimated lower 100-year

s return values than Stephens and Gorman (2006) , with the dif-

erence being even greater to the south of New Zealand. Although

ncalibrated modelled data have been used in both studies, it is

mportant to highlight the considerably higher space-time reso-

ution and longer record (more than twice as long) employed in

he present analysis, both relevant characteristics for satisfactory

eturn value estimation. Stephens and Gorman (2006) also used

 different extreme value method ( Mathiesen et al., 1994 ), which

as since been superseded in general practice by the methods used

ere. However, it is also worth emphasising that an underpredic-

ion by the model relative to buoy measurements is still present. 

Three locations ( Fig. 1 ), where buoy records span more than 10

ears, have been selected in order to compare Hs return values es-

imated from both the model and buoy data ( Fig. 12 ). Due to the

engths of the buoy records being relatively short ( < 16 years), the

M-GEV approach was disregarded, and only the POT-GPD method

as been implemented. As the buoy records are not as long as

he model time series, the threshold selection was initially based

n the assessment of the stability of the shape and scale parame-
aves in New Zealand waters, Ocean Modelling (2017), 
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Fig. 8. Monotonic trends in (a) annual maxima Hs; (b) the annual average extreme Hs; (c) the number of extreme wave events. Trends in (a) were computed for the whole 

regional domain of the 45-year wave hindcast, whereas in (b) and (c) they were calculated using POT data on the 50 m isobath. Only statistically significant values at the 

95% confidence level were plotted. Significance was computed using p -value. 
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ers obtained from the fitting of the GPD across a range of differ-

nt thresholds, as demonstrated in Coles (2001) . Nevertheless, this

ethodology provided almost identical return value estimates to

hen thresholds were selected based on the 99th percentile of the

ime series (not shown). Thus, the latter has been adopted in order

o follow the same procedures applied to the model data. Before

stimating Hs return values from the buoy and model data at the
Please cite this article as: V.A. Godoi et al., Extreme w
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uoy sites, a validation of the matching peaks between these two

atasets was carried out for overlapping periods ( Fig. 11 ). Again,

he selection of Hs storm peaks was made based on the 99th per-

entile threshold of the whole time series and on a minimum in-

erval of 72 h between consecutive peaks. In general, the storm

eaks identified in the buoy and model data did not match in

ime. Thereby, in order to make the validation process possible,
aves in New Zealand waters, Ocean Modelling (2017), 
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Fig. 9. Quantile-Quantile comparison of Hs return values for 100-year return period 

estimated using both the Annual Maxima-Generalised Extreme Value Distribution 

(AM-GEV) and Peaks-Over-Threshold-Generalised Pareto Distribution (POT-GPD) ap- 

proaches. Return values were estimated at the model grid points on the 50 m iso- 

bath. R and RMSE stand for Pearson’s correlation coefficient and root-mean-square 

error, respectively. 

 

 

 

 

 

 

 

 

Fig. 11. Validation of modelled significant wave height peaks during overlapping 

periods with buoy data for Baring Head (black circles), Banks Peninsula (green di- 

amonds) and Maui (grey squares). Basic statistics (Pearson’s correlation coefficient 

( R ), bias in meters, root-mean-square error ( RMSE ) in meters, and scatter index ( SI )) 

were calculated according to Durrant et al. (2009) . (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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buoy and model peaks were considered as matching peaks when

they occurred less than 24 h apart. Due to the relatively short over-

lapping periods in addition to gaps in the buoy data, only a few

peaks could be used in the model validation. In total, 6 (black cir-

cles), 3 (green diamonds) and 23 (grey squares) matching peaks

were identified at Baring Head, Banks Peninsula and Maui, re-

spectively, during the approximately 3.5, 3 and 11 years of over-

lapping periods. Although calculating statistics from small sam-
Fig. 10. Significant wave height return values for 100-year return period (a) estimated

Generalised Pareto Distribution approach; (b) estimated for the whole regional domain us

Please cite this article as: V.A. Godoi et al., Extreme w
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les (time series with only a few data points) is not ideal, and

e do acknowledge the non-representativeness of these samples,

hey nevertheless provide an overview of how well the model re-

roduced the observed storm peaks during these specific overlap-

ing periods. The validation was performed using the formulae of

asic statistics ( R , bias, RMSE , and scatter index ( SI )) applied in

urrant et al. (2009) . Not surprisingly, Hs peaks were generally

nderestimated by the model, as the bias values suggest ( Fig. 11 ).
 at the model grid points on the 50 m isobath using the Peaks-Over-Threshold- 

ing the Annual Maxima-Generalised Extreme Value Distribution approach. 

aves in New Zealand waters, Ocean Modelling (2017), 
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Fig. 12. Significant wave height return values (solid lines) estimated from the buoy (black) and model (red) data (Hs peaks from independent storms above the 99th 

percentile) for (a) Baring Head; (b) Banks Peninsula; (c) Maui. Dashed lines represent confidence intervals at the 95% level estimated from the asymptotic covariance matrix 

of the maximum likelihood estimators. Dots represent the data plotted in their Gringorten plotting positions ( Gringorten, 1963 ). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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dditionally, the model did not present any clear trends regarding

he magnitude of the underestimates as the Hs peaks increased.

he different sam ple sizes preclude com paring statistics between

hese three buoy sites. 

As expected, Hs return values estimated from the model data

nderestimated the ones calculated from the buoy data ( Fig. 12 ) by
Please cite this article as: V.A. Godoi et al., Extreme w
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p to 24.12% for the 100-year return period (at Banks Peninsula).

or the same return period, an average across the three sites indi-

ates a bias correction of 18.58% for the model data. However, as

riefly discussed in Section 2 , calibration of the model data based

n limited buoy records is not recommended, especially when

ealing with extreme events. Cavaleri (2009) lists several reasons
aves in New Zealand waters, Ocean Modelling (2017), 
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why storm peaks are not properly captured by wave simulations.

In addition to these, the hindcast was carried out using wind fields

with relatively coarse space-time resolution and also adopting a

source term package ( Tolman and Chalikov, 1996 ) that results in

underestimation of the energy input during intense storm condi-

tions dominated by young wind-sea ( Ardhuin et al., 2007 ). More-

over, Hs return values were computed from datasets spanning dif-

ferent periods of time. Lastly, as revealed by the trend analysis

( Fig. 8 ), trends in extreme Hs and in the number of extreme events

have been detected, especially on the east coast, where two of the

buoys are located. Despite all the issues and disregarding the es-

timates computed for Banks Peninsula, one notes that the 100-

year estimates calculated from both datasets indicate a reasonable

match when the confidence intervals are taken into account. The

largest 100-year Hs return value calculated from the most reli-

able set of buoy measurements used in this work (buoy data from

Maui) was 9.50 m ( Fig. 12 c). Considering the error estimates, this

value increases to approximately 16 m. This dataset was collected

near the west coast of the North Island ( Fig. 1 ), whereas the largest

waves occur in southern New Zealand. Therefore, for design pur-

poses, it is reasonable to expect waves around New Zealand with

Hs larger than 16 m, especially along the southwestern coast. 

5. Discussion 

Although it is beyond the scope of the present work to inves-

tigate the relationship between extreme wave events and climate

patterns, some evidence of this connection is documented here

and motivates future work. 

The IAV of extreme Hs found in the central north coast of New

Zealand ( Fig. 7 b) is likely associated with La Niña episodes. Larger

waves on the north coast have been reported during La Niña con-

ditions ( Godoi et al., 2016; Gorman et al., 2003a ) as a consequence

of stronger northeasterly winds ( Gordon, 1986 ). Furthermore, trop-

ical cyclones tend to be formed closer to the country during La

Niña episodes ( Revell and Goulter, 1986 ), and this might favour ex-

treme waves, which in turn tend to be generated by local storms

( Young et al., 2011 ). A strong association between local storms and

extreme waves was demonstrated by Young et al. (2011) through

similar positive trends in wind speed and wave height for 99th

percentile conditions. La Niña-like effects can be caused by at least

three climate patterns: the El Niño-Southern Oscillation (ENSO),

the Pacific Decadal Oscillation (PDO), and the Indian Ocean Dipole

(IOD) ( Godoi et al., 2016 ). Correlations between ENSO and PDO in-

dices have been verified ( Godoi et al., 2016; Mantua et al., 1997 ),

suggesting that the PDO can influence the ENSO phases (La Niña

and El Niño). The IOD can be externally triggered by the ENSO

( Schott et al., 2009 ), and indirect effects of the first can take place

through the second owing to the correlation between these two

modes. The opposite is also true, meaning that the IOD is able

to promote conditions that facilitate the formation of the ENSO

( Izumo et al., 2010 ). 

The negative trends observed in part of the west coast of

the South Island ( Fig. 8 a and b) contrast the increase in inten-

sity of cyclones in the Tasman Sea reported by Simmonds and

Keay (20 0 0) . One would expect stronger cyclones to be associated

with an increasing trend in extreme Hs. On the other hand, the

negative trend on the west coast found here might be related to

a poleward shift of extratropical cyclone storm tracks ( Gillett and

Thompson, 2003 ), which is more likely to favour southerly waves

(those that impact the east coast) than westerly ones. This pole-

ward shift, consistent with the trend for a more positive SAM

( Marshall, 2003 ), results in a southward displacement of wave gen-

eration zones. As a consequence, waves generated more to the

south affect the east coast more than the waters immediately ad-

jacent to the west coast, due to their propagation in great circles.
Please cite this article as: V.A. Godoi et al., Extreme w
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odoi et al. (2016) showed that, in terms of mean conditions, sig-

ificant wave height (Hs) was positively correlated with the SAM

n the south and east coasts of the country during the period

958–2001, whereas a negative correlation was found on the wa-

ers immediately adjacent to the west coast, with both correlations

eing statistically significant. A similar pattern was found for more

xtreme conditions (top 10% Hs), although correlations with the

AM in the waters immediately adjacent to the South Island were

ot statistically significant. Moreover, decreasing/increasing trends

n westerly/southwesterly waves on the west coast of New Zealand

ave been documented, in addition to increasing/decreasing trends

n southerly/southeasterly waves on the east coast ( Hemer et al.,

010 ). Using satellite data, Young et al. (2011) noted statistically

ignificant positive trends in extreme Hs in the region around New

ealand. Nevertheless, the period (1985–2008) considered in their

nalysis was shorter than and different from ours, and they used

 considerably coarser dataset than the ones employed here. It

hould be clear that climate trends identified in reanalysis datasets

an be greatly influenced by temporal changes in the quality and

uantity of the data assimilated into the model. Such changes were

lso introduced to the fields of the ERA-40 reanalysis ( Bengtsson

t al., 2004; Uppala et al., 2005 ) used to force the 45WH. Nonethe-

ess, some of the trends detected here are in agreement with

rends reported by authors (e.g., Marshall, 2003; Young et al., 2011 )

ho used data from meteorological stations and satellite altime-

ers. Furthermore, Marshall (2003) stated that ERA-40 can be used

ith high confidence, at least as far back as 1973, to examine

he recent trend in the SAM, whose main signature occurs in the

igh latitudes of the Southern Hemisphere. High and mid-latitudes

omprise the main wave generation zones responsible for the for-

ation of the waves that consistently impact on the New Zealand

oastline. 

. Conclusion 

Based on 44 years (1958–2001) of a high resolution wave hind-

ast, an extreme wave climatology and extreme value estimates

ere established for New Zealand waters. Monthly and seasonal

limatologies, mean annual and interannual variabilities, and trend

nalyses compose the extreme wave climatology. Extreme predic-

ions were carried out employing two different approaches, the

OT-GPD and AM-GEV. Their results were compared, and the POT-

PD estimates were in addition compared to estimates conducted

rom buoy data at three specific locations. 

The extreme Hs and mean Hs ( Godoi et al., 2016 ) spatial pat-

erns are similar in both offshore and coastal areas, with the

oughest seas found in southern New Zealand and calmer condi-

ions observed in regions sheltered from southwesterly swells. This

as observed not only in climatological parameters, but also in es-

imates of Hs return values. Nevertheless, some differences, such

s high energetic waves on the northwestern coast in January as

ell as the intensity of events, stress the importance of exploring

xtreme and mean conditions separately. 

The time of the year and coastline exposure to generating re-

ions are key factors in determining the frequency of extreme

vents. Except for the north coast, New Zealand was hit by a

arge number of events in May, while they were least frequent

n January and February. Extreme Hs had little seasonal varia-

ion, but closely-spaced extreme conditions were more/less fre-

uent in winter/summer around the whole country. Regions where

ocally-generated storms control the extreme wave climate pre-

ented greatest MAV. Given that the IAV of mean wave conditions

s correlated with La Niña-like effects on the north coast, which

ight have different sources (ENSO, IOD and PDO), and with the

AM on the east coast, it is likely that the IAV of extreme Hs is also

riven by these oscillations. Statistically significant negative trends
aves in New Zealand waters, Ocean Modelling (2017), 
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n extreme Hs were detected in parts of the west coast of the

outh Island, indicating a possible relationship with the poleward

hift of extratropical cyclone storm tracks ( Gillett and Thomp-

on, 2003 ). Increasing trends detected in parts of the east coast

f the same island suggest an association with positive trends in

he SAM ( Hemer, 2010; Marshall, 2003 ). The latter also seems to

e related to the increasing frequency of extreme waves on the

ast and south coasts of New Zealand. These assumptions regard-

ng relationships between climate patterns and the extreme wave

limate around New Zealand deserve further investigation. 

Analogous results were obtained by the POT-GPD and AM-GEV

ethods when comparing 100-year Hs return values, although the

M-GEV method estimated slightly larger waves at the highest

uantiles. Estimates computed from the model data were lower

han those calculated from the buoy data for Baring Head, Banks

eninsula and Maui as a result of several factors. These include

odel inputs with coarse space-time resolution, selection of a

ource term package ( Tolman and Chalikov, 1996 ) that results in

nderestimation of the energy input during intense storm condi-

ions dominated by young wind-sea ( Ardhuin et al., 2007 ), and

atasets spanning different periods of time. 

As stated by Mathiesen et al. (1994) , water level statistics be-

ome important in estimating extreme waves at shallow water lo-

ations, and these were not considered here. Several factors can

otentially threaten coastal areas in New Zealand, such as land

ubsidence due to groundwater withdrawal, sea-level rise ( Bell

t al., 20 0 0; Hannah, 20 04 ), and mangrove forests degradation

r removal (although relatively uncommon in New Zealand, man-

rove forests degradation and/or removal have occurred in isolated

pisodes – Morrisey et al., 2007; Stokes and Harris, 2015 ). These

ombined with extreme wave events result in an increased risk for

he expanding coastal population of the country and its associated

ndustrial, residential and tourism developments. Therefore, the re-

ults presented here may contribute significantly to safety and eco-

omic strategies in addition to providing relevant information for

limatological applications. 
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