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Abstract 

Senecio glastifolius (Asteraceae) is an invasive species in New Zealand, where it 

threatens rare and vulnerable coastal floristic communities. It has expanded its range 

dramatically over recent years and continues to spread. It is subject to control 

programs in parts of its distribution. Uncertainty over its future distribution and 

invasive impacts in New Zealand contribute to the difficulty of its management. To 

address this knowledge gap, the potential distribution of S. glastifolius in New 

Zealand was predicted, based on its bioclimatic niche.  

Existing information on its current distribution and historic spread is incomplete, 

stored in disparate sources, and is often imprecise or inaccurate. In this study, 

available information on its distribution and spread was synthesised, processed, and 

augmented with new data collected in the field by the author. This data set was 

optimised for use in species distribution modelling. 

The distribution of S. glastifolius is described in its native range of South Africa, plus 

invaded regions in Australia, the British Isles and New Zealand. The data set 

describing its distribution is of higher quality than any known previous data set, is 

more extensive, and more suitable for use in species distribution modelling. The 

historic spread of S. glastifolius in New Zealand is presented, illustrating its 

expansion from sites of introduction in Wellington, Gisborne, plus several 

subsequent sites, to its now considerable range throughout much of central New 

Zealand.  

A predictive model of the potential distribution of S. glastifolius was created based on 

the three main climatic variables observed to limit its distribution: mean annual 

temperature range, aridity, and minimum temperature of the coldest month. MaxEnt 

models were trained on data from all regions for which georeferenced records of the 

species were available; South Africa, Australia, New Zealand and the Isles of Scilly. 

Predictions were evaluated using methods appropriate to the special case of range-

expanding species. Models performed well during validation, suggesting good 

predictive ability when applied to new areas.  

Analysis of the realised niche space of S. glastifolius in the two climatic dimensions 

most influencing its distribution: Annual Temperature Range and Aridity, indicated 

that it is exploiting almost totally disjunct niche spaces in New Zealand and South 
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Africa.  Of the climate space occupied in New Zealand, almost none is available to 

the species in its native range of South Africa. 

Predictions of S. glastifolius’s potential distribution in New Zealand reveal significant 

areas of suitable habitat yet to be invaded. Much of this suitable habitat is contiguous 

with the current range and active dispersal front of S. glastifolius, suggesting that 

invasion is highly likely under a scenario of no management intervention. Specifically, 

it is suggested that control and surveillance in coastal Taranaki are required to 

prevent invasion of an area covering most of the northern third of the North Island.  
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Chapter 1: Predicting the potential distributions of 

invasive species 

 

1.1 Research context 

 

This thesis aims to predict the potential distribution of the invasive species Senecio 

glastifolius (Asteraceae) in New Zealand, and to describe its current range and 

historical spread. The primary motivation is to provide information useful to the 

management of this species. Senecio glastifolius currently threatens coastal 

ecosystems in New Zealand and is considered a nuisance in some agricultural 

contexts. It has expanded its range significantly in recent years and continues to 

spread. There is uncertainty as to its future distribution and impacts. This thesis 

describes the current distribution of S. glastifolius in its native and invaded ranges, 

within a particular focus on New Zealand. The potential distribution of S. glastifolius 

in New Zealand is predicted, using information on its current distribution to infer the 

climatic requirements that limit its distribution.  

 

1. 2 Invasive species 

 

Invasive species are widely recognised as a significant threat to global biodiversity 

(Mack et al., 2000) and as a significant part of global biotic change (Vitousek et al., 

1997). There is a vast and rapidly expanding literature devoted to their study, not 

only because of the threat they pose to valued ecosystems, economic, cultural and 

aesthetic values, but also the unique opportunity to expand ecological knowledge 

that species living outside of their native range present (Richardson et al., 2011). 

Species invasions can provide unique insights into the ecological constraints that 

determine species distributions, an understanding long sought by ecologists 

(Andrewartha & Birch 1954, cited in Kearney & Porter 2009; Fitzpatrick et al., 2007). 

An area that contributes to both of these questions is that of predictive modelling of 

invasive species’ potential distributions. 
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Human agency has massively increased the rate at which species are introduced to 

new environments (Lodge et al., 2003). Although most species introductions do not 

result in naturalisation, and most naturalised species are not considered problematic, 

a small proportion becomes ‘invasive’ (Mack et al., 2000). The concept of ‘invasive’ 

is a subjective construct, and definitions lack consistency (Richardson et al., 2000), 

but here I use the term to describe any human-introduced species which causes 

undesirable effects in its new environment.  

 

Invasive species cause major harm to valued ecosystems via a range of processes. 

These include displacement of desirable species through competition; modification of 

nutrient cycles, fire regimes, hydrology or habitat structure (Mack et al., 2000). 

Invasive species, collectively, create massive economic costs. Invasive species are 

estimated to cause nearly US$120 billion per year of economic damage in the United 

States alone (Pimentel et al., 2005). Alongside the degradation of existing 

ecosystems, invasive species pose major limits to efforts of ecological restoration 

(Norton, 2009). Invasive species can also have negative cultural impacts, including 

displacement of culturally important native species (Pfeiffer & Voeks, 2008). Invasive 

species also have potential to cause aesthetic impacts, such as the modification of 

the structure or colour of landscapes.  

 

Species introduced to new environments, including invasive species, can be thought 

of as constituting a “global experiment in biogeography”, and offer opportunities to 

investigate a number of evolutionary and ecological questions (Richardson et al., 

2011). The deliberate transplanting of species into natural environments is seldom 

considered ethical.  

 

1.3 Modelling invasive species’ distributions 

 

The ability to anticipate the extent to which a species will naturalise in a given region 

is of value to environmental managers, as well as to industries vulnerable to invasive 

species. Reliable knowledge of the suitability of a region to pests can inform 

surveillance efforts and management strategies, with potential both to save money 

wasted on putative pests which are unlikely to naturalise in a region, and to identify 
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invaders whose threat is in fact greater than might be assumed from intuitive 

approaches or non-systematic data. Predictive models can be useful in identifying 

areas where invasive species are likely to first establish (Broennimann et al., 2007), 

facilitating rapid detection of founder populations which can be critical to their 

successful eradication or control (Williams et al., 2008 and references therein). 

Predictive distribution models, when projected onto regions where a species is not 

yet found, can complement non-spatial risk assessments (e.g. Pheloung et al., 1999) 

by offering a spatial assessment of invasion risk.  

 

This chapter provides an introduction to the concepts underlying predictive 

distribution modelling, offers a brief overview of the mechanics involved, and 

explores some of the challenges encountered in species distribution modelling. An 

opportunity for research is introduced.  

 

 

1.4 What is Species Distribution Modelling? 

 

Species distribution models (SDMs: Franklin, 2009; Elith & Leathwick, 2009) predict 

the geographic distribution of species, based on measured or inferred aspects of the 

species’ ecology. The key premise upon which SDMs rest is that species possess 

stable ecological niches, describable in terms of the environmental factors that limit 

their fitness and therefore their existence across associated geographic space.  

 

 

1.4.1 Uses of SDM 

 

Species distribution modelling is a well-entrenched and steadily expanding field of 

research (Franklin, 2009). Species distribution models are used in a wide variety of 

ecological and evolutionary applications. These applications can be loosely divided 

into four main categories: estimating current (realised) distributions, predicting 

potential distributions, predicting changes to distributions under environmental 

change, and inference of species’ physiological tolerances (non-spatial).  
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Because information on species’ current distributions is often limited, SDMs are 

commonly employed as a surrogate. Examples of when this is useful include 

informing decisions on conservation prioritisation (e.g. Mota-Vargas & Rojas-Soto, 

2012), or planning field surveys of rare species (e.g. Guisan et al., 2006).  

 

SDMs are also useful in estimating species’ potential distributions – hypothetical 

distributions possible under current environmental conditions, but with the removal of 

dispersal constraints and biotic effects. This can be useful for reserve design (Wilson 

et al., 2005), planning species reintroductions (Hirzel et al., 2004), predicting species 

invasions (Peterson &Vieglais, 2001; Peterson, 2003), studying disequilibrium with 

environment (Leathwick, 1998), assessing feasibility of biological control agents 

before introduction to a region (Mukherjee et al., 2012), or narrowing search areas 

for collecting suitable bio-control agents (Mukherjee et al., 2011), and mapping 

potential distributions of disease vectors (Kitron 1998).  

 

Another common SDM application is predicting how species’ ranges will respond to 

environmental change, especially climate change (Pearson & Dawson, 2003, Iverson 

et al., 2008, Yates et al., 2010). Such predictions are made for invasive species 

(Kearney et al., 2008), native species (Yates et al., 2010), and economically 

important species such as crops (e.g. Watt et al., 2011). The knowledge gained from 

these SDM studies can assist adaptation to climate change, as well as strengthen 

arguments for minimising environmental change.  

 

Alongside spatial predictions, SDMs can sometimes offer information on the 

physiological tolerances of species (Mac Nally, 2000). Inference can often be made 

as to which environmental variables most limit species’ distributions. The nature of 

the relationship between a species and a certain environmental variable can also 

sometimes be inferred.  

 

 

1.4.2 Types of model: mechanistic versus correlative 

 

Species distribution models are commonly divided into two classes, mechanistic or 

correlative, based on the source of information they use to describe a species’ niche. 
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Mechanistic models (Kearney & Porter, 2004; Kearney & Porter, 2009) use known 

ecological responses to predict distributions; they do not require species location 

data as input (Kearney et al., 2008). Input includes known physiological tolerances, 

often generated from controlled experiments, or other documented information such 

as habitat use. Correlative models rely on the observed distribution of species to 

elucidate the species’ niche. Correlative models are more widely used than 

mechanistic models, because the requisite knowledge of species’ ecological 

requirements is often not known a priori. Indeed, investigating the environmental 

tolerances of species is often a primary objective of correlative modelling (section 

1.4.1). While mechanistic and correlative approaches are not always mutually 

exclusive (Dormann et al., 2012), the conceptual distinction between mechanistic 

and correlative prediction is still useful. This study focuses on correlative SDMs. 

Subsequent discussion of SDMs refers to the correlative approach, unless otherwise 

stated.  

 

 

1.5 Ecological theory 

 

Species distribution modelling rests upon an ecological model (sensu Austin, 2002). 

In this section I examine some of the concepts and assumptions underlying SDMs.  

 

 

1.5.1 Species range limits determined by environment 

 

The field of SDM rests on the tenet that species’ distributions are determined by their 

environments (Gaston, 2009). By describing relationship between species and 

environment, especially the limits to distribution imposed by environment, the 

distribution of species may be predicted for areas where the environmental 

conditions are known. The theory that environment, especially climate, governs 

species distributions is very well supported. Evidence is found in the fossil record 

(Woodward, 1987; Huntley, 1999; Davis & Shaw, 2001, cited in Pearson & Dawson, 

2003).  

 
 

http://onlinelibrary.wiley.com/doi/10.1046/j.1466-822X.2003.00042.x/full#b1
http://onlinelibrary.wiley.com/doi/10.1046/j.1466-822X.2003.00042.x/full#b2
http://onlinelibrary.wiley.com/doi/10.1046/j.1466-822X.2003.00042.x/full#b3
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1.5.2 Space duality: geographic versus environmental space 

 

A fundamental concept in SDM is the duality between geographic and environmental 

space (Hutchinson 1957). At any given point in geographic space (as given by a 

Cartesian coordinate), one can measure a set of environmental variables. The vector 

of environmental variables associated with the geographic point can be mapped in 

environmental space. Environmental space is an abstract entity, and can incorporate 

any number of environmental axes.  

 

 

1.5.3 Types of niche 

 

Ecological niche theory used in SDM draws on the work of Hutchinson (1957) and 

subsequent advances (e.g. Soberon & Nakamura, 2009). Species can be thought to 

possess a fundamental niche (F), defined as the n-dimensional hypervolume in 

environmental space within which the species can survive and reproduce 

(Hutchinson, 1957). The actual geographic space occupied by a species, or realised 

niche (R), is a subset of its fundamental niche. Parts of the fundamental niche will 

not be occupied by the species, due chiefly to biotic interaction and geographic 

availability of environmental space. This concept of environmental space availability 

is captured in the concept of the biotope: the full set of environmental conditions 

which exist in the geographic region in which the species has its range. The realised 

niche is further constrained by dispersal limitations.   

 

As outlined above, estimations of a species’ niche are drawn from the species’ 

recorded distributions. Hence, accurate characterisation of a species’ niche is 

complicated by the fact that species are often to be found outside of their 

fundamental niches. This is true for both vagile species, which might pass through 

unsuitable habitat (Manning et al., 2005), or for sessile species which can exist as 

sink populations (Hanski, 1999). This invites an addition to the set theory outlined 

above. The fundamental periniche (Fp) is the space outside the fundamental niche 

that permits existence but not self-perpetuation. This is the home of sink populations.  
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1.5.3 Niche conservatism 

 

Because SDM predictions of species’ distributions are based on the assumption that 

distribution is determined by niche, they also rely on the assumption that species’ 

niches are stable within the spatial and temporal scales used (Martinez-Meyer et al., 

2004).  

 

There is significant evidence for realised niche shifts between native and invasive 

populations (Gallagher et al., 2010), and various hypotheses have been put forward 

to explain this including biotic release (Guisan & Thuiller, 2005), phenotypic plasticity 

(Sexton et al., 2002), differences in climatic space availability between regions 

(Fitzpatrick et al., 2007), rapid evolution (Buswell et al., 2011), and climate space 

anisotropy (Soberon & Peterson, 2011).  

 

In a study examining 37 animal species, Peterson et al., (1999) showed high levels 

of niche conservation during introduction to new regions. Other studies suggest rapid 

evolution of invasive species is possible, with consequent extension or alteration of 

niche in the new environment (Maron et al., 2004). Niche conservatism is a 

reasonable assumption in most applications, but differences in realised niches can 

be expected between regions.  

 

 

1.6 Data used for SDM 

 

Correlative SDMs require georeferenced species data, plus mapped environmental 

data to bridge geographic and environmental space.  

 

1.6.1 Species presence data 

 

Species’ location data for SDM are drawn from a wide range of sources. Usually, 

data are collected opportunistically from existing sources such as herbarium and 

museum databases, species atlases, published location data, etc. Designed field 
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surveys are carried out only occasionally, mostly because of constraints of funding or 

logistics.  

 
Opportunistically collected presence data used for SDM comes with limitations, both 

inherent and source-dependent. This data source most often lacks explicit 

information on species absence. The limitations of presence-only data are widely 

acknowledged in the literature (Li et al., 2011) and much research has been devoted 

to overcoming them or working within the constraints they pose.  

An inherent limitation is that prevalence is unknowable (Elith et al., 2011). 

Prevalence is the proportion of sites within a region, at a defined scale, that are 

occupied by a species. Species presence data also tend to contain bias resulting 

from the methods of their collection (Graham et al., 2004). Sampling intensity is likely 

to be relatively higher in areas more frequently visited by people, such as near roads 

(see, for example, Kadmon et al., 2004). 

 

 

1.6.2 Environmental data 

 

Climatic variables (e.g. mean annual rainfall) are the most commonly used 

environmental predictors of plant distributions (Franklin, 2009). Other variables 

including soil properties (Coudun et al., 2006), and land cover (Pearson et al., 2004) 

are important determinants of plant distributions but are usually not included in plant 

SDM exercises.  

 

Environmental data is typically matched to species location data by extracting values 

from spatially continuous data layers in a GIS (geographic information system). Data 

may be interpolated from weather station records (e.g. Hijmans et al., 2005) or 

derived from remote sensing (e.g. Andrew & Ustin, 2009).  

 

While it is vastly more common to draw environmental information from interpolated 

climate surfaces, some studies have instead used point data from the climate station 

closest to training data locations (e.g. Mgidi et al., 2007).  
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The suite of variables included in a model is necessarily a finite subset of the total 

suite of environmental variables experienced by a species, which may be measured 

on an infinite number of axes.  

 

 

1.6.3 Choice of predictor: direct predictors versus indirect 

 

Predictor variables used for SDM do not always have a direct, functional ecological 

influence on the focal species (Austin 2002). Instead, variables used are often ones 

which correlate with true functional drivers of species range. An example is altitude 

(indirect) in place of a measure of temperature (direct). Indirect variables vary greatly 

in how closely they relate to direct variables. For example, latitude (indirect) is more 

indirectly related to aspects of temperature (direct) than to day length seasonality 

(direct).  

 

While preference should be had for directly relevant variables (Mac Nally, 2000), the 

unavailability of mapped variables means that correlated variables are commonly 

used in their place. Unfortunately, the highest quality and most functionally relevant 

predictors are often only mapped for localised areas and do not always span the 

entire area examined by a study (Austin & Meyers, 1996). One example is the Land 

Environments of New Zealand (LENZ) data, which includes fifteen environmental 

variables of direct ecological relevance to vegetation, at extremely high resolution 

(25 m grid cells), but limited to the New Zealand extent. 

 

Predictors with direct ecological influence on a species give the best transferability to 

new times or regions. Indirect variables serve to explain species distributions only to 

the extent that their correlations with direct variables remain stable. These 

correlations cannot be expected to always remain constant in space or time, making 

predictions to new environments unreliable (Elith et al., 2010).  

 

Choosing direct variables relies on prior knowledge of a species’ ecology. In many 

cases, no or insufficient prior knowledge exists as to the true limiting factors of a 

species’ distribution (Kilroy et al., 2008).  
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Variable selection in the absence of comprehensive ecological knowledge of the 

focal species can be complicated. For example, an external variable can exert a 

causative correlation on two or more variables unrelated to each other (e.g. 

topographic variables can influence both temperature and precipitation), leading to 

complicating correlations among candidate predictors.  

 

 

1.6.4 Limitation of resolution and scale of functional influence 

 

Choice of predictor variable is also often limited by practical aspects of scale. 

Different variables function at different scales to influence species distributions. In 

cases where environmental data is measured at a significantly coarser scale than at 

which it exerts ecological influence, its signal will be diminished or lost to the noise 

imparted by its generalisation.  

 

 

1.6.5 Absence, Background, and Pseudo-absence data 

 

Species absence data can be highly informative in delimiting the species distribution 

and correlating this to a developing understanding of the species’ niche. The 

usefulness of absence data for SDM is widely accepted, and has been proven 

experimentally (e.g. Wisz & Guisan, 2009). 

 

In most cases, reliable information on species absence is unavailable (Lobo et al., 

2010). For most species, rigorous surveys of geographic distribution do not exist. 

Even with good survey design, the reliability of observed absences is limited by a 

host of complicating factors which can lead to ‘false absences’. Such contingent 

factors include past disturbance, dispersal limitation and biotic interaction (Lobo et al., 

2010).  Dispersal limitation is particularly relevant to invasive species undergoing 

range expansion, which have not been present in a region for long enough to have 

reached an equilibrium distribution. Hence, absences from within the geographic 

area of current expansion are difficult or impossible to equate with lack of suitability. 

This is less of a problem in areas of stabilised distribution, such as species’ native 

ranges, or areas of long establishment. Major disequilibrium of distribution may, 
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however, exist even in species’ native ranges (Leathwick, 1998). Even long-

established invasive species can have expanding or in-filling distributions (e.g. 

Beans et al., 2012).  

 

Absence data are useful because they provide information on the environmental 

conditions that are unsuitable to a species (Lobo et al., 2010). This cannot be 

inferred from presence data alone. When absence data is not available to be 

contrasted against presence data, comparison can instead be made between the 

distribution of presences and the space available to a species. Hence pseudo-

absence or background data are used; samples drawn from the study region/s 

(usually randomly), which offer some suggestion of space not occupied by a species.  

 

An important distinction exists between background and pseudo-absence data, 

although they are often treated as being the same thing. The distinction is that 

pseudo-absences serve to inform a model of unsuitable space – the space which 

has been sampled by the species and remains unoccupied. Background data, in 

contrast, inform the model of the space available to a species. Background data are 

assumed to include both unsuitable and suitable habitat. Background data are used 

by models such as MaxEnt and ENFA, while pseudo-absence data is conceptually 

suited to models such as GLMs (e.g. binary logistic regression) which deal with 

presence versus absence.  

 

Whether to use pseudo-absence or background depends on the specific algorithm, 

and also on the task. Using non-random pseudo-absences is probably good for 

describing a species actual distribution while probably bad for describing potential 

distribution. The difference here is that MaxEnt’s output variable (which relates to 

presence versus absence) is not the same as its input variable (which relates 

presence to available space). If you train a GLM with presence versus background, 

then the output will be presence versus background and not presence versus 

absence.  
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1.6.6 Target groups absences and background bias matching 

 

The problem of spatially biased presence data can be reduced by selecting 

background data with approximately the same bias (Phillips et al., 2009). 

Theoretically, if the bias present in the background data is the same as the bias in 

the presence data then the model will not be compromised by bias (Elith et al., 2011). 

The exact nature of the bias in presence records is usually unknown, necessitating 

an approximation. This is simplest when presence data come from a single source. A 

proposed method (Phillips et al., 2009), is for background data to be comprised of 

presences for ‘target group’ species; those species likely to have been observed by 

the same methods as the study species. However, when multiple methods have 

been used to collect study species presences the bias is less easily replicated.  

 

Absence can also be inferred where samples have been collected for other taxa, 

where the presence of the focal species can be expected to have been recorded 

were it present (e.g. Mateo et al., 2010). 

 

1.6.7 Screening pseudo-absence data 

 

Models which, conceptually, treat zeros as a mutually exclusive case to ones, can be 

subject to limited fit when trained on pseudo-absence data that contains many 

presences. This is likely to occur when pseudo-absences are a random sample of 

the study region (or ‘background’ region, section 1.6.5). Several studies have put 

forward possible solutions, including removing recorded presence from pseudo-

absence samples, or biasing the ~random selection of pseudo-absences by 

weightings proportional to the environmental dissimilarity to presence records 

(Zaniewski et al., 2002). Biasing pseudo-absence samples to increase contrast with 

presences can involve circular logic, and has been discouraged (Stokland et al., 

2011). Simply removing known presences from pseudo-absence samples, however, 

is not inappropriate.  
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1.6.8 Delineation of the background region 

 

When absence, pseudo-absence or background data are to be used, the modeller 

must decide the geographic region/s from which they are drawn. This region, which I 

will refer to as the background region, has often been chosen arbitrarily. The 

importance of background region delineation has recently received increasing 

attention (VanDerWal et al., 2009; Barve et al., 2011).  

 

When choosing background data, consideration must be given to what they 

represent ecologically. Ideally, they provide information on the environmental 

conditions available to a species. The distribution of presences within the available 

space then offers an estimate of which conditions are favourable to a species and 

which are not. This is conceptually similar to the idea of ecological niche factor 

analysis (Hirzel et al., 2002).  

 

The idea that the geographic area from which samples are drawn should not be 

larger than the species’ range is at least as old as Austin & Meyers (1996). They 

note that spurious absences, ‘naughty noughts’ in their terminology, distort observed 

response curves and increase model commissiveness.    

 

Background size used in various studies has ranged in extent from the minimum 

convex polygon encompassing the presence points (Rodda et al., 2011), to global 

(Capinha et al., 2011). The area of environmental space represented in the 

background can be expected to increase with greater geographic area. Too small a 

background is undesirable for predicting potential distributions (Lobo et al., 2010; 

VanDerWal et al., 2009), because little information will be present about the 

accessible environmental space that the species does not inhabit. Too large an area 

will tend to lead to over-prediction (high commission) (Lobo et al., 2010; VanDerWal 

et al., 2009). Variable selection is also affected, with models utilising a very large 

background tending to be dominated by fewer variables than models trained using 

smaller backgrounds (VanDerWal et al., 2009).  

 

The size of the background in relation to the presence data governs the ecological 

question that the resulting model answers (Elith et al., 2011). A highly local 
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background creates a model which explains local habitat selection, comparing 

occupied space to intervening or closely neighbouring unoccupied space. In contrast, 

using a background spanning many eco-climatic regions asks why a species is found 

in one eco-climatic zone and not others (Elith et al., 2011, cf. Webber et al., 2011).  

Clearly the size of background should be informed by the research question. Lobo et 

al., 2010 found that a greater contrast between ~absence and presence data is 

needed to predict potential distributions than realised distributions.  

 

One consideration in choosing a region from which to draw absences highlighted by 

Elith et al., 2010 is the extent of extrapolation then involved in projecting to new 

regions; a larger training region will usually contain a wider variety of environmental 

space, thus reducing extrapolation. Thus it may seem useful to increase the 

background region, since extrapolation introduces uncertainty into predictions; 

however, more careful conceptual analysis is required. The reason that extrapolation 

is undesirable is that it involves fitting values to data values or combinations which 

the model has no information for (i.e. data which were not represented in the training 

data). However, including training data from regions where rigorous sampling has 

not occurred (including regions in which equilibrium assumptions are unreasonable) 

does not in fact offer any useful information to the model: it is unknowable whether 

values represent ‘true’ presences or absences. In short, there exists an unavoidable 

choice between a) using reliable data but extrapolating in order to make predictions, 

and b) reducing the apparent level of extrapolation at the expense of data reliability. 

In this study a preference has been given to using a reliable model and to measure 

and state the uncertainty (level of extrapolation), than to fit an unreliable model with 

spurious accuracy. 

 

 

1.6.9 Choice of geographic range for model training 

 

Invasive species, by definition, exist in more than one region. Usually these regions 

are non-contiguous, though this need not be the case (e.g. Acacia spp. in Australia 

(Webber et al., 2011) and Corynocarpus laevigatus in New Zealand (Costall et al., 

2006)).  
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When species presence data exists for more than one region, the modeller must 

choose which region or combination of regions to use for model-training. The 

literature includes examples of using only the invaded region for which predictions 

are to be made (e.g. Elith et al., 2010); the native region only (e.g. Chen et al., 2007); 

or a combination of both (Fitzpatrick et al., 2007), sometimes including other invaded 

regions elsewhere in the world (Webber et al., 2011).  

 

Training models using all available regions has important advantages. The different 

geographic regions occupied by a species will often have different climates, each 

giving a different window into the species niche (Soberon& Peterson 2011). This can 

be very pronounced. Different variables will limit species’ distributions in different 

parts of its total range (Grinnell, 1917). In addition to these benefits, using the full set 

of occupied ranges yields a larger data set. Model performance tends to improve 

with larger samples, but the effect is asymptotic (Stockwell & Peterson, 2002).  

 
One mechanism by which the inclusion of the full range of available data tends to 

improve prediction is the reduction of extrapolation required. The union of multiple 

geographic regions usually spans a greater volume of environmental hyperspace. 

Webber et al., (2011) found that when predicting invasive acacia species in South 

Africa, use of the full set of geographic ranges improved model sensitivity (defined as 

the proportion of presence data correctly classified by the model). Sensitivity is an 

especially important quality of invasive species SDMs.  

 

 

1.7 Models used 

 

Once species location data has been compiled, and a suitable suite of predictor 

variables selected, a model must be constructed to describe the relationship 

between the two. A vast number of algorithms have been used in SDM, and new 

approaches are continually emerging (e.g. Li et al., 2011). Examples include 

statistical methods: generalised linear models (GLM, Venables & Ripley, 1994), 

generalised additive models (GAM, Hastie & Tibshirani, 1990), multivariate adaptive 

regression splines (MARS, Moisen & Frescino, 2002), Bayesian models (Latimer et 

al., 2006), spatial autoregressive models (Dormann, 2007), and machine learning 
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methods: tree based methods such as classification and regression trees (CART, 

Breiman et al., 1984), random forests (RF, Prasad et al., 2006) and boosted 

regression trees (BRT, Elith et al., 2008, also known as stochastic gradient boosting 

or generalised boosted models), artificial neural networks (ANN, Olden et al., 2008), 

genetic algorithms (e.g. GARP, Stockwell & Peters 1999), maximum entropy models 

(e.g. MaxEnt, Phillips et al., 2006), support vector machines (SVM, Drake et al., 

2006); envelope models: BIOCLIM (Busby, 1991); distance metrics: DOMAIN 

(Carpenter et al., 1993), Mahalanobis distance (Farber &Kadmon, 2003); and 

ecological niche factor analysis (ENFA, Hirzel et al., 2002). This list is far from 

exhaustive.  

 

Choice of algorithm often reflects common usage in a particular sub-discipline (Elith 

& Leathwick, 2009), and the choice of algorithm may be less critical to the modelling 

process than the practitioner’s familiarity with the chosen algorithm (Austin et al., 

2006).  

Algorithms can be categorised by several means, including conceptual and 

mechanical approach, interpretability of process (i.e. black box to clear box 

continuum), and data requirements.  

 

1.7.1 Presence only 

 

Certain algorithms examine presence data only, with no consideration of absence. 

These include rectilinear envelopes (e.g. BIOCLIM, Busby 1991); distance metrics 

such as the Gower metric or the Mahalanobis distance (Farber &Kadmon, 2003).  

 

 

1.7.2 Presence – Absence/pseudo-absence/background 

 

Approaches using pseudo-absence or background data in place of true absence 

have occasionally been referred to as presence-only models, but a conceptual 

distinction should be made between these and the purely presence-only models 

(section 1.7.1).  
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Presence only techniques make no use of the environmental characteristics of a 

species range except that contained in the presence data. Examining not only 

presence locations, but the intervening and surrounding geographic space allows 

some inference of habitat selection preferences.  

 

Some algorithms are formulated specifically to examine the background from which 

a species is selecting, such as ENFA (Hirzel et al., 2002) or MaxEnt (Phillips et al., 

2006).  

 

1.7.3 MaxEnt 

 

Maximum entropy modelling has seen increasing usage in SDM applications with the 

advent of the freely available Java program ‘MaxEnt’ (Phillips et al., 2006). 

Complementing its increased usage, a number of studies have been published 

focussing on its strengths and limitations for predicting species distributions (Rodda 

et al., 2011; Elith et al, 2011; Baldwin 2009; Warren & Seifert 2011; Phillips & Dudik 

2008; Dudik et al., 2007; Phillips et al., 2006). 

 

 

1.7.4 Comment on uses – complex functions for geographic interpolation; 

simple functions for geographic extrapolation 

 

Some models fit only very simple relationships to the data (e.g. rectilinear envelopes 

in environmental space), while at the other extreme methods such as boosted 

regression trees or MaxEnt are capable of fitting very complex relationships. 

Choosing how closely the model fits the environmental data is important. Overly 

simplistic models tend to provide comparatively poor predictions of species’ current 

distributions (Elith et al., 2006). Limitations of very simple modelled functions include 

the oversimplification of a species’ response to a given environmental variable. For 

example, the Mahalanobis distance assumes a Gaussian response. Asymmetric 

responses to environmental variables are not uncommon (Austin, 1980), and even 

multimodal responses can be observed (Le Maitre et al., 2008). Judicious 

transformation of variables can allow asymmetric responses to fit more closely the 

shapes accommodated by the model (Franklin, 2009). 
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In a recent study Heikkinen et al. (2012), showed that interpolative accuracy does 

not always come at the expense of transferability to new regions, and that some 

algorithms, such as MaxEnt, demonstrate particularly good capability of both.  

 

 

1.8 Output 

 

1.8.1 What is being mapped? 

 

The chief output of SDMs is mapped values, usually on a continuous scale from 0 to 

1. What this value actually represents is often poorly defined (Kearney, 2006). 

Mapped output is, broadly, the geographic realisation of the species’ estimated 

relationship with environmental space. This has often been taken to be the 

probability of species presence (Guisan& Zimmermann, 2000), which follows 

naturally from the use of techniques such as generalised linear models, which were 

developed prior to SDM. If certain assumptions are met, then probability of presence 

is a fair interpretation of mapped output. These assumptions include input data from 

well-designed surveys containing both species presence and absence, the absence 

of bias, and equilibrium between species and environment.  

 

MaxEnt’s default ‘logistic’ output, scaled from 0 to 1, can be interpreted as a 

probability of presence, subject to assumptions of sampling design such as plot size 

(Elith et al., 2011).  However, where these assumptions cannot be met, the true 

probability of presence is unknowable. However, mapped output still provides a 

useful measure of relative environmental suitability. 

 

Predicted values should have a monotone relationship with environmental suitability. 

While the relationship is unlikely to be perfectly linear, higher predicted values can 

usually be expected to be more suitable than lower predicted values. 

 

Monotonicity depends on the algorithm and the data. For example, the Mahalanobis 

distance treats the training mean as the species optimum for each gradient. When 

the training mean differs from the true niche optimum, the highest assigned values 
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will not correspond with the highest true suitability (Knick & Rotenberry, 1998). This 

is a likely scenario, given data limitations and niche availability discussed above.  

 

From the above we can see that mapped output from SDMs offer, at least, the 

spatial pattern of relative environmental suitability. Rather than simply knowing 

relative suitability, it is often desirable to differentiate between suitable and 

unsuitable geographic space. The continuous output variable of most SDMs 

therefore requires transformation via a threshold.  

 

1.8.2 Thresholds for transformation 

 

A number of approaches for choosing a threshold exist (Liu et al., 2005). Thresholds 

are often chosen to optimise a certain measure of performance, such as true positive 

rate, true negative rate, or some combination thereof. The choice of threshold should 

be governed by the particular application, taking into account the relative costs of 

different types of error, as well as properties of the training and test data. For 

example, when predicting the potential distributions of invasive species, omission is 

likely to be more consequential than commission, and is also more able to be 

determined (see section 1.9.3).  

 

1.8.3 Minimum training presence 

 

Minimum training presence is the lowest value of predicted suitability when the 

model is applied to the same data for which it is trained. An interpretation of this is 

that all environmental space which receives a higher suitability score is closer to the 

species’ niche optimum. Assuming that the occurrence record which received the 

minimum training presence is reliable (i.e. was recorded correctly), then all space 

with an equal or higher suitability score can be expected to be suitable to the 

existence of the species, or, at least, that the combination of environmental variables 

included in the model does not preclude the existence of the species at associated 

sites. Factors not included in the model might render some of the associated 

geographic space unsuitable (e.g. biotic competition). Because species are 

sometimes recorded in space outside of their niche (e.g. growing as a sink 

population), it cannot always be assumed that the part of environmental space 
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associated with the minimum training presence represents part of the species’ 

fundamental niche (section 1.5.3 niche theory). 

 

 

1.8.4 Response curves 

 

In addition to mapped predictions, a common output of SDMs is a graphical 

representation of a species’ ‘response curve’ to an environmental variable. The 

response curve shows how the outcome (e.g. habitat suitability or probability of 

presence), plotted on the y axis, responds to changing values of a predictor variable. 

They are also referred to as partial dependence plots (e.g. Zurrel et al., 2012). Such 

plots are useful for identifying implied ecological relationships, such as 

environmental optima. They may also be examined to reveal evidence of undesirable 

model behaviour. An example is overfitting, which can be evidenced by 

unrealistically complex response curves (Elith et al., 2010). Unexpected shapes can, 

however, be due to the effect of other elements of a species’ environment, including 

biotic influence. For example, where a Gaussian response is expected to a variable 

‘a’, apparent bimodality can be observed where a limiting variable ‘b’ coincides with 

favourable values of ‘a’ (Austin, 1980).  

 

Many modelling methods have built-in functionality for producing response curves. 

For those that do not, methods exist to create them manually (Elith et al., 2005). 

Caution is required in their interpretation, though, because a species responds to all 

dimensions of its environment simultaneously. This is difficult or impossible to 

represent graphically, and typically only one variable is examined per response 

curve plot (but see Hartley et al., 2006; Zurrel et al., 2012).  

 

 

1.9 Model Evaluation 

 

Validation of SDM predictions is inherently conceptually difficult. The very absence of 

information that justifies the use of a predictive model precludes its absolute 

validation at the time of modelling. Therefore, tests of predictive model performance 
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are only ever estimates. There exists a great diversity of metrics and methods to 

evaluate and validate SDMs, each with strengths and weaknesses that lend them 

best to different applications.  

 

Perhaps the simplest measures of model performance are those relating to the 

number of correctly predicted cases. These include the number of true positives, 

false positives, true negatives and false negatives. This information is often 

presented as a 2x2 table, referred to as a ‘confusion matrix’ (Fielding & Bell, 1997). 

This information is typically expressed as a proportion, e.g. the true positive rate, 

which measures the proportion of correctly predicted positives. The false negative 

rate and the false positive rate are commonly termed omission and commission, 

respectively. Related concepts are sensitivity and specificity. Sensitivity measures 

the proportion of presences correctly predicted by the model; specificity measures 

the proportion of absences correctly predicted. All of these measures require data to 

be classified as presence or absence, and thus require continuous model output to 

be transformed via a threshold. For a given model, choice of threshold determines 

the ratio of sensitivity and specificity. A lower threshold will, ceteris paribus, increase 

sensitivity and the expense of specificity, while a higher threshold will increase 

specificity at the expense of sensitivity.  

 

1.9.1 AUC 

 

One measure which has gained popularity is the AUC, or, the Area Under the 

[receiver operating characteristic] Curve. AUC measures discrimination. It reports the 

proportion of correctly predicted cases when examining whether a randomly selected 

presence scores higher than a randomly selected absence. Where absence data are 

unavailable, background data may be substituted (Phillips et al., 2006), with a 

corresponding change in what the AUC represents. Because AUC examines 

discrimination over the entire range of predicted values, no threshold for binary 

classification is used. This aspect has helped increase its popularity compared to 

some other discrimination measures such as TSS (True Skill Statistic, (Allouche et al. 

2006)), or Cohen’s Kappa (Fielding & Bell, 1997), which require a threshold to be 

specified. Measures which require a threshold give differing judgements of 
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performance depending on the threshold selection, which can make it harder to 

interpret overall model performance (Fielding & Bell, 1997).  

 

AUC is scaled from 0 to 1. A value of 1 represents perfect discrimination; 0.5 shows 

discrimination no better than a random prediction; and a value less than 0.5 shows 

worse discrimination that a random prediction.  

 

 

1.9.2 Significance tests 

 

Another means of evaluation is the testing for statistical significance of spatial 

predictions. The null hypothesis is typically that the model predicts the class 

membership of test data no better than a random model. This requires model 

predictions to be classed as presence or absence. When traditional species absence 

data is not used (such as in presence-background models), a modification is 

required. The program MaxEnt performs significance tests on models, using the null 

hypothesis that the model predicts the test data (presence only) no better than a 

random model with the same fractional predicted area (Phillips et al., 2006). 

Fractional predicted area is, for a finite geographic area, the proportion of grid cells 

predicted as presences.  

 

1.9.3 Which evaluation measures are best for SDM of invasive species? 

 

A caveat of using AUC for models of range expanding species is that ranking the 

greatest proportion of presences higher than ‘absences’ (or background) is no longer 

desirable. Due to the inherent dispersal limitations faced by range expanding species, 

some of the background which constitutes the ‘absences’ can be expected to be 

suitable. This is compounded by imperfect detection of species presence. A very 

high AUC score for a species which has not yet expanded to fill its entire potential 

range, and/or which has not been sampled perfectly, could indicate an overfitted 

model (except when obtained from truly independent test data; see section 1.9.4 

below). AUC is still a useful measure, but must be interpreted in the context.  
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A number of techniques and metrics exist for the evaluation of model performance. 

There has been much discussion in the literature on the relatives merits of each (e.g. 

Fielding & Bell, 1997; Allouche et al., 2006; Lobo et al., 2008), and the applicability of 

each to different SDM applications. In particular it has been noted that certain 

metrics are less suited to the special case of invading species (Jimenez-Valverde et 

al., 2011).  This stems from the fact that an invading species is unlikely to be in 

equilibrium with its environment. The usual case is of an expanding species, which is 

yet to disperse into its entire suitable range (though note that imperfect dispersal and 

historic influences such as disturbance can cause suitable habitat to be unoccupied 

even for long-established or native species (e.g. Leathwick, 1998)). Disequilibrium 

during invasion can also take the converse case, where in some stages of invasion 

the distribution is greater than the eventual equilibrium distribution. An example is 

the apparent colony collapse of Argentine ants (Linepithema humile) in New Zealand 

(Cooling et al., 2011).  

 

Because of disequilibrium, measures incorporating specificity are, at best, useful 

only with cautious interpretation. For plants, which are generally less likely to occupy 

unsuitable habitat than vagile animals, sensitivity scores can generally be used 

without great risk of misinterpretation. Specificity is more problematic. Ostensibly a 

measure of a model’s ability to predict unsuitable habitat, it is directly influenced by 

the proportion of suitable habitat that remains un-colonised.  

 

Sensitivity is often of heightened importance in iSDM (Invasive Species Distribution 

Modelling), since costs are likely to be higher when suitable habitat is predicted to be 

unsuitable. When there is a lack of accurate knowledge of where a species is absent 

due to unsuitable environment, such as the case of invading species, there is a risk 

that high sensitivity results from over-predicted prevalence (Franklin, 2009). A model 

predicting a prevalence of 100% would have perfect sensitivity, but zero specificity. A 

solution is to calculate the statistical significance of the number of correctly predicted 

presences, given the proportion of the area predicted as suitable (Phillips et al., 

2006).  
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1.9.4 Obtaining test data 

 

Model evaluation requires data against which to test predictions. Test data may be 

obtained by re-substitution, data splitting, or an independent source (Fielding & Bell, 

1997; Jeschke & Strayer, 2008). Re-substitution involves testing the model using the 

same data with which it was trained, and does not constitute an adequate test of 

predictive performance. There are several methods by which data can be withheld, 

including re-substitution, k-fold cross validation, ‘leave-one-out’ (sensu Hengl et al., 

2009), and bootstrapping (see Fielding & Bell, 1997).  

 

Ideally, test data should be independent from training data. Test data taken from the 

same geographic region/s as training data are compromised in their independence 

by spatial autocorrelation (Legendre, 1993). This is true of data from ‘independent’ 

sources (e.g. field collection) as well as data drawn randomly from the same pool as 

training data. An often cited solution is to use geographically separate regions as the 

folds, a process referred to as k-fold regional cross-validation (Hartley et al., 2006; 

Jimenez-Valverde et al., 2011). For each iteration, one region is withheld as a test 

region and the rest are pooled for training. Not only does this approach ensure 

independence of test data, it gives a more direct measure of the model’s ability to 

predict to new geographic regions (Jimenez-Valverde et al., 2011), which is the 

purpose of this study.  

 

A rarely used approach in predictive modelling is to experimentally plant seeds of the 

study species across a broad range of the environmental variables used to build the 

model and to measure plant performance (Wright et al., 2006). This technique has 

obvious ethical limitations for use with invasive species.  

 

1.10 Research aims 

 

This study offers a predicted potential distribution of S. glastifolius in New Zealand. 

Senecio glastifolius is native to South Africa and was first recorded in New Zealand 

in 1963. It is currently regarded as an environmental weed, and is the subject of 

considerable control efforts.  



37 
 

 

Conservation managers can presently only speculate upon the future impacts of S. 

glastifolius in New Zealand. For example, the wide shingle banks of the South 

Island’s many braided rivers have been suspected to be potentially vulnerable to 

invasion (S. Timmins, pers. comm.).  

 

1.11 Thesis structure 

 

The remainder of thesis is organised into two major sections. In the first section, 

chapter two describes the current and historical distribution of S. glastifolius, with 

emphasis on New Zealand. The result of the work described in this chapter is a new 

data set appropriate for use in SDM. In the second section, chapter three predicts 

the potential distribution of S. glastifolius in New Zealand, with implications for its 

management. The SDM algorithms MaxEnt and BIOCLIM are used on the New 

Zealand and global data. Throughout the process of model training, parameterisation 

and testing, special attention is given to the conceptual challenges posed by range-

expanding species. Key messages of the research, plus possible avenues of further 

enquiry are discussed in chapter four.  
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Chapter 2: Describing the current distribution and 

historical spread of Senecio glastifolius 

 

Abstract 

Senecio glastifolius is a tall perennial herb native to part of South Africa’s Cape 

region. It is naturalised in New Zealand, Australia, Great Britain and Madeira, and is 

considered invasive in most of its naturalised range. As is typically the case for many 

invasive species, the range of S. glastifolius is, so far, poorly described, with 

information incomplete and often imprecise. Details of its historical spread are 

similarly limited. This paucity of information limits quantitative ecological analyses 

drawing on distribution data, such as species distribution modelling. To address this 

knowledge gap, a new, more comprehensive dataset was complied. A substantial 

body of expert knowledge was drawn upon, and extensive field observations made, 

to supplement information from herbaria and other databases. Information was 

collected and processed for issues of accuracy and reliability. Methods employed 

reflect the requirements of species distribution modelling (SDM), which is the primary 

intended use of the dataset. The result is a more complete and higher quality dataset 

describing the distribution and historical spread of S. glastifolius.  

 

2.1 Introduction 

Data describing the geographic distribution of species is an essential requirement of 

many studies in biogeography and ecology, including species distribution modelling. 

The data used for SDM are typically drawn opportunistically from existing sources 

(Newbold, 2010). The quality of the existing data, in reference to the research 

questions they are used to answer, is often inadequate, necessitating significant 

filtering and cleaning (Feeley & Silman, 2010; Webber et al., 2011). Existing data for 

S. glastifolius show many of the typical issues, including incomplete coverage of the 

actual geographic distribution, a lack of synthesis of existing data, and issues of 

imprecision and inaccuracy of georeferencing. To allow robust models of S. 

glastifolius’s potential distribution to be trained and validated, a new data set was 

developed describing its current distribution and historic spread.  
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2.1 Methods 

2.1.1 Species occurrence data 

 
Data on the observed distribution of S. glastifolius was drawn from its recorded 

global range. This includes its native South Africa plus naturalised populations in 

New Zealand, Australia and Great Britain’s Isles of Scilly, but excludes Madeira and 

Guernsey for which no georeferenced records were available. Data were obtained 

through a number of channels as described in the following paragraphs.  

For South Africa, data were taken from the PRECIS (SANBI, 2007) and ACKDAT 

(Rutherford et al., 2003) databases and cleaned extensively (see section 2.1.2 for 

methods of data cleaning). These were augmented by data provided by local 

ecologists Dave Edge (Edge, 2005) and Jan Vlok (pers. comm.), plus records 

obtained from a website containing georeferenced photographs of South Africa’s 

flora and fauna (Anon., 2011a; Anon., 2011b).  

 

For Great Britain, detailed data were provided by local botanist Rosemary Parslow 

(R. Parslow, unpub. data). One additional record was obtained from a photograph 

published online, accompanied by a detailed description of location (Fenwick, 2011).  

For Australia, data were provided by David McNamara of Greenskills, Albany. This 

dataset constitutes many years of detailed observation from the Albany area. Data 

were also taken from the Australian Virtual Herbarium (AVH) and cleaned.  

For New Zealand, data were sourced from various herbaria (AK, WELT, MPN, CHR, 

and NZFRI).  Records were also taken from the Department of Conservation’s 

unpublished database ‘BIOWEB’.  

 

Several ecologists, botanists and weeds officers from around New Zealand were 

contacted, all of whom offered their knowledge on the distribution of S. glastifolius.  

This list of experts consulted included Bob Brockie (formerly Victoria University of 

Wellington), Mike Dodd (AgResearch), Colin Ogle (Wanganui Museum Botanical 

Group), Mick Parsons (Wellington Botanical Society), Don Ravine (Ecologist), Craig 

Davey (Horizons Regional Council), Peter Williams (Landcare Research), Nick 

Singers (Ecologist), Kim Wright (Tasman District Council), Jill Rapson (Manawatu 

Botanical Society), Phil Karaitiana (Gisborne District Council), Darin Underhill 
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(Hawke’s Bay Regional Council), Harvey Phillips (Greater Wellington Regional 

Council), and Catherine Law (Taranaki Regional Council).  

 

The author also provided extensive personal observations from around the lower 

North Island, representing the period 1997 to 2012.  

 

2.1.2 Data cleaning 

Data from herbaria required extensive ‘cleaning’ (screening for detectable 

inaccuracies, and either removing or amending records as appropriate), with a large 

proportion of the records either too spatially imprecise or incorrectly georeferenced. 

Judging the level of spatial precision required is not an exact science, but it should 

be assessed relative to both the resolution of environmental data used for modelling 

and, perhaps more importantly, the spatial scale over which the environmental 

variables vary.  

 

Previous studies have examined the effect of spatial imprecision in species 

occurrence data (Graham et al., 2008), with a general conclusion that commonly 

used modelling algorithms (e.g. MaxEnt, GAMs etc.) are fairly robust to some 

imprecision. No definitive guidelines exist as to what level of imprecision is 

acceptable. Indeed it would be hard to establish such guidelines, as spatial 

imprecision functions in conjunction with environmental heterogeneity to impart noise 

or bias into model predictions. This idea has recently been expressed in terms of 

spatial autocorrelation of environmental variables (Naimi et al., 2011). The extent to 

which a given level of imprecision affects model predictions depends on the 

environmental heterogeneity of the study region. Accordingly, no threshold of 

imprecision could apply equally to all study areas.  

 

 Coordinates of recorded species occurrences were compared to the accompanying 

location descriptions for congruency. Data points were corrected where location 

descriptions were sufficiently precise to allow this, by updating the coordinates to 

those of the location described. This was done only for a very small proportion of 

records. This sort of ‘data tampering’ requires keen circumspection on the part of the 

modeller.  
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Data imprecision is frequently encountered in herbarium data sets, resulting from 

both the purpose for which data were collected and the methods used for that 

collection. Specimens are often sent to herbaria with the chief purpose being to 

provide a sample of species’ physical attributes. Herbaria certainly aim to provide a 

source of information of floristic distributions at a regional scale, but this scale is 

generally coarser than the often very fine resolution of SDM exercises (Franklin, 

2009; McPherson et al., 2006). The method of data collection often limits precision. 

The personal, hand-held GPS, which is nowadays frequently used to provide 

location information for herbarium specimens, has had its advent very recently in 

relation to the period over which most herbarium collections have been collated. 

Records for S. glastifolius, for example, date back at least as far as 1881 

(PRE0722577). Prior to the GPS, the greatest detail of a specimen’s source location 

was often simply the name of the nearest town or significant geographic feature such 

as a river or mountain (pers. obs.).  

 

Some data points fell outside of the extent of land represented in the gridded 

environmental data layers. In most cases the coordinates of these occurrence data 

were correct, but gridded data (in this case 30 second resolution) inevitably gives an 

imprecise, ‘pixelated’ representation of a coastline. Such presence data, missing 

environmental information due to this imprecision, can be either omitted or artificially 

shifted onshore. Omission will impart a bias in environmental space (penalising 

space associated with lower elevation and more maritime climates) and result in 

fewer training data, which can erode model accuracy (e.g. Wisz et al., 2008; Guisan 

et al., 2007). Artificial shifting will also bias data, by matching shifted presence 

records to the environments found immediately inland of their true locations. The 

severity of this bias depends on the steepness of environmental gradients from the 

shore inland, and knowledge of the environmental geography of the study area 

should be a necessary prerequisite to artificial data shifting. Several presence 

locations for S. glastifolius in New Zealand were artificially shifted onshore, subject to 

these cautions.  
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2.1.3 Data generalisation 

After collation, species location data were generalised to remove duplicates from 

within grid cells used for the species distribution modelling exercise presented in the 

following chapter. The grids used had a resolution of 30 arc seconds, and used the 

WGS84 (World Geodetic System) geographic coordinate system. Technically, this 

could have imparted a slight latitudinal bias in occurrence records, since data were 

unprojected. In the case of the data set used it was judged that the bias would be so 

small as to be almost certainly inconsequential, since co-occurrence of records 

within grid cells was rare. But even small biases compound uncertainty and attention 

to this problem is certainly warranted in the general case of SDM.  

 

 

2.3 Results 

The compilation of data from all sources yielded a total of 309 geographically 

referenced records. A significant proportion was removed during processing (see 

Table 2.1).  

 

Table 2.1 Distribution record processing 

Region Raw Cleaned Shifted Generalised Final 

New 

Zealand 

181 43 10 4 134 

South Africa 67 31 3 0 36 

Australia 46 6 1 0 40 

Scilly 15 0 1 11 4 

TOTAL 309 80 15 15 214 

 

2.3.1 Native Range: South Africa 

The native range of S. glastifolius is very small, spanning the part of South Africa’s 

Cape Region from near Mossel Bay to Port Elizabeth. Its range comprises the 

seaward-most mountain ranges (Outeniqua, Tsitsikama and Kareedouw), extending 

to the coast. It is found up to an altitude of 1,090m (Germishuizen & Meyer 2003). It 

is not recorded as growing farther inland than the seaward ranges (see Figure 2.2). 

PRECIS contains five records of S. glastifolius from the Cape Peninsula, dated from 
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1881 to 1940. None of these records were precise enough for inclusion in the data 

set to be used for species distribution modelling. It is unknown whether these 

records represent part of the native distribution or whether they exist due to human 

transportation. The gap between the Cape Peninsula and the main population to the 

East is over 300km.  
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Figure 2.1.Location of the recorded native distribution of Senecio glastifolius in 

South Africa’s Cape Region. 
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Figure 2.2.Recorded native distribution of S. glastifolius within South Africa’s Cape 

region. Kilometre scale is indicative only. 

 

2.3.2 Australia 

Herbarium records suggest that S. glastifolius was first recorded in Western Australia 

in 1953,  (PERTH 00544965) and in New South Wales in 1957 (NSW 615875). 

Herbarium notes suggest, however, that true naturalisation in Western Australia was 

not evidenced until 1986 (PERTH 00790818). In Western Australia, it is found mostly 

around the city of Albany, with one previous outlier at Manjimup where it appears to 

no longer exist (Diane Evers, pers. comm.). Few records exist for New South Wales, 

where it appears to be sparse and limited to Royal National Park in the vicinity of 

Bundeena.  
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Figure 2.3.Recorded distribution of S. glastifolius in Western Australia. Grey circle 

represents a historic record (1963) where the species is believed to no longer occur. 

Kilometre scale is indicative only.  
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Figure 2.4.Recorded distribution of S. glastifolius in New South Wales. Grey circle 

represents a historic record (1957), where the current status of the plant is unknown. 

Kilometre scale is indicative only. 

 

2.3.3 British Isles 

Senecio glastifolius is naturalised and invasive in the Isles of Scilly, near Cornwall, 

United Kingdom. The first record is for 1971 (Preston et al., 2002) but it appears to 

have remained sparse until the 1990s. A separate source lists it as first naturalised in 

1993 on the island of Tresco (Scilly), where it was cultivated at the Tresco Abbey 

Gardens (Rosemary Parslow, pers. comm.). It has since invaded the islands of St 

Mary’s and St Martin’s. It is found mostly in sand dunes in these isles.  

It is also listed by Preston, Pearman & Dines (2002) as naturalised on rough ground 

in Guernsey. No further information on this population was found.  
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Figure 2.5. Location of the Isles of Scilly and Guernsey. 
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Figure 2.6.Map of the Isles of Scilly as represented by 30 arc second grid cells. 

Black dots represent occurrences of S. glastifolius. Kilometre scale is indicative only. 

 

2.3.4 Madeira 

Senecio glastifolius is recorded as naturalised in Madeira by several sources 

(Hansen & Sunding, 1993; Vieira 2002; Jardim & Sequeira, 2008), but no information 

was found regarding the exact locations, nor any invasive impacts there.  
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Figure 2.7.Location of Madeira archipelago. 

 

2.3.5 New Zealand 

Senecio glastifolius exists in several regions throughout central New Zealand (see 

Figure 2.8). Its range has expanded from separate points of naturalisation. Details 

are given in the following section (2.5.1). Accompanying maps can be found in 

Appendix 2.1. 
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Figure 2.8.Recorded distribution of S. glastifolius in New Zealand. Red dots differentiate 

anecdotal records of imprecise location (up to ~10 km). Grey circles indicate historic 

occurrences believed to no longer exist (Christchurch, 1977; Hamilton, 1992; Hapuawhenua, 

2008). Green dot represents a record found in April 2012 (not included in modelling – see 

following chapter). Kilometre scale bar is indicative only.  
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2.3.6 New Zealand invasion timeline: 

Senecio glastifolius was first recorded as naturalised in New Zealand in 1963 as a 

garden escapee near Gisborne (CHR 143793). In the same year it was present at 

several locations around Wellington including Paekakariki, Paremata and Tawa (Bob 

Brockie, pers. comm.). It is likely that is had been present before 1963 in the 

Wellington region (B. Brockie, pers. comm.).  

Side note: William Colenso erroneously recorded S. glastifolius as present in New 

Zealand in his 1865 work “Essay on the Botany, of the North Island of New Zealand” 

(Colenso, 1865). The plant he was probably referring to was Brachyglottis kirkii (Kirk) 

C.J. Webb, which has variously been known as Senecio glastifolius Hook. f. 

[illegitimate], Senecio kirkii Hook. f. ex Kirk, Urostemon kirkii (Hook. f. ex Kirk) 

B.Nord., Senecio neo-zeylandicus Druce and Solidago arborescens A.Cunn. 

[illegitimate] (TPL, 2010). 

 

By the late 1960s it was widespread in the Wellington Region from Island Bay to 

Paekakariki with significant populations around Tawa, as well as Paremata, 

Thorndon, Northland and Wadestown (B. Brockie, pers. comm.).  

A large but highly localised population appeared in 1970 on a causeway near 

Motueka (CHR 220819). Occasional plants have since been found in the Tasman 

Bay area, on the Mapua Estuary and on Rabbit and Jacket Islands (Peter Williams; 

Kim Wright, pers. comm.).  

 In 1972 it was recorded at Havelock North (CHR 231945), the first record for 

Hawke’s Bay.  

By 1975 it had established as a ‘local weed in waste areas’ in Palmerston North 

(MPN 25437).  

A single population of unspecified size, recorded in 1977, existed briefly at one site 

in Cashmere, Christchurch (CHR 322943).  

In 1984 the first plant appeared on Mana Island (WELT SP070458). Although this did 

not represent a major expansion in S. glastifolius’s range, it does offer some 

information on the plant’s dispersal capability. It is likely the plant grew from seed 

blown from the mainland, at least 3.5km away (Colin Ogle, pers. comm.). It has also 

been recorded on Matiu/Somes Island in Wellington Harbour, over 2.5km from the 

mainland (DoC, unpublished data).  

http://www.theplantlist.org/tpl/record/gcc-131486
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An important jump in its distribution was its invasion of the Whanganui coast, 

probably at some time in the 1980s (Colin Ogle, pers. comm.). The first official 

record for the area is dated 1990 from Corliss Island (CHR 471405). From 

Whanganui, it was able to spread rapidly along the coast toward Wellington with the 

prevailing Westerly to North-West wind. The origin of this new, outlier population is 

not known. With no nearby populations at the time, the most likely hypothesis is 

human facilitation, e.g. deliberate planting as an ornamental garden plant.  

By 1992 it was well established on the western cliffs of Kapiti Island (B Brockie, pers. 

comm.), some ~6km from the mainland.  

Also in 1992, it was recorded opposite Fairfield Bridge in urban Hamilton (CHR 

480733). Despite the presence of several apparently naturalised specimens at the 

site (CHR), there have been no reports of it from the area since and it is unlikely that 

it established (Williams et al., 1999).  

In 1994 it was found at Tawhirihoe near the mouth of the Rangitikei River. It 

appeared to have arrived in contaminated gravel, growing only next to a gravel track 

alongside another newly arrived invasive plant Eqisetum arvense (Nick Singers, pers. 

comm.).  

In 1998 it was recorded at Hawken’s Lagoon conservation area (now called 

Tapuarau) (DoC, unpub. data), 30km north-west of the first record for the 

Whanganui-Taranaki population. It is unknown whether S. glastifolius dispersed 

naturally toward Taranaki from Whanganui or whether there were human mediated 

jumps in this expansion.  

In 1999 it was found at Marton (CHR 532923). This was the farthest inland it had 

been recorded for the Whanganui-Rangitikei population (assuming this population 

spread with the prevailing wind and not against it from Palmerston North). Since then 

it has expanded over a wide area inland from Whanganui to Manawatu (see Figure 

2.8).  

In 2007 it was found at Arapawa Island, Marlborough sounds (DoC, unpub data). 

The dispersal origin of this plant is unknown. The record’s location is over 30km from 

the North Island, and over 40km from the closest recorded population of the species. 

No information was found as to whether the species established successfully in this 

area.  

In 2008 a single plant was found beneath the Hapuawhenua railway viaduct near 

Ohakune (Nick Singers, pers comm.). It is assumed that the plant grew from seed 
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transported in railway metal or by train. It is unlikely to be established in the area, 

due both to comparatively harsh local environmental conditions (altitude >600m) and 

because the only plant found was uprooted for accession to a herbarium (CHR 

595304).  

In 2009 two separate occurrences were found near Patea (Mick Parsons, pers. 

comm.). The species remains sparse in the area and is, in 2012, absent or 

undetected at significant areas of suitable ground cover (e.g. at the Patea River 

mouth).  

Reports by local pest officers and personal field observation show that by 2010 it 

was widespread in the Gisborne area, Hawke’s Bay, South Taranaki, Manawatu-

Tararua area (see Figure 2.8).  

In 2012 S. glastifolius was found by the author at the Kaupokonui River mouth, 

Taranaki. This population represents the leading edge of the known distribution 

moving north along this coast. The site is approximately 40 km further into Taranaki 

than the next known population at Patea. Senecio glastifolius is likely to occur 

between the two sites, as well as further north along the coast.  

Maps illustrating the spread of S. glastifolius in New Zealand are presented in 

Appendix 2.1.  

 

2.4 Discussion and conclusions 

This data set shows that S. glastifolius has continued its rapid spread since its 

distribution was last described in detail by Williams et al. (1999).  

The information presented here represents the most comprehensive and up-to-date 

single data set for the distribution of S. glastifolius. This creates opportunities for 

research, and represents a valuable data source not only for the following chapter, 

but for other researchers.  

No data set provides a full census for a species, nor is it likely that all existing 

information will be synthesised into a single work. No illusion of completeness is 

implied for this data set.  

A limitation of the data set is spatially uneven sampling effort. Observer effort is 

highest in and around areas of high population. An information gap exists for much 

of the southern Manawatu coast. No records were found for that area between the 

Manawatu River mouth and Waikanae (a distance of around 50 kilometres). No 
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absence information exists for this area either, except that S. glastifolius is absent or 

undetected at Otaki and Waikanae (pers. obs.; Bob Brockie, pers. comm.). Most of 

this section of coast is sparsely populated.  

The anecdotal reports of ecologists, botanists and weeds officers represent a large 

body of useful information. However, the anecdotal nature of this body requires a 

judicious approach to its use and inclusion in modelling. Reports are best cross-

referenced, as information is often conflicting, especially reports regarding the timing 

of invasion of new areas.  

When interpreting these data and accompanying maps (see Appendix 2.1), attention 

should be given to the fact that the dates for each location are the date of recording 

and not explicitly the date of colonisation. For many of the records the species had 

probably been present for some time before the year in which it was recorded. This 

is particularly relevant to data for 2010. The apparent explosion in range is due not to 

rapid dispersal by S. glastifolius in that year, but is due to a significant expansion of 

the data set in that year.  In some cases there is reasonable certainty that the 

records closely reflect the time of colonisation (e.g. Mana Island, 1984).  

 

2.5 References 

Anonymous. (2011a). “Senecio glastifolius”. 
http://za.ispot.org.uk/node/141714?nav=search accessed 23 November 
2011.  

 
Anonymous. (2011b). “Senecio glastifolius”. 

http://za.ispot.org.uk/node/134474?nav=search accessed 23 November 
2011. 

 
Colenso, W. (1865). “Essay on the botany of the North Island of New Zealand”. 
 
Edge, D.A. 2005. “Ecological factors influencing the survival of the Brenton Blue 

butterfly, Orachrysops niobe (Trimen) (Lepidoptera: Lycaenidae)”.  
Potchefstroom: North-West University.  (Thesis -  D.Phil.) 

 
Feeley, K. J. and M. R. Silman (2010)."Modelling the responses of Andean and 

Amazonian plant species to climate change: the effects of georeferencing 
errors and the importance of data filtering." Journal of Biogeography37(4): 
733-740. 

 
Fenwick, D. (2011). “Senecio glastifolius - Woad-leaved Ragwort”. 

http://www.aphotoflora.com/d_senecio_glastifolius_woad_leaved_ragwort.ht
ml accessed 23 November 2011. 

 

http://za.ispot.org.uk/node/141714?nav=search
http://za.ispot.org.uk/node/134474?nav=search
http://www.aphotoflora.com/d_senecio_glastifolius_woad_leaved_ragwort.html%20accessed%2023%20November%202011
http://www.aphotoflora.com/d_senecio_glastifolius_woad_leaved_ragwort.html%20accessed%2023%20November%202011


65 
 

Franklin, J. (2009). Mapping species distributions: spatial inference and prediction. 
Cambridge; New York, Cambridge University Press. 

 
Germishuizen, G. and Meyer, N.L. (2003). “Plants of southern Africa: an annotated 

checklist”. Strelitzia, 14, 1–1231. No 53. 
 
Graham, C. H., J. Elith, et al. (2008). "The influence of spatial errors in species 

occurrence data used in distribution models." Journal of Applied 
Ecology45(1): 239-247. 

 
Guisan, A., N. E. Zimmermann, et al. (2007). "What matters for predicting the 

occurrences of trees: Techniques, data, or species' characteristics?" 
Ecological Monographs77(4): 615-630. 

 
Hansen, A. &Sunding, P. (1993) - Flora of Macaronesia. Checklist of vascular 

plants.4th revised edition - Sommerfeltia Oslo 17. 
 
Jardim, R. & Sequeira, M.M. (2008). “List of Vascular Plants (Pteridophyta and 

Spermatophyta)”. In: Borges, P.A.V., Abreu, C., Aguiar, A.M.F., Carvalho, P., 
Jardim, R., Melo, I., Oliveira, P., Sérgio, C., Serrano, A.R.M. & Vieira, P. 
(eds.). A list of the terrestrial fungi, flora and fauna of Madeira and 
Selvagens archipelagos.pp.13-25, Direcção Regional do Ambiente da 
Madeira and Universidade dos Açores, Funchal and Angra do Heroísmo. 

 
McPherson, J. M., W. Jetz, et al. (2006). "Using coarse-grained occurrence data to 

predict species distributions at finer spatial resolutions-possibilities and 
limitations." Ecological Modelling192(3-4): 499-522. 

 
Naimi, B., A. K. Skidmore, et al. (2011). "Spatial autocorrelation in predictors reduces 

the impact of positional uncertainty in occurrence data on species 
distribution modelling." Journal of Biogeography38(8): 1497-1509. 

 
[SANBI] South African National Biodiversity Institute (2007). “National Herbarium 

Pretoria Computerised Information System (PRECIS)”. Pretoria South Africa. 
Data acquired 04/08/2010. 

 
Newbold, T. (2010). "Applications and limitations of museum data for conservation 

and ecology, with particular attention to species distribution models." 
Progress in Physical Geography34(1): 3-22. 

 
Preston, C.D., Pearman, D.A.  & Dines, T.D.(2002) New Atlas of the British and Irish 

Flora, Oxford, Oxford University Press. 
 
[TPL] The Plant List (2010).Version 1. Published on the Internet; 

http://www.theplantlist.org/ (accessed 1st January, 2012). 
 
Rutherford, M. C., L. W. Powrie, et al. (2003). "ACKDAT: a digital spatial database of 

distributions of South African plant species and species assemblages." 
South African Journal of Botany69(1): 99-104. 

 

http://www.theplantlist.org/


66 
 

Vieira, R. M. da S. (2002) – “Flora da Madeira. Plantas vasculares naturalizadas no 
arquipelago da Madeire”. Boletim do Museu Municipal do Funchal (Hist. Nat.) 
Supl. 8. 

 
Webber, B. L., C. J. Yates, et al. (2011)."Modelling horses for novel climate courses: 

insights from projecting potential distributions of native and alien Australian 
acacias with correlative and mechanistic models." Diversity and 
Distributions17: 978-1000. 

 
Williams, P. A., C. C. Ogle, et al. (1999). "Biology and ecology of Senecio glastifolius 

and its spread and impacts in New Zealand”. Science  for Conservation 112: 
22. 

 
Wisz, M. S., R. J. Hijmans, et al. (2008). "Effects of sample size on the performance 

of species distribution models." Diversity and Distributions14(5): 763-773.  
 
 
  



67 
 

Chapter 3: Expanding menace or invasional has-

been? The potential distribution of Senecio 

glastifolius in New Zealand 

 

Abstract 

Senecio glastifolius is an invasive species in New Zealand where it threatens rare 

and vulnerable coastal floristic communities. It has expanded its range dramatically 

in recent years. Its future spread and impacts are largely uncertain. To aid its 

management in New Zealand, a predictive model of its potential distribution was 

created based on its bioclimatic niche. A new, expanded data set of its global range 

was matched to climate data using MaxEnt. Challenges associated with predictive 

modelling of invading species are discussed. Recommendations for management 

are given, based on significant areas of suitable habitat identified by the model which 

have yet to be invaded. Specifically, control is called for in coastal Taranaki to halt 

the current northward spread along the West Coast. This would be well 

complemented by active surveillance in the region. 

 

 

3. 1. Senecio glastifolius in New Zealand: history, ecology and 

threats 

Senecio glastifolius (Asteraceae) is a perennial herb native to South Africa, and 

invasive in New Zealand, Australia, the British Isles and Madeira. It was first 

recorded as naturalised in New Zealand in 1963 (CHR 143793). Interest was mostly 

limited to a few botanists, until its range expanded dramatically in the 1990s, 

attracting attention from the conservation community (Williams et al., 1999).  

New Zealand is considered a hotspot of global biodiversity (Myers et al., 2000), with 

such a unique biota that it has been described by evolutionary biologists as “as close 

as we will get to studying life on another planet” (Diamond, 1990: p3). New Zealand’s 

evolutionary isolation and recentness of colonisation by humans contribute to the 

intensity of on-going invasion impacts. Especially endangered in New Zealand, are 

coastal dune ecosystems (Jamieson, 2010), which have been heavily modified by 

forestry and agriculture and drastically reduced in their extent.     
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Senecio glastifolius owes part of its reputation as a potentially deleterious invader to 

its conspicuous presence at high-value conservation sites. It has reached high 

densities, for example, at Whitiau Scientific Reserve near Whanganui and is the 

subject of on-going weed control there (Colin Ogle, pers. comm.). Whitiau is home to 

several threatened native plant taxa including Sebaea ovata, Selliera rotundifolia, 

Mazus novaezeelandiae, Isolepis basilaris, and local forms of Libertia peregrinans 

and Pimelia arenaria (Williams et al., 1999 p11). Whitiau is one of only two New 

Zealand sites known to contain Sebaea ovata, a low-growing herb (Champion et al., 

2003). The other site, at the Waitotara River mouth also contains S. glastifolius. 

Pimelea actea (formerly Pimelea “turakina”), a critically endangered endemic coastal 

herb endemic to the Manawatu dunelands on the North Island’s West Coast also has 

its entire range encompassed by that of S. glastifolius. Further details of S. 

glastifolius’s association with native plants, and possible negative interactions, are 

given by Williams et al. (1999).  

 
Senecio glastifolius is capable of forming dense stands, often of considerable area. 

This can lead not only to ecosystem modification, but also to the total visual 

transformation of landscapes, with entire hillsides turning purple during flowering in 

Spring (Williams et al., 1999; pers. obs.; B Brockie, pers. comm.). This phenomenon 

is common in the years after disturbance such as fire or harvesting of plantation 

forest, but also occurs regularly in habitats such as stabilised sand dunes, cliff faces 

and roadside embankments. 

In New Zealand, S. glastifolius inhabits a range of habitats, chiefly: coastal areas of 

open or low-growing vegetation; disturbed or ruderal sites; roadsides; rocky banks; 

open understory of plantation forest; riparian sediment; and a wide range of 

agricultural settings where mowing/grazing is low (pers. obs.). Of this list, S. 

glastifolius’s invasiveness in coastal habitats is of the greatest concern. The integrity 

and abundance of New Zealand coastal dune floras has been heavily impacted by 

human development, and species introductions both accidental and deliberate 

(Jamieson, 2010). Very little of New Zealand’s original coastal ecosystems remain 

intact, so preserving what is left is a high conservation priority.  

Senecio glastifolius has also attracted the ire of farmers in New Zealand (Maslin, 

2009), although opinions vary as to its seriousness as an agricultural pest. It is 

seldom found growing in intensive agricultural pasture, but does grow where 
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stocking rates are low or where other weeds such as gorse are present and restrict 

grazing. It seems to be reduced in its palatability to stock once the stem becomes 

woody. 

Senecio glastifolius has many common names including holly-leaved Senecio, woad-

leaved ragwort (chiefly UK), pink ragwort (esp. NZ), purple ragwort (less common), 

large Senecio (chiefly South Africa), waterdissel (Afrikaans), water thistle (South 

Africa, less common) and holly-leaved groundsel (UK, less common). Senecio 

glastifolius, commonly grows to around 1m tall in New Zealand, but has been 

reported up to 2.5m tall in Australia (CRC, 2003). It is a short lived perennial, 

typically living for 1-4 years (Williams et al., 1999).  

 

3.1.1 Ecological requirements 

The native range of S. glastifolius is very small, spanning the part of South Africa’s 

Cape Region between Mossel Bay and Port Elizabeth (~300km). Its range comprises 

the seaward-most mountain ranges, extending to the coast. It is not recorded as 

growing farther inland than the seaward ranges (see chapter 2). Within this narrow 

range it is further restricted to damp sites, chiefly: wet, south-facing slopes (Jan Vlok, 

pers. comm.), around rivers, or in seeps (Bean & Johns, (year unknown)). Hence, it 

appears that within South Africa, water availability is a strong limiting factor in its 

distribution. Its association with wetter sites gives it its name ‘waterdissel’ or ‘water 

thistle’ (Williams et al., 1999). Senecio glastifolius’s association with damp areas is 

also observed in Australia (CRC, 2003). The climate in its narrow range is temperate, 

with more equable temperature than surrounding areas.  

Its restriction to the poleward, maritime terminus of a predominantly dry, hot and 

climatically inequable region invites speculation that its fundamental ecological niche 

might not be fully available in its native range (see Appendix 3.5 for analysis of niche 

availability).  

Despite being found at altitudes of up to 1,090m in South Africa (Germishuizen& 

Meyer 2003), the area is not cold (see discussion below, section 3.3.4). In New 

Zealand it grows at much lower altitudes than in South Africa. The highest it has 

been reliably recorded is 290m (±10m) in Wellington (pers. obs.).  

Senecio glastifolius is an early successional species in its native range, where it is 

most frequent on disturbed sites, especially burns. It appears within a year following 

disturbance and persists for about 2-3 years (Jan Vlok; Dave Edge, pers. comm.). Its 



70 
 

habitat in Australia includes Banksia woodland and coastal shrubland (Hussey et al., 

2007).  

 

3.1.2 Legal Status 

In Australia S. glastifolius is listed as a National Environmental Alert weed (CRC, 

2003). In New Zealand it is banned for sale and propagation in Taranaki and 

Northland, and is managed as a site-led pest in Wanganui-Manawatu. 

 

3.1.3 Control effort 

Senecio glastifolius has been the subject of considerable control efforts in parts of 

Australia and New Zealand. Control is mostly in localised sites, where local 

biodiversity values are threatened by high densities. Examples include Whitiau 

Scientific Reserve; Manawatu coast (Jill Rapson, pers. comm.); Tawhirihoe (DoC, 

2011); Mana Island, (Colin Ogle, pers. comm.); Kapiti Island (Diane Batchelor pers. 

comm.).  Control is also undertaken where near or total local eradication is thought 

to be possible, such as Te Mata Peak, New Zealand (TMPTP, 2011); Motueka 

Estuary, New Zealand (Kim Wright, pers. comm.); and Albany, Western Australia.  

In addition to countless hours of volunteer labour, significant financial capital has 

been directed to the control or eradication of S. glastifolius (e.g.  AU$30,000 to 

Green Skills Inc. for the Senecio glastifolius eradication project (DEC, 2011)). The 

eradication programme led by Greenskills Albany has been in place since 2005. 

Success appears to be good so far (Diane Evers, pers. comm.). 

 

3.1.4 Benefit of modelling 

Predictions of invasive species’ potential distributions are of value to environmental 

managers (Higgins et al., 1999; Peterson, 2003; Jimenez-Valverde et al., 2011; 

Mgidi et al., 2007; Venette et al., 2010). For example, predictive maps offer 

information on the likely spread of invasive species under natural dispersal. 

Continuous areas of suitability can be expected to acts as dispersal corridors, while 

isolated areas of high suitability are less likely to be colonised without human 

mediation. Predictions can also help identify areas where monitoring for new 

incursions should be focussed, or where control is most beneficial in preventing 

further spread.  
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Currently there is little information on the potential distribution of S. glastifolius in 

New Zealand. Predictions do exist; Thuiller et al. (2005) presented a coarse scale 

(quarter-degree grid resolution, ~25 x 25 km2) global prediction, and other 

unpublished predictions have been made (Scott et al., 2008).  

 
This study presents an updated prediction, at a much higher resolution, and 

benefitting from a much improved species location data set (presented in chapter 2). 

Since previous studies, S. glastifolius has spread significantly in New Zealand (see 

chapter 2), including further inland than previously recorded, presumably into climatic 

space less represented in previous data sets.  

 

3.2 Aims 

This study aims to predict the potential distribution of S. glastifolius in New Zealand, 

as governed by climatic requirements. Specifically, the prediction aims to identify 

currently uninvaded areas which are suitable to habitation by S. glastifolius.  

 

3.3 Methods 

The potential distribution of S. glastifolius in New Zealand was predicted using SDM 

methods deemed appropriate for a range-expanding species, and within the 

constraints of the available data. Details are presented in the following sections, 

outlining the species presence data used; environmental predictor variables 

considered, plus details of their selection and transformation; choice of geographic 

extent for model training; algorithms used; and methods for evaluating the validity of 

predictions.  

 

3.3.1 Species presence data 

Models were trained using the global occurrence data set for S. glastifolius described 

in chapter 2. This data set incorporates 214 presence records from New Zealand, 

Australia and the Isles of Scilly, generalised to 30 arc second resolution. No 

published ecophysiological data exist for S. glastifolius, although some unpublished 

data do exist (John Scott, pers. comm.). For New Zealand, one record in the 

described data set (Kaupokonui, Taranaki) was not included in modelling because it 

was located shortly prior to the completion of this research study, after predictive 

models had been finalised.  
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3.3.2 Environmental data 

Environmental predictor data layers were chosen from a candidate set of the 19 

‘Bioclim’ data layers from Worldclim (Hijmans et al., 2005) at 30 arc second 

resolution, plus PET (potential evapotranspiration) and aridity, available from CGIAR 

(Trabucco & Zomer, 2009). Trabucco & Zomer’s (2009) Aridity Index is a function of 

mean annual precipitation divided by mean annual potential evapotranspiration; 

values increase for more humid conditions and decrease for more arid conditions. 

Worldclim’s ‘Bioclim’ variables are derived bioclimatic indices based variously on 

monthly values of temperature and precipitation. 

PET data was sourced as monthly averages, plus an annual average. Monthly PET 

data was generalised to four annual quarters (e.g. December to February) roughly 

corresponding with the four seasons in the regions from which species data were 

drawn. These data layers were arranged by season rather than by months to 

account for the fact that the Northern Hemisphere experiences its seasons in 

different months from the Southern Hemisphere.  

Senecio glastifolius has a strong anecdotal association with ‘poor’ substrates, such 

as sand, and with certain vegetation covers (it is excluded by very dense vegetation 

of more than about 1-2m height). These variables were not included in modelling. 

These variables vary on a very fine scale over much of S. glastifolius’s range. The 

requisite data sets, covering the entire range that the model examines, and at a 

resolution fine enough to match the variation of the variable, were not available. 

These variables are also comparatively dynamic compared to climate, especially in 

the case of vegetation cover; S. glastifolius often exploits the sparse cover of 

disturbed sites before being replaced by gorse and later, native scrub.  

 

3.3.3 Transformation of Environmental Data 

Gridded environmental data for the minimum temperature of the coldest month were 

transformed from the Celsius scale to the Kelvin scale. Untransformed data spanned 

zero and into the negative number range, which can produce undesirable 

mathematical artefacts during model training. This is true for the creation of product 

or quadratic responses in MaxEnt (see Elith et al., 2011 for an explanation of MaxEnt 
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features), because of the inherent behaviour of zero and negative numbers when 

multiplied, or when raised to an exponent.  

The Kelvin scale was chosen arbitrarily as a way to avoid values spanning zero. 

Transformation to positive-only values using some other arbitrary constant would 

produce an essentially identical model, the only and quite meaningless difference 

being that the absolute figures for model coefficients would differ accordingly. 

However the predictions of the models and the shapes of the response curves would 

be the same.  

The Kelvin scale, while less familiar than Celsius, is a more logical scale for 

measuring temperature in quantitative ecological studies, when the properties of 

temperature are considered. It is true that the freezing of water is of general 

ecological relevance, but a ratio scale of measurement (one that has an absolute 

zero (see Stevens, 1946)) is a better logical match to temperature, which has an 

absolute zero. Temperature cannot have a negative quantity, unlike other 

ecologically relevant variables such as soil water deficit; species do not experience 

an absence or negative quantity of temperature.  

The use of untransformed data not only gives different model coefficients, but 

changes the relative contribution of each variable to the model (see Appendix 3.1).  

 

3.3.4 Choice of predictor variable and removal of correlated predictors 

Predictor variables were chosen primarily for postulated ecological relevance to the 

species. Dry stress seems to be the most limiting factor in the species’ native 

distribution, and was represented in modelling by Trabucco & Zomer’s (2009) Aridity 

Index. Several alternative measure of dry stress were available in the Worldclim 

dataset (Hijmans et al., 2005), plus the monthly, quarterly and annual PET data. 

Hence, some screening for the best candidate predictor was necessary.  

Environmental predictor variables were screened for correlation (see Appendix 3.3). 

Where two or more variables were highly correlated (r >0.85), all were discarded 

save the one deemed to be the most ecologically relevant based on knowledge of 

the plant’s ecology. The variables included in the final model were Aridity Index, and 

Annual Temperature Range.  

Aridity Index, which incorporates both precipitation and PET, arguably provides a 

closer ecological representation of water availability to a plant than other available 

measures of dry stress such as precipitation of the driest month. It is desirable to use 
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predictor variables with more direct physiological influence on a species, rather than 

those which act as proxies (Austin, 2002). Aridity Index performed better in 

preliminary trials than alternative measures of dry stress [results not shown].  

Annual Temperature Range was included as a measure of temperateness, and 

consistently gave the greatest contribution to MaxEnt models used, as indicated by 

drop in test gain when omitted (Phillips, 2012).  

Acute cold stress (i.e. frost severity) seems to have a limiting effect on S. 

glastifolius’s distribution, especially in New Zealand. In the few places where it exists 

well inland it tends to be limited to river valleys, which can be expected to offer some 

thermal buffering. The variable most closely approximating this ecological stress 

from the candidate set is Worldclim’s minimum temperature of the coldest month 

(MinTemp). Note though, that this is not the absolute minimum temperature recorded, 

but the average minimum daily air temperature for the coldest month. During 

regional cross validation using MaxEnt (see section ‘evaluation’ below) this variable 

performed poorly. The apparent reason is that it is only limiting to S. glastifolius over 

a certain range of its spectrum: between approximately 0°C and 3°C. It acts as a 

limiting factor below a threshold within this range. This sort of predictor is best 

modelled using a multiplicative model rather than additive. Hence the additive 

MaxEnt produced ecologically unrealistic responses to MinTemp when trained in 

regions where the values were outside the relevant limiting range (South Africa, 

Australia and Scilly study areas, all of which are too warm for cold stress to limit S. 

glastifolius’s distribution – see subsection below).  

To include MinTemp in the final model without undesirable effects, it was included 

via a manually enforced threshold rule (binary multiplicative term). A MaxEnt model 

was created using only Aridity Index and Annual Temperature Range as predictors, 

and the resulting predictions processed to include MinTemp. Grid cells with a 

MinTemp value below the lowest training value of 2.3°C (Rabbit Island, Nelson, New 

Zealand) were assigned a suitability value of 0. Grid cells with MinTemp values 

equal to or greater than 2.3°C retained the predicted suitability assigned by the 

MaxEnt model. Note that the observed threshold of 2.3°C is an interpolated value for 

a 30 arc second grid cell, and should not be regarded as a precise physiological 

value.  

Of the training regions other than New Zealand, the lowest values for MinTemp are 

found in South Africa. Despite the very high altitudes at which S. glastifolius grows in 
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South Africa (up to 1090m, Germishuizen& Meyer, 2003), the minimum value for 

MinTemp for any recorded occurrence of S. glastifolius is 3°C. Very little of S. 

glastifolius’s biotope in South Africa has low values for MinTemp (see Figure 3.1 

below). If a minimum convex polygon were drawn around recorded presences of S. 

glastifolius, only four grid cells within that polygon would have a MinTemp value 

below 2.3°C. 

Figure 3.1.Areas of the Cape region with MinTemp values below the observed 

approximate threshold of 2.3°C. Kilometre scale is indicative only.  

 

3.3.5 Background data 

Species absence data is difficult to define for range-expanding invasive species, due 

to their limited dispersal opportunities in their invaded ranges. This problem is further 

aggravated for S. glastifolius which, as an often ephemeral, early-successional 

species in its native range, is often absent from climatically suitable habitat due to 

factors of vegetation and [lack of] disturbance.  

In lieu of reliable species absence data, background data were used in model 

training (see Chapter 1, section 1.6.5). Background data were drawn from random 
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points within specified regions, with a correction made for latitudinal differences in 

the size of unprojected raster grid cells. Separate background regions were 

delineated for each of the four global regions from where S. glastifolius presence 

data were taken (South Africa, New Zealand, Australia and Scilly). In all cases, the 

concept of ‘accessible area’ was used to inform the delineation of the background 

(Elith et al., 2010; see also Barve et al., 2011).  

The background region for New Zealand was created based on the four most 

significant regional populations for S. glastifolius: Whanganui, Wellington, Hawke’s 

Bay and Poverty Bay.  Not all recorded sites were included: Christchurch, Hamilton 

and Ohakune records were excluded because they consisted of only single 

observations of populations which appear to no longer exist. It is questionable that 

these constitute true naturalisation.  

For each of the four populations, an initial site of invasion was identified based on 

the dates of the earliest records. A circular ‘background’ was created using this point 

as its centre, and the distance to the farthest record for that population as the radius. 

This assumes an equal opportunity of propagule spread in all directions such that the 

entire area has received sufficient propagule pressure that an absence of records 

can suggest unsuitable environmental conditions for growth.  Mapped data were 

visually inspected in time-series to allow judgement of the validity of this approach in 

approximating spread of propagules. 

Background delineation for South Africa, the species’ native range, could not rely on 

documented spread to identify reachable areas. Instead, a buffer of ~50km was 

created around the recorded distribution to cover an area that balanced 

environmental contrast with reachability.  

For Australia, a similar approach was taken, buffering the main area of infestation at 

Albany by a distance reaching the approximate location of the outlying record at 

Manjimup. No geographic background region was created for the sole occupied grid 

cell at Bundeena, NSW, but MaxEnt was specified to add to the background 

distribution any presence sample which has a combination of environmental 

variables not already present in the background. For the Isles of Scilly, the 

background region was simply the land area of the group of islands.  
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Figure 3.2 “Background” regions for New Zealand, shown in black.  

 

3.3.6 Modelling methods 

3.3.6.1 MaxEnt 

Models were fitted using MaxEnt (version 3.3.3) (Phillips et al., 2006; Elith et al., 

2011). MaxEnt is a machine learning algorithm which has been widely used in 

species distribution modelling, and compares favourably to alternative algorithms in 

a number of studies (Elith et al., 2006; Heikkinen et al., 2012). 

MaxEnt’s default parameter settings were used, except for the following changes. To 

limit overfitting, regularisation was increased from the default values by a multiplier of 

2 (Warren & Seifert 2011; Elith et al., 2011). Threshold features were excluded from 

model-fitting because they had led to overfitting in preliminary models (see Elith et al., 

2011 for an explanation of MaxEnt’s feature classes). Overfitting was identified as 
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unrealistically detailed marginal response curves and stark fine-scale variation in 

mapped predicted suitability (results not shown). 

To predict the potential distribution of S. glastifolius in New Zealand, a model was 

trained using presence records for all four study regions (see chapter 2 for 

description of the data set). Background data were drawn from the background 

regions described above at a ratio of 50 background points per presence. This ratio 

was held even across the separate regions.  

MaxEnt models were created using predictor variables Aridity and Annual 

Temperature Range. Mapped predictions were further processed by manually 

including MinTemp as a binary multiplicative term, and transforming predictions by 

predicted suitability. Values below the threshold of minimum training presence were 

transformed to zero. Values equalling or exceeding this threshold were not adjusted. 

This is similar to the binary transformation often used in SDM studies (Liu et al., 

2005), but retains the predicted relative suitability of suitable sites.  

 

3.3.6.2 Bioclim 

The argument has been made that modelling techniques placing zero or low 

emphasis on species absence or background (e.g. BIOCLIM (Busby, 1991)) may be 

the most suitable for predicting the potential distributions of species (Jimenez-

Valverde et al., 2011). This is despite the fact models using absence, pseudo-

absence or background, such as MaxEnt, are generally better for predicting species 

actual distributions. The thesis is that observed absence, including absence implied 

by gaps in the background region, is often due to contingent factors (e.g. biotic 

interactions, dispersal limitation). Thus, areas of environmental space which are 

within the study-species’ fundamental niche may be wrongly penalised. Following 

this argument, rectilinear envelope models were fitted for comparison to MaxEnt 

models, using the R (R Development Core Team, 2012) package ‘dismo’s (Hijmans 

et al., 2012) implementation of the BIOCLIM algorithm. BIOCLIM fits rectilinear 

envelopes to training data in environmental space. Each environmental axis is 

considered separately, and the presence data arranged into quantiles. 

Environmental space outside of the bounding limits for any variable (i.e. the 

maximum and minimum observed values for species presence) is assigned a value 

of zero. For variables which are ecologically limiting in only one direction (e.g. cold 

stress), bounding limits may be removed from one tail of the distribution. This 



79 
 

increases the ecological realism of the algorithm considerably, allowing the modeller 

to supervise limiting factors. Space within the observed range (inside the rectilinear 

envelope) is assigned a suitability score based on its value relative to the ranked 

presence data.  

 

3.3.7 Transformation of suitability score 

Model output is a continuous variable from 0 to 1, which can be interpreted as 

correlating with climatic suitability (chapter 1, section 1.8). To distinguish suitable 

geographic space from unsuitable, output was transformed via a threshold equal to 

the minimum training presence. Minimum training presence indicates the lowest 

value of predicted climatic suitability at which the species can demonstrably occur. 

Grid cells within the predicted regions which received a predicted suitability less than 

this threshold had their scores transformed to zero. Grid cells scoring equal to or 

higher than the threshold retained their original predicted suitability values.  

 

3.3.8 Model evaluation 

Models were evaluated using 4-fold regional cross-validation, treating each 

geographically distinct study region as a single fold (New Zealand, South Africa, 

Australia and Scilly). This yielded folds of greatly varying number of presences (New 

Zealand: n = 134 presence records; South Africa: n = 36; Australia: n = 40, Scilly: n 

=4). Regional cross-validation ensures that test data are independent of training data, 

and demonstrates a model’s ability to predict to new geographic regions (Hartley et 

al., 2006; Jimenez-Valverde et al., 2011). 

Omission on test data was calculated, using minimum training presence as the 

threshold. Binomial tests of model significance were performed, with the null 

hypothesis that test presence points were predicted no better than by a random 

prediction with the same fractional predicted area. Again, the minimum training 

presence was used as the threshold. AUC is also reported.  

One limitation of the regional cross-validation used here is that each region 

contributes different information on the species’ niche, because of their different 

climates (see Figure A3.5.2, Appendix A3.5). None of the models trained on k-1 

regional subsets has access to as much information as the full, global model. 

Therefore, evaluation scores from cross-validation are likely to under-represent the 

performance of the full model. To complement regional cross-validation, the globally 



80 
 

fitted model was evaluated using ordinary k-fold cross-validation, splitting data 

randomly into five folds of equal size.  

 

3.3.9 Madeira 

Madeira was not included in model training or testing because no georeferenced 

records were available. The final model, described above, was projected onto 

Madeira as an additional, informal test of model transferability. Results are given in 

Appendix A3.4.  

 

3.4 Results 

The model predicted all currently occupied areas as suitable, using minimum training 

presence as the threshold for suitability. Additionally, for all three invaded regions 

projected to, as yet uninvaded areas were predicted to be suitable, suggesting 

continued spread of S. glastifolius is likely.  

 
 
3.4.1 New Zealand 

All of the currently invaded areas were predicted as suitable (Figure 3.3). Presently 

unoccupied areas were predicted as suitable, including most of the northern half of 

the North Island and associated offshore islands. The entire western coast of the 

North Island was predicted to be suitable, save for only a few very small gaps of four 

pixels or less between Taranaki and Auckland. Other large, unoccupied or sparsely 

populated areas of predicted suitability include parts of the Wairarapa and southern 

Hawke’s Bay, plus inland Whanganui and Manawatu. In all of these latter regions, 

availability of suitable land cover is likely to limit, though not preclude, the expansion 

of S. glastifolius.  

In the South Island, predicted climatic suitability is mostly limited to the coastal areas 

of the northern third of the island. Predicted suitability is high for the eastern coastal 

areas from the Marlborough Sounds south to Kaikoura and northern Canterbury. The 

Kaikoura Peninsula in particular is predicted as highly suitable. Isolated pockets of 

predicted suitability occur at Otago Peninsula, Banks Peninsula, Murchison, and the 

Karamea Bight. Despite the high predicted suitability of the Otago Peninsula, both 

this area and Banks Peninsula have only marginally suitable winter temperatures 

and so might be less habitable than mapped predictions suggest.  
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Figure 3.3. Predicted climatic suitability for Senecio glastifolius in New Zealand, 

based on the MaxEnt model trained on the global data set, with transformation to 

include the influence of MinTemp. Predicted suitability values are transformed by the 

minimum training presence threshold to distinguish suitable from unsuitable areas.   
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3.4.2 Australia 

Mapped predictions for Western Australia are congruent with existing opinion of 

where the species is likely to invade, with a localised region of high predicted 

suitability from Busselton to Albany (Williams et al., 1999). Predictions also show 

high suitability for much of the mainland coast and Tasmania. Predicted suitability for 

northern regions is likely to be spurious, owing to environmental variables excluded 

from the model (chiefly, measures of heat stress). These variables were extraneous 

to model predictions for New Zealand, the purpose of this study.  

 

Figure 3.4.Predicted climatic suitability for S. glastifolius in Australia. 
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3.4.3 Scilly 

Predicted climatic suitability was fairly uniform across the Isles of Scilly, showing all 

of the represented land area to be suitable.  

 

Figure 3.5 Predicted climatic suitability for Senecio glastifolius in the 

Isles of Scilly. Note that the colour is scaled by the same intervals as 

for the other predicted regions (Figures 3.2 – 3.4).   

 

3.4.4 South Africa 

The model predicts the whole of the occupied range in South Africa to be suitable, as 

well as fairly substantial areas in a coastal band to the east and west. The lack of 

recorded presence in these areas might be due to factors external to the model, 

including biotic interactions or missing climatic variables.   
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Figure 3.6 Predicted climatic suitability for S. glastifolius in South Africa’s Cape 

region. 

 

 

3.4.5 Species response to environmental variables 

Response curves show relatively symmetric, unimodal responses to both predictor 

variables included in the MaxEnt model. Shapes of curves and positions of optima 

were fairly robust under regional cross-validation. The modelled responses are in 

agreement with prior ecological knowledge that S. glastifolius has a preference for 

reasonably temperate climates (Annual Temperature Range optimum at 16.3°C), 

and average water needs (Aridity Index optimum at ~0.8 [unit-less variable]), and 

does not grow in highly arid areas.  

Note that Annual Temperature Range is not the difference between the absolute 

extreme temperatures, but for monthly averages of daily maximum and minimum 

temperatures for the hottest and coldest months respectively. 
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Fig 3.7. Response curves for S. glastifolius to aridity (A) and annual temperature 

range (B), from regional cross validation. The global model is shown in black; 

coloured curves are trained on k-1 regions. Colour indicates the test region for each 

model (e.g. Green curve tested on Scilly, trained on New Zealand, Australia and 

A 

B 
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South Africa). Flat sections of response curves are a result of MaxEnt’s ‘clamping’ 

function. Note that the scale for Aridity Index is multiplied by 10,000 on the plot. 

 

 
3.4.6 Results of Cross-validation 

 
All test regions were fairly well predicted during 4-fold regional cross-validation. Test 

AUC ranged from medium (Scilly: 0.835) to good (Australia: 0.963), noting that AUC 

scores require a different interpretation for range-expanding species.  

 

 

Table3.1. Summary of results from 4-fold regional cross-validation. Omission is 

calculated using minimum training presence.   

Test region 

(withheld from 

training): New Zealand South Africa Australia Scilly 

Omission 0 0 0 0 

Test AUC 0.879 0.879 0.963 0.835 

Min Training 

Presence 0.032 0.015 0.054 0.033 

Binomial P 

value <0.001 <0.001 <0.001 0.158 

 

Omission was zero for all regional models, associated with extremely low minimum 

training presence scores in all cases. This lack of omission shows good ability of the 

model to predict to new geographic regions.  

Binomial tests were significant for all regions except the Isles of Scilly.  Considering 

the climatic geography of this tiny group of islands, this is neither surprising nor is it 

indicative of poor model performance. The climate varies very little across the 

islands, and so, accordingly, did predicted suitability (range 0.21 – 0.24); the entire 

land area of the islands was predicted as suitable. Hence the null hypothesis that 

test points were predicted no better than by a random prediction with the same 

fractional predicted area was impossible to reject; a random prediction with the same 

fractional area (100%) is necessarily identical to the modelled prediction.  
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3.4.7 Ordinary cross-validation of globally fitted model 

The model performed equally well under ordinary, non-regional cross-validation. 

Average omission was less than 1%, AUC was medium to good and binomial tests 

were consistently significant at the 0.1% significance level.  

 

Table 3.2. Summary of results from 5-fold cross-validation. Omission is calculated 

using minimum training presence. Values are rounded to three significant figures.  

Repetition: Average 1 2 3 4 5 
Test 
Omission 

0.009 0 0 0.047 0 0 

MinTrainPres 0.036 0.034 0.036 0.043 0.027 0.036 
Binomial P 
value 

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

AUC 0.885 
(s.d. 
0.017) 

0.872 0.896 0.884 0.862 0.911 

 

 

3.5 Discussion 

 
The most salient information from the mapped prediction for New Zealand is that 

significant areas of potentially highly suitable habitat remain yet to be invaded; S. 

glastifolius should not be regarded as an ‘invasional has-been’.  

 
Some of the suitable, but not yet invaded areas are unlikely to be invaded by S. 

glastifolius through natural dispersal. A clear example is Otago Peninsula. In contrast, 

mapped predictions suggest almost continuous suitable habitat from existing 

populations in Taranaki to the North of New Zealand. Gaps are smaller than 

observed dispersal distances. Without management intervention it seems likely that 

S. glastifolius will spread north from Taranaki into the King Country, Waikato, 

Auckland and Northland.  

 
In the opinion of the author, S. glastifolius requires control and surveillance in 

Taranaki. The North Island’s West Coast experiences a prevailing wind from the 

Westerly quarter, which has probably slowed the expansion of S. glastifolius into 

low-lying Taranaki. If allowed to reach the northern coast of Taranaki it can be 
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expected that S. glastifolius will spread north-east comparatively rapidly, expanding 

its range significantly.  

 
3.5.1 Caveats 

The predicted potential distribution of S. glastifolius in New Zealand presented here 

represents a simplified model of the full range of factors controlling the species’ 

distribution. Factors not included in the model will exert a strong influence on the 

actual distribution of the species. Notably, there are large areas where the 

predominant land cover would prohibit high densities. In these areas, which include 

areas of dense vegetation or intensive agriculture, S. glastifolius will be limited to 

refugia such as roadsides or banks. Biotic limitations will also constrain the 

distribution. Personal observation suggests that in areas where feral goats are 

common, such as inland from Whanganui, densities of S. glastifolius are lower than 

might be expected climatically, but this link has not been tested. No formal 

information on vertebrate herbivory of S. glastifolius was available, though studies 

are currently being conducted on the plant’s alkaloid chemistry (Mikey Wilcox, pers. 

comm.).  

 

3.5.2 Sample bias 

Training data used in this study are likely to suffer from geographic biases, which 

could translate into bias in environmental space (Kadmon et al., 2004). Both MaxEnt 

and BIOCLIM are vulnerable to environmentally biased data. In the case of BIOCLIM, 

provided that the extremes of a species’ niche are sufficiently sampled the model 

should still provide an accurate description of the limits to a species’ distribution. 

Bias will simply distort the relative suitability assigned to grid cells.  

 

3.5.3 A note on minimum training presence 

The minimum training presence from the full model was used as a threshold to 

discriminate between suitable and unsuitable sites, yielding the predicted potential 

distribution for the species. This approach is susceptible to the possible inclusion of 

false-presences, especially records of plants growing outside of their niche (i.e. 

unable to maintain self-perpetuating populations). In the case of S. glastifolius, the 

seeds of which are wind-dispersed, it is likely that some recorded presences 

represent plants growing outside of their fundamental niche. Without sufficient 
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propagule supply from nearby source patches (in source-sink dynamics terminology, 

e.g. Hanski, 1999), sites associated with suitability equal to minimum training 

presence will not support the species long-term. Hence, the model predictions will be 

commissive. 

 In this study there is evidence that predicted suitability values very close to the 

minimum training presence fall within the fundamental niche of S. glastifolius. From 

the full data set, the record assigned the third lowest suitability (0.0576) is for a patch 

of plants known to have produced viable seed. The record is for a patch of plants 

growing on a causeway embankment near Motueka (CHR 220819). Not only its self-

perpetuation implied by the existence of a highly localised group of many plants 

existing over several decades, but Williams et al. (1999) experimentally grew seed 

from this population. The experimental germination rate was 53% (Williams et al., 

1999, p12).  Additionally, it is reported that a member of the public collected seed 

from this population and sowed them successfully on nearby Jacket Island (Kim 

Wright, pers. comm.).  

Regardless of demonstrated viability at sites of low predicted suitability, the minimum 

training presence provides an estimate of the predicted suitability at which a species 

can demonstrably exist. Even if the species cannot sustain its population at 

associated sites, invasion impacts (i.e. competition with native species) can still be 

anticipated where there is sufficient propagule input from source populations.  

When interpreting minimum training presence and associated ideas, it must be 

considered that predicted values are just that – predictions – and not all sites with 

the same predicted value will have the same real-world suitability to the species.  

Not too low a value for minimum training presence has been suggested as a useful 

check for models (Jimenez-Valverde et al., 2011). The spread of training data along 

each independent axis influences this value; if some presence points are outliers on 

any one axis then the algorithms used (especially BIOCLIM) will tend to assign them 

a low predicted suitability value, resulting in a low minimum training presence for the 

model. One possible cause of outliers is that the intervening environmental space 

between the outliers and the bulk of the data is scarcely available in reachable 

geographic space. This could be tested quantitatively.  
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3.5.4 Background delineation 

Delineation of background regions for SDM is a poorly developed area of the 

literature, and a topic of active research (Barve et al., 2011). Choice of background is 

known to have a large influence on model predictions (Webber et al., 2011). 

Approaches have been advanced to improve choice of background, but no definitive 

guidelines exist. Backgrounds used in this study were chosen to incorporate an 

appropriate amount of environmental contrast between presence and unoccupied 

background, while attempting to minimise inclusion of unreachable geographic space. 

The actual extent of geographic space sampled by the plant – i.e. that space which 

has received appreciable propagule pressure from the species – is unknown, and 

probably unknowable.  

It is acknowledged that the backgrounds used in this study carry an arbitrary element. 

During model development, a number of alternative backgrounds were trialled 

ranging from more spatially restricted to more expansive. Results were not deemed 

to be grossly altered (results not presented). 

Another issue with simply drawing a radius equal to maximum observed distance of 

spread from original invasion sites is that it does not take into account that sites 

toward the invasion front are likely to be less ‘in-filled’ than sites closer to the original 

source. One possible approach to reduce this issue is to weight absences closer to 

the source higher than those close to the invasion front.  

 

3.5.5 A comment on the extrapolation involved in predictions 

Projections of climatic suitability to the whole of New Zealand require extrapolation 

from the training data. This is visible in the climatic space scatterplots of Appendix 

3.5, and in MESS maps produced by MaxEnt (not presented here). Inspection of the 

response curves (Figure 3.7 above) show that they are closed within the training 

range of the data. This is supported by ecological plausibility; S. glastifolius is likely 

to have a truly unimodal response to aridity and temperateness. Similarly, the effect 

of low temperatures (MinTemp) is extremely unlikely to have unexpected effects 

beyond the span of training data. Therefore, the extrapolation present in our 

predictions for New Zealand can be accepted as being ecologically reasonable, and 

not contributing much uncertainty to predictions.  

However, the measures of extrapolation used examine only the variables present in 

the model. This is standard (e.g. MESS). Predictions to new areas involve 
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uncertainty not only due to the model’s extrapolation of fitted functions but the 

unknown nature of which environmental variables will limit the species’ distribution in 

the novel areas. This idea is illustrated well by the failure of models trained on S. 

glastifolius’s overseas range (South Africa, Scilly, Australia) to identify MinTemp as a 

limiting variable of S. glastifolius’s distribution. The anticipation of limiting factors 

acting in projection ranges, but not training ranges relies on ecological knowledge of 

the modeller.  

 

3.6 Conclusion 

Senecio glastifolius is likely to continue its expansion in New Zealand if left 

unchecked. Its distribution appears to be strongly influenced by climate, especially 

water availability, temperateness and cold winter temperatures. Predicted climatic 

requirements are met for S. glastifolius in significant areas of New Zealand that 

remain, for now, free of this species. If human-mediated spread can be avoided, and 

control and surveillance are carried out in just a few key areas, then the invasive 

impacts of this species can be minimised.  
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Chapter 4:  Discussion and conclusions 

4.1 Summary of key findings 

Senecio glastifolius is an invasive species in New Zealand that continues to spread 

rapidly, with significant potential to expand its range in New Zealand.  This thesis 

presented a new description of its current distribution, demonstrating a much wider 

distribution than was previously available from any single source. Senecio glastifolius 

is spreading steadily into Taranaki, and appears likely to spread over vast areas if it 

is not halted by management intervention.  

 
The distribution of S. glastifolius appears to be strongly controlled by the climatic 

variables of annual temperature range (temperateness), aridity, and winter cold 

stress. Senecio glastifolius shows a different response to these variables in the 

different geographic regions it inhabits. Most saliently, it inhabits much wetter 

conditions in New Zealand than in its native range. This is attributable to differences 

in the biotopes between the countries, with greater availability in New Zealand of the 

humid conditions preferred by S. glastifolius. The other important difference in 

response to climate between major geographic regions relates to winter 

temperatures. Extremes of winter temperature limit the distribution of S. glastifolius 

only in New Zealand. Again, this is due to differences in climates between regions; 

winter temperatures in the parts South Africa, Australia and Scilly inhabited by S. 

glastifolius are not low enough to limit persistence of the species.  

 
The spread of S. glastifolius in New Zealand from sites of introduction to its current 

distribution show an interplay between climatic suitability and human-mediated 

dispersal. Populations which exist in geographically isolated areas of high climatic 

suitability have not undergone enormous expansion. This is exemplified at Poverty 

Bay where despite naturalisation in Gisborne as early as 1963, the species has not 

spread far. In contrast, a jump in dispersal to Whanganui in the late 1980s, 

presumed to be human-mediated, resulted in rapid and dramatic invasion of an 

expansive area. This was possible due to large, contiguous areas of climatic 

suitability surrounding Whanganui.  

 
Contiguity of climatically suitable habitat extends from the current invasion front in 

coastal Taranaki, along the West coast of the North Island, to a large area including 



96 
 

Auckland and Northland. The hypothesised dispersal pathway along the coast in 

Taranaki is fairly narrow, making it a good candidate as an area for management 

control to prevent invasion. Field observation by the author revealed that S. 

glastifolius has already spread much further into Taranaki than was previously 

recorded, extending at least as far north as Kaupokonui.  

 

4.2 Challenges to modelling 

Making predictions of potential distribution for poorly studied and range-expanding 

species poses unique challenges to researchers, especially when predictions are 

needed for regions with novel climates. This study exemplified many of those 

challenges, necessitating careful methodological choice throughout the SDM 

process.  

 

A major challenge to SDM of poorly studied species is adequate characterisation of 

their response to environment. Where ecophysiological data is unavailable, as was 

the case in this study, the species’ niche is inferred from its distribution. Incomplete 

and imperfect data impose major limits to SDM. This study improved the data 

available for S. glastifolius through synthesising information from many and disparate 

sources, processing data, and creating new information through field observation. 

Limitations in the data remained, however, including probable spatial bias.  

Another challenge to SDM for invasive species is the difficulty of evaluating 

predictions, due to a lack of reliable information on species ‘true’ absence, and to 

ever present issues of spatial autocorrelation. These challenges can be addressed 

by careful choice of evaluation criteria, use of truly independent test data, and careful 

interpretation of results.   

 

4.3 Future research 

Based on research undertaken for this thesis, I recommend useful avenues of future 

research into two areas, relating first to S. glastifolius, and to the field of species 

distribution modelling.  
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4.3.1 Designed surveys of S. glastifolius 

 
Data quality and completeness is a major limiting factor to studies into species’ 

distributions (Lobo, 2008).  Although this thesis made advances to the available data 

for S. glastifolius, limitations in the data remain. Designed field surveys of S. 

glastifolius could provide data free of spatial and environmental bias. Bias remains 

one of the most problematic aspects of available species data for SDM (Elith et al., 

2011).  

 
 
4.3.2 Better utilising information from imprecise species location data 

 
The dataset of species presence records used for model training in this study, 

though larger than any known existing previously for S. glastifolius, excluded a large 

number of records. Many of these records were apparently accurate, but were 

deemed to spatially imprecise to use for SDM. A useful avenue of future research 

would be the development of methods to utilise imprecise records without the current 

problems they pose of introducing an un-quantified degree of uncertainty into 

predictions.  

 

4.4 Concluding remarks 

Conceptual challenges in formulating and validating such models remain, despite 

continual advances in the field of SDM. With careful attention to the limitations of the 

study systems, predictive models of invasive species distributions can offer useful 

information for the management of invasive species, as well as explore questions of 

ecological niche biogeography.  
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Appendix 2.1 Recorded historical spread of S. 

glastifolius in New Zealand. 
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Appendix 2.2 Herbaria cited 

AK:  Auckland War Memorial Museum, Auckland, New Zealand. 

AVH:  Australia’s Virtual Herbarium. 

CHR:  Allan Herbarium, Landcare Research, Lincoln, New Zealand. 

MPN:  Dame Ella Campbell Herbarium, Massey University, Palmerston North, New 

Zealand. 

NSW: Royal Botanic Gardens, National Herbarium of New South Wales, Sydney, 

Australia. 

NZFRI: National Forestry Herbarium, Scion, Rotorua, New Zealand. 

PERTH: Western Australian Herbarium, Perth, Australia.  

PRE: South African National Botanical Institute, Pretoria, South Africa. 

WELT: Museum of New Zealand Te Papa Tongarewa Herbarium, Wellington, New 
Zealand. 
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Appendix 3.1 Comparison of MaxEnt models using 

raw and transformed data for MinTemp 

Methods 

To illustrate the effect of transforming the MinTemp variable (average daily minimum 

air temperature of the coldest month) from the Celsius temperature scale to the 

Kelvin temperature scale, equivalent MaxEnt models were trained: one using 

transformed data (Kelvin), the other using raw (Celsius). All MaxEnt settings were 

held equal, and the same presence and background points used for each. Predictor 

variables used were MinTemp, Aridity Index and Annual Temperature Range.  

 

Results 

 
Models varied in several key ways: AUC score, predicted suitabilities, number of 

features created, and contribution of each variable to the model (other differences 

not reported). The maximum absolute difference between predicted suitability values 

when projected to New Zealand was a substantial 0.36 (see Figure A3.1.3). 

Differences between predictions were spatially patterned, with the greatest 

differences occurring in the northern third of the North Island.  

 
Table A3.1.1. Summary of some key differences between models.  

 

 AUC 
(training) 

Minimum Training 
Presence 

Number of Features 

Celsius (Raw) 0.891 0.014 18 

Kelvin 
(Transformed) 

0.890 0.025 17 

 
 
Table A3.1.2. Contribution of predictor variables to MaxEnt model. 

 

Variable Percentage Contribution 
(C) 

Percentage Contribution 
(K) 

Annual Temperature 
Range 

46.1 45 

MinTemp 36.6 38.6 

Aridity Index 17.4 16.5 
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Figure A3.1.1. Mapped predictions for New Zealand using transformed (Kelvin scale) 
data for MinTemp.  
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Figure A3.1.2.Mapped predictions for New Zealand using raw data (Celsius scale) 
for MinTemp. 
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Figure A3.1.3. Difference in predicted values of each model (raw minus 
transformed), projected onto New Zealand.  
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Appendix 3.2: Climatic suitability predictions for 

Senecio glastifolius using BIOCLIM. 

BIOCLIM models for S. glastifolius were created, to explore the hypothesis that a 

geometric, presence-only technique would provide better prediction to new 

environments than MaxEnt.  

Presence training data and environmental predictor variables used were the same as 

for the full MaxEnt-based models described in the main text. Models were fit in R 

version 2.14.2 (R Core Development Team, 2012) using the package ‘dismo’ 

(Hijmans et al., 2012). Dismo’s implementation of BIOCLIM allows specification of 

tails (see explanation in main text, section 3.3.6.2). Both tails were used for Aridity 

Index and Annual Temperate Range; only the lower tail was used for MinTemp, 

mirroring the post-hoc threshold approach of the MaxEnt-based predictions.  

Models were evaluated using 4-fold regional cross-validation. Results from the 

globally fitted model are also reported, resubstituting training data. Statistics reported 

are the minimum training presence; omission on test data using minimum training 

presence as the cut-off value, and AUC. 

 

Table A3.2.1 Results summary for BIOCLIM models 

Test 

Region: 

Global New 

Zealand 

South Africa Australia Scilly 

Min Training 

Presence 

0.005 0.013 0.006 0.006 0.005 

Omission 0 0.02238806 0.2777778 0 1 

AUC 0.8179248 0.7977855 0.7907253 0.8471313 0.5 

 

 

Comparison to MaxEnt 

Evaluation scores (omission and AUC) for BIOCLIM models were lower than those 

for MaxEnt in all cases. Mapped predictions show very high similarity in the spatial 

pattern of predicted suitability. This is true for all regions. The most noticeable 

difference is that BIOCLIM is generally less permissive, predicting spatially more 

restricted areas of suitability. This is because BIOCLIM assigns a value of zero to 
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any grid cell with one or more environmental variable outside of the range of training 

data. Conversely, MaxEnt can assign potentially very high suitability to cells with 

values outside the training range. 

 

Figure A3.2.1 Globally fitted BIOCLIM model for S. glastifolius, projected to New 

Zealand (a); South Africa (b); Australia (c); and the Isles of Scilly (d). Colour scale 

represents predicted suitability. 
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Appendix 3.3: Correlation structure of predictor 

variables 

Correlation structure of predictor variables requires the careful attention of the 

modeller. Notably, changing correlation structures between data sets (e.g. study 

regions) can severely reduce the predictive ability of a model trained on one data set 

to predict to another (Elith et al., 2010; Harrel 2001).  

Correlation between two of the key predictor variables, aridity and annual 

temperature range, was analysed. Correlation with the third variable, minimum 

temperature of the coldest month, was not seen as important because this variable 

was included as contributing only a single limiting threshold value.  

 

Table A3.3.1. Correlation between Aridity and Annual Temperature Range, reporting 

Pearson correlation coefficients. 

Region: Global New 

Zealand 

South Africa Australia Scilly 

r -0.628 -0.226 -0.812 -0.770 0.118 

p-value <0.001 <0.001 <0.001 <0.001 0.095 

 

Correlation strength ranges from low (New Zealand) to fairly high, with correlation for 

South Africa approaching a heuristic maximum tolerable value of ± 0.85 (Elith et al., 

2006). The direction of relationship (negative) was constant across all regions for 

which correlation was significant.  



121 
 

 

Figure A3.3.1. ‘Background’ points plotted by study region, with associated lines of 

best fit. Blue = New Zealand, Purple = South Africa, Red = Australia, green = Scilly. 

The black line represents the global model. No line is plotted for Scilly because the 

relationship is not significant.  
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Appendix 3.4: Predicted Suitability of Madeira 

Archipelago for Senecio glastifolius 

The globally fitted MaxEnt model, described in the main text, section 3.3.6.1, was 

projected onto Portugal’s Madeira Islands. Minimum temperature of the coldest 

month was not included in the prediction because the lowest interpolated value for 

Madeira was 3.3°C, higher than the observed limiting threshold of ~2.3°C.  

 
The model predicts most of the land area of Madeira as climatically suitable to S. 

glastifolius. This result reinforces the credibility of the model for use in predicting to 

new regions.  

 
 
 

 
Figure A3.4.1 Predicted climatic suitability for S. glastifolius in Madeira.  

 
 
Areas of low predicted suitability for the archipelago were probably penalised by 

values for Annual Temperature Range being below the lower bound of training data 
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(both presence and background). This is not necessarily an error of prediction; rather, 

no information is available as to the suitability of that climatic space for S. glastifolius.  

 

 
 
Figure A3.4.2. Predictor variables outside of training data range. “bio_7_30” 

represents Annual Temperature Range; “ai_yr” represents Aridity Index.  
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Appendix 3.5: Invasion to New Zealand by Senecio 

glastifolius reveals niche space not available in 

native range of South Africa 

Species introductions to new areas sometimes reveal apparent shifts in ecological 

niche (section 1.5.3). Section (3.1.1) invited speculation that the fundamental niche 

of S. glastifolius was not fully available in its native range of South Africa. Senecio 

glastifolius shows a strong association with wet conditions in its narrow native range. 

Within this range, which is more humid than surrounding areas, it shows micro-

habitat selection of wet slopes, hollows, stream banks etc. New Zealand is much 

less arid, and so presumably offers favourable climatic space not available in South 

Africa. To explore this idea, the realised niches of S. glastifolius in these two 

geographic regions were examined visually in environmental space, along with 

corresponding biotopes (available conditions).  

 

 

Figure A3.5.1 Apparent niche shift of S. glastifolius between South Africa (Purple) 
and New Zealand (Blue). Recorded presence data are expressed in environmental 
space, with axes Annual Temperature Range (labelled as “bio_7_30”) and Aridity 
(labelled as “ai_yr”).  
 

Figure A3.5.1 presents the niche space of S. glastifolius in the two climatic 

dimensions most influencing of its distribution: Annual Temperature Range and 
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Aridity. Minimum convex polygons are drawn around points of known species 

occurrence; purple representing occurrence in South Africa, blue representing 

occurrence in New Zealand. These polygons can be taken to represent the realised 

niche of S. glastifolius in the two respective geographic regions. Observe that the 

two polygons barely overlap. While the species occupies roughly the same range of 

values for Annual Temperature Range in both geographic regions, it is associated 

with much more humid conditions in New Zealand. This pronounced shift in the 

realised niche could be interpreted in a number of ways, but a likely hypothesis 

emerges once the available climatic space in each geographic region is considered 

(Figure A3.5.2). Of the climate space occupied in New Zealand but not South Africa, 

almost none is available to the species in its native range of South Africa. Note too 

that due to imperfect sampling of the species’ distribution and contingent factors 

which limit geographic distribution, space unoccupied on this plot might in reality be 

climatically suitable in terms of the two axes considered.  
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Figure A3.5.2 Change in available environmental space between South Africa and 

New Zealand. Purple points and associated minimum convex polygon represent the 

biotope of S. glastifolius in South Africa, as measured by a random sample of 

background points. Blue points and polygon represent the biotope of the New 

Zealand study region. Presence points for each country are plotted in contrasting 

colours, and fitted with minimum convex polygons for illustrative purposes.  

 


