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Abstract 

As coastal catchment land use intensifies, estuaries receive increased nutrient and 

sediment loads, resulting in habitats dominated by muddy organic-rich sediments. 

Nutrient processing and denitrification in estuarine sediments represent 

important ecosystem functions regenerating nutrients for primary producers, and 

regulating the ability to remove excess terrestrially derived nitrogen.  

Denitrification therefore offers resilience to estuaries through mitigating 

eutrophication.  Biodiversity loss and increased mud content are important 

indicators of estuarine ecosystem degradation, and have been associated with 

negative effects on soft-sediment ecosystem functioning. However, the impact of 

these stressors on ecosystem response to nutrient enrichment is unclear.  This 

thesis investigates the response of denitrification to nutrient enrichment with 

emphasis on the impact of sedimentation stress and biodiversity loss for resilience 

to eutrophication.  

To experimentally test soft sediment ecosystem response to enrichment, an 

effective in situ enrichment method was required. A review of current literature 

was conducted highlighting a methodological gap, and lack of consistency among 

published studies. I developed and tested a technique for enriching estuarine 

sediments using slow release fertiliser. Enrichment effects (pore water ammonium 

concentrations) scaled with application rate, and greater elevations were 

observed in deeper (5-7 cm) than surface (0-2 cm) sediments. Enrichment levels 

were similar to eutrophic estuaries, were maintained for at least seven weeks, and 

enrichment levels could be partially explained by the sedimentary environment 

and macrofaunal community. 

To test the effect of sedimentary environment on denitrification enzyme activity 

(DEA) response to nutrient perturbation, an in situ enrichment experiment was 

conducted across an intertidal sedimentary gradient. Findings show that the level 

of an existing stressor (sediment mud content) can influence ecosystem function 

response to a second stressor (nutrient enrichment). DEA was supressed by 

nutrient enrichment, but the effect was greater with more mud content. This 
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study demonstrates that increasing sediment mud content may restrict nutrient 

processing, facilitating ecosystem shifts toward eutrophication.   

A field experiment was conducted across a heterogeneous sandflat at selected 

sites with a gradient in biodiversity to test the effect of macrofaunal community 

composition on denitrification in response to two levels of nutrient enrichment. 

Nutrient enrichment caused reductions in DEA as well as functional changes in the 

macrofaunal community. The degree of suppression of DEA following enrichment 

was dependent on enrichment level, and was alleviated by a key bioturbating 

species (medium enrichment), or the abundance and diversity of nutrient 

processing species (high enrichment). This study provides a prime example of the 

context dependent role of biodiversity in maintaining ecosystem functioning, 

underlining that different elements of biodiversity can become important as stress 

levels increase.  

To investigate the controls on denitrification at a regional scale (i.e. among 

estuaries), DEA data and environmental co-variables from five studies across four 

estuaries was combined and analysed. Mud content accounted for most of the 

variability in DEA, but other sedimentary and macrofaunal variables were also 

important. DEA increased with increasing sediment mud content up to a threshold 

of 30% mud, above which, DEA values were variable but no longer increased. This 

is significant because mud content is increasing in many estuaries globally, and 

shows that denitrification can reach a threshold with increasing estuary 

degradation. 

The findings of this thesis show that management of nutrients in estuarine 

ecosystems requires real-world understanding of the context dependent 

responses of denitrification, and that biodiversity loss and increasing 

sedimentation may reduce ecological resilience to eutrophication.  
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Preface 

This thesis comprises four research chapters (Chapters 2-5).  Chapters 3 and 5 have 

been published in peer-reviewed journals, and Chapters 2 and 4 are in preparation 
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analysis and writing of this thesis.  The ideas in this thesis are my own, unless 

otherwise referenced, and were produced under the supervision of Professor 

Conrad Pilditch (University of Waikato), Professor Simon Thrush (University of 

Auckland), Professor Louis Schipper (University of Waikato), and Dr Candida 

Savage (University of Otago). 

Chapter 2 has been published in the journal Marine Pollution Bulletin Volume 111: 

287-294 (2016), under the title “In situ soft sediment nutrient enrichment: A 

unified approach to eutrophication field experiments” by E.J. Douglas, C.A. Pilditch, 

L.V. Hines, C Kraan, and S.F. Thrush. DOI: 10.1016/j.marpolbul.2016.06.096 

Chapter 3 is under review for the journal Estuaries and Coasts, under the title 

“Sedimentary environment influences ecosystem response to nutrient 

enrichment” by E.J. Douglas, C.A. Pilditch, A.M. Lohrer, C. Savage, L.A. Schipper, 

and S.F. Thrush. 

Chapter 4 has been published in the journal Ecosystems (2017), under the title 

“Macrofaunal functional diversity provides resilience to nutrient enrichment in 

coastal sediments” by E.J. Douglas, C.A. Pilditch, C. Kraan, L.A. Schipper, A.M. 

Lohrer, and S.F. Thrush. DOI: 10.1007/s10021-017-0113-4 

I also contributed to an accompanying publication related to this project but not 

included in this thesis published in the journal Proceedings of the Royal Society B: 

Biological Sciences Volume 284: 1852 (2017), titled "Changes in the location of 

biodiversity-ecosystem function hot spots across the seafloor landscape with 

increasing sediment nutrient loading" by S.F. Thrush, J.E. Hewitt, C. Kraan, A.M. 

Lohrer, C.A. Pilditch, and E.J. Douglas. DOI: 10.1098/rspb.2016.2861 
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1 Chapter One 

General Introduction 

 

1.1 Estuary nutrient enrichment and denitrification 

Estuarine soft sediment ecosystems hold intrinsic ecological, cultural and 

economic value, however, their health and functioning is under threat from 

increasing anthropogenic stressors especially nutrient enrichment and 

sedimentation. Nitrogen is the most abundant element on earth and is essential 

for all life.  However, reactive forms of nitrogen are now being produced and 

distributed at such high rates that they outweigh rates of natural processes of 

removal and accumulate in aquatic ecosystems (Galloway et al. 2003).  

Overabundance of nutrients can increase productivity and cause changes in the 

composition of communities and food webs, as well as ecosystem function, and 

ultimately lead to eutrophication (Vitousek et al. 1997, Herbert 1999, Cloern 2001).  

Denitrification is an important mechanism of removal of excess bioavailable 

nitrogen from aquatic ecosystems and estuaries, because it regulates the amount 

of nitrogen available to primary producers, and therefore can lessen ecosystem 

shifts towards eutrophication (Seitzinger 1988, Aelion et al. 1997, Nowicki et al. 

1997, Herbert 1999, Seitzinger et al. 2006, Teixeira et al. 2010). Denitrification is 

the conversion of electron accepting, bioavailable nitrogen compounds (nitrate 

and nitrite) into gaseous forms (nitrogen gas and nitrous oxide) by heterotrophic 

bacteria (Knowles 1982).  It occurs when oxygen is absent or in low concentrations, 

nitrate is available, and there is a carbon source (usually in the form of electron 

donating organic carbon compounds) (Seitzinger et al. 2006).  Nitrification (the 

microbial conversion of ammonium to nitrate) in the sediments supplies nitrate 

for denitrification (where water column nitrate is low) in many coastal marine 

ecosystems (Jenkins & Kemp 1984, Henriksen & Kemp 1988). The co-occurrence 

of these two processes is called coupled nitrification-denitrification, and is limited 

by the contrasting oxygen conditions that each requires (Jenkins & Kemp 1984).  

Nitrification requires oxygen and occurs in the top layer of sediment where oxygen 
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diffuses from the water column, and denitrification occurs deeper down in anoxic 

sediments (Figure 1.1a).  In marine sediments there is usually a gradient of oxic to 

anoxic sediment within the top few centimetres allowing rapid transport of 

nutrients; this provides the site for coupled nitrification-denitrification (Jenkins & 

Kemp 1984) (Figure 1.1a).  The nature and extent of this zone is strongly influenced 

by the presence of bioturbating macrofauna which facilitate movement of oxygen, 

nitrates and organic matter throughout the sediments (Aller 1988, Stief 2013) 

(Figure 1.1b).   

Estuaries can be described as filters at the land/ocean interface (Anderson et al. 

2013) and the biogeochemical cycling occurring within them has the potential to 

considerably influence nearby coastal areas (Seitzinger et al. 2006). Soft sediments 

in estuaries can denitrify between 10 and 80% of received terrestrial nitrogen 

inputs (Seitzinger 1988, Nixon et al. 1996), these habitats are therefore vital for 

ecosystem resilience to nutrient enrichment.  Resilience can be defined as the 

ability of an ecosystem to maintain its functioning while withstanding disturbance 

(Holling 1973). Denitrification in sediments is important for mitigating the effects 

of excess nitrogen in coastal ecosystems, and is a potential tool for management 

(Seitzinger 1988, Nowicki et al. 1997, Davidson & Seitzinger 2006), but other 

stressors, particularly sedimentation, may impact this ability.  This thesis seeks to 

determine how environmental variables regulate denitrification in estuary 

sediments, and how it is impacted by key stressors nutrient enrichment, 

biodiversity loss, and sedimentation. Such studies are necessary to understand 

how environmental change and increasing nutrients will influence denitrification 

in coastal ecosystems (Cornwell et al. 1999). 
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Figure 1.1 (a) Nitrogen cycling pathways in estuary sediments, showing oxic and anoxic layers. PON: 
particulate organic nitrogen, A: ammonification, DNRA: dissimilatory nitrate reduction to 
ammonium, Anammox: anaerobic ammonium oxidation. Adapted from (Stief 2013). (b) Cross 
section of an estuary soft sediment habitat showing oxic and anoxic sedimentary layers, depicting 
the complexity added by benthic macrofauna. Adapted from graphic drawn by Max Oulton, 
Cartographer, University of Waikato. 
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1.1.2 Sedimentation 

Sedimentation is a major threat to estuaries in New Zealand and globally.  

Increasing coastal populations and intensification of land use has resulted in 

increases in the supply and accumulation of both nutrients and fine terrestrial 

sediments (‘mud’; grain size <63 µm) in estuaries (Thrush et al. 2004).  These 

inputs are likely to increase with climate change because of increased frequency 

and intensity of storm events (Thrush et al. 2003a, Hewitt et al. 2016).  Delivery of 

mud to estuaries can occur through pulsed or catastrophic ‘dumping’ events 

related to major storms, or more slowly through intermittent increases in water 

column turbidity. This can result in sub-lethal effects to macrofauna, macrofaunal 

die-off, reductions in recruitment, and reductions in ecosystem function 

performance (Norkko et al. 2002, Cummings et al. 2003, Lohrer et al. 2004b, 

Billerbeck et al. 2007, Cummings et al. 2009, Pratt et al. 2014). Over longer 

timescales increased sediment mud content can cause degradation of estuaries 

through changes in or homogenisation of habitats and communities, loss of 

biodiversity, and reductions in or complete loss of ecosystem functions (Thrush et 

al. 2003b, Thrush et al. 2004, Jones et al. 2011).  

An increase in the proportion of fine ‘muddy’ sediment causes a reduction in 

permeability affecting the flow of solutes and particles, and therefore has a 

significant influence on local biogeochemical cycling (Huettel et al. 2003, Santos et 

al. 2012).  Muddy sediments with low permeability generally have a higher organic 

matter content which can increase nutrient remineralisation and 

microphytobenthic biomass (Lever & Valiela 2005), and influence biogeochemical 

processes such as denitrification (Caffrey et al. 1993). Field studies have 

demonstrated that ecosystem function, macrofaunal communities and behaviour 

vary across sedimentary gradients (Blackburn & Henriksen 1983, Edgar & Barrett 

2000, Cook et al. 2004a, Cook et al. 2004b, Jones et al. 2011, Hohaia et al. 2013, 

Pratt et al. 2013), but less is known about the influence of sedimentation on 

denitrification response to nutrient enrichment (i.e. multiple stressor effects). 
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1.1.3 Benthic macrofauna 

Loss of biodiversity is a global problem resulting in loss of ecosystem resilience to 

environmental change (Oliver et al. 2015). The diversity – stability hypothesis says 

that communities that contain more species will vary less through time in response 

to disturbances (Elton 1958, May 1972, Jacquet et al. 2016).  Biodiversity therefore 

influences the ability of an ecosystem to be resilient against or to resist 

environmental change (Chapin et al. 2000, Naeem et al. 2012). Benthic 

macrofauna, particularly large species and individuals, are important for estuarine 

ecosystem functioning (Hewitt et al. 2006, Norkko et al. 2013). In New Zealand 

estuaries, two large bivalve species Austrovenus stutchburyi and Macomona 

liliana can make up a large proportion of the macrofaunal biomass and exert 

significant control on sediment biogeochemistry and ecosystem functioning 

(Hewitt et al. 1996, Woodin et al. 2016). The bioturbating and bioirrigating 

activities of benthic macrofauna control oxygen gradients as well as the 

movement of nitrogen solutes throughout the sediment profile (Aller 1988, Welsh 

2003).  Therefore, they can significantly influence the coupling of nitrification and 

denitrification and the degree of nitrogen removal in soft sediment ecosystems 

(Stief 2013). Loss of key species, such as A. stutchburyi and M. liliana, could 

therefore influence ecosystem response to nutrient enrichment, and if 

denitrification reduces, ecosystem resilience to nutrient enrichment may be lost. 

Changes in the composition of benthic macrofaunal communities due to 

increasing sediments and nutrients has been well documented (e.g. Fitch & Crowe 

2012, Pratt et al. 2013), but what this means for denitrification and ecosystem 

resilience is unclear.   

1.2 Status of denitrification research 

The current literature shows that organic matter loading, water column nitrate 

concentration, and water column oxygenation are the primary controls on 

denitrification rates in aquatic ecosystems (Cornwell et al. 1999, Piña-Ochoa & 

Álvarez-Cobelas 2006). In most aquatic ecosystems, denitrification is coupled to 

nitrification in the sediments, but as nitrate and organic matter loading increase, 

conditions may favour direct denitrification of nitrate from the water column 

(Seitzinger 1988). Most of the aquatic denitrification literature comes from studies 
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in nutrient enriched northern hemisphere ecosystems, which have likely reached 

more degraded states than those in Australia and New Zealand, for which there is 

little data (Seitzinger 1988, Cook et al. 2004b, Gongol & Savage 2016). 

Comparatively, most New Zealand estuaries are pristine with low organic carbon 

loading (or loading has only increased in recent history), very low water column 

nitrate concentrations, and waters that are rarely or never low in oxygen (Thrush 

et al. 2006, Lohrer et al. 2010, Tay et al. 2012). The dominant (and possibly the 

only) pathway of denitrification is likely to be coupled to nitrification in the 

sediments (Cornwell et al. 1999, Gongol & Savage 2016), and the main factors 

influencing denitrification are expected to be different than those reported in the 

majority of the literature.  

Denitrification is a difficult process to measure, and it is highly variable in space 

and time (Groffman et al. 2006). As a result, studies have been restricted to small 

scale field observations, and laboratory or mesocosm experiments that are 

difficult to extrapolate or use for modelling denitrification at ecosystem or 

regional scales (Boyer et al. 2006). I have found no examples of denitrification field 

studies that have been manipulative, and there has been little investigation of how 

denitrification in estuaries responds to stressors or environmental change 

(Fulweiler et al. 2008, Oakes et al. 2011, Bruesewitz et al. 2013).   

Denitrification is influenced by numerous biotic and abiotic variables, for which 

individually, many of the effects are well known (see Cornwell et al. 1999).  

However, because of the nature of how denitrification is measured (i.e. in cores 

or assays in a laboratory), it is difficult to relate measurements to real world 

ecological variability such as benthic community composition. Studies 

investigating the role of the benthic macrofauna for nitrogen cycling have mostly 

focussed on single species and/or have been laboratory based (Kristensen et al. 

1985, Kristensen et al. 1991, Pelegri et al. 1994, Gilbert et al. 1998, Webb & Eyre 

2004a).  

What is lacking, is the ability to predict denitrification at broad scales using 

estuarine characteristics and variables (i.e. sedimentary environment, 

macrofaunal community).  Synthesis and use of denitrification measures that 

incorporate temporal variability and represent the status of the active denitrifier 
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population (e.g. denitrification enzyme activity, DEA) will add to existing literature 

that describes more finite controls on instantaneous denitrification rates. 

Measuring ecosystem functions, such as denitrification, across existing gradients 

can be used to predict trajectories of change and tipping points that might occur 

with increasing stressors and environmental degradation (e.g. increasing sediment 

mud content). 

1.3 Approach/Measuring denitrification 

There are three main methods for measuring denitrification; the isotope pairing 

technique, membrane inlet mass spectrometry, and denitrification enzyme 

activity (DEA) assays using acetylene inhibition (Seitzinger et al. 1993). The two 

former methods provide accurate quantification of actual denitrification rates but 

would be too time consuming and expensive for the field experiments and 

sampling programs undertaken in this PhD. The acetylene inhibition technique 

works through the inhibition of N2O reduction to N2 by acetylene (C2H2) making it 

the end product of denitrification, which is a much easier compound to measure 

than atmospherically abundant N2 (Yoshinari et al. 1977, Groffman et al. 2006).  

This method has been widely and successfully used in denitrification studies but is 

not without criticism.  Acetylene also inhibits the nitrification pathway which in 

the real world provides a source of nitrate to the denitrification process, and 

therefore it underestimates actual denitrification rates (Groffman et al. 2006).  

Denitrification in the estuaries studied in this thesis were likely to be coupled to 

nitrification in the sediments, and substrate amendments were necessary to 

detect rates.  I therefore conducted DEA assays with unlimited nitrate and carbon 

amendments, a method sometimes referred to as denitrification potential (Smith 

& Tiedje 1979).  

DEA assays provide a measure of the denitrification that would occur under 

optimal conditions (i.e. anoxic, with unlimited nitrate and carbon, and constant 

mixing), but without allowing for new enzyme growth. Capturing realistic and 

representative measures of denitrification is difficult because it is highly variable 

spatially and temporally, but the DEA method provides an integrative measure of 

the denitrification history of the sediments (that is, the duration (usually weeks to 

months) that the sediments have experienced conditions for denitrification). The 
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DEA method has been shown to be a successful measure of spatial and temporal 

variability in denitrification (Groffman et al. 1999), and a number of studies have 

successfully used it at an ecosystem scale (Livingstone et al. 2000, Wigand et al. 

2004, Magalhães et al. 2005, Bruesewitz et al. 2011). DEA was used throughout 

this thesis as a proxy for denitrification, a tool to compare denitrification across 

different estuaries, and to examine the factors that govern nitrogen removal.  This 

method was the most appropriate because it permits large sample sizes, which 

increased replication in experimental studies and enabled analysis of correlation 

with other physical and biological variables, and it also allowed comparison of 

denitrification across estuaries. 

From a management perspective, research is required to facilitate ecosystem 

service mapping of denitrification, inform landscape scale nitrogen budgeting and 

modelling, and to initiate monitoring of denitrification in New Zealand estuaries. 

This calls for studies of denitrification at estuary or regional scales that can reveal 

patterns and generalities in where denitrification occurs, and what environmental 

factors controls it. Denitrification is an ecosystem service that can help to mitigate 

nitrogen enrichment, but response of denitrification to enrichment in estuary 

sediments, and what controls it, has not been demonstrated before this thesis. In 

order to fill these research gaps, I needed to conduct surveys of denitrification 

across broad environmental gradients, and field based manipulative experiments 

encompassing wide variability in abiotic and biotic variables. 

Denitrification is highly variable in space and time, as are soft sediment 

ecosystems, and research that encompasses this natural heterogeneity is 

necessary to generate ‘big-picture’ conclusions that are relevant to managers 

(Thrush & Lohrer 2012).  This thesis is unique because it presents studies testing 

the response of denitrification to stressors, especially nitrogen enrichment, in situ. 

A new technique for simulating nutrient enrichment in the field was developed, 

but manipulating key stressors biodiversity loss and increasing sediment mud 

content are more difficult in a field setting. By using natural environmental 

gradients as sites for enrichment experiments I could concurrently assess the 

influence of local biotic and abiotic variables (especially stressors) on 

denitrification, and on denitrification response to enrichment. In Chapter 3 I used 
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a gradient in sediment mud content to assess effects of sedimentation stress, and 

in Chapter 4 I used a gradient in macrofaunal community composition to assess 

effects of biodiversity loss or changing community composition. Conducting 

manipulative field experiments across environmental gradients encompassing real 

world complexity increases the generality of results (Hewitt et al. 2007, Snelgrove 

et al. 2014), and this approach is new to denitrification research. 

1.4 Thesis overview 

The main body of this thesis comprises four research chapters collectively aiming 

to broaden our understanding of nitrogen enrichment and denitrification in 

estuarine soft sediment ecosystems; a field nutrient enrichment method 

development (Chapter 2), two manipulative field experiments (Chapters 3 & 4), 

and a synthesis of ambient DEA values from five studies across four estuaries 

(Chapter 5) (Figure 1.2). This thesis aims to provide a greater understanding of the 

fate and effects of nitrogen in estuaries, and examine how denitrification in 

estuaries may change with changes that may occur with ecosystem stress.  

Specifically, increasing sediment mud content, increasing pore water nutrient 

concentrations, and changes in macrofaunal community.  
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Figure 1.2 Diagram illustrating the progression of thesis chapters; (2) development of an in situ 
nutrient enrichment technique, manipulative studies addressing the effects of (3) nutrient stress 
and sedimentation stress, and (4) nutrient stress and biodiversity loss (or changing community 
composition) on denitrification, and (5) investigation of factors influencing variability in 
denitrification across estuaries. Numbers indicate the chapters where each component is 
addressed. 
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1.4.1 Chapter 2 

In order to test ecosystem response to nutrient enrichment in the field, I required 

a simple technique that increased pore water nutrient concentration for several 

weeks. A methodological gap existed in the literature, therefore I developed and 

tested a new in situ sediment nutrient enrichment method. The method 

significantly increased pore water ammonium concentrations to levels 

representative of enriched estuaries globally, and revealed the local 

environmental and biological factors that control the level of enrichment.   

Objectives:  

1. To develop a method for simulating eutrophication in intertidal soft 

sediments in the field, which can be used in field experiments with low cost 

and time requirements. 

2. To qualify the local variables that control enrichment level. 

1.4.2 Chapter 3 

To understand how estuary sedimentation influences ecosystem functioning, 

especially nutrient processing and denitrification, I conducted an enrichment 

experiment across an existing sedimentary gradient (0 – 24% mud) on an intertidal 

flat.  After 6 weeks of enrichment I measured DEA, and ecosystem functions using 

benthic chamber incubations. I compared macrofaunal community, 

microphytobenthic biomass, environmental variables and ecosystem functions 

(community metabolism, primary productivity, nutrient processing, and DEA) in 

control and enriched plots.  This study enabled me to demonstrate differences in 

responses associated with increasing sediment mud content (direct and indirect 

effects), and the factors that contribute to the resilience of ecosystem functions 

under nutrient stress. 

Objectives:  

1. To investigate how DEA and benthic ecosystem functioning vary across 

sedimentary gradients. 

2. To quantify the response of DEA and benthic ecosystem functioning to 

sediment nutrient enrichment. 
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3. To investigate if sedimentary environment governs that response; ie. Is 

there a multiple stressor effect of sedimentation and nutrient enrichment? 

1.4.3 Chapter 4 

This study was part of a large in situ enrichment experiment across a sandflat with 

a heterogeneous landscape of macrofaunal community composition. The study 

was designed to investigate how abundance and diversity of macrofauna, within a 

functional trait group associated with nutrient processing, influence ecosystem 

function (especially DEA) response to nutrient enrichment. I showed that 

macrofauna were integral to DEA response to nutrient enrichment, and that 

different elements of diversity are important at different levels of stress. 

Objectives: 

1. To investigate the importance of benthic macrofaunal community 

composition for denitrification response to medium and high levels of 

sediment nutrient enrichment.   

1.4.4 Chapter 5 

This study combined data from three estuary surveys (one subtidal and two 

intertidal), and ambient values from the two field experiments (Chapters 3 & 4). 

The dataset (n = 134) represented a range of DEA values, measures of sediment 

properties, microphytobenthic biomass, and macrofaunal community 

composition. The sedimentary environment ranged from very clean coarse sands 

(0% mud), to cohesive, organic rich sediments with up to 52% mud content. With 

this dataset, I showed generality in the biotic and abiotic factors responsible for 

variability in DEA across multiple estuaries, and demonstrated a possible threshold 

in DEA with increasing sediment mud content. 

Objectives:  

1. To investigate the drivers of denitrification across multiple estuaries. 
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2 Chapter Two 

In situ soft sediment nutrient enrichment: A 

unified approach to eutrophication field 

experiments  

 

2.1 Introduction 

Nutrient processing is deemed one of the most valuable ecosystem services 

globally and the majority of this occurs in coastal soft sediments (Costanza et al. 

1997). This ecosystem service influences the supply and flux of nutrients within 

and between marine habitats and through denitrification in particular, can 

alleviate problems such as the loss of ecosystem functionality and biodiversity 

associated with excess nutrients. Indeed, excessive nutrient loading and 

eutrophication are stressing coastal marine environments throughout the world 

(Levin et al. 2015). The overabundance of nitrogen in particular (the nutrient 

usually limiting production (Herbert 1999, Howarth & Marino 2006) causes 

changes in biomass, structure, and functioning of coastal communities and food 

webs (Abreu et al. 2006, Howarth et al. 2011, Rabalais et al. 2014). Yet, despite 

being of paramount importance to global environmental wellbeing, nutrient 

processing in soft sediments is still poorly understood and response to 

perturbations are rarely tested experimentally in situ. Reliable techniques are 

needed to empirically test the effects of excess nutrients, and its interactions with 

other stressors in real world settings that embrace ecological complexity, and 

thereby allow broad scale inferences regarding response to change (Snelgrove et 

al. 2014). 

Fertilisers have commonly been used to test the effects of increased nutrient 

loading on marine soft sediment habitats, but methodological development has 

been haphazard making cross-study comparisons near impossible. I extended the 

review of Worm et al. (2000) to include the recent literature, and found 47 

enrichment studies conducted in intertidal and subtidal habitats (Appendix 1). 
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Approximately half of the studies tested nutrient limitation and growth in 

macrophytes (mainly seagrasses), and half examined nutrient enrichment effects 

on benthic communities and food webs. Slow release fertilisers, such as 

Osmocote®, were used in 33 of 47 (70%) studies, but these fertilisers varied 

considerably in their elemental makeup. Similarly, studies had a very wide range 

of application rates (between 3 and 750 g N m-2 (Figure 2.1); while some were 

based on previously published experiments or site-specific pilot studies (25 of 47), 

in more than 50% of studies application rates were not justified (27 of 47). 

Applications of fertiliser to surficial sediments were common; in 53% of studies 

additions were < 5 cm deep, and in many studies (36%) only the top 1 cm of 

sediment received fertiliser. Moreover, in only 20 of 47 studies were enrichment 

levels (i.e. realised treatment effect) on sediment nutrient pore water 

concentrations reported. Relative increases in pore water nitrogen concentrations 

(effect sizes) in these 20 studies ranged from 7-352 times ambient levels (Figure 

2.1) but enrichment level comparisons are difficult to make because the depth of 

sampling (0-20 cm) was not standardised. These inconsistencies and 

methodological limitations indicate a need for a more informed approach to 

enrichment experiments that justifies fertiliser application rates, and improves 

understanding of the factors that may influence the resulting pore water nutrient 

concentrations.  

Firstly, when planning manipulative field or mesocosm experiments it is useful to 

consider potential enrichment levels for a given application rate to avoid 

unrealistically high or undetectable pore water nutrient concentrations. Secondly, 

Worm et al. (2000) showed that enrichment level (i.e. pore water nutrient increase) 

could not be predicted by the initial fertiliser application rate, time since 

application and application depth using multiple linear regression analysis of 

literature studies (overall r2 = 0.07, P = 0.53, n = 34). We repeated this analysis on 

the larger set of literature and revealed a similar result (r2 = 0.01, P = 0.92, n = 48). 

The implication is that local environmental variables and variability in methods 

may strongly affect the enrichment level. I also note that previous studies have 

frequently overlooked co-variables or failed to assess their influence on the 

nutrient treatment. 
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Figure 2.1 Effect size of enrichment treatment (relative to ambient pore water nitrogen 
concentration) as a function of fertiliser application rate in the 20 studies for which such data were 
reported (Appendix 1). 

 

Marine soft sediment ecosystems vary greatly in their physical and biological 

makeup, and consequently their biogeochemical processes (Braeckman et al. 

2014). For example, sediment properties are important to consider in studies of 

benthic nutrient cycling since these influence diffusion and solute transport (e.g. 

Blackburn & Henriksen 1983, Huettel et al. 2003, Glud 2008, Hohaia et al. 2013), 

as well as macrofauna behaviour and ecosystem functioning (Lohrer et al. 2004b, 

Woodin et al. 2012, Pratt et al. 2013). Benthic macrofauna are known to influence 

nitrogen cycling (Aller 1988, Kristensen et al. 1991, Laverock et al. 2011), and the 

presence of macrophytes and microphytobenthos are also expected to influence 

pore water nutrient concentrations and the level of experimental enrichment. The 

majority of enrichment experiments have been conducted in vegetated sediments 

(28 of 47) and only 10 of the 19 studies conducted in un-vegetated sediments 

reported significant increases in pore water concentrations (Appendix 1). My 

literature review shows that there is insufficient information for researchers 

designing enrichment experiments in un-vegetated sediments, and that there is a 

need to experimentally assess the role of habitat and biological processes in 

ameliorating pore water nutrient concentrations.  

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800

Ef
fe

ct
 s

iz
e

Application rate (g N m-2)



 

16 

This study develops protocols that are simple and cost-effective for in situ nitrogen 

enrichment experiments. The method was developed based on the published 

literature and a recent intertidal sandflat experiment that encompassed a wide 

range of sediment types, macrophyte coverage, and variations in benthic 

macrofauna community composition (Table 2.1). The study design allowed me to 

document the degree to which surface and sub-surface sediment pore water 

nitrogen concentrations were elevated as a function of fertiliser application rate 

and time since application, in relation to environmental variables to serve as a 

guide for future studies.   

 

Table 2.1 Sediment properties and macrofauna variables after 7 weeks of enrichment as a function 
of fertiliser application rate.  Values are medians with minimum and maximum in parentheses (n = 
28). 

 
Variable 

Control 

(0 g N m-2) 

Medium 

(150 g N m-2) 

High 

(600 g N m-2) 

Sediment properties    

 Seagrass (% cover) 16 (0-84) 20 (0-97) 21 (0-75) 

 OC (%) 0.9 (0.6-2.0) 0.9 (0.6-2.0) 1.0 (0.6-1.8) 

 Mud (% <63 µm) 1.78 (0-15) 0.62 (0-14) 0.42 (0-12) 

 GSM (µm) 215 (177-241) 220 (182-242) 219 (190-250) 

 Chl-a (µg g-1 sediment) 9.3 (3-23) 10.0 (5-32) 9.5 (5-28) 

Macrofauna    

 S (taxa core-1) 26 (11-38) 23 (7-40) 26 (11-45) 

 N (n core-1) 107 (19-419) 58 (8-345) 62 (22-574) 

 H' 2.4 (1.1-3.1) 2.4 (1.6-3.0) 2.4 (1.1-3.0) 

OC = sediment organic content, Mud = sediment mud content, GSM = Grain size 
median, Chl-a = chlorophyll a content, S = number of species, N = number of individuals, 
H' = Shannon diversity  
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2.2 Methods 

2.2.1 Experiment setup 

A large scale nitrogen enrichment experiment was set up on a 300,000 m2 area of 

intertidal sand flat on the Tapora Bank in the Kaipara Harbour, northern New 

Zealand (36° 39’ S, 174° 29’ E) on 20 January 2014 (Appendix 2). The study area is 

composed mostly of permeable sediments of varying mud (particle size < 63 µm) 

content (Table 2.1), and is subject to tidal flushing, wind waves, and run off from 

a mostly agricultural catchment. Treatment plots (1 m x 1 m) consisting of control 

(no addition), medium (150 g N m-2) and high (600 g N m-2) nitrogen enrichment 

were established at 28 sites (each in a 5 x 5 m area) across the study area. These 

application rates were based on the median and upper quartile values from the 

literature review (Appendix 1). We used Nutricote® N (70 d, 40-0-0 N:P:K), a 

controlled release coated urea fertiliser containing no phosphorus, potassium or 

trace elements. A nitrogen-only fertiliser was used since it is typically the limiting 

nutrient in these systems, and urea quickly hydrolyses to ammonium (NH4
+) 

(Lomstein et al. 1989), the most common form of nitrogen in New Zealand 

estuaries (Tay et al. 2013). 

Fertiliser was applied to each plot in a series of 20 evenly spaced 3 cm diameter 

15 cm deep holes made in the sediment using a hand held corer. Each hole 

received an equal volume of fertiliser (which covered approximately 5-15 cm 

depth range within the sediment profile), and the intact sediment core plugs were 

replaced immediately to minimise disturbance to the sediment. For less cohesive 

sediments, an outer core sleeve was used to prevent holes from infilling while 

fertiliser was added. Control plots were similarly cored and received an equal 

volume (as the high treatment) of pea gravel of similar diameter to the fertiliser 

pellets. With this method I was able to establish 84 1 m2 experimental plots across 

a 300,000 m2 study site in one low tide (4-5 h) with a team of six people. In a 

preliminary study, this technique provided even elevation of pore water NH4
+ 

throughout a 1 m2 plot (1.3-2.0 fold variation in concentration between the plot 

centre, edge and halfway in between) when sampled four weeks after application, 

with enrichment effects undetectable 0.5 m beyond the plot boundary. 
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2.2.2 Sampling 

Samples were collected four weeks (25 February 2014, pore water and sediment 

properties) and seven weeks (17 March 2014) after the fertiliser addition (pore 

water, sediment properties, macrofauna). Sampling times were chosen to allow 

enough time for the system to respond (based on my literature review and pilot 

study), and were within the 70 d release period of the fertiliser. Replicate, 

randomly placed sediment cores (2.6 cm dia.) from each plot were pooled and 

homogenised for analysis of sediment properties (n = 5, 0-2 cm depth) and pore 

water nutrients (n = 4, 0-2 cm and 5-7 cm depths, separated). Sediment samples 

were kept in the dark and transported on ice to the laboratory. At the end of the 

experiment, two cores (13 cm dia., 15 cm depth) were collected near the centre 

of each plot for analysis of the benthic macrofaunal community. Cores were sieved 

on a 500 µm mesh, preserved in 50% iso-propyl alcohol, and stained with Rose 

Bengal. All organisms were counted and identified to the lowest possible 

taxonomic level (usually species). The average of 2 cores was used so that there 

was 1 macrofaunal replicate per plot. 

In the laboratory, pore water was extracted immediately by centrifuge and filtered 

(1.1 µm, Whatman GC glass fibre filters) prior to freezing (-20°C) (Lohrer et al., 

2010). Pore water samples were later analysed for NH4
+ using a Lachat QuickChem 

8000 Series FIA+ (Zellweger Analytics Inc. Milwaukee, Wisconsin, 53218, USA) 

using standard operating procedures for flow injection analysis. Sediment samples 

were frozen at -20°C until analysis. Particle grain size was measured after removal 

of organic matter with 10% hydrogen peroxide, using a Malvern Mastersizer 2000 

(particle size range 0.05 – 2000 µm) (Singer et al. 1988). Sediment organic matter 

content was determined by weight loss on ignition of dry sediments (550°C for 4 

hours) according to Parker (1983). Chlorophyll a (Chl a) was extracted from freeze-

dried sediment in 90% acetone, then fluorescence of samples was measured using 

a Turner Designs 10-AU flourometer (Arar & Collins 1997). Prior to sampling, 

photographs of 0.25 m2 in the centre of each plot were taken and a random point 

count method used to estimate seagrass (Zostera muelleri Irmisch ex Asch.) 

coverage (%) (see Kohler & Gill 2006).  
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Summary statistics and univariate tests were carried out using STATISTICA version 

11 (StatSoft Inc. 2012) after first identifying and removing outliers (n < 5 per 

treatment). When processing pore water samples, some cores were contaminated 

with fertiliser pellets, these were further identified as outliers in the analysis and 

were removed. Paired t-tests were used to test for differences in pore water NH4
+ 

concentration between depth strata four and seven weeks after enrichment. 

Multivariate analyses were conducted using PRIMER 7.0 PERMANOVA+ (Clarke & 

Gorley 2015). A Euclidean distance matrix was generated using log (x + 1) 

transformed pore water concentrations from both depth strata. This matrix was 

then used to run a repeated measures permutational multivariate analysis of 

variance (PERMANOVA) to test the effects of application rate (fixed factor, 3 

levels), sample time (fixed factor, 2 levels) and their interaction on multivariate 

pore water NH4
+ concentration, plot was treated as a random factor (84 levels) 

nested within treatment. Post-hoc PERMANOVA pairwise t-tests were used to 

identify where significant treatment and time effects occurred.  

To investigate whether measured environmental variables (Table 2.1) could 

explain variations in pore water NH4
+ concentration, a separate Euclidean distance 

matrix of raw pore water concentration data (using both depth strata) from week 

seven was generated for each treatment.  Distance-based linear models (DistLM) 

were run on the matrices to determine which variables were correlated with pore 

water NH4
+ concentrations (e.g. as in (Pratt et al. 2015)). This multiple regression 

analysis uses permutation and does not assume normality, so data were left 

untransformed because I wanted to retain heterogeneity (and transformations did 

not change results). Predictor variables were however standardised (between 0 

and 1) to account for differences in the magnitude and range of units. Marginal 

tests were used to identify individually significant correlations with pore water 

concentration, followed by a backwards elimination procedure, using the 

corrected Akaike information criterion (AICc) to select the best individual or 

combination of variables. AICc was the most the appropriate selection criterion 

since the sample size was small relative to the number of variables (Burnham & 

Anderson 2002).  

  



 

20 

2.3 Results 

The technique successfully elevated pore water NH4
+ concentrations for the 

duration of the seven week experiment, with the depth-averaged medium and 

high treatments respectively 1-110 and 4-580 times greater than ambient 

conditions (Figure 2.2). These ranges are near to (medium treatment) or greater 

than (high treatment) the range of values from reviewed studies using application 

rates between 3 and 750 g N m-2 (Figure 2.2). Despite high within treatment 

variability, there was a highly significant effect of fertiliser application rate on pore 

water NH4
+ concentration (depth strata combined), and post-hoc tests revealed 

significant differences between all treatment levels (Table 2.2). There was also a 

weakly significant effect of sample date, with pore water NH4
+ concentrations 

higher in week seven than week four, although plots within specific treatments 

did not all respond temporally in the same way (i.e. the significant plot nested in 

treatment effect). The lack of a significant treatment x time interaction indicates 

that the temporal increase in pore water NH4
+ concentrations was a general site 

phenomenon, and not related solely to changes in release rate in fertilised plots. 

Four and seven weeks after enrichment, both fertiliser treatments showed higher 

pore water NH4
+ concentrations in deeper sediments (5-7 cm) than surface 

sediments (0-2 cm) (paired t-tests p < 0.01). Ambient (control plot) NH4
+ 

concentrations were also higher in deeper than shallower sediments although the 

differences were not as pronounced (paired t-tests p < 0.06; Figure 2.2).  

Sediment properties and macrofaunal community characteristics varied widely 

across the experimental area (Table 2.1), but none of these variables were 

significantly correlated with pore water NH4
+ concentration in the control and 

medium addition plots (Table 2.3). However, in the high addition treatment pore 

water NH4
+ concentration was negatively correlated with distance from shore, 

organic and mud content, seagrass coverage, and benthic macrofauna diversity 

(Table 2.3). Sediment Chl a content was the only variable positively correlated with 

pore water NH4
+ concentration. The most parsimonious model of pore water 

concentration in the high treatment included Chl a and number of macrofauna 

taxa, which collectively explained 42% of the total variation.  
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Figure 2.2 Sediment pore water NH4
+ concentration as a function of time since fertiliser application 

(4 and 7 weeks), application rate (0, 150, 600 g N m-2) and sample depth (0-2 and 5-7 cm). Boxes 
represent 25%, median and 75% distributions, with whiskers the non-outlier minimum and 
maximum (n=28). Note log10 scale of y-axis. 

 

 

Table 2.2 Results of a repeated measures PERMANOVA comparing pore water NH4
+ concentration 

as a function of fertiliser application rate (treatment) and sample date (time).  The PERMANOVA 
was based on Euclidean distance of log10 (x + 1) pore water concentrations at 0-2 and 5-7 cm depth. 
Post-hoc pair-wise tests are given for significant treatment effects. 

Source df MS Pseudo-F Perm-p Post-hoc 

Treatment 2 503 162 0.001 C < M < H 

Time 1 9.68 4.82 0.021 4w < 7w 

Plot (Treatment) 81 3.09 1.54 0.012  

Treatment  x Time 2 1.51 0.75 0.547  

Residual 81 2.01    

Treatments: C = 0, M = 150, H = 600  g N m-2 

Time: 4w = 4 weeks, 7w = 7 weeks 
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Table 2.3 Predictors of pore water NH4
+ concentration as a function of fertiliser application rate 

after seven weeks.  

Treatment Variable Pseudo-F Prop. Full model 

0 g N m-2 no individually significant predictors 

150 g N m-2 no individually significant predictors 

600 g N m-2 Distance to shore 5.42 0.20* (-) 
 

 OC 4.76 0.18* (-) 
 

 Mud 2.99 0.12 n.s. (-) 
 

 Chl a 2.94 0.12 n.s. (+) 16 % 

 Seagrass 5.70 0.21** (-)  

 S 7.84 0.26** (-) 30 % 

 H' 7.93 0.26** (-)  

   Total 42 % 

Prop. is the proportion of variation explained and direction of correlation is given in 
parentheses.  Variables in bold were those included in the best DistLM model of pore 
water concentration, and full model indicates the proportion of explained variance 
attributed to each. Variable abbreviations are given in Table 2.1. * p ≤ 0.05, ** p ≤ 0.01. 
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2.4 Discussion 

In order to conduct experiments that simulate realistic eutrophic sedimentary 

conditions, an adequate nutrient application technique is required together with 

a benchmarked application rate to achieve the desired level of enrichment. Since 

the Worm et al. (2000) review 18 years ago there has not been sufficient 

improvement in methodology available in the literature to help plan enrichment 

experiments. I developed a technique to enrich intertidal sediments in one 

application, without disturbing the entire sediment profile, which can supply 

nutrients for at least seven weeks. This technique provides an even spread of 

nutrient concentrations throughout a 1 x 1 m2 plot minimising nutrient gradients. 

This method is simple and cheap, can be used for both long and short-term 

enrichment experiments, and allows high levels of replication. Fertiliser pellets 

appeared intact after 7 weeks, and I expect that enrichment would have continued 

for at least 70 d (manufacturers estimated release period). Longer term 

experiments could consider using fertilisers with slower release rates to avoid 

repeat applications (e.g. Nutricote® N 140 d). It proved easy to use in a range of 

intertidal sediment types and could also be applied in other aquatic soft sediment 

environments, including sub-tidal and lake sediments with the use of SCUBA. 

Subtidal applications would be made easier with the use of fertiliser packets such 

as mesh bags, however biodegradable materials are recommended to avoid 

retrieval.  The use of a dual core (i.e. an inner and outer core sleeve) may be 

required to prevent holes infilling and to ensure fertiliser is buried to the required 

depth. I recommend for all aquatic deployments workers verify that their chosen 

fertiliser is negatively buoyant and bury it to a depth beyond the expected mobile 

sediment layer. 

Fertiliser type, application rate, and depth need to be carefully considered in terms 

of the study aims, duration, and receiving environment. I observed high variability 

in the enrichment level and despite measuring a large number of site specific 

environmental variables, much of this could not be explained. My enrichment 

levels tended to be higher than those measured in other studies, which could be 

due to shallow enrichment techniques and/or differences in pore water sampling 

and monitoring used in other studies (Appendix 1). Worm et al. (2000) emphasised 
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the importance of careful pore water sampling during experiments to be sure of a 

consistent and quantifiable enrichment level. A standardised sampling technique 

is also required since concentrations of nitrogen species typically change 

throughout the sediment profile (Vanderborght & Billen 1975, Zhang et al. 2013). 

Depending on the depth sampled, the values obtained could be very different to 

the desired level; in this study enrichment levels were greater in deeper than in 

surface sediments (Figure 2.2). Sampling the surface sediments may mean the 

measured enrichment is very low or undetectable, and sampling too deep may 

render values that are unrepresentative of the active benthos layer. Therefore, I 

recommend targeting a specific sediment profile area of importance to the study, 

and/or pooling across sediment depths which integrates the variability in 

enrichment level throughout the sediment profile, reduces the amount of samples 

to analyse, and gives more general, comparable values. 

My literature review showed that many studies (53%) applied fertiliser to surface 

sediments (≤ 5 cm depth), mimicking eutrophication effects from the water 

column, but not the long term impacts of eutrophication on sediment pore water. 

Surface sediments are more likely to be influenced by water column 

hydrodynamics and pore water advection processes (reviewed by Santos et al. 

2012) which may speed up nutrient release from the fertiliser. My method 

enriched the sediment profile at least from 0-7 cm depth, and is likely to elevate 

NH4
+ availability at the sediment water interface. This zone includes the rhizoshere 

of seagrasses, and the layer of most macrofaunal activity in marine soft sediment 

habitats (Gilbert et al. 1998, Teal et al. 2008). The elevated pore water 

concentrations that this method delivered are equivalent to the concentrations 

that are measured in enriched estuaries globally (Appendix 3), simulating the long 

term effects of eutrophication. Unlike this method, in situ water column or surface 

sediment enrichment methods cannot produce this effect due to dilution and high 

variability in sediment-water coupling.  

Many physical and biological factors influence the level of nutrient enrichment, as 

well as the type and severity of consequences to an ecosystem’s functioning. 

Nutrient cycling and efflux from the sediments are influenced by the sedimentary 

environment (Blackburn & Henriksen 1983, Glud 2008, Santos et al. 2012), benthic 
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macrofauna (Bertics et al. 2010, Laverock et al. 2011), microphytobenthos 

(Marzocchi et al. 2018), and macrophyte communities (Kenworthy et al. 1982). 

These results show that primary consideration should be given to benthic 

macrofauna and sediment properties when estimating potential enrichment levels 

of experiments. In heterogeneous environments, researchers should consider the 

interactions and variability of site environmental and biological variables and their 

influence on enrichment levels. This is particularly important for studies of 

biological community response to enrichment. If researchers wish to achieve a 

specific level of enrichment, especially for studies encompassing environmental 

variability, a pilot study is recommended so that application rates can tailored to 

achieve the desired pore water concentrations and reduce variability.  

In order to meaningfully progress eutrophication and nutrient cycling research, 

more in situ experimentation is needed. An important outcome of this work is that 

the same application rate can achieve very different enrichment levels even within 

a single habitat; I measured high variability in enrichment level across a sandflat 

at a scale < 1 km. This scale of variability reflects real-world complexity and should 

be incorporated into future experiments in order to increase generality and 

application of conclusions.  The way to achieve this is through well replicated 

gradient designs that consider co-variables (Eberhardt & Thomas 1991, Thrush et 

al. 1997, Hewitt et al. 2007, Ellis & Schneider 2008). Many of the reviewed nutrient 

enrichment studies had research questions that required categorical type designs;  

the majority (68%) used only a single fertiliser application rate, the average 

number of treatment replicates was just five, and more than half the studies (57%) 

were conducted across spatial scales much less than 1 km (Appendix 1). Although 

these past studies represent an invaluable body of work, it would be 

complemented by experiments conducted across environmental gradients and 

larger spatial scales. Combining in situ assay techniques (such as sediment nutrient 

enrichment), with novel interaction network approaches to data analysis will 

provide valuable ecological tools for studies of multiple stressor effects, 

ecosystem resilience, and tipping points in real world settings (Thrush et al. 2014). 

Using previously employed methods this seems unachievable and expensive in 
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time and money. We have shown that such experiments can be conducted 

relatively easily with a simple technique that: 

1. can be used for a highly replicated experiment across a large area, 

2. delivers nutrient enrichment for at least seven weeks that scales with 

application rate, 

3. requires only one initial set up,  

4. has no need to build or install special diffusion devices, and is inexpensive 

in time and money. 
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3 Chapter Three 

Sedimentary environment influences 

ecosystem response to nutrient enrichment 

 

3.1 Introduction 

Nutrient enrichment and sedimentation are among the primary stressors for 

coastal ecosystems globally (Levin et al. 2001, Hewitt et al. 2016, Sinha et al. 2017).  

Estuarine soft sediment ecosystems are often described as nitrogen sinks due to 

their high rates of nitrogen processing and ability to naturally reduce bio-available 

nitrogen via denitrification (Seitzinger 1988). Denitrification may play a 

fundamental role in ecosystem resilience to the oversupply of nitrogen but its 

ability to do this may be influenced by changes in the sedimentary environment. 

Nitrogen enrichment and sedimentation often occur in unison during periods of 

elevated rain runoff, and while it is clear that the ‘muddying’ of estuaries can 

negatively affect macrofaunal diversity and ecosystem functions (Pratt et al. 2013), 

we do not know what this means when compounded with other stressors, 

particularly increased nutrients.  The interactive effects of these two key stressors 

for coastal ecosystems have rarely been investigated in a field setting (see O'Brien 

et al. 2009 for an exception) but such research is needed to better inform 

management with respect to limit setting (Chapman 2016, Hewitt et al. 2016).   

Benthic macrofaunal communities and ecosystem functions can be affected by 

increases in mud content (Thrush et al. 2003a, Lohrer et al. 2004b, Rodil et al. 2011, 

Robertson et al. 2015) or nutrient enrichment in soft sediment habitats (Morris & 

Keough 2003b, Posey et al. 2006, Fitch & Crowe 2012). The physical and 

biogeochemical properties of estuary sediments change with increasing mud 

content (Lohrer et al. 2004b, Cummings et al. 2009) stemming from greater 

cohesiveness and less permeability. These sediment characteristics influence rates 

of pore water diffusion and solute exchange (Blackburn & Henriksen 1983, Huettel 

et al. 2003), ammonium (NH4
+) adsorption (Mackin & Aller 1984), the surface area 
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available for microbial processes (Huettel et al. 2014), and can alter the activities 

and functional roles of resident macrofauna (Jones et al. 2011, Needham et al. 

2011). These factors all influence processes of organic matter breakdown, 

community metabolism, primary production and nitrogen cycling, including 

denitrification (Blackburn et al. 1993, Gilbert et al. 2003, Gongol & Savage 2016).   

Denitrification is carried out by heterotrophic microbes in anoxic sediments and 

requires both organic carbon and a source of nitrate (NO3
-).  Nitrification 

(microbial conversion of NH4
+ to NO3

-) occurs in the presence of oxygen (i.e. in the 

oxic sediment layer), thus the oxic-anoxic interface is an important site for coupled 

nitrification-denitrification. Organic matter provides an NH4
+ source for 

nitrification, and its breakdown (by microbes) alters the distribution and 

availability of oxygen in the sediments and therefore sites for coupled nitrification-

denitrification (Kemp et al. 1990, Caffrey et al. 1993). In permeable sediments, 

pore water advection weakens the coupling between nitrification and 

denitrification, and can reduce denitrification (Kessler et al. 2012).  However, 

muddy organic rich sediments may also limit coupled nitrification-denitrification 

due to a reduced interface between the oxic and anoxic layers. Also, muddy 

sediments have a thinner oxic layer which limits nitrification, meaning NH4
+ is more 

prevalent than NO3
- in muddy sediments. Due to the lower permeability of mud, 

macrofaunal activities (bioturbation, bioirrigation) are important for exchange of 

solutes (oxygen, NH4
+, NO3

-) facilitating nitrogen transformation processes 

including nitrification and denitrification (Aller 1988). Sediments with higher mud 

(and organic) content are therefore expected to have differing rates of 

biogeochemical ecosystem functions, and differences in resilience to nutrient 

stress.  

Field experiments across existing environmental gradients can be used to forecast 

ecosystem response or change under scenarios of different levels of a stressor, or 

stages of degradation (Pickett 1989, Thrush et al. 2003b, e.g. Pratt et al. 2013, 

Villnäs et al. 2013, Norkko et al. 2015).  This approach has successfully been used 

to demonstrate effects of sedimentation on ecosystem functioning (e.g. Pratt et 

al. 2013), but there is an underutilised opportunity to use gradients to investigate 

multiple stressor effects such as mud and nutrients by manipulating one factor 
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across a natural gradient of the other stressor. In this study I investigated whether 

elevated fine sediments in an estuary sandflat (one type of stressor) would 

influence the ecosystem’s response to increased nutrient supply (a second type of 

stressor). I did this using a nutrient enrichment experiment across a natural 

gradient of sedimentary grain size on an intertidal sandflat, measuring proxies of 

ecosystem function (denitrification activity, primary production and community 

metabolism) after a six week period of enrichment.  Due to the differences in 

biogeochemical properties across the sedimentary gradient I expected changes in 

microphytobenthic biomass, macrofaunal community structure, and ecosystem 

function, and consequently differences in response to nutrient enrichment.  

Muddy sediments typically have reduced macrofaunal biodiversity and levels of 

ecosystem functioning (Thrush et al. 2004, Pratt et al. 2013), and I anticipated that 

this would mean less resilience (measured as maintenance of ecosystem function) 

to nutrient enrichment. In other words, I expected greater reductions in 

ecosystem functions in response to nutrient enrichment in areas with more mud 

content. 

3.2 Methods 

3.2.1 Experimental design/setup  

An in situ sediment enrichment experiment was set up in Tuapiro estuary, 

Tauranga Harbour, north-eastern New Zealand (37° 29.445' S, 175° 57.007' E) in 

late October 2014 (austral spring).  The study site encompassed a sedimentary 

gradient (0 - 24% mud) within a 300 x 100 m area of mid intertidal flat (Appendix 

4).  Differences in hydrodynamics, tidal inundation, and elevation across the study 

area were negligible.  Duplicates of procedural control and enrichment plots (1 x 

1 m) were set up in 12 locations (24 plots per treatment) to maximise the range of 

sediment grain size encompassed in the experimental design. Sediment 

enrichment was achieved using slow release (70 d) nitrogen only fertiliser 

(Nutricote® N 70 d, 40-0-0 N:P:K, application rate 150 g N m-2) buried in the 

sediments in 20 evenly spaced core holes (3 cm diameter, 15 cm depth). This 

application rate was chosen because it was known to elevate NH4
+ concentrations 

representative of eutrophic estuaries, without having adverse effects on the 

macrofaunal community (Douglas et al. 2016, Douglas et al. 2017, Chapters 2 & 4).  
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Equal volumes of fertiliser (or pea gravel for procedural disturbance controls) were 

placed in each hole, and the intact core plug was replaced immediately to 

minimise sediment profile disturbance (see Douglas et al. 2016, Chapter 2 for 

more detail).   

Chamber incubations, followed by sediment sampling, then macrofaunal sampling 

were conducted after 6 weeks of enrichment, in late November 2014 (early 

summer). This period was based on a previous enrichment study that showed 

elevated pore water NH4
+ concentrations for 7 weeks using this technique 

(Douglas et al. 2016, Chapter 2). I used benthic chambers to measure fluxes of 

solutes across the sediment-water interface and estimate community metabolism, 

primary productivity and nutrient regeneration rates, all commonly used proxies 

of ecosystem function in soft sediment habitats (Sundback et al. 2000, Rodil et al. 

2011, Pratt et al. 2013, Norkko et al. 2015). Denitrification Enzyme Activity (DEA) 

assays (Seitzinger et al. 1993, Groffman et al. 2006, Douglas et al. 2017) were used 

to provide a proxy for the NO3
- removal capacity of the resident denitrifier 

population and the denitrification history of sediments (i.e. conditions for 

denitrification in the previous weeks/months).   

3.2.2 In situ chamber incubations/flux measurements 

Chamber incubations were conducted over two consecutive days; on each 

sampling day, incubations were conducted on half the plots (one control and one 

enrichment plot) at each of the 12 sites across the study area. Four HOBO data 

loggers (5 min sampling interval) were distributed across the site to monitor light 

intensity and temperature during incubations. Paired light and dark chambers 

were used to incubate sediment (0.016 m2) and overlying water (~0.85 L) in the 

centre of each plot for approximately 4 h over midday high tides. Chambers were 

fitted with two ports; one for water sample extraction and another inlet port to 

allow replacement of sampled water by ambient seawater. Sixty mL water samples 

were collected from each chamber (after discarding approximately 20 mL present 

in the sampling tube), at the beginning and end of the incubation period.  Ambient 

seawater was incubated in three paired light and dark bottles (1.5 L vol), at the 

same time as the chamber incubations, in different locations across the study area 

to account for water column processes.  Dissolved oxygen (DO) concentrations 
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were measured in each sample immediately after collection using an optical DO 

probe (PreSens Fibox PSt3). DO measurements were used to calculate gross 

primary productivity (GPP) and sediment oxygen consumption (SOC) (see 3.2.5 for 

calculations). Two replicate 15 mL water samples were then collected, after 

filtering through a 1.1 µm Whatman GF/C filter for nutrient analysis. Samples were 

frozen at -20°C until analysis. 

3.2.3 Sediment Sampling 

Sediment sampling for all plots was conducted after the second day of incubations 

were completed, as soon as possible following tidal emersion. Randomly placed 

cores were taken from each plot (excluding the incubated areas) for analysis of 

sediment pore water (5 x pooled, 0-2 cm depth, 2.6 cm dia.), sediment properties 

and microphytobenthic biomass (5 x pooled, 0-2 cm depth, 2.6 cm dia.), and DEA 

assays (5 x pooled, 0-5 cm depth, 5.3 cm dia.).  Samples were stored in the dark, 

and transported to the laboratory on ice.  Samples for sediment properties were 

frozen at -20°C and analysed within 6 weeks.  Unfiltered seawater was collected 

from the site, stored on ice and then refrigerated at 4°C for DEA assays (see below).  

A transparent core (5 cm dia.) was taken randomly from the centre of each plot 

and used to measure the depth of the colour change as a proxy for apparent Redox 

Potential Discontinuity (aRPD) (Danovaro 2009).  Visual measurements have been 

shown to provide a good measure of aRPD as measured using electrodes or 

dissolved oxygen concentrations (Rosenberg et al. 2001, Gerwing et al. 2015). One 

5 cm deep core (2.6 cm dia) hole was made in the centre of each plot, allowed to 

infill, and the porewater pH measured using a waterproof pHTestr® 10 (Eutech 

Instruments, Oakton).   

Core samples for analysis of the benthic macrofaunal community were collected 

four days after the chamber incubations and sediment sampling. One core (13 cm 

dia., 15 cm depth) was taken from the position of the dark incubation chamber 

(this marked area was left undisturbed by the previous sediment sampling) in each 

plot.  Immediately after collection macrofaunal core samples were sieved over a 

500 µm mesh and preserved in 70% isopropyl alcohol.  In the laboratory, samples 
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were stained (Rose Bengal), then all organisms were sorted, counted and 

identified to the lowest possible taxonomic level (usually species). 

3.2.4 Laboratory Analyses 

Within 24 h of collection, pore water was extracted from sediment (by 

centrifugation at 3300 rpm for 10 min), filtered (1.1 µm Whatman GF/C), then 

stored at -20°C until analysed.  Nitrogen solute concentrations from benthic flux 

(NH4
+) and pore water (NH4

+, NO2
-, and NO3

-) samples were analysed using a 

LACHAT Quickchem 8500 series 2 Flow Injection Analyser and standard methods 

for seawater nutrient analysis.  Benthic nitrogen flux measurements were limited 

to NH4
+ because others have consistently shown that fluxes of NO3

- and nitrite 

(NO2
-) are minimal (account for less than 1% of benthic inorganic nitrogen fluxes) 

in northern New Zealand estuaries (Lohrer et al. 2010, Pratt et al. 2013).  

Sediments were analysed for organic content (%) by weight loss on ignition after 

drying to a constant mass at 60°C then removing the ash fraction by combusting 

at 550°C for 4 h.  For determination of sediment grain size (% mud and grain size 

median (GSM)), organic matter was first removed from samples by digesting in 10% 

hydrogen peroxide, then measured using a Malvern Mastersizer 2000.  Chlorophyll 

a (Chl a) and degraded (phaeophytin) biomass of microphytobenthos was 

measured after extraction from sediments with 90% buffered acetone, using a 

Turner 10-AU fluorometer, before and after acidification (Arar & Collins 1997). 

DEA assays were conducted the day after sampling, using the acetylene inhibition 

technique (Tiedje et al. 1989, Groffman et al. 1999, Groffman et al. 2006, Douglas 

et al. 2017), first allowing sediment samples and water to acclimate to room 

temperature (20°C). Assays were composed of 60 mL homogenised sediment 

sample, 60 mL unfiltered site water amended with chloramphenicol (to prevent 

new enzyme synthesis, 0.06 g L-1) and unlimited NO3
- (10 mg L-1 N as KNO3) and 

carbon (30 mg L-1 C as glucose), in 440 mL glass preserving jars with modified lids 

fitted with rubber septa.  Jars were sealed, evacuated (by vacuum pump, 4 min), 

and flushed (pure N2 for 10 min) to induce anoxia, then acetylene was added to 

each jar (10% of the headspace) to prevent sediment microbes from converting 

N2O to N2.  Jars were kept at constant temperate (20°C), with constant mixing (25 

rpm) for 2 h.  Headspace gas samples were extracted from each jar 10, 30, 60 and 



 

33 

120 min after the addition of acetylene and analysed for N2O concentration using 

Varian CP 3800 gas chromatograph equipped with a HayeSep D column and an 

electron capture detector. Rates of N2O production were calculated as the 

increase in concentration per area of sandflat (µmol N m-2 h-1), (calculated using 

the dry mass of sediment per assay jar and the sediment density). 

3.2.5 Data analysis 

To simultaneously account for environmental variation across the sedimentary 

gradient and assess the effects of nutrient addition on response variables 

PERMANOVAs were conducted where the treatment (nutrient enrichment) was 

considered a fixed factor and mud content as a continuous co-variable.  This 

approach also enabled assessment of the interactive effects of sediment mud 

content and enrichment.  Response variables included sediment properties, 

macrofaunal community characteristics and structure, proxies of ecosystem 

functions and denitrification activity.  

Paired light and dark chamber measurements of oxygen and NH4
+ fluxes  (the 

difference in O2 or NH4
+  concentrations at the beginning and end of incubations) 

were used to derive the following measures of ecosystem function (Lohrer et al. 

2010). Sediment oxygen consumption (SOC) which was measured as the uptake of 

oxygen from the water column to the sediment in dark chambers (i.e. without the 

effect of photosynthesis by benthic microalgae) and can be considered as a 

measure of community metabolism. Gross primary productivity (GPP) was 

measured by subtracting the flux of oxygen in the dark chamber from the flux of 

oxygen in the light chamber, and when normalised by the biomass of Chl a in the 

sediments provides a measure of photosynthetic efficiency (GPPChl a). The flux of 

NH4
+ in dark chambers (without uptake by microalgae) can be considered as a 

measure of sediment nutrient regeneration. Chamber fluxes were corrected for 

water column processes but these made a small contribution to the total flux 

accounting for <5% and <1% for oxygen and NH4
+, respectively. 

In order to understand what aspects of macrofauna diversity were affected by 

nutrient addition, I assessed univariate measures of community characteristics 

(number of species (S), number of individuals (N), and numbers of adult (≥ 10 mm) 
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and juvenile (< 10 mm) A. stutchburyi and M. liliana) as well as a multivariate 

measure of macrofaunal community structure.  The community structure measure 

was generated by combining the counts of all species into a resemblance matrix 

(Bray-Curtis) with treatment as a factor, after first performing a square root 

transformation, in order to determine effects on the macrofaunal community as a 

whole. A. stutchburyi and M. liliana are key bioturbating species in soft sediment 

ecosystems in northern New Zealand estuaries and known to be important for 

ecosystem functioning (Thrush et al. 2006, Sandwell et al. 2009, Pratt et al. 2013, 

Thrush et al. 2014, Karlson et al. 2016) so were considered separately. These were 

sorted into adult (≥10 mm) and juvenile (<10 mm) size classes as their activities 

and subsequent effects on ecosystem functions change as the grow (Hewitt et al. 

1996). A Principle Coordinates Ordination (PCO) plot using a Bray-Curtis 

resemblance matrix of the benthic macrofaunal community was used to visualise 

potential differences between treatments.  Vector overlays of environmental 

variables were used to show strength of these factors as predictors of the 

macrofaunal community (Pearson’s correlation). 

Multiple regression (using Distance based Linear Models, DistLM) was used to 

investigate which variables explained the observed variation in ecosystem 

functions with and without nutrient enrichment.  DistLMs were performed on 

univariate Euclidean distance matrices of each ecosystem function (community 

metabolism (SOC), primary productivity (GPP, GPPChl a), nutrient regeneration 

(dark NH4
+ flux) and DEA).  I used a backwards elimination procedure with the 

corrected Akaike information criterion (AICc) and 9999 permutations to obtain the 

most parsimonious model. Mud was always forced to be included first in models 

(even if the marginal test was not significant), and where there was high 

collinearity among variables (r > 0.7), the variable explaining the least amount of 

variance was excluded first (Dormann et al. 2013).  Predictor variables were 

grouped into sediment (mud), other environmental, and macrofaunal community 

categories. All analyses were conducted using Primer v7 with PERMANOVA+ add 

on (Clarke & Gorley 2015).   
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3.3 Results 

3.3.1 Environmental variables 

The study site encompassed a gradient of sediment mud content (0 – 24%, Table 

3.1) which correlated with changes in other environmental variables (Appendices 

5 & 6).  In particular, mud content and organic content were strongly and positively 

correlated in both treatments (r > 0.9).  Microphytobenthic biomass increased 

with increasing mud content, however the aRPD, pore water pH, and pore water 

nutrient concentration were similar apart from slightly higher concentrations of 

NO3
- and NO2

- in muddy sediments (Table 3.1, 3.2). Enrichment significantly 

increased pore water NH4
+ concentration compared with controls (the enrichment 

median (532 µM) was 36 x the control median (14.6 µM); Figure 3.1), and this 

effect was independent of sediment mud content (Table 3.1, 3.2). Other than a 

small increase in pore water pH, the enrichment did not change other sediment 

properties, or microphytobenthic biomass. Mean light intensity was lower on 

sampling day 1 (8826 ± 366 Lux) than day 2 (22016 ± 1258 Lux) due to variable 

cloud cover but water temperatures were similar (20.4 ± 0.2 vs 19.6 ± 0.1°C). This 

variability did not bias flux measurements because on each sampling day, 

incubations were conducted in one (of two) enrichment and control plots located 

at each of the 12 sites.   

3.3.2 Macrofaunal community 

Macrofaunal community characteristics and structure changed across the 

sedimentary gradient but there was no effect of treatment and no significant 

interaction (Table 3.1, 3.2, Figure 3.2). Increasing mud content corresponded with 

a greater total abundance (N), fewer adult and greater numbers of juvenile A. 

stutchburyi. The total number of species did not differ across the mud gradient 

and neither did the abundance of adult or juvenile M. liliana. The main 

environmental variables correlated with macrofaunal community composition 

were sedimentary variables and microphytobenthic biomass (Figure 3.2). 
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Table 3.1 Sediment properties and macrofauna community variables as a function of treatment.  
Values are medians with minimum and maximum in parentheses (n=24 per treatment).  

 

 
Variable 

Control 
(0 g N m-2) 

Enrichment 
(150 g N m-2) 

Sediment properties   

 Organic content (%) 3.2 (1.5 – 5.5) 3.3 (1.6 – 5.8) 

 Mud content (% < 63 µm) 3.5 (0 – 21.6) 4.0 (0 – 24.1) 

 Grain size median (µm) 151 (112 – 243) 151 (108 – 259) 

 pH 7.8 (7.6 – 8.2) 7.9 (7.6 – 8.5) 

 aRPD (mm) 25 (15 – 35) 20 (12 – 36) 

Pore water (µM)   

 NO2
- 0.23 (0.12 – 0.49)  0.25 (0.11 – 0.94) 

 NO3
- 0.96 (0.45 – 2.28) 1.03 (0.48 – 3.01) 

 NH4
+ 14.6 (0 – 154.2) 532 (0 – 24995) 

Microphytobenthic biomass (µg g-1 sediment) 

 Chlorophyll a 31.6 (15.6 – 48.7) 34.0 (14.8 – 55.0) 

 Phaeophytin  9.7 (4.0 – 17.2) 10.6 (2.9 – 20.6) 

Macrofauna (n core-1)   

 S (taxa) 18 (14 – 23) 16 (10 – 24) 

 N (individuals) 124 (53 – 208) 102 (30 – 262) 

 A. stutchburyi (< 10 mm) 9 (1 – 42) 6 (0 – 31) 

 A. stutchburyi (≥ 10 mm) 6 (1 – 11) 7 (1 – 13) 

 M. liliana (< 10 mm) 4 (1 – 12) 3 (0 – 7) 

 M. liliana (≥ 10 mm) 6 (1 – 9) 5 (1 – 9) 
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Table 3.2 PERMANOVA test results for the effects of enrichment (treatment) and mud content (a 
continuous co-variable), on response variables. Significant terms are indicated in bold (p ≤ 0.05).  

 
Mud Treatment Interaction 

 Pseudo-F p-perm Pseudo-F p-perm Pseudo-F p-perm 

Sediment properties       

pH 1.57 0.22 5.72 0.02 2.12 0.16 

aRPD (mm) 2.36 0.13 1.84 0.19 0.30 0.59 

       
Pore water (µM)       

NH4
+  0.34 0.57 8.30 0.001 0.50 0.49 

NO2
-  6.17 0.02 0.96 0.36 0.07 0.79 

NO3
-  32.1 0.0001 0.25 0.62 0.03 0.86 

       
Microphytobenthic biomass (µg g-1 sediment) 

Chlorophyll a  12.6 0.001 0.49 0.49 0.04 0.84 

Phaeophytin  167 0.0001 0.23 0.62 0.23 0.63 

       
Macrofauna (n core-1)       

S 0.10 0.75 3.97 0.05 0.71 0.40 

N 9.55 0.004 1.76 0.19 0.52 0.47 

A. stutchburyi (< 10 mm) 11.31 0.003 0.88 0.37 0.64 0.43 

A. stutchburyi (≥ 10 mm) 3.84 0.06 0.02 0.89 0.04 0.84 

M. liliana (< 10 mm) 0.17 0.69 7.18 0.009 2.20 0.14 

M. liliana (≥ 10 mm) 2.21 0.15 0.81 0.37 1.56 0.21 

Community structure (multivariate) 11.9 0.001 1.72 0.13 0.41 0.84 

       
Community metabolism       

SOC (µmol O2 m-2 h-1) 3.53 0.06 0.51 0.48 0.28 0.61 

       
Primary productivity       

GPP (µmol O2 m-2 h-1) 15.3 0.0004 0.003 0.96 3.99 0.05 

GPPChl a  

(µmol O2 µg Chl a g-1 dw m-2 h-1) 
42.3 0.0001 0.27 0.61 1.81 0.19 

       
Nutrient regeneration       

Dark NH4
+ flux (µmol NH4

+ m-2 h-1) 4.05 0.05 21.4 0.0001 4.8 0.05 

       
DEA (µmol N m-2 h-1) 32.0 0.0001 4.62 0.04 7.42 0.01 

Abbreviations: Macrofaunal taxonomic richness (S), macrofaunal abundance (N), sediment oxygen 

consumption (SOC), gross primary productivity (GPP), gross primary productivity normalised to chlorophyll a 

biomass (GPPChl a), and denitrification enzyme activity (DEA). 
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Figure 3.1 Pore water ammonium concentration in control and enrichment plots.  Boxes represent 
25%, median and 75% distributions, and whiskers represent minimum and maximum (n = 24). Note 
change of scale between plots. 

 

 

 

Figure 3.2 Principle coordinates ordination (Bray-Curtis similarity) showing little difference in 
macrofaunal community between control (black circles) and enrichment (white circles) plots.  
Overlaid vectors show the eight most influential environmental variables. Abbreviations: grain size 
median (GSM), pore water nitrate concentration (Nitrate), apparent redox potential discontinuity 
(aRPD). 
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3.3.3 Ecosystem functioning 

All measures of ecosystem function varied with sediment mud content. 

Community metabolism (SOC) decreased with increasing mud content (by up to 

49%) although this was not significant (p = 0.06), and there was no treatment 

effect (Figure 3.3, Table 3.2).   The relationship between mud and nutrient 

regeneration (dark NH4
+ flux) changed with nutrient enrichment (Figure 3.3, Table 

3.2), as indicated by the significant interaction term. In control plots, dark NH4
+ 

flux was positively related to sediment mud content but in enrichment plots this 

relationship was negative (Figure 3.3, Appendices 5 & 6).  There was a significant 

interaction between mud and enrichment for gross primary productivity (GPP). In 

ambient sediments GPP decreased with increasing mud content but this negative 

relationship was counteracted in the presence of nutrients (Figure 3.3, Table 3.2, 

Appendices 5 & 6).  When primary productivity was normalised by chlorophyll-a 

biomass (GPPChl a) (i.e. photosynthetic efficiency) there was no longer a significant 

interaction between mud and enrichment; in both treatments GPPChl a decreased 

with increasing mud (Figure 3.3, Table 3.2). There was a significant mud x 

treatment interaction for DEA and on average DEA was suppressed by enrichment 

(Figure 3.3, Table 3.2). Although DEA was positively correlated with sediment mud 

content in both control and enrichment plots (Appendices 5 & 6), the response in 

enrichment plots was non-linear and above 10% mud content mean DEA declined 

by 170% compared to control plots (Figure 3.3).  
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Figure 3.3 Relationships between sediment mud content and ecosystem functions for control 
(black circles) and enrichment (white circles) treatments.  Abbreviations: SOC: sediment oxygen 
consumption, GPP: gross primary production, GPPChl a: gross primary production normalised by Chl 
a biomass, DEA: denitrification enzyme activity 
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Multiple variables were included in explanatory DistLMs of the measured 

ecosystem functions (Table 3.3). Community metabolism (SOC) was unaffected by 

nutrient enrichment and the best predictors were pore water NO3
- and 

macrofaunal community characteristics (Table 3.2, 3.3).  Mud was the factor 

explaining the largest amount of variability in GPPChl a which was also unaffected 

by nutrient enrichment (Table 3.3).  Other environmental variables including aRPD 

and pore water NO3
- concentration accounted for a large amount of the variation 

in GPPChl a (67% explained in total), followed by large bivalves (Table 3.3). For 

ecosystem functions that showed treatment and/or interaction effects, separate 

models were run for each treatment.  Nutrient enrichment influenced the 

proportion of variability in GPP, dark NH4
+ flux and DEA accounted for by 

sedimentary environment (mud), other environmental variables, and macrofaunal 

community (Table 3.3).  Mud was the primary factor explaining variability in GPP, 

dark NH4
+ flux and DEA in control plots, but with enrichment the amount of 

variability mud accounted for was reduced by more than half (Table 3.3).  The 

amount of variability in these ecosystem functions accounted for by other 

variables, especially the macrofaunal community, became greater under enriched 

conditions, but the total amount of variability explained was less.  Under enriched 

conditions, factors that positively influenced GPP and DEA were those associated 

with oxygenation of the sediments and pore water movement (chlorophyll a, aRPD, 

and abundance of macrofauna or large bivalves) (Table 3.3).  
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Table 3.3 Results of full DistLMs of ecosystem function, grouped predictor variables included in each model, and the proportion of variance each explains. Combined treatments 
were used for DistLMs in the absence of a significant mud x enrichment interaction or treatment effect (Table 3.2, SOC, GPPChl a). Where treatment effects occurred, DistLMs were 
run separately for control and enrichment plots (GPP, Dark NH4

+ flux, DEA). Predictor variables are grouped into sediment (mud), other environmental, and macrofaunal community. 
Asterisks indicate significance levels of marginal tests of individual predictors included in full models *p<0.05, **p<0.01. Correlation directions are indicated in parentheses. 

  
Combined treatments 

 
Control 

 
Enrichment 

 

    
(0 g N m-2) 

 
(150 g N m-2) 

 

  
Variables Prop. Variables Prop. Variables Prop. 

Community metabolism (SOC)   
Sediment Mud (+) 0.07 

    

 
Other environmental NO3

- **(-) 0.21 
    

 

Macrofauna 
A. stu (≥ 10 mm)** (+) 
M. lil (≥ 10 mm) (+) 

0.26 

    

  
Total 0.42 

    

Primary productivity (GPP)  
Sediment 

 
 Mud** (-) 0.47 Mud (-) 0.09  

Other environmental 
 

 Chl a (+) 0.01  -  

Macrofauna 

 
 M. lil (≥ 10 mm)** (+) 0.32 

M. lil (< 10 mm)* (+) 
M. lil (≥ 10 mm)** (+) 

0.34 
   

 Total 0.71 Total 0.45 

Primary productivity (GPPChl a)   
Sediment Mud** (-) 0.48 

    

 

Other environmental 
aRPD (-) 
NO3

- ** (+) 
0.46 

    

 

Macrofauna 
A. stu (≥ 10 mm)** (-) 
M. lil (≥ 10 mm) (+) 

0.2 

    

  
Total 0.67 
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Table 3.3 cont. 
  

Combined treatments 
 

Control 
 

Enrichment 
 

    
(0 g N m-2) 

 
(150 g N m-2) 

 

  
Variables Prop. Variables Prop. Variables Prop. 

Nutrient regeneration (Dark NH4
+ flux)  

Sediment 
  

Mud* (+) 0.52 Mud* (-) 0.19  

Other environmental 

  
Chl a (+) 
aRPD (-) 
NO3

- (-) 

0.27 
Chl a (+) 0.14 

 

Macrofauna  

  

A. stu (≥ 10 mm) (+)  
0.003 S (-) 

N (-) 
0.2 

    
Total 0.77 Total 0.4 

DEA   
Sediment 

  
Mud** (+) 0.73 Mud* (+) 0.17  

Other environmental 

  

NH4
+ (+) 

0.14 Chl a** (+) 
aRPD (+) 

0.46 
 

Macrofauna 

  
A. stu (≥ 10 mm)* (+) 
M. lil (< 10 mm) (-) 

0.33 
N** (+) 0.36 

    
Total 0.83 Total 0.64 

Abbreviations: Chlorophyll a (Chl a), apparent Redox Potential Discontinuity (aRPD), macrofaunal taxonomic richness (S), macrofaunal abundance (N), 
juvenile A. stutchburyi (A. stu (<10 mm)), adult A. stutchburyi (A. stu (≥10 mm)), juvenile M. liliana (M. lil (<10 mm)), adult M. liliana (M. lil (≥10 mm)), 
sediment oxygen consumption (SOC), gross primary productivity (GPP), gross primary productivity normalised to chlorophyll a biomass (GPPChl a), and 
denitrification enzyme activity (DEA). 
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3.4 Discussion 

I conducted a nitrogen enrichment experiment across an existing gradient of 

sedimentary grain size and measured changes in the ecosystem functions of 

community metabolism, primary productivity, nutrient regeneration, and 

denitrification. This experiment has provided direct evidence that the proportion 

of mud in sediment can influence how estuary ecosystem functions respond to 

nutrient enrichment.  Results indicate that high sediment mud content is 

detrimental to denitrification activity under nutrient enriched conditions, and 

furthermore, muddy sediments may restrict release of nutrients from enriched 

sediments making the sediments more likely to shift to a eutrophic state.  The 

median enrichment level was 36 x ambient and independent of sediment mud 

content, however, nutrient effects on ecosystem functions were tightly linked to 

the sedimentary environment. This shows that sedimentary environment is a 

crucial factor affecting the response of ecosystem functions to nutrient 

enrichment, an important result considering these stressors often occur in unison.   

I found that in control plots, higher DEA rates occurred in more muddy, organic 

rich sediments, and the sedimentary environment accounted for the majority of 

the variability in DEA. Mineralisation of organic matter may provide NH4
+ for 

coupled nitrification-denitrification and an energy source (carbon) for 

heterotrophic denitrifiers. Organic matter is often reported as one of the direct 

controls of denitrification (Seitzinger et al. 2006), and other studies have similarly 

attributed higher denitrification rates in fine sediments to high organic carbon 

content (Nowicki et al. 1997, Sundback & Miles 2000).  Sediment characteristics, 

particularly organic content have also been found to explain the majority of 

variability in nitrification and denitrification in lakes (Bruesewitz et al. 2012). In 

order for excess NH4
+ to be transformed within the sediments it must first be 

nitrified, then denitrified.  These processes involve different types of bacteria 

which require distinct physical and chemical conditions, particularly oxygen 

concentration (Joye & Anderson 2008), which vary substantially depending on the 

sedimentary environment.  In cohesive sediments, organic matter mineralisation 

can have a negative effect on coupled nitrification-denitrification due to oxygen 

consumption (Eyre & Ferguson 2009).  With increasing sediment mud content (and 
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organic content) there was increased (up to 49%) respiratory demand (community 

metabolism, SOC); indicative of higher microbial activity in muddy sediments from 

organic matter mineralisation (Kelly & Nixon 1984, Kelly et al. 1985). Rates of 

organic matter processing differ between muddy and sandy sediments and this 

has a major influence on pore water nitrogen concentrations and sediment oxygen 

profiles.  There was no effect of enrichment on SOC, and most of the variability 

was explained by the abundance of large bivalves M. liliana and A. stutchburyi 

indicating that bioturbation stimulated microbial activity and organic matter 

breakdown (Sandwell et al. 2009, Woodin et al. 2016). These large species may 

also dominate macrofaunal biomass in the sediments thereby accounting for most 

of the community respiration.  

The nutrient enrichment level aimed to stress the ecosystem without causing 

negative effects to the macrofaunal community, and pore water NH4
+ 

concentrations were representative of enriched estuaries worldwide (see Douglas 

et al. 2016, Chapter 2). Community structure was not influenced by enrichment, 

but there was a small reduction in the abundance of juvenile M. liliana, and the 

number of species due to the enrichment. This may reflect species’ differential 

sensitivity to stress, however these effects were not exacerbated by mud content 

(no interaction effect).  Therefore, any reductions in the positive influence of 

macrofaunal diversity on ecosystem function and response to stress were 

considered consistent across the sedimentary gradient.  Losses of large organisms 

and reductions in species diversity due to nutrient stress can lead to reduced 

ecosystem functioning and ecosystem resilience to stress (Chapin et al. 2000, 

Thrush et al. 2006, Thrush et al. 2008b, Naeem et al. 2012, Norkko et al. 2013).   

The amount of variability in ecosystem functions explained by macrofaunal 

variables increased with nutrient enrichment (for those functions that showed a 

treatment effect) indicating that functional roles of some macrofauna may change 

under stressed conditions.  Bioturbation and solute diffusion are the dominant 

mechanisms of pore water transport in muddy, more cohesive sediments (Huettel 

& Gust 1992, Joye et al. 1996, Burdige 2011), so the presence of macrofauna, 

especially large individuals such as bivalves will be very important in determining 

responses to nutrient enrichment. Macrofauna have a fundamental role in 
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sediment biogeochemical processes because their burrows provide sites for 

microbial activity, and their activity promotes sediment turnover, movement of 

solutes, and a spatially and temporally variable oxic-anoxic interface (Kristensen 

2000, Braeckman et al. 2010).  Burrow characteristics such as residence time and 

irrigation frequency can determine the makeup and biomass of microbial 

communities (Marinelli et al. 2002), and since burrow characteristics and 

macrofaunal behaviour vary substantially from permeable to cohesive sediments 

(Needham et al. 2011) this can affect biogeochemical processes and associated 

ecosystem functions (Yazdani Foshtomi et al. 2015). Two large bivalve species M. 

liliana and A. stutchburyi were important for DEA in ambient nutrient conditions, 

but with nutrient stress they did not contribute to explaining variability in DEA, 

indicating that their functional role for DEA was diminished under stress 

conditions.  Others have also found decreasing ecosystem function performance 

coinciding with reduced macrofaunal density under stressed conditions making 

ecosystems more susceptible to stressors (Pratt et al. 2015).  

Above about 10% mud content DEA was suppressed by enrichment, despite higher 

DEA in muddy ambient sediments (and assumed presence of larger established 

populations of nitrifying and denitrifying bacteria). Response of nitrifiers and 

denitrifiers to enrichment may be restricted in more cohesive sediments due to 

poor solute exchange and oxygen conditions, and this may lead to a build-up of 

NH4
+ that is detrimental to nitrification (Anthonisen et al. 1976), resulting in 

reductions in DEA. Alternatively, this suppression of DEA at about 10% mud 

content may reflect a shift from denitrification to dissimilatory nitrate reduction 

to ammonium (DNRA). In enrichment plots, dark NH4
+ flux increased as DEA 

decreased (Pearson’s R = -0.34, p = 0.1), and other studies have shown that DNRA 

may be favoured over respiratory denitrification in NO3
- limited coastal sediments 

with high organic carbon loading (see reviews by Burgin & Hamilton 2007, Giblin 

et al. 2013). Muddy sediments may be supporting greater populations of nitrifying 

and denitrifying bacteria because they have more surface area available for 

microbial attachment, are usually less mobile so there is less abrasion, allowing 

microbial biofilms to persist for longer and reach greater abundances (Belser 1979, 

Henriksen & Kemp 1988, Huettel et al. 2014).  However, this may also limit 



 

47 

populations of some bacteria.  In particular, nitrifying bacteria are less competitive 

than heterotrophic bacteria, limiting nitrification even when NH4
+ is abundant 

(Henriksen & Kemp 1988), and this may have occurred in enrichment plots.   

Another possible reason for differences in DEA between control and enriched 

plots is the response of the microbial communities to the enrichment.  In 

agroecosystems fertilisation has been shown to change the abundance and 

community structure of bacterial denitrifiers (Wallenstein et al. 2006).  Bacterial 

nitrogen turnover processes such as denitrification and NH4
+ regeneration can be 

slow to recover from nutrient and contaminant stressors, and this may be due to 

low functional redundancy of the bacterial community (Sundback et al. 2007).  

Response of bacterial denitrifiers is context dependent; community composition 

of denitrifying bacteria can vary depending on the local environment, and 

different taxa may vary in their resistance to stressors (Cavigelli & Robertson 2000, 

Cavigelli & Robertson 2001).  This may account for some of the unexplained 

variability in DEA across the sedimentary gradient as well as response to nutrient 

enrichment. 

When enrichment occurs, due to lower pore water flushing and solute diffusion, 

muddy sediments may restrict nutrient release from the sediments which could 

exacerbate sediment eutrophication.  Mud content was the main factor explaining 

variability in nutrient regeneration (dark NH4
+ flux), but effects were dependent 

on treatment.  Under ambient nutrient conditions dark NH4
+ efflux was greater in 

muddy sediments, whereas under nutrient enriched conditions it was greater in 

sediments with less mud, and showed a negative relationship.  In control plots, 

efflux rates were higher in muddy sediments presumably as a consequence of 

higher organic content, and higher rates of mineralisation.  When NH4
+ was in 

excess (i.e., in enriched plots), organic matter mineralisation was no longer the 

dominant source of NH4
+, and release from the sediments was greater where there 

was lower sediment mud content (higher permeability).  Furthermore, nitrification 

can be suppressed under very high NH4
+ concentrations (Anthonisen et al. 1976), 

which may prevent denitrification of the excess nitrogen. This provides a clear 

example of an existing stressor (mud) increasing the negative impact of another 

stressor (nutrients). 
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Under nutrient enriched conditions the importance of mud for explaining 

variability in ecosystem functions (GPP, dark NH4
+ flux, DEA) decreased compared 

with controls.  Mud content can affect the oxygen profiles in the sediments and 

reduce rates of pore water transport. However, other factors controlling the 

availability and delivery of oxygen and nutrients accounted for most of the 

variability in enrichment plot DEA (aRPD, chlorophyll a biomass, macrofaunal 

abundance), enrichment plot GPP (abundance of adult and juvenile M. liliana), and 

GPPChl a in both treatments (aRPD, pore water NO3
-, abundance of adult M. liliana 

and A. stutchburyi). For DEA, this supports my assumption that coupled 

nitrification-denitrification is restricted by oxygen availability for nitrification of 

excess NH4
+.  Optimum rates of coupled nitrification-denitrification occur where 

there is maximum interface between oxic and anoxic sediments, and this is 

enhanced by the presence of macrofauna and burrow structures (Eyre & Ferguson 

2009, Gilbert et al. 2016), and microphytobenthos (An & Joye 2001).  Large 

macrofauna, especially M. liliana, influence solute transport through bio-irrigation 

(Woodin et al. 2016), and may be enhancing GPP and  GPPChl a by moving nutrient 

rich pore water from within the sediment to surface layers where it can be utilised 

by microphytobenthos. For GPPChl a (both treatments), aRPD and pore water NO3
- 

concentrations accounted for nearly as much variability as mud, indicating that 

the photosynthetic efficiency of the benthos is related to biogeochemical 

processes in the sediments. 

The sedimentary environment ultimately determines the supply (through 

accumulation and mineralisation of organic matter) and fate of nitrogen (used by 

primary producers, accumulation in sediment pore water, loss through pore water 

flushing or diffusion to the water column, or loss through nitrification and 

denitrification) in soft sediment ecosystems.  Context (mud) dependent responses 

of ecosystem functions to nutrient stress were more apparent for ecosystem 

functions that depended on specific biogeochemical conditions (e.g. DEA).  Of all 

the measured ecosystem functions DEA showed the most sensitivity to both mud 

and nutrient stress and this may be due to the large number of indirect effects 

associated with the sedimentary environment which may be greater than direct 

effects.  For example, muddy organic rich sediments provide ideal conditions for 
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denitrifiers (anoxia, N and C source) but these conditions can be detrimental to 

nitrification, on which denitrification in this system depends. Due to such 

sequences of indirect effects, ecosystem processes with more feedbacks may be 

more sensitive to stressors (i.e diversity-stability hypothesis; McCann (2000)). In 

particular, nitrogen cycling processes such as denitrification may be less resilient 

due to less functional redundancy compared with metabolism processes 

(Sundback et al. 2007). In this study system, muddy sediments may exacerbate 

eutrophication through changes in feedbacks associated with changes in 

macrofaunal communities and behaviour, and oxygen profiles, on which 

ecosystem functions linked with resilience to nutrients depend. 

This is the first study, to my knowledge, that experimentally tests soft sediment 

ecosystem response to nutrient enrichment in different sedimentary 

environments, and demonstrates the combined effects of these stressors. 

Sediment muddiness influenced ecosystem functions and response to nutrient 

enrichment through direct effects on biogeochemistry associated with fine 

sediments, and indirect effects including differences in macrofaunal community in 

different sediment types.  Levels of sediment mud content controlled the response 

of ecosystem functions to nitrogen oversupply.  Although I did not measure 

recovery rates, recovery times after nutrient enrichment stress are likely to be 

longer when there is a high level of an existing stressor (e.g. mud) (Sundback et al. 

2007).  Isolating effects of stressors on ecosystem functioning is extremely difficult 

in real world settings since rarely do stressors occur independent of others or 

without being directly or indirectly affected by environmental factors. Anticipating 

how ecosystems will respond to accelerating stressors (e.g. nitrogen oversupply) 

under different stress regimes (e.g. sedimentation) will be critical for the 

preservation of healthy estuary ecosystems and the services they provide. 
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4 Chapter Four 

Macrofaunal functional diversity provides 

resilience to nutrient enrichment in coastal 

sediments  

 

4.1 Introduction 

Enrichment of the ocean through anthropogenic alteration of the nitrogen cycle is 

leading to degradation of marine ecosystems and the services they provide (Nixon 

1998).  This occurs because nitrogen is essential for primary production and its 

oversupply in (generally) nitrogen-limited systems can cause blooms of algae, 

increases in organic matter, alteration of nutrient ratios, and changes to habitats, 

communities and food webs (Vitousek et al. 1997).  Most of the terrestrial nitrogen 

received by the marine environment is removed through denitrification in coastal 

sediments (estimated up to 80%), a natural ecosystem process that removes 

bioavailable nitrogen (Galloway et al. 2003).  Denitrification (DN) can therefore 

provide resilience to eutrophication, which is recognised as a global threat to the 

functioning of coastal ecosystems and the goods and services they provide 

(Vitousek et al. 1997, Laursen et al. 2002).  

Benthic macrofauna, such as bivalves and polychaetes, play a critical role in coastal 

marine nitrogen cycling. Particle and water transport related to feeding and 

movement activity (i.e. bioturbation) promotes transport of nutrients and oxygen 

throughout the sediment profile enhancing rates of nitrogen transformation 

(Kristensen et al. 1985, Kristensen et al. 1991, Pelegri et al. 1994, Gilbert et al. 1998, 

Webb & Eyre 2004b, Laverock et al. 2011).  In sediments with an oxic layer and 

low water column nutrient concentrations, nitrification and DN are often coupled 

(Sloth et al. 1995, Seitzinger et al. 2006).  The distinct oxygen conditions these 

processes require (i.e., presence of oxygen for nitrification; anoxia for DN) means 

that the interface between the oxic and anoxic sediments is an important site for 

coupled DN.  The activities of benthic macrofauna cause this interface to be 
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dynamic in space and time (Volkenborn et al. 2010, Volkenborn et al. 2012), 

enhancing coupled DN (Stief 2013). Moreover, bioturbation can also enhance un-

coupled DN by increasing the supply of nitrate to sediments from the water column 

(Kristensen et al. 1991, Nogaro & Burgin 2014). However, if macrofauna are 

negatively affected by nutrients and/or other stressors their positive influence on 

DN will be diminished.  

Degradation of biodiversity through loss of species can reduce an ecosystem’s 

ability to withstand stress or adapt to changing conditions (Villnäs et al. 2013).  

Species loss can be deleterious to key ecosystem processes contributing to 

feedback loops that invoke changes in community and overall ecosystem function, 

which and may lead to ecosystems reaching thresholds or tipping points resulting 

in shifts to alternate states (Thrush et al. 2006, Thrush et al. 2014, van Nes et al. 

2016).  Given the complex interaction between bioturbating macrofauna and 

nitrogen cycling and that species with traits relevant to nutrient processing will 

vary in their sensitivity to stress (i.e. response diversity) (Elmqvist et al. 2003, 

Hewitt et al. 2010, Mori et al. 2013, de Juan et al. 2014), non-linear responses to 

losses in biodiversity and ultimately resilience are likely (Naeem et al. 1994, Chapin 

et al. 2000). Identification of the elements of macrofaunal diversity that contribute 

to DN is necessary to understand the potential ecosystem response to nutrient 

oversupply and to adequately conserve the necessary aspects of biodiversity.  

These elements include both local- (alpha), and landscape-scale (gamma) diversity 

that contribute to the overall heterogeneity of communities (beta diversity), which 

can provide a measure of ecosystem stability (Doak et al. 1998, Thrush et al. 

2008a).  As diversity and density of marcofauna decreases, DN rates are also likely 

to decrease, which may in turn further intensify eutrophication impacts, creating 

a strong feedback (Loreau et al. 2001, Folke et al. 2004, Hewitt et al. 2010, Hewitt 

& Thrush 2010). 

Nitrogen loading to coastal ecosystems is increasing globally (Galloway et al. 2008) 

and there is a pressing need to understand how it alters DN and interactions with 

macrofaunal diversity in real world settings.  While field studies have quantified 

DN in a range of coastal habitats (e.g. Piehler & Smyth 2011, Eyre et al. 2013, Foster 

& Fulweiler 2014) they do not make linkages to macrofauna diversity or the 
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diversity response to nutrient stress, and the consequences for DN are absent. 

Similarly, despite a considerable amount of research examining aquatic sediment 

nitrogen cycling (reviewed by Huettel et al. 2014), and much highlighting the 

importance of macrofauna (reviewed by Stief 2013), studies have so far not been 

able to address potential feedbacks between biodiversity and stressors. To date 

nutrient enrichment field experiments have tested the responses of macrofaunal 

communities (Morris & Keough 2003b, Posey et al. 2006, Fitch & Crowe 2012), 

while others have measured effects on ecosystem functions including DN (Koop-

Jakobsen & Giblin 2010, Oakes et al. 2011, Vieillard & Fulweiler 2012), but no study 

has combined the two and assessed the role of macrofauna in DN response to 

nutrient enrichment.     

I simulated eutrophication in situ using sediment nutrient enrichment in 

experimental plots across a sandflat with a heterogeneous landscape of 

macrofaunal community abundance and diversity.  The study focused on two 

species of shellfish (Austrovenus stutchburyi and Macomona liliana) recognised as 

key species for nutrient processing (Thrush et al. 2006, Sandwell et al. 2009, Jones 

et al. 2011, Pratt et al. 2013, Thrush et al. 2014), as well as a group of 46 other 

species with functional traits important for nutrient processing (Greenfield et al. 

2016). I used denitrification enzyme activity (DEA) assays to provide a proxy for 

nutrient processing and nitrogen removal; a proven method for comparisons of 

denitrification activity in aquatic systems that permits large sample sizes (Barnes 

& Owens 1998, Livingstone et al. 2000, Bernot et al. 2003, Wall et al. 2005, Teixeira 

et al. 2010, Bruesewitz et al. 2011, Jones et al. 2011).  I expected treatments that 

caused substantive increases in pore water ammonium (NH4
+) concentrations 

would be detrimental to the diversity of nutrient processing macrofauna (Pearson 

& Rosenberg 1978, Gray et al. 2002), leading to reductions in DEA. Alternatively, 

increased pore water NH4
+ concentrations could enhance DEA via coupled DN 

provided surface sediment remained oxygenated by macrofauna and/or in 

permeable sediments by advective pore water flushing due to physical processes 

(Huettel et al. 2014).  
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4.2 Methods 

4.2.1 Experimental design 

Twenty-eight sites across a 300, 000 m2 intertidal sandflat in the Kaipara Harbour 

were selected based on a macrofauna community survey at the study site (Kraan 

et al. 2015) and an analysis of species functional traits that characterise life history, 

morphology and behaviours that influence sediment biogeochemistry and stability 

(Greenfield et al. 2016). From Greenfield et al. I identified a functional group of 46 

species that possessed traits that influence sediment biogeochemistry (e.g. 

deposit feeding, free mobility, and burrow building) and therefore are important 

for nutrient processing. The selected sites encompassed a spectrum of abundance 

and species richness of this functional group as well as sediment properties (Table 

4.1) to maximise the variation in nutrient processing capacity.  The experiment ran 

for seven weeks (established 20 Jan 2014, sampled 17 March 2014) and at each 

site, 1 procedural control and 2 nutrient enrichment treatment plots (1 x 1 m) were 

established in a 5 x 5 m area by adding slow release fertiliser (or pea gravel for 

controls) buried in the sediments. Fertiliser (Nutricote® N (70 d, 40-0-0 N:P:K)) was 

applied to each plot in a series of 20 evenly spaced 3 cm diameter 15 cm deep 

holes made in the sediment using a hand held corer. Each hole received an equal 

volume of fertiliser (or pea gravel) and the intact sediment core plugs were 

replaced immediately to minimise disturbance to the sediment (see Douglas et al. 

2016, Chapter 2 for details). I considered the control plots to be representative of 

ambient sediments because less than 2% of the plot area was impacted and 

previously, with a similar level of disturbance, no procedural effects on intertidal 

macrofaunal community composition, benthic respiration, nutrient fluxes and 

primary production were found when sampled after 4-7 d (Gladstone-Gallagher et 

al. 2014, Gladstone-Gallagher et al. 2016).  Moreover, photographs of plots taken 

four and seven weeks after disturbance indicated no trace of coring, even in plots 

containing seagrass. Application rates (medium 150 g N m-2, high 600 g N m-2) were 

based on a literature review of previous enrichment experiments, and resulted in 

significantly elevated pore water NH4
+ concentrations for at least seven weeks in 

surface (0-2 cm) and deeper (5-7 cm) sediments (Table 4.1) (Douglas et al. 2016, 

Chapter 2). 
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Table 4.1 Sediment properties and macrofaunal variables in control (0 g N m-2), medium (150 g N 
m-2) and high (600 g N m-2) treatments.  

 
Variable 

Control 
(0 g N m-2) 

Medium 
(150 g N m-2) 

High 
(600 g N m-2) 

Sediment properties    

 Seagrass (% cover) 16 (0-84) 20 (0-97) 21 (0-75) 

 OC (%) 0.9 (0.6-2.0) 0.9 (0.6-2.0) 1.0 (0.6-1.8) 

 Mud (% < 63 µm) 1.78 (0-15) 0.62 (0-14) 0.42 (0-12) 

 GSM (µm) 215 (177-241) 220 (182-242) 219 (190-250) 

Microphytobenthic biomass (µg g-1 sediment) 

 Chl-a  9.3 (3-23) 10.0 (5-32) 9.5 (5-28) 

 Phaeophytin  4.4 (1.5-18) 6.4 (1.6-22) 4.0 (1.1-19) 

Pore water NH4
+ (µM)    

 Surface sediments (0-2 cm) 24 (0-198) 253 (0-2210) 1849 (111-10239) 

 Deeper sediments (5-7 cm) 74 (15-484) 1209 (99-10275) 5846 (565-18842) 

Macrofauna (n core-1)    

 S (taxa) 10 (6-16) 10 (4-15) 8 (3 -16) 

 N (individuals) 60 (15-376) 39 (12 -519) 32 (7-301) 

 A. stutchburyi (< 10 mm) 6 (0-91) 2 (0-99) 2 (0-64) 

 A. stutchburyi (≥ 10 mm) 1 (0-22) 1 (0-14) 1 (0-21) 

 M. liliana (< 10 mm) 5 (1-25) 4 (0-14) 2 (0-9) 

 M. liliana (≥ 10 mm) 2 (0-4) 1 (0-3) 1 (0-6) 

 

Values are medians with minimum and maximum in parentheses (n=28).  
Variables: OC = sediment organic content, Mud = sediment mud content, GSM = Grain 
size median, Chl-a = chlorophyll a content, S = number functional group species, N = 
number of functional group individuals. 
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4.2.3 Sample collection and analyses 

All sampling was conducted on March 17th 2014, seven weeks after fertiliser 

enrichment. For DEA analyses, five sediment cores (0-5 cm depth, 5.3 cm dia.) 

were collected from each plot, pooled, transported on ice to the laboratory, kept 

at 4°C, and analysed within 48 h of collection (n = 1 replicate per plot).  Prior to 

conducting assays, samples were brought to room temperature (20°C).  DEA 

assays were used as a proxy for DN to give a relative measure of sediment nutrient 

processing and nitrogen removal capacity.  DEA assays were conducted using the 

chloramphenicol-amended acetylene inhibition technique (Tiedje et al. 1989, 

Groffman et al. 1999, Bruesewitz et al. 2006, Groffman et al. 2006). This method 

does not measure actual denitrification rates since acetylene inhibits nitrification, 

however it measures the activity of the resident denitrifier population under 

optimal conditions (total anoxia, constant mixing, unlimited nitrate and organic 

carbon) but without allowing new enzyme growth.   

Assays were conducted in glass jars (440 mL volume) with lids fitted with a n-butyl 

rubber septa.  Homogenised wet sediment samples (60 mL) were placed into jars 

with 54 mL unfiltered seawater from the site.  Chloramphenicol was added to 

prevent new enzyme synthesis at a final concentration of 0.06 g L-1.  Assays were 

amended with unlimited carbon (30 mg L-1 C as glucose) and nitrate (10 mg L-1 N 

as KNO3).  Anaerobic conditions were obtained by sealing the jars, evacuating with 

a vacuum pump for 4 min, then purging with pure N2 gas for 10 min.  Pure 

acetylene was added as 10% of the headspace volume to prevent the conversion 

of N2O to N2.  Assay jars were placed on shakers at 125 rpm and incubated at 20°C 

for 2 h. Headspace gas samples (6 mL) were collected at 10, 30, 60 and 120 min 

after the addition of acetylene.  Gas samples were analysed using a Varian CP 3800 

gas chromatograph equipped with a HayeSep D column and an electron capture 

detector.  

Sediment dry mass (DM) in each assay jar was determined (after 48 h at 60 C) and 

N2O production rates (µg g DM-1 h-1) calculated from the linear increase in 

concentration over time (r2 > 0.8).  DEA was expressed per unit area of sand flat 

(µmol N m-2 h-1) by multiplying the production rate by the sediment density (g DM 

cm-3, determined by drying a known volume of the assay sediment) and sample 
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depth (5 cm). My analysis had a minimum DEA detection limit of 1 µmol N m-2 h-1 

and in preliminary testing replicate subsamples (n=5) from homogenized sediment 

had a coefficient of variation (mean/standard deviation) of 7% whereas the 

coefficient of variation between five replicate 1 m2 plots in a 25 m2 area at five 

sites was between 10-15%.  

Environmental variables were characterised as follows. Seagrass (Zostera muelleri 

Irmisch ex. Asch.) coverage (%) was estimated using photographs (taken before 

sampling) of the central 0.25 m2 of each plot and a random point count method 

(see Kohler & Gill 2006). Sediment cores from each plot were collected for analysis 

of pore water NH4
+ (n = 4, 2.6 cm dia., 0-2 cm and 5-7 cm depths, separated and 

depth sections pooled), sediment organic content, mud content (% < 63 µm), grain 

size median, chlorophyll-a, phaeophytin (n = 5, 2.6 cm dia., pooled, 0-2 cm depth), 

and macrofauna community composition (n = 2, 13 cm dia. 0-15 cm depth). For 

DEA and sediment analyses there was one replicate per plot, for macrofauna there 

was two replicates per plot. Laboratory protocols are described in detail elsewhere 

(Douglas et al. 2016, Chapter 2), but briefly; pore water was extracted by 

centrifugation, filtered (1.1 µm Whatman GC glass fibre filter), frozen (-20°C), then 

analysed for NH4
+ concentration using a Lachat QuickChem 8000 Series FIA+ 

(Lohrer et al. 2010), sediment grain size was analysed with a Malvern Mastersizer 

2000 after removal of organic matter (Singer et al. 1988), sediment organic 

content was determined by loss on ignition (550°C, 4 h) (Parker 1983) and 

microphytobenthic biomass was determined by extraction of pigments from 

freeze dried sediment (90% acetone) and measuring fluorescence using a Turner 

Designs 10-AU flourometer (Arar & Collins 1997). Macrofaunal cores were sieved 

(500 µm mesh), preserved (50% iso-propyl alcohol), stained (Rose Bengal), and 

then all organisms were counted and identified (usually to species level).  

4.2.4 Statistical analysis 

A permutational multivariate analysis of variance (PERMANOVA, using a Euclidean 

distance matrix) was used to test for significant treatment effects on 

environmental variables (seagrass cover, sediment properties and 

microphytobenthic biomass). Due to the experimental design (i.e. the spatial scale 

and selection of sites to maximise macrofauna diversity) there was, as expected, 
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high inter-site variability in DEA, macrofauna and environmental variables (Figure 

4.1, Table 4.1). To compensate for this natural heterogeneity and reveal potential 

treatment effects I normalised site specific treatment response parameters by the 

corresponding control plot values so effect size was relative to the site specific 

background level. Normalisation assumes control plot values are representative of 

a site, a justifiable assumption given the small inter-plot distances (2 m) and strong 

positive correlations between control and treatment plot sediment properties and 

primary producer biomass/coverage (Pearson’s r > 0.75, p < 0.001; raw data in 

Appendix 7).  Treatment response variables (DEA and macrofauna community 

measures) were also correlated (Appendix 8). Control normalised (CN) DEA and 

community values were tested for differences from control values (i.e. DEACN ≠ 1; 

one sample t-tests) and between fertilizer addition treatments (medium vs. high; 

two sample t-tests) using Statistica 11 (StatSoft Inc. 2012).   
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Figure 4.1 The effect of nutrient enrichment treatment on a) DEA, and control normalised b) DEA 
(DEACN), c) number of functional group species (SCN), d) number of functional group individuals 
(NCN), e) juvenile (< 10 mm) and f) adult (≥ 10 mm) A. stutchburyiCN abundance, and g) juvenile (< 
10 mm) and h) adult (≥ 10 mm) M. lilianaCN abundance.  Boxes are 25th and 75th percentiles, 
whiskers show 10th and 90th percentiles, black dots show 5th and 95th percentiles.  Solid line is 
median, dashed line is mean, and in the normalised plots the dotted line is provided for reference 
to the control value. 
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Distance based Linear Models (DistLM) were used to identify significant individual 

predictors (marginal tests), and then the best combination of predictor variables 

(backwards elimination procedure) of DEACN at different levels of nutrient 

enrichment. Predictor variables included environmental variables and univariate 

measures of macrofaunal community composition. I used the corrected Akaike 

information criterion (AICc) which is the most appropriate selection criterion when 

the number of variables is large compared to the sample size (Burnham & 

Anderson 2002). Predictor variables were normalised (between -2 and 2) to enable 

comparison among variables with different units without altering the distribution.  

Where there was co-linearity among variables (r > 0.7), the variable explaining the 

lesser amount of variability was excluded from full models (Dormann et al. 2013).  

Variance partitioning analysis (Borcard et al. 1992, Anderson & Cribble 1998) was 

used to determine how much of the model variance was attributed to grouped 

predictor variables; sediment pore water NH4
+ concentration (surface (0-2 cm) and 

deep (5-7 cm)), environmental variables (seagrass cover, sediment organic 

content (OC), median grain size (GSM), sediment mud content (% < 63 µm; mud), 

chlorophyll a (Chl a), phaeophytin, distance from shore), and macrofaunal 

community variables (see below).  All multivariate analyses were conducted using 

PRIMER 7.0 with PERMANOVA+ add-on (Clarke & Gorley 2015) with 

untransformed data. 

For measures of macrofaunal community composition I just considered the group 

of 46 species identified by Greenfield et al. (2016) with traits important for 

nutrient processing.  On average this functional group comprised 52% of the taxa 

and 63% of the abundance, and preliminary analyses indicated that this group had 

greater effects on DEA than the macrofaunal community considered as a whole.  I 

included in analyses the number of species (within group diversity, S) and 

individuals (within group abundance, N) belonging to this functional group, as well 

as the abundances of juvenile (< 10 mm) and adult (≥ 10 mm) A. stutchburyi and 

M. liliana.  A. stutchburyi and M. liliana were included as separate predictors as 

both species have been shown to strongly influence ecosystem functioning (i.e. 

are key species) on New Zealand sandflats (Thrush et al. 2006, Sandwell et al. 2009, 

Jones et al. 2011, Pratt et al. 2013, Thrush et al. 2014) and I separated adults and 
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juveniles because impacts on ecosystem differs with size (Hewitt et al. 1997, 

Norkko et al. 2013). 

4.3 Results 

4.3.1 Nutrient enrichment effect on DEA 

Nutrient treatment (150 g N m-2 and 600 g N m-2) significantly increased pore 

water NH4
+ concentrations throughout the sediment profile (Douglas et al. 2016, 

Chapter 2), but had no significant effects on sediment properties, seagrass cover 

or microphytobenthic biomass (Table 4.1; all PERMANOVA Pseudo-F = 0.77, p > 

0.5, not shown).  There was substantial variability in DEA values in all treatments 

across the study site, with control plot values ranging from 7.6 to 183.2 µmol N m-

2 h-1 (Figure 4.1a).  The site specific DEA response to enrichment (DEACN) ranged 

from 0.12 to 2.0 in medium treatment plots (i.e. 12 to 200% of control values), and 

0.001 and 1.9 in high treatment plots (i.e. 0.1 and 190% of control values).  In the 

medium treatment 18 of 28 sites, and in the high treatment 21 of 28 sites, DEA 

values were less than in controls (i.e. DEACN < 1) indicating that DEA was, on 

average, suppressed by enrichment (Figure 4.1b). In approximately 25% of 

treatment plots, enrichment enhanced DEA by > 20%.  Reductions in DEACN were 

only significant in the high treatment, however reductions were greater in the high 

compared with the medium treatment (although not significant (p = 0.07); Figure 

4.1b, Table 4.2).    



 

 

6
2

 

Table 4.2 Treatment effects on control normalised (CN) DEA and macrofaunal community measures.  
 

Treatment Difference from control  
Difference between treatment 

means 

Variable  Mean t p t p 

DEACN Medium 0.87 -0.13 0.20 
1.86 0.07 

 High 0.66 -3.41 0.002 

SCN Medium 0.98 -0.45 0.66 
2.85 0.008 

 High 0.85 -2.50 0.02 

NCN Medium 0.86 -1.60 0.12 
1.44 0.16 

 High 0.73 -2.05 0.05 

A. stutchburyi (<10 mm)CN Medium 0.89 -1.01 0.32 
1.26 0.22 

 High 0.79 -2.54 0.02 

A. stutchburyi (≥ 10 mm)CN Medium 0.77 -2.13 0.04 
-0.92 0.37 

 High 0.91 -0.77 0.45 

M. liliana (< 10 mm)CN Medium 0.94 -0.30 0.76 
1.94 0.06 

 High 0.56 -4.54 0.0001 

M. liliana (≥ 10 mm)CN Medium 0.89 -0.72 0.48 
-0.26 0.80 

 High 0.95 -0.30 0.77 

Test results for differences between treatments and controls (one sample t-test), and between medium and high treatment (two sample t-test).  

Variables: control normalised DEACN = Denitrification Enzyme Activity, SCN = number functional group species, NCN = number of functional group individuals.  

Significant differences (p ≤ 0.05) are indicated in bold.  
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4.3.2 Predictors of DEA 

DEA was significantly correlated with a number of environmental variables 

(Appendices 9-11).  In general, sites with higher control plot DEA were those with 

more sediment OC and mud, smaller median grain size, more seagrass coverage, 

and more phaeophytin biomass. Control plot DEA was significantly correlated with 

DEA in both treatment plots (Appendix 8), i.e. sites with naturally high DEA were 

also high following enrichment. Normalisation of medium and high treatment DEA 

by control values effectively removes spatial environmental influences and 

consequently these variables (and control plot DEA) did not explain a substantial 

proportion of DEACN (Table 4.3, Appendices 10 & 11). The predictors included in 

the full models of DEACN differed depending on the level of enrichment (Table 4.3, 

Figure 4.2). In the medium treatment, surface sediment pore water NH4
+ 

concentration had a positive effect on DEACN, but community variables explained 

more of the response. Key bioturbators showed a strong influence on medium 

treatment DEACN; together, juvenile and adult M. liliana and adult A. stutchburyi 

made up 32% of the total 54% explained variance.  The effects of these two species 

on DEACN were different, M. liliana positive and A. stutchburyi negative (Table 4.3).  

Unlike in the medium treatment, pore water NH4
+ concentration was not an 

important predictor of DEACN in the high treatment; only community variables 

were included in the full model explaining 39% of the variance, and key species 

did not have a significant role (Table 4.3, Figure 4.2b).  Most (37%) of the explained 

variance was attributed to the abundance of nutrient processing species (N) which 

was positively correlated with DEACN.  The amount of unexplained variance in 

DEACN increased with the level of nutrient enrichment from 46 to 61%. 
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Table 4.3. DistLM results for treatment plot control normalised DEA (DEACN).  

Treatment Group Variable Pseudo-F Prop. Full model 

Medium Pore water NH4
+ (0-2 cm) 7.16 0.21* (+) 19% 

 Community M. liliana (< 10 mm) 5.19 0.16* (+) 

32%   M. liliana (≥ 10 mm) 2.56 0.09 n.s. (+) 

  A. stutchburyi (≥ 10 mm) 3.09 0.11 n.s. (-) 

    Total 54% 

      

High Environment Mud 3.68 0.12* (+) - 

  Phaeophytin 2.81 0.10 n.s. (+) - 

 Community S 5.98 0.19** (+) - 

  N 10.98 0.30* (+) 37% 

  M. liliana (≥ 10 mm) 0.50 0.02 n.s. (-) 9% 

    Total 39% 

 

Prop. is the proportion of variability in DEACN explained by each variable when considered individually.  Significance levels are *p ≤ 0.05, and **p ≤ 0.01, and 
correlation directions are in parentheses.   
Full model shows the variables included in the best DistLM model of DEACN and the variance attributed to each.  
Variables: NH4

+ (0-2 cm) = surface sediment pore water ammonium concentration (µM), Mud = sediment mud content (%), phaeophytin (µg g-1 sediment), S = 
number functional group species, N = number of functional group individuals. 
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Figure 4.2 Diagrams presenting partitioning of variance in DEACN in a) medium and b) high 
treatment attributed to unique and shared effects of measures of community and pore water 
ammonium concentration (realised treatment effect). Results from variance partitioning analysis 
of full DistLM models as described in Table 4.3. 

 

 

4.3.3 Nutrient enrichment effect on the macrofaunal community 

Analysis of control normalised measures of the nutrient processing functional 

group composition revealed significant treatment effects (Table 4.2, Figure 4.1c-

h).  The number of species (SCN) was lower in the high than control and medium 

treatments, and there were reductions in the total abundance (NCN), but this was 

only significant in the high treatment.  The abundance of key bioturbating species 

were also negatively impacted with nutrient enrichment.  Adult and juvenile A. 

stutchburyi densities were reduced in the medium and high treatments 

respectively. For M. liliana, only juveniles (which were numerically dominant) 

were affected, and only in the high treatment (Table 4.2).  

  

Pore water 

19% 

Community 

32% 
3% 

Unexplained 46% 

Community 

39% 

Unexplained 61% 

a) DEACN medium Total 54% b) DEACN high Total 39% 



 

66 

4.4 Discussion 

I examined the role of macrofauna diversity in moderating nutrient oversupply 

using an indirect measure of nutrient processing capacity (DEA) across 28 sites 

with substantial natural variability in the community composition of nutrient 

processors. DEA was spatially highly variable which was expected given the 

heterogeneity of the sandflat and sites with naturally high DEA were also high 

following nutrient enrichment. By normalising treatment plot DEA by control 

values I revealed the response to nutrient addition and demonstrate in a real 

world setting that benthic macrofaunal diversity is important to the preservation 

of denitrification (DN) following nutrient stress.  This is significant because DN is a 

process that can mitigate eutrophication, and nutrient enrichment commonly has 

negative effects on benthic macrofauna (Pearson & Rosenberg 1978). 

Fertilizer addition on average suppressed DEA (i.e. DEACN < 1) especially in the high 

treatment, and I assume this suppression was due to inhibition of nitrification 

(although I did not measure this process directly). Most of the DN in this system is 

likely to be coupled to nitrification because control plot DEA strongly correlates 

with sediment organic content (suggesting organic matter mineralisation is the 

primary source of N; Appendix 9) (Sloth et al. 1995, Seitzinger et al. 2006), and 

New Zealand estuaries typically have low pore water and water column nitrate 

concentrations (Lohrer et al. 2004a, Thrush et al. 2006, Lohrer et al. 2010). 

Nitrification inhibition would occur if the enriched sediments became periodically 

anoxic or the oxic layer depth decreased (preventing or reducing nitrification of 

NH4
+ even when present in great quantity) (Joye & Hollibaugh 1995, Magalhães et 

al. 2005, Foster & Fulweiler 2014). Shifts towards anaerobic conditions may have 

been caused by the NH4
+ induced reduction in the abundance of bioturbating 

species (Table 4.2, Figure 4.1c-h) which would reduce oxygenation of the 

sediments (Diaz & Rosenberg 1995, Diaz & Rosenberg 2008, Glud 2008) and 

further exacrbated by dead macrofauna stimulating microbial metabolsim during 

decay (Kelly & Nixon 1984, Blackburn et al. 1993). (But note there was no 

detectable enrichment of sediment organic content in treatment plots that could 

be related to macrofauna mortality (Table 4.1)).   
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Although enrichment supressed DEACN at most sites, the response represented a 

continuum from inhibition to enhancement.  DistLM showed that 39-54% of 

response to enrichment could be explained, and most of it by macrofaunal 

diversity.  It is difficult to speculate on the source(s) of the unexplained variation 

in DEACN, but on a dynamic intertidal sandflat spatial and temporal variations in 

sediment biogeochemistry caused by hydrodynamic forcing (Green & Coco 2014, 

Huettel et al. 2014), foraging and excretion by large predators (e.g. Thrush et al. 

1994, Hines et al. 1997, Jauffrais et al. 2015), detrital inputs (e.g. Eyre & Ferguson 

2002, Eyre et al. 2013) and microbial diversity (e.g. Yazdani Foshtomi et al. 2015) 

could all contribute, as could any initial small scale variation between plots within 

a site.  Nevertheless the fact that a substantial proportion of the DEA response 

could be explained by macrofauna diversity despite the complexity of the field 

setting emphasises its importance in regulating the effects of enrichment. 

When NH4
+ was supplied in the medium treatment, the density of M. liliana was 

critical in mediating the response of DEA. Both the concentration of surface 

sediment pore water NH4
+ and abundances of M. liliana were significantly 

positively correlated with DEACN.  This agrees with my expectation that factors that 

promote the coupling of nitrification and DN (i.e. bioturbation-induced increases 

in sediment oxygenation, solute transport, etc.) would lessen the negative effect 

of enrichment on DEA (i.e. DEACN declines from 1 would be less).   M. liliana is a 

surface deposit feeding bivalve known to influence sedimentary oxygen and 

nitrogen fluxes (Thrush et al. 2006, Volkenborn et al. 2012, Pratt et al. 2015).  The 

feeding and burrowing behaviour of this species injects pulses of oxygen rich water 

into sediments as well as creating hydrostatic pressure gradients in the sediment 

profile. This increases the oxic-anoxic interface (both spatially and temporally), 

accelerates solute exchange, and forces nutrient-rich anoxic water shallower in 

the sediment profile (and into the oxic nitrification zone) (Volkenborn et al. 2012).  

Others have shown that under well flushed conditions (i.e. via bioturbation and/or 

in permeable sediments advective pore water flushing) nitrification is positively 

correlated with NH4
+ concentrations (Caffrey et al. 2003, Huettel et al. 2014), in 

this case bioturbation by M. liliana appears to be the flushing mechanism.   
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Adult M. liliana (≥ 10 mm) live deep in the anoxic zone of the sediments (about 10 

cm depth) (Hewitt et al. 1997) and therefore are likely to have a strong positive 

influence on coupled DN. In this study adult M. liliana did not show significant 

individual effects on DEACN, this is unsurprising given that they were in low 

densities, and sampling two 0.013 m2 area cores per plot was unlikely give an 

accurate representation of the resident individuals. Despite this, adult M. liliana 

still featured in models explaining variance in DEACN in both treatments, 

suggesting an influence on the activity of the resident denitrifier population.  The 

grouping of juvenile M. liliana included all those < 10 mm, encompassing young 

juveniles (≤ 5 mm) that occupy surface sediments (< 2 cm depth, within typical oxic 

zones) and larger juveniles (5 - 10 mm) that occupy sediments between 2 and 10 

cm depth (Hewitt et al. 1997), below the typical oxic depth of these types of 

sediments.  Juveniles (< 10 mm) showed a strong positive effect on medium 

treatment DEACN and despite being shallower dwelling than adults, their activities 

are likely to increase oxic zones and the transport of nutrient rich pore water 

(relative to un-bioturbated sediments) also facilitating coupled DN. The negative 

effect of adult A. stutchburyi on medium treatment DEACN may also be explained 

by the species’ biology.  A. stutchburyi are surface dwelling filter feeders that 

‘bulldoze’ the top layer of sediments; activity that may enhance pore water NH4
+ 

efflux and bypass the nitrification process, and/or enhance efflux of nitrate making 

it unavailable for denitrification.   

Negative ecosystem effects increased with increased nutrient enrichment (i.e. 

from medium to high); in particular loss of key species and decreases in DEA 

performance.  The high nutrient treatment reduced the abundance of juvenile M. 

liliana and subsequently the positive influence on DEACN seen in the medium 

treatment was gone.  With reduced abundance of this key species under high 

nutrient stress, the fundamental role in explaining DEACN (and supporting coupled 

DN) was taken up by the remaining community of nutrient processing macrofauna. 

Both the diversity (S) and abundance (N) of the functional group were significantly 

positively correlated with DEACN indicating that both are important for maintaining 

coupled DN (and therefore nitrogen removal) under high nutrient stress (albeit at 

reduced efficiency).  It is possible that pore water NH4
+ concentrations, particularly 
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in high treatments, reached a threshold where nitrification was either saturated 

or suppressed (Anthonisen et al. 1976, Henriksen & Kemp 1988).  Maintenance of 

nutrient processing from bioturbation is important for resistance to negative 

feedbacks that cause nitrification inhibition.  This study has shown that different 

elements of biodiversity, especially functional group species abundance and 

diversity, and key species size and abundance, are important for ecosystem 

functioning under increasing nutrient stress. Nutrient stress caused reduced 

diversity of nutrient processors which may lead to reductions in ecosystem 

resilience to nutrient enrichment. Such effects may be further exacerbated by 

multiple stressor effects associated with habitat loss, pollution and fisheries 

exploitation (Rothschild et al. 1994, Thrush & Dayton 2002, Lohrer et al. 2004a, 

Solan et al. 2004). 

Land use intensification and terrestrial nutrient loading to the marine 

environment will continue to increase therefore maintenance of soft sediment 

nutrient processing will be paramount for coastal ecosystem resilience to 

eutrophication.  This in situ study has demonstrated that under nutrient stressed 

conditions, key species, and then abundance and diversity of a functional group 

govern an essential nitrogen removal process that may ultimately mitigate shifts 

towards eutrophication. Furthermore, these results provide an example of how 

community response diversity contributes to ecosystem resilience to nutrient 

enrichment stress (Elmqvist et al. 2003, Mori et al. 2013). Increasing stress to soft 

sediment ecosystems can cause loss of bioturbators, decoupling of processes and 

changes in ecosystem functioning (Lohrer et al. 2011, Pratt et al. 2013).  This is a 

concern for sediment nitrogen removal given the demonstrated dependence of 

soft-sediment ecosystem processes on macrobenthic communities.  Although 

both the medium and high levels of nutrient stress led to reductions in nutrient 

processing, the effects were greater with the higher level of stress, due to the 

reduced abundance of a key species and decoupling of processes that occurred in 

this treatment type.  This supports the notion that losses of large or functional 

species that play pivotal roles in ecosystem processes leads to loss of ecosystem 

resilience (Thrush et al. 2006, Norkko et al. 2013), with implications for future 

management of coastal ecosystems.  If stress thresholds are crossed, causing 
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reductions in key nutrient processing species and functional diversity, there may 

be long-term effects on ecosystem resilience to eutrophication.  This could 

contribute to tipping points and major regime shifts in coastal ecosystems (Thrush 

et al. 2014).  This chapter highlights the importance of biodiversity and community 

composition for ecosystem resilience to stress.
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5 Chapter Five 

Environmental drivers of Denitrification 

Enzyme Activity in oligotrophic temperature 

estuaries 

 

5.1 Introduction 

Nitrogen pollution and the eutrophication of estuarine and coastal ecosystems are 

a global threat (Gruber & Galloway 2008) and recent analyses highlight that we 

may be near or in fact over a tipping point (Rockström et al. 2009a, 2009b). For 

estuaries, increasing nutrient inputs are often associated with inputs of 

terrestrially derived sediments, and these stressors do not always act in isolation 

(Galloway et al. 2008, Hewitt et al. 2016) . Collectively these stressors (along with 

others e.g. fishing, invasive species, habitat modifications) can result in 

eutrophication, biodiversity loss, decreased ecosystem functioning, reductions in 

ecosystem services, and may result in reduced capacity to process nitrogen 

(Valiela et al. 1992, Vitousek et al. 1997, Lohrer et al. 2004b). The interaction 

effects of nitrogen and other stressors may be greater or different than individual 

stressor effects, and together these stressors may increase ecosystem sensitivity 

to tipping points (Thrush et al. 2014, Valiela & Bartholomew 2014). 

Transformation of nitrogen underpins a number of important estuarine ecosystem 

services and estuaries are a globally important nitrogen sink significantly 

influencing the amount of nitrogen transported from land to sea (Seitzinger 1988). 

The efficiency of this sink is due in part to the denitrification that occurs in estuary 

soft sediment ecosystems removing excess bioavailable nitrogen. The 

environmental factors that control denitrification vary considerably in space and 

time and thus it is difficult to estimate, quantify or predict denitrification rates at 

estuary scales (Cornwell et al. 1999, Groffman et al. 2006).  Despite the importance 

of denitrification to the nitrogen cycle, factors affecting variability at scales 
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relevant to management are poorly understood (Davidson & Seitzinger 2006, Piña-

Ochoa & Álvarez-Cobelas 2006).  

Denitrification is an anaerobic process carried out by a diverse array of 

heterotrophic microbes (i.e. denitrifiers) in terrestrial and aquatic ecosystems 

resulting in nitrogen loss through conversion of bioavailable nitrogen (NO3
-) to 

gaseous end products (N2O or N2).  Drivers of denitrification have been studied 

across and within different ecosystems, and the first order variation in 

denitrification rates can be attributed to carbon and nitrogen availability 

(reviewed by Cornwell et al. 1999).  Organic matter loading has long been 

recognised as a primary factor controlling sediment denitrification rates in coastal 

ecosystems (Caffrey et al. 1993, Cornwell et al. 1999).  Physical sediment 

characteristics such as grain size are also known to influence denitrification rates 

in marine systems (Kessler et al. 2012), freshwater streams (Opdyke & David 2007), 

wetlands (Palta et al. 2014), floodplains (Pinay et al. 2000) and forest soils 

(Groffman & Tiedje 1989), and in general, the importance of the sedimentary 

environment for biogeochemical processes is significant (Huettel et al. 2014).   

Denitrification in many aquatic, and particularly estuarine, ecosystems is diffusion 

dominated (Seitzinger et al. 2006), so delivery of nitrate to the denitrification zone 

is likely to be strongly influenced by factors such as macrofaunal bioturbation and 

sediment porosity.  When benthic macrofauna are present, bioturbation (which 

moves and mixes sediments and pore water), and bioirrigation activity (which 

brings oxygenated water (and nitrate) from the water column) mean that 

denitrification is no longer limited by solute diffusion. Changing sedimentary 

conditions, especially increases in organic matter and fine sediments, are key 

stressors for coastal environments worldwide, yet generally, co-variables 

representing sediment type and benthic macrofaunal communities are often not 

reported in denitrification studies (For exceptions see Wall et al. 2005, Gongol & 

Savage 2016, Humphries et al. 2016). Consequently, these important co-variables 

are absent from meta-analyses of denitrification across larger spatial scales or 

ecosystems (e.g. Piña-Ochoa & Álvarez-Cobelas 2006).  Because benthic 

macrofauna are highly sensitive to environmental changes, there are implications 

for the resilience of denitrification when stressors occur. 
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Factors that control denitrification can vary considerably depending on the scale 

of the study, and particularly between site specific studies (Piña-Ochoa & Álvarez-

Cobelas 2006).  Much of the aquatic denitrification literature has focussed on 

anthropogenically impacted ecosystems, and these studies have shown that 

availability of water column nitrate is the major factor controlling denitrification 

in both freshwater and marine systems (Seitzinger 1988, Nielsen et al. 1995, Kana 

et al. 1998, Piña-Ochoa & Álvarez-Cobelas 2006, Rissanen et al. 2013). More 

studies addressing the spatial heterogeneity of denitrification in ecosystems are 

needed, as many studies may have under-sampled and failed to describe spatial 

variability (Piña-Ochoa & Álvarez-Cobelas 2006). Further, spatial models for 

mapping habitats and ecosystem services are becoming a widely used 

management tool (e.g. Middelburg et al. 1996, Nixon et al. 1996, Burkhard et al. 

2013). However, studies modelling benthic denitrification in aquatic ecosystems 

largely focus on variables such as organic carbon availability, water column nitrate 

concentrations, and water residence times (Seitzinger & Giblin 1996, Boyer et al. 

2006), rather than variables sensitive to change such as macrofaunal communities 

and sediment type.  This has occurred because observational measurements of 

other variables that might control denitrification at appropriate scales are lacking 

(Cornwell et al. 1999, Boyer et al. 2006, Fennel et al. 2009). Small scale or 

laboratory studies also do not encompass a high degree of spatial variability or 

complexity and therefore do not have the ability to explain denitrification in terms 

of habitat attributes such as benthic community or sediment type (Thrush & 

Lohrer 2012).  Studies encompassing natural environmental gradients (including 

variation in sediment characteristics and macrofaunal diversity) are needed to 

assist modellers to predict shifts in ecosystem service delivery resulting from 

environmental change or shifts in community composition (Snelgrove et al. 2014). 

The aim of this study was to determine the drivers of denitrification across 

estuaries in northern New Zealand, to determine where denitrification is occurring 

based on abiotic and biotic variables. A specific objective was to identify possible 

environmental controls on a proxy for estuarine denitrification activity (i.e. 

denitrification enzyme activity, DEA).  The DEA assay methodology uses an 

acetylene block technique and provides a measure of denitrification under optimal 
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conditions. It therefore represents the nitrogen removal capacity of the existing 

denitrifier community, but does not quantify actual in situ denitrification rates 

(Smith & Tiedje 1979, Seitzinger et al. 1993, Groffman et al. 1999, Groffman et al. 

2006) which are more time consuming and expensive to obtain. My 

measurements span broad sedimentary gradients allowing me to elucidate how 

DEA may respond to changing environmental conditions.  This study is unique, 

because unlike previous meta-analyses of denitrification (Seitzinger 1988, 

Cornwell et al. 1999, Piña-Ochoa & Álvarez-Cobelas 2006, Seitzinger et al. 2006), 

there is a consistency of methodology across the entire dataset and I have 

measured a large number of explanatory co-variables including macrofauna, 

which have normally been ignored.  Accordingly, this study advances our 

understanding of the role of biological and physical factors in driving spatial 

variability in denitrification within and among estuaries.   

5.2 Methods 

5.2.1 Study sites and data compilation 

Data were compiled from two published and three unpublished studies carried out 

in four bar-built estuaries with extensive intertidal areas, and catchments with 

variable land use (Figure 5.1, Table 5.1). In total, the dataset consisted of samples 

collected from 134 plots (1 m2) during austral summer months (December-March) 

between 2013 and 2015 (see Appendix 12 for details). For the Mahurangi dataset, 

microphytobenthic biomass and macrofaunal community information was only 

collected in 16 of the 32 plots.  For investigating DEA-sediment properties 

relationships the full dataset of 134 plots was used, but for analyses involving 

faunal and microphytobenthic variables a reduced dataset of 118 plots was used. 

The estuaries contained overlapping gradients in abiotic (especially sediment 

properties) and biotic factors (Table 5.2) allowing data to be pooled and analysed 

for patterns across estuaries.  
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Figure 5.1 Locations of the four estuaries included in this study. See Appendices 4, 12 & 13 for 
details of sampling locations within estuaries. 
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Table 5.1 Data sources, sampling protocols and estuary characteristics. Refer to Appendix 10 for further details. 

Estuary Site location Sample 

date 

Plots  Sampling and 

data source 

Water 

temperature  

Estuary 

size  

Catchment 

size  

Catchment land use  

   n  °C ha ha % 

         Agri Hort Veg Urb 

Tuapiro  37° 29’ S 175° 57' E Jan 2014 25 5 mid-intertidal sites (5 plots in 5 x 5 

m area) from head to mouth of 

estuary. Unpublished survey data. 

22.6 ± 0.2 2401 7,6751 321 151 531 <11 

   Dec 2014 24 Control plots from; 12 sites (n=2) 

across ~300 m of intertidal flat. 

Douglas et al. (in prep.) (Chapter 3 of 

this thesis). 

20 ± 0.1       

Waikareao 37° 41’ S 176° 9’E Dec 2013 25 5 intertidal sites (5 plots in 5 x 5 m 

area) from head to mouth of 

estuary. Unpublished survey data. 

20.6 ± 0.2 2002 7,4043 413 63 353 183 

Kaipara 36° 39' S 174° 29' E Mar 2014 28 Control plots from 28 sites across 30 

ha of intertidal flat. Douglas et al. 

(2017) (Chapter 4 of this thesis). 

20.5 ± 0.04 95,0004 6265875 715 <15 295 <15 

Mahurangi 36° 27' S 174° 43' E Mar 2015 32 8 plots from 4 subtidal sites from 

head to mouth of estuary. 

Unpublished survey data. 

23.1 ± 0.1 5966 11,5007 647 07 287 57 

1BOPRC (2012b), 2Tay et al. (2012), 3BOPRC (2012a), 4Kirschberg (2007), 5Hume et al. (2007), 6McLay (1976), 7Boffa Miskell Limited (2008) 

Land use abbreviations: Agri –agriculture, Hort – horticulture, Veg – native or exotic vegetation/forest, Urb – urban or intensive rural. 
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Table 5.2  Ranges (min-max) of environmental and biological variables used in analyses.  See Appendix 10 for the raw data. 

 

 

Estuary 
Sampled plots Mud OC GSM Chl a Phaeo S N LB 

 
n % % µm µg g-1 µg g-1 n core -1 n core -1 n core-1 

Kaipara 28 0 – 14.5 0.6 – 2.0 177 – 241 3.6 – 23.2  1.5 – 17.9 9 – 29 19 – 419 1 – 41 

Tuapiro 49 0 – 21.6 1.5 – 5.6 112 – 462 6.0 – 46.5 1.6 – 9.7 12 – 29 53 – 599 0 – 134 

Waikareao 25 3.7 – 33.9 1.9 – 4.5 130 – 445 6.0 – 37.2 4.0 – 19.2 6 – 27 100 – 557  0 - 86 

Mahurangi 16 16.7 – 52.2 3.8 – 5.7 65 – 151 2.6 – 9.9 13 – 4.7  4 – 24 50 – 263 0 – 2 

All 118 0 – 52.2 0.6 – 5.7  65 – 462 2.6 – 37.2 1.3 – 19.2 4 – 29 19 – 599 0 – 134 

OC: sediment organic content, Mud:  sediment mud content, GSM: grain size median, Chl a: chlorophyll a, Phaeo: phaeophytin, S: number of species, N: number 

of individuals, LB: number of large bivalves A. stutchburyi and M. liliana. 
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5.2.2 Denitrification Enzyme Activity 

Surveys of Tuapiro and Waikareao estuaries were conducted first and measured 

DEA across sedimentary gradients (mud content: 3.4 – 34%, organic content, 1.6 

– 5.6%). Measurements of substrate (carbon and nitrate) limitation of denitrifying 

bacteria were also undertaken because most denitrification studies show nitrate 

and organic carbon to be the main factors controlling denitrification (e.g. Caffrey 

et al. 1993, Herbert 1999, Piña-Ochoa & Álvarez-Cobelas 2006). This dataset 

included samples from 25 plots (5 plots at each of 5 sites from head to mouth) in 

each estuary (see Appendix 10). Methods for DEA sample collection and assays are 

described in full in Douglas et al. (2017) (Chapter 4), but briefly, 5 replicate 

sediment cores (0-5 cm depth, 5.3 cm dia.) were taken randomly from each plot 

and pooled.  Unfiltered seawater was collected from each site, and water and 

sediment were stored on ice for transport to the laboratory where they were 

stored at 4°C.  Four assays were conducted on each sample from the Waikareao 

and Tuapiro surveys: control (no amendment), +C (amended with 30 mg L-1 C as 

glucose), +N (amended with 10 mg L-1 N as KNO3), and +N+C (amended with 30 mg 

L-1 C as glucose and 10 mg L-1 N as KNO3). The results of these initial surveys 

indicated that DEA in Waikareao and Tuapiro estuaries was nitrate not carbon 

limited, and rates without nitrate amendment (control and +C treatments) were 

very low (Figure 5.2, Table 5.3). Because of this only fully amended DEA assays 

(+N+C) were conducted in the other studies (Tuapiro experiment, Kaipara, and 

Mahurangi), and hereafter DEA refers to +N+C assays (unless stated).  

Assays were conducted at room temperature (20°C) within 48 h of sample 

collection using the chloramphenicol amended acetylene inhibition technique 

(Tiedje et al. 1989, Groffman et al. 2006).  Gas samples (6 mL) were collected from 

each assay over a 2 h time course (10, 30, 60, 120 min) under anoxic conditions 

with constant mixing (125 rpm) after the addition of acetylene (which blocks 

conversion of N2O to N2). Gas samples were analysed for N2O concentration using 

a Varian CP 3800 gas chromatograph equipped with a HayeSep D column and an 

electron capture detector (ECD). DEA rates (i.e. N2O production) were expressed 

per unit area of sand flat (µmol N m-2 h-1; Douglas et al. (2017), Chapter 4). 
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Figure 5.2 Mean DEA values in surveys of (a) Waikareao and (b) Tuapiro estuaries with different 
substrate amendment treatments. Error bars represent standard error (n=25).  

 

 

 

 

Table 5.3 Results of PERMANOVA comparing DEA with different substrate amendments in 
Waikareao and Tuapiro estuaries. Post-hoc pair-wise tests are given to show differences among 
treatments. 

Source df MS Pseudo-F Perm-p Post-hoc 

Waikareao      

Treatment 3 1750000 24.34 0.0001 Control = +C < +N = +N+C 

Residual 96 71816    

Total 99     

Tuapiro      

Treatment 3 231000 12.31 0.0001 Control = +C < +N = +N+C 

Residual 96 18753    

Total 99     
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5.2.3 Ecosystem properties 

Sampling of each plot was performed as described in Douglas et al. (2016) (Chapter 

2). Briefly, sediment properties and microphytobenthic biomass were 

characterised from 5 pooled surface sediment samples (2.6 cm dia., 0-2 cm depth), 

and macrofauna from one sediment core (or 2 for the Kaipara study, averaged) 

(13 cm dia., 15 cm depth) retained on a 500 µm mesh. For measurements of 

sediment grain size (grain size median (GSM) and mud content (mud)), organic 

matter was first removed from samples using 10% hydrogen peroxide, then 

samples were analysed using a Malvern Mastersizer 2000 (Singer et al. 1988) to 

derive median grain size and proportion of mud (particle sizes <63 µm). Sediment 

samples were dried to a constant mass (60°C, 48 h), then organic content (OC) was 

determined by weight loss on ignition (550°C for 4 h) (Parker 1983). 

Microphytobenthic biomass (Chlorophyll a (Chl a) and phaeophytin (phaeo)) was 

determined after extraction of pigments from freeze-dried sediments using 90% 

acetone, then a Turner Designs 10-AU flourometer was used to measure 

fluorescence (Arar & Collins 1997). Preserved (50 % isopropyl alcohol) macrofauna 

were stained with Rose Bengal and in the laboratory, all organisms were counted 

and identified to the lowest possible taxonomic level (usually species). 

5.2.4 Data Analysis 

To test for significant differences in DEA with different substrate amendment 

treatments (control, +C, +N, +N+C) from Waikareao and Tuapiro survey samples, 

PERMANOVAs were performed using PERMANOVA+ add-on for PRIMER v7 (Clarke 

& Gorley 2015).  Post-hoc pair-wise t-tests were used to identify which treatments 

were significantly different from each other.  Bivariate scatter plots and a matrix 

of Pearson’s correlation coefficients were used to explore the spread of DEA data 

across the ranges of predictor variables, and to ascertain patterns and 

relationships among predictors, and between predictors and DEA. Macrofaunal 

variables included number of species (S), total abundance (N), and number of large 

bivalves (LB, Austrovenus stutchburyi and Macomona liliana). Large species such 

as A. stutchburyi and M. liliana are known to strongly influence soft sediment 

ecosystem functions, and S and N are commonly used indexes of macrofaunal 
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community composition (Thrush et al. 2006, Sandwell et al. 2009, Jones et al. 2011, 

Norkko et al. 2013, Pratt et al. 2013).  

Relationships between DEA and sedimentary variables, mud content and OC, were 

investigated using bivariate regression models. To identify environmental and 

macrofaunal community variables explaining differences in DEA across the 

estuaries, a multiple regression analysis (using a distance based linear model 

(DistLM)) was performed (PERMANOVA+ add-on for PRIMER v7). The model used 

a Euclidean distance matrix of DEA values with a backwards selection procedure 

and the corrected Akaike information criterion (AICc) to first identify significant 

individual predictors (marginal tests), and then the best combination of predictors 

of DEA (full model).  I considered the effects of multicollinearity on the models, 

however no variables were excluded because significant relationships (Pearson’s 

r > 0.7) were not detected between any of the predictor variables (Table 5.4) 

(Dormann et al. 2013).  A step-wise sequential selection procedure was then used 

on the variables included in the full model to show the cumulative variance 

accounted for by each after mud was fitted. The predictor variables in the full 

DistLM model were grouped into sedimentary and macrofaunal variables, and a 

variance partitioning analysis was performed to determine how much of the 

variability was attributed to each group individually, and how much was shared 

(Borcard et al. 1992, Anderson & Cribble 1998).   
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Table 5.4 Pearson’s correlation coefficients between environmental variables and DEA (n=118). Significance levels are **p ≤ 0.01, and * p ≤ 0.05. 

 OC Mud GSM Chl a Phaeo S N LB 

OC         

Mud 0.69**        

GSM -0.18 -0.51**       

Chl a 0.20* 0.12 -0.04      

Phaeo 0.00 0.05 0.05 0.63**     

S -0.31** -0.31** 0.17 -0.17 0.23*    

N 0.14 0.20* 0.24** 0.60** 0.42** 0.10   

LB -0.22* -0.36** 0.55** 0.05 0.08 0.27** 0.19*  

DEA 0.64** 0.78** -0.42** 0.36** 0.10 -0.39** 0.32** -0.18 

OC: sediment organic content, Mud:  sediment mud content, GSM: grain size median, Chl a: chlorophyll a, Phaeo: phaeophytin, S: number of species, N: number 

of individuals, LB: number of large bivalves A. stutchburyi and M. liliana. 
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5.3 Results 

In the full dataset, the sampled plots encompassed a wide range in sediment 

properties (Table 5.2). Specifically, mud content varied from 0 to 52% and with 

increasing mud content there were increases in OC and decreases in GSM (Table 

5.4).  Macrofaunal community characteristics were weakly correlated with mud 

content; total abundance (N) increased with increasing mud, whereas taxonomic 

richness (S) decreased (Table 5.4, Figure 5.3a, b). Numbers of large bivalves also 

decreased with increasing mud content (Table 5.4), with an apparent threshold at 

30% mud content above which large bivalves completely disappeared (Figure 5.3c).  

Both mud and OC were strong individual predictors of DEA (Table 5.4, Figure 5.4), 

and they co-varied (Pearon’s r = 0.69).  DEA was positively correlated with mud, 

and the relationship was best described by a non-linear 2nd order polynomial 

(DistLM R2 = 0.71, AICc = 1404, p < 0.0001) rather than a linear model (DistLM R2 = 

0.63, AICc = 1433, p < 0.0001).  The better fitting non-linear model indicates a 

threshold above 30% mud content where DEA no longer increased (Figure 5.4a).  

DEA and OC were also positively correlated although but there was no evidence of 

a threshold response; a non-linear model (DistLM R2 = 0.46, AICc = 1485, p < 0.0001) 

did not account for more variation than a linear model (DistLM R2 = 0.46, AICc = 

1484, p < 0.0001) (Table 5.4b). 

DistLM marginal tests showed that individually mud accounted for the largest 

proportion of the variability in DEA (61%), and therefore was fitted first in the full 

DistLM model (Table 5.5).  After mud was fitted, the other variables accounted for 

less than 5% each of the total explained variation in DEA (Table 5.5). The model 

cumulatively explained 74% of the variability and included three sedimentary 

variables (mud, OC, and GSM) and three macrofaunal variables (N, S and large 

bivalves) (Table 5.5). Variance partitioning analysis showed that 44% of the 

variability in DEA was accounted for by the sedimentary environment alone, 10% 

by macrofaunal community characteristics, and 20% was shared due to co-

variation between mud and macrofauna.   

 



 

84 

 

Figure 5.3 Macrofaunal community charachteristics as a function of sediment mud content; 
number of (a) species (S), (b) individuals (N), and (c) large bivalves (M. liliana and A. stutchburyi) in 
Waikareao (◊), Tuapiro (+), Kaipara (■), and Mahurangi (●) estuaries. 
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Figure 5.4 Relationship between DEA and a) sediment mud content and b) organic content from 
Waikareao (◊), Tuapiro (+), Kaipara (■), and Mahurangi (●) estuaries. Fitted lines are (a) 2nd order 
polynomial (DistLM R2 = 0. 71, AICc = 1404, p = 0.0001), and (b) linear (DistLM R2 = 0.46, AICc = 1484, 
p = 0.0001), which provide the best description of the data (see text for details).  

 

 

Table 5.5 Results of stepwise sequential DistLM test showing the combination of predictors that 
best explain variability in DEA 

    Variation explained 

Variable AICc Prop. Cumul. R2 p 

Mud 1253 0.61 0.61 0.0001 

N 1246 0.03 0.64 0.004 

S 1236 0.04 0.68 0.0005 

OC 1233 0.01 0.69 0.03 

GSM 1226 0.02 0.71 0.003 

LB 1217 0.03 0.74 0.002 

OC: sediment organic content, Mud:  sediment mud content, GSM: grain size median, 

Chl a: chlorophyll a, Phaeo: phaeophytin, S: number of species, N: number of 

individuals, LB: number of large bivalves A. stutchburyi and M. liliana. 
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5.4 Discussion 

In this study I used a large dataset to identify the abiotic and biotic controls on 

denitrification activity across multiple estuaries.  Within and among the sampled 

estuaries there was a range of sediment types from sandy (0% mud) with little 

organic content, to very muddy (52% mud) organic rich sediments.  The main 

variables influencing DEA were sedimentary variables; proportion of fine sediment 

(% mud) was the strongest predictor of DEA across all the estuaries, but organic 

content (which co-varies with mud) was also strongly positively correlated with 

DEA. In different sediment and habitat types there will be different selective 

pressures which will influence the standing stock, community composition and 

performance (i.e. rates) of nitrifying and denitrifying bacteria (Groffman & Tiedje 

1989, Cavigelli & Robertson 2000, Cavigelli & Robertson 2001, Wallenstein et al. 

2006).   

Optimal conditions for denitrifiers include a source of nitrate, and in most 

northern New Zealand estuaries, water column and pore water nitrate 

concentrations are generally low (pore water < 100 µM, water column < 50 µM) 

(Lohrer et al. 2004a, Thrush et al. 2006, Tay et al. 2012, Santos et al. 2014, Gongol 

& Savage 2016), therefore most denitrification is probably coupled to, and limited 

by nitrification (microbial conversion of ammonium to nitrate) in the sediments 

(Seitzinger et al. 2006, Gongol & Savage 2016). The controls on coupled 

nitrification-denitrification may differ to those of denitrification fuelled by water 

column nitrate (Dw), but the diffusive properties of sediments will influence both 

coupled and Dw (Cornwell et al. 1999). If an estuary shifts to a eutrophic state, Dw 

would likely become dominant over coupled nitrification-denitrification, meaning 

less reliance on conditions that facilitate nitrification. However, denitrification 

would still be limited by factors that influence the delivery of nitrate to the 

denitrification zone. Specifically, nitrogen removal would be restricted by 

sediment conditions that reduce solute movement and diffusion (i.e. more mud, 

less animals). 

Data showed a threshold in DEA at about 30% mud, an important finding 

considering the substantial and ongoing increases in fine sediment inputs to 

coastal ecosystems (Thrush et al. 2004). This study clearly identified sediment 
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grain size as a key controller of DEA, but despite increasing mud inputs being a key 

stressor in aquatic systems, variation in grain size is not often explored as driver 

of denitrification (reviewed by Cornwell et al. 1999). Sediment mud content 

influences the physical movement of pore water throughout the sediment profile 

and therefore the availability of nitrogen and carbon for denitrifiers, as well as the 

oxygen profiles in the sediment. 30% mud content may be the point where further 

increases in mud inhibits factors that contribute to the coupling of nitrification and 

denitrification. Muddy sediments may reduce movement of oxygenated water 

due to lower advective exchange from the water column to the pore spaces (Glud 

2008).  The extent of the oxygenated zone in the sediments determines the region 

where nitrification, and therefore where coupled nitrification-denitrification can 

occur. Sediment size was an important predictor of denitrification in a study of 

four South Island New Zealand estuaries measured using the isotope pairing 

technique. Similar to my study, higher denitrification rates were found in sites with 

finer sediments (Gongol & Savage 2016).  Furthermore, this study showed that 

coupled nitrification-denitrification was greater at sites with finer sediments and 

deeper oxygen penetration depth. In a study of wetland soils where most of the 

denitrification was of nitrate produced within the soil, soil properties associated 

with high denitrification rates were those that facilitated nitrification (Palta et al. 

2014).  

Sediment organic content was the second strongest individual predictor of DEA 

after mud content, and mud and organic content always co-varied. Sediment 

organic matter can provide both a nitrogen source (through mineralisation to 

ammonium), and a source of organic carbon which heterotrophic denitrifying 

bacteria require for energy (Wallenstein et al. 2006). Many studies have measured 

higher denitrification rates at sites with high organic matter loading (e.g. Barnes & 

Owens 1998, Bruesewitz et al. 2012, Eyre et al. 2013).  Also, decomposition of 

organic matter in the sediments consumes oxygen (Glud 2008) which may reduce 

the nitrification zone (Eyre & Ferguson 2009). Not only the quantity, but the 

quality of organic carbon available to denitrifiers can determine denitrification 

rates (Dodla et al. 2008, Eyre et al. 2013). Although not measured, differences in 

the quality of organic matter in the sediments may be the reason I did not find OC 
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to be the best predictor of denitrification.  Even though sediment OC was 

positively correlated with DEA across all estuaries, I found in amendment trials 

that availability of organic carbon was not limiting DEA in surveys of two of these 

estuaries.  From this I can assume that higher DEA in muddy organic rich sediments 

(compared with sandy organic poor sediments) is associated with the physical 

sediment properties and/or the supply of ammonium (from organic matter 

mineralisation) for coupled nitrification-denitrification, rather than a higher supply 

of organic carbon for denitrifiers.   

Benthic macrofauna were important, but weak co-variance with mud content 

meant that effects were secondary to sediment properties for explaining DEA in 

the statistical model. Correlations show that higher DEA was seen in areas with 

high abundances but low diversity of benthic macrofauna.  The threshold response 

of increasing DEA up to 30% mud content is also reflected in the sediment mud-

macrofaunal relationships; above 30% mud content, abundances of large bivalves 

reduce to zero (Figure 5.3, Figure 5.4a).  Similar responses of macrofaunal 

communities to sediment mud content (>20% mud) have been demonstrated in 

other studies as well as their impacts on ecosystem functions (Thrush et al. 2003b, 

Anderson 2008, Pratt et al. 2013).  Decreases in ecosystem function (DEA) at the 

same level of sediment mud content where macrofaunal diversity and key 

macrofaunal species appear to decline, imply there may be important biodiversity-

ecosystem function relationships at play, and that the importance of these 

relationships may change as mud content increases (Thrush et al. 2017).  

Macrofaunal bioturbation and burrowing can increase the oxygen penetration 

depth as well as the heterogeneity of the interface between the oxic and anoxic 

layers in the sediments, thereby increasing sites for coupled nitrification-

denitrificaton (Aller 1988, Kristensen 1988).  However, this positive influence may 

cease at about 30% mud content, due to loss of macrofaunal diversity and large 

species, or reductions in macrofaunal activities such as burrowing (Needham et al. 

2011). Similarly, other studies have shown that with increasing environmental 

stress ecosystem functions decrease (Pratt et al. 2013, Douglas et al. 2017).  

Different elements of macrofaunal diversity are important for maintaining 

ecosystem functions at different levels of stress (Norkko et al. 2015, Douglas et al. 
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2017, Gammal et al. 2017, Thrush et al. 2017), but this study shows that there are 

limits to the amount of stress that can be endured whilst maintaining important 

ecosystem functions such as denitrification.  

Estuaries are the interface between the land and the sea, and they are the 

receiving environment of land use intensification and increased human activity.  

Inputs of stressors to estuarine soft sediment ecosystems, especially sediments 

and nutrients, will continue to increase, and a broader knowledge of how these 

systems will respond is needed.  Using this study encompassing environmental 

gradients and spatial variability in DEA measurements I can make some 

generalisations about denitrification in estuaries and how it might respond to 

environmental change. It is fitting that I have measured DEA, as it does not 

represent an actual denitrification rate, but an integrator of the duration a site 

experienced conditions that supported the production of denitrification enzymes 

and microbes. Despite sampling across substantial spatial and temporal variability, 

I have seen a distinct relationship between DEA and sedimentary environment; 

higher fine sediment and organic matter loading is associated with higher 

denitrification activity, but only up to 30% mud.  Identification of factors that can 

be used as proxies for denitrification aids in the development of tools such as 

mapping and modelling ecosystem services.  Just six easily measured biotic and 

abiotic variables were able to explain 74% of the variation in denitrification activity 

across 4 different estuaries.  Furthermore, sediment grain size, which has been 

absent from many denitrification studies, explained 61% of the variability on its 

own. Extension of this study to include more estuaries encompassing broader 

spatial scales and environmental gradients while measuring multiple biotic and 

abiotic co-variables will help to enhance habitat and regional-scale understanding 

of estuary denitrification, as well as increase the utility for scaling up 

measurements and creating models.  However, cross-comparison of DEA with 

direct measurements of in situ denitrification rates is needed (e.g. using 

membrane inlet mass spectrometry techniques).  Future studies should also 

consider measurement of other microbial pathways that lead to gaseous nitrogen 

losses, such as anammox (Dalsgaard et al. 2005, Hulth et al. 2005, Burgin & 

Hamilton 2007), to understand the full potential of estuaries to serve as nitrogen 
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sinks prior to discharge to the ocean. Identifying tipping points and drivers of 

estuarine nitrogen removal across broader environmental gradients will 

significantly enhance the ability to manage and predict changes in ecosystem 

service delivery with impending environmental change.
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6 Chapter Six 

General Discussion 

 

This thesis investigates denitrification in New Zealand estuaries using a 

combination of literature review and method development, observational studies, 

and manipulative field experiments. I used denitrification enzyme activity (DEA) as 

a proxy for denitrification, a measure that represents the maximum denitrification 

that can occur under optimal conditions. It was suitable for the large sampling 

programs of this thesis because it is cheap and easy to sample, and it is a proven 

tool for spatial comparisons of denitrification (Barnes & Owens 1998, Groffman et 

al. 1999, Livingstone et al. 2000, Bernot et al. 2003, Wigand et al. 2004). 

Collectively, the research chapters show that denitrification is a highly variable 

ecosystem function that is sensitive to stressors, and is important for maintaining 

resilience of coastal ecosystems to nutrient enrichment. 

6.1 Summary 

Before this thesis, there have been few studies that have attempted to measure 

denitrification response to experimental nutrient or organic matter enrichment 

beyond the laboratory (e.g. Caffrey et al. 1993, Koop-Jakobsen & Giblin 2010, 

Oakes et al. 2011). Nutrient enrichment experiments in situ have been variable in 

both their methodologies and aims (see Chapter 2), and to the best of my 

knowledge, this thesis contains the first in situ sediment nutrient enrichment 

experiments that have measured denitrification, or a proxy for denitrification. 

Furthermore, simultaneous investigation of response to nutrient and sediment 

stressors in situ, has not been demonstrated in the literature before this work.  

The manipulative experiments in Chapters 3 and 4 both show that increasing 

stressors cause increased variability in DEA, and higher unexplained variability. 

Another attribute of this thesis is that I have measured multiple co-variables 

alongside DEA.  This is unique, and has pinpointed that there are important local 

and habitat level controls on denitrification that may have been overlooked in 

previous studies. Identification of biotic and abiotic controls on denitrification can 
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help us to understand feedbacks between co-variables and denitrification activity, 

and how they change with increasing stressors, or combinations of stressors.   

 One of the main thesis objectives was to investigate the response of 

denitrification and other ecosystem functions to nutrient enrichment.  To achieve 

this, field experiments were conducted to assess the effects of increased sediment 

pore water nitrogen on ecosystem function.  In Chapter 2 I assessed and compared 

existing nutrient enrichment experiment literature, and found that an appropriate 

technique for artificially increasing sediment pore water nitrogen concentration 

was absent. This chapter therefore described and evaluated a new field method, 

and assessed the environmental controls on the enrichment effect (pore water 

ammonium concentration). Sedimentary and macrofaunal variables were 

important factors governing the enrichment effect; pore water ammonium 

concentrations in enriched plots were negatively correlated with sediment mud 

content and macrofaunal community richness. This showed that sedimentary and 

macrofaunal variables are necessary to consider when designing nutrient 

enrichment experiments. 

Chapter 3 investigated how sedimentary environment influenced ecosystem 

function response to nutrient enrichment.  Using the technique described in 

Chapter 2, I conducted a field experiment where plots were enriched along a sand 

to mud gradient on an intertidal flat. Ecosystem functions including DEA, nutrient 

processing, primary productivity and community metabolism, were all influenced 

by sediment mud content. Where nutrient treatment effects occurred, they were 

dependent on mud content, showing that increasing sedimentation can influence 

the response of ecosystem functions to enrichment.  Factors that increase 

sediment oxygenation (e.g. abundance of benthic macrofauna) helped to maintain 

DEA under enriched conditions.  Results of this chapter show that ultimately, 

increasing the muddiness of estuaries will reduce their ability to be resilient to 

nutrient stress.  Furthermore, the muddying of estuaries may reduce nitrogen 

removal capacity of soft sediment ecosystems resulting in shifts toward, and 

feedbacks that facilitate eutrophication.  This study is unique to the global 

literature because it demonstrates multiple and cumulative stressor effects of 

sediments and nutrients on estuarine soft sediment ecosystem functioning. 
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The purpose of Chapter 4 was to investigate the influence of macrofaunal 

community on DEA and the response of DEA to nutrient enrichment. This was 

done with a focus on variability in the abundance and diversity of macrofauna 

species within a functional trait group associated with nutrient processing. A 

manipulative field experiment with 2 levels of enrichment (medium and high), was 

conducted across a landscape of benthic macrofaunal community composition 

(using the technique described in Chapter 2).  This study demonstrated that key 

species as well as the diversity of functional species are both important for 

maintaining denitrification under nutrient enriched conditions, and that as 

nutrient stress increased, different elements of diversity were important. The 

findings of this chapter are significant ecologically because they support the 

hypothesis that biodiversity enhances ecosystem resilience to stress.   

Chapter 5 aimed to elucidate the variability in, and drivers of denitrification in New 

Zealand estuaries which are relatively un-impacted compared with those 

dominating the existing estuarine denitrification literature. Combining 

measurements of DEA in ambient conditions in a range of estuaries showed that 

DEA is highly variable and is influenced by multiple and interacting biotic and 

abiotic factors. Most importantly, I found that DEA was influenced primarily by the 

local sedimentary environment, particularly the proportion of fine sediment 

(‘mud’). DEA increased with increasing sediment mud content, but only up to a 

threshold (30% mud), after which there were no further increases. These findings 

have important implications for management considering sedimentation is an 

increasing stressor for coastal ecosystems globally; if muddiness increases too 

much, the ability of soft sediment ecosystems to remove excess nitrogen may 

decrease and resilience to nutrient enrichment will be lost.  

Collectively the research chapters of this thesis comprehensively demonstrate the 

factors that control sediment denitrification activity in northern New Zealand 

estuaries, and that these controlling factors can change with increasing stressors. 
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6.2 Consequences of increasing sediment and nutrient loads 

for denitrification and estuary resilience 

Environmental change is likely to bring increasing stressors to coastal ecosystems, 

especially increased sediment and nutrient loads from land (Hewitt et al. 2016). 

This thesis has shown that these stressors independently, and cumulatively 

influence ecosystem functioning and denitrification through direct and indirect 

mechanisms. Globally denitrification is reported to be strongly associated with 

water column nitrate concentrations (Seitzinger 1988), but water column nitrate 

concentrations in New Zealand estuaries are generally very low (Thrush et al. 2006, 

Lohrer et al. 2010, Tay et al. 2012, Santos et al. 2014). Therefore most of the 

denitrification is probably coupled to nitrification in the sediments (Gongol & 

Savage 2016), and environmental variables may have a different influence than 

estuaries where denitrification of water column nitrate is the dominant process of 

nitrogen removal. The variables that explained DEA in Chapters 3, 4 and 5 were 

those that would enhance coupled nitrification denitrification by; supplying nitrate 

(sediment organic content), or providing sediment mixing and oxygenation which 

stimulates nitrification and coupling to denitrification (e.g. macrofaunal 

community variables). If these factors that enhance the coupling of nitrification 

and denitrification are reduced with increasing stressors, so too will denitrification 

and estuary resilience to nutrient enrichment.  

6.2.1 Sedimentary environment 

Sedimentary environment was the main factor controlling nutrient enrichment 

level, or DEA in the research chapters of this thesis. In general, DEA increased with 

increasing sediment mud and organic content. Sediment mud and organic content 

controlled the level of elevation in pore water ammonium concentration after 

enrichment (Chapter 2). The proportion of fine sediments influenced DEA directly 

by influencing pore water and solute movement, and indirectly by influencing 

macrofaunal communities (Chapter 3). Furthermore, the proportion of fine 

sediments influenced the response of ecosystem functions to nutrient enrichment 

(Chapter 3). Spatial variability (driven largely by differences in sediment organic 

and mud content) was responsible for most of the variability in DEA in Chapter 4, 

and masked any nutrient enrichment effects.  Conclusively, Chapter 5 
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demonstrated the importance of sediment mud content by showing that it 

accounted for most of the explained variability in DEA in ambient sediments from 

five separate studies across four different estuaries. These results are significant 

since sedimentation of coastal environments is likely to increase due to 

intensifying catchment land use and increased frequency of storms (Thrush et al. 

2004, Hewitt et al. 2016). 

6.2.2  The role of macrofauna 

Macrofaunal community variables were important for explaining variability in DEA 

in the different studies of this thesis.  This is because of their role in mediating 

sediment mixing through bio-irrigation which controls oxygen and nutrient 

profiles in the sediments (Henriksen et al. 1983, Aller 1988, Braeckman et al. 2010, 

Stief 2013). Macrofaunal effects on DEA were masked due to natural (and 

expected) covariance of community characteristics with the sedimentary 

environment. However, when this overriding influence of background variability 

(sedimentary environment) on DEA was removed by control normalising 

enrichment plot data, the importance of the macrofaunal community and its 

diversity was very clear (Chapter 4).  Macrofauna played a crucial role in mediating 

nutrient enrichment effects on denitrification (by facilitating coupled nitrification 

denitrification through bioturbation), and their role was dependent on the level of 

nutrient stress. On average, enrichment caused reductions in DEA, but these 

reductions were lessened by the presence of large bioturbating macrofauna 

(medium enrichment) or abundance of individuals with nutrient processing traits 

(high enrichment) (Chapter 4). This showed that in a stressed system, macrofaunal 

communities contribute to resilience of ecosystem functioning (in this case 

denitrification), and that a more biodiverse ecosystem may have better insurance 

against loss of ecosystem function. The study highlights the importance of 

conserving the necessary aspects of biodiversity to maintain ecosystem 

functioning and resilience to stressors.   

To fully understand the importance of macrofaunal communities for ecosystem 

resilience to nutrient and sediment stressors, further exploration of denitrification 

and community characteristics and structure across stressors gradients is needed. 

Investigation of the role of macrofauna in a multiple stressor experiment 
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(nutrients and sediments) like that in Chapter 3 would be an obvious next step for 

further research. Furthermore, using interaction networks may help answer some 

of these questions and provide insight into how ecosystem resilience to nutrients 

may change under different stress regimes (Thrush et al. 2012). For example, 

interactions between the variables identified as important for denitrification will 

change with increasing stressors, but we do not know how this will influence 

denitrification.  Interaction network analyses can do this, and help forecast 

ecosystem stability with environmental change (Thrush et al. 2014). 

6.2.3 Multiple stressors and tipping points  

In real world ecosystems stressors never occur independent of others, therefore 

it is important to investigate effects together. Complicating the effects of multiple 

stressors is the interacting effects of local stressors with global stressors such as 

climate change. For example, effects of climate change on communities may be 

greater in places with higher levels of existing stressors (Folke et al. 2004, Harley 

et al. 2006, Hewitt et al. 2016), and this may have knock-on effects for ecosystem 

functions (and their resilience) that are highly connected to macrofaunal 

community attributes. Tipping points or threshold changes occur when the level 

of a stressor, or combination of stressors, reaches a point where an ecosystem 

changes, often irreversibly, to an alternate state (Holling 1973, Thrush et al. 2014). 

Furthermore, tipping points and thresholds are more likely to be met in 

ecosystems where resilience has been reduced (Scheffer et al. 2001, Folke et al. 

2004). 

My research suggests that the factors controlling denitrification may be different 

depending on the state of estuary degradation.  Addition of nutrients caused 

changes in both the relationships among co-variables, as well as between co-

variables and DEA. There were changes in the sediment-macrofauna relationships 

between ambient and enriched sediments; when nutrients were added, many of 

the mud-macrofauna relationships changed, but these changes were different in 

the different experiments and with the different levels of nutrient stress (Chapters 

3 & 4). Increased variability can be a symptom of stress (Warwick & Clarke 1993), 

and the changes in sediment-macrofauna relationships reflects this. Predicting 

and understanding ecosystem resilience to nutrient enrichment requires more 
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rigorous testing of the factors controlling denitrification under different stress 

regimes. One way to do this would be to conduct denitrification surveys of, or 

enrichment experiments in, estuaries that have been subject to higher levels of 

nutrient enrichment, or have shifted closer to a eutrophic state (i.e. higher 

ambient water column and pore water nutrient concentrations). Such research 

may show context dependency of thresholds, and differences in ecosystem 

function response and resilience to nutrient and sediment stressors. 

Defining thresholds and limits in ecosystem variables where tipping points may 

occur under different stress or climate change scenarios is integral to predicting 

and preventing ecosystem degradation and ecosystem service loss. For estuaries, 

knowing where thresholds in factors that will influence denitrification occur (e.g. 

sediment mud content), will be important for managing nutrients and preventing 

eutrophication. DEA in ambient nutrient conditions increased with increasing mud 

content up to 30%. Beyond this point, DEA was variable but no longer increasing, 

suggesting that there is a threshold at which DEA rate is maintained below 30% 

mud content (Figure 6.1, Chapter 5).  Chapter 3 showed that under nutrient 

enriched conditions this threshold may occur at a lower mud content (10%), and 

combining all fertilised plots from Chapters 3 and 4 further supports this (Figure 

6.1). These findings demonstrate that when stressors are combined (in this case 

nutrients and sediments) they can act cumulatively on ecosystem functions, and 

their impacts are greater together than they are alone.  Investigating the spread 

of ambient and enriched DEA data in plots with less than 25% mud content (the 

maximum of enriched plots) supports this (especially the modelled line for 

enriched sediments in Figure 6.1), and shows that enrichment lowered DEA (Figure 

6.2). To be more confident in this conclusion, however, measurements of DEA 

under nutrient enriched conditions are needed over a greater range of sediment 

mud content.   
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Figure 6.1 Relationship between sediment mud content and DEA in ambient (black circles) and 
enriched (white circles, 150 & 600 g N m-2) sediments.  2nd order polynomial regressions provided 
the best fit for both ambient (DistLM R2 = 0.71, AIC = 1404, p = 0.0001) and enriched datasets 
(DistLM R2 = 0.39, AIC = 749, p = 0.0003). 

 

 

Figure 6.2 Variability in DEA in ambient (n = 107) and enriched plots (n = 80, application rates of 
150 and 600 g N m-2) with <25% mud content. Boxes represent 25%, median and 75% distributions, 
with whiskers the non-outlier minimum and maximum. 
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To fully understand nitrogen cycling in estuaries, and especially tipping points, 

other pathways of nitrogen cycling need to be investigated (e.g. dissimilatory 

nitrate reduction to ammonium (DNRA), anaerobic ammonium oxidation 

(anammox), iron-driven denitrification, sulfur-driven denitrification, biomass 

assimilation).  As discussed in Chapter 3, the threshold in DEA may be reflecting a 

switch to other nitrogen cycling pathways, such as DNRA or anammox (Burgin & 

Hamilton 2007, Giblin et al. 2013). DNRA may have become dominant over 

denitrification in enriched sediments if there was a high Carbon:Nitrogen ratio, or 

if conditions became sulfidic (Burgin & Hamilton 2007). Sulfidic conditions may 

have occurred if macrofaunal die-off occurred in plots with the high enrichment 

treatment, although I do not have the data to speculate on whether this happened. 

Anammox is unlikely to be a dominant pathway of nitrogen removal in New 

Zealand estuaries because anammox bacteria are slow-growing autotrophs that 

require both nitrite and ammonium (Burgin & Hamilton 2007). New Zealand 

estuaries generally have well oxygenated water columns with low nitrite and 

nitrate concentrations, so it is improbable that anammox bacteria would be 

competitive against heterotrophic denitrifiers. However, future work needs to 

incorporate and investigate the importance of other nitrogen cycling pathways in 

New Zealand estuaries, as well as across stressor gradients.  Identification of 

tipping points where other nitrogen cycling processes may become dominant over 

denitrification is highly relevant for nitrogen management with environmental 

change. 

6.3 Thesis synthesis and future directions 

Context dependent effects were evident throughout the chapters of this thesis, 

and further support the notion that ecological experiments should encompass 

broad environmental gradients to increase the generality of findings (Thrush et al. 

2000, Snelgrove et al. 2014). Nutrient enrichment was expected to instigate 

increases in DEA, however this only happened in some instances, and without 

some further carefully designed experiments it is difficult to speculate on which 

abiotic and biotic factors can be attributed to increases versus decreases in DEA at 

larger scales (i.e. among estuaries).  DEA rates were expected to be higher in 

estuaries that had experienced higher levels of background nutrient loading.  
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Although I did not assess catchment nitrogen loading in this thesis, it was clear 

that DEA responded positively to ambient (natural) sediment nutrient loading 

(Chapters 3 & 5). DEA was always significantly positively correlated with sediment 

organic content, and this is likely the main supply of ammonium for coupled 

nitrification denitrification (as shown in Chapter 5).  How estuary denitrification 

relates to catchment nitrogen loading requires further research; this could be 

done by extending this study to include more estuaries with a greater range of 

degradation status or catchment land use, and combining this with indicators of 

anthropogenic land use pressures and nutrient loading (e.g. Savage et al. 2010, 

Bruesewitz et al. 2011, Bierschenk et al. 2012).  

This study only used DEA, a proxy for denitrification, and I therefore cannot make 

conclusions about absolute denitrification rates or quantities of nitrogen removal 

in the studied estuaries.  However, use of this method has enabled investigation 

of relative denitrification at scales and replication levels that are not possible with 

other techniques.  DEA provides a measure of the resident denitrifier population 

and its nitrogen removal capability under optimum conditions. It provides an 

indication of the history of denitrification in the sediments, and therefore what an 

ecosystem has been exposed to and what it might be resilient to.  Extending the 

duration of a nutrient enrichment study and measuring DEA throughout a period 

of ongoing long-term enrichment may provide insight into how denitrifying 

populations change in response to nutrient enrichment both short- and long-term.  

Or better yet, combining DEA measurements with measurements of the microbial 

community (e.g. Abell et al. 2013, Yazdani Foshtomi et al. 2015), over a course of 

sediment enrichment. This may reveal further how denitrification as an ecosystem 

service will be resilient to environmental change and increasing stressors.  

Monitoring DEA more frequently and earlier following experimental enrichment 

would also provide a better picture of how denitrifier populations respond to 

enrichment. 

DEA can be used as an indicator of ‘denitrification potential’ to show the maximum 

nitrogen removal capacity of a sediment sample (Sorensen 1978, Ogilvie et al. 

1997, Livingstone et al. 2000, Magalhães et al. 2005, Zhong et al. 2010).  Scaling 

these values up can therefore be a tool for (coarsely) estimating maximum whole 
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ecosystem nitrogen removal capacity.  There are caveats to this however, because 

assays are conducted under optimal and unrealistic conditions (ideal temperature, 

constant anoxia, constant mixing, and unlimited carbon and nitrate supply). Also, 

DEA values do not account for enzymatic and microbial growth and change that 

would be constantly occurring in the real world. 

Understanding nitrification in oligotrophic (or non-eutrophic) estuaries is arguably 

as important as understanding denitrification, since most of the bioavailable 

nitrogen in New Zealand estuaries is in the form of ammonium (Lohrer et al. 2010).  

The DEA method blocks the nitrification process so does not provide an indication 

of coupled nitrification-denitrification (Groffman et al. 2006). Therefore, I needed 

to draw assumptions about the nitrification process, and factors that were 

possibly reducing or restricting it, and in turn reducing DEA.  Measuring both 

nitrification and denitrification in future studies would remove the need for such 

assumptions.  Direct methods of measuring denitrification such as Membrane Inlet 

Mass Spectrometry using chamber incubations of the sediment water interface 

would enable this (Kana et al. 1998), and alongside DEA would provide better 

ability to scale-up and generalise DEA studies (Bernot et al. 2003).   

Laboratory denitrification experiments enable precise monitoring of oxygen and 

solute concentrations, however, broad scale field experiments provide generality 

in conclusions that far outweigh the benefits of more ‘accurate’ laboratory studies 

(Thrush & Lohrer 2012). Studies of denitrification with more intensive monitoring 

of pore water conditions in the field would increase the understanding of smaller 

scale controls on denitrification.  The eutrophic conditions simulated in the 

enrichment experiments of this thesis showed elevations of pore water 

ammonium for a duration of up to 7 weeks. In reality, eutrophication and its 

effects on benthic communities and ecosystem functioning would happen 

gradually and over much longer timescales.  Future research would therefore also 

benefit from longer term (e.g. months to years) monitoring of such enrichment 

experiments, and subsequent changes in DEA.   

The studies in this thesis have direct relevance and applications for environmental 

managers.  Data has been used to inform the development of ecosystem principles 

for denitrification as an ecosystem service, and these will be used to develop 
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ecosystem service maps for denitrification in New Zealand coastal ecosystems as 

part of the Valuable Seas component of the National Science Challenges.  As part 

of this work, the Whitford embayment (an area with a long history of estuarine 

intertidal monitoring) in the Auckland Region, will be surveyed in March 2018. This 

study will measure; direct denitrification using chamber incubations and MIMS, 

DEA, and macrofaunal community and environmental variables, with the aim to 

further understand the relationships between nutrient processing ecosystem 

functions and local drivers.  

Estuary habitat type can have a strong influence on denitrification (Eyre et al. 

2011), but in New Zealand the value of different habitats for nitrogen removal is 

not known. Investigation of where hotspots of denitrification occur in coastal 

ecosystems according to habitat type (e.g. mangrove forests, seagrass beds, 

mudflats, sandflats) will further enhance the ability to map and model 

denitrification. This research will be carried out in conjunction with analyses of 

catchment land use and nitrogen loading, developing much needed knowledge of 

the connectivity between terrestrial and marine systems. Additionally, data from 

this thesis could also be used as a starting point for developing monitoring 

programs for denitrification in northern New Zealand estuaries. 

6.4 Concluding remarks 

The effects of nitrogen enrichment in aquatic ecosystems are well established, but 

the value of receiving environments in processing nitrogen is yet to be realised.  

Collectively the studies that comprise this thesis have underscored the importance 

of healthy soft sediment ecosystems for ecosystem service delivery, and resilience 

to environmental stressors in the face of environmental change. This thesis 

combined studies of denitrification at habitat, estuary, and regional scales and 

therefore encompasses a large degree of environmental variability, providing a 

significant contribution to the literature. I have shown that the effects of nutrients 

and sedimentation on denitrification are multifaceted; responses of DEA to 

nutrients were context dependent, and all four research chapters showed that 

multiple co-variables were needed to explain the high degree of DEA variability in 

both ambient and nutrient enriched sediments. New Zealand estuaries are going 

to be subjected to a rapid rise in nitrogen enrichment in the coming years, as the 
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effects of intensifying land use, and nutrients stored in groundwater make their 

way to the sea.  Understanding the drivers of nitrogen removal in estuaries, and 

being able to foresee ecosystem response and potential for resilience will be 

paramount for environmental management, sustainability and restoration of 

healthy estuary ecosystems.
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Appendix 1  

Summary of published literature of in situ sediment fertiliser enrichment studies (Chapter 2).   

  Experimental design Fertiliser application Pore water enrichment  

Source 
Purpose of 

study 
Substrate Sites 

Treatment 
replicates 

Spatial 
scale (km) 

Type 
Diffuser 
device 

Depth 
(cm) 

Rate         
(g N m-2) 

Effect 
detected 

Effect size 

Orth (1977) SG Veg 2 40 > 5 SR N 0-1 64-128 NR - 

Bulthuis and Woelkerling (1981) SG Veg 1 3 < 1 Inorg Y 10 100 ↑ 4.8-30 

Pulich Jr (1985) SG Veg 2 12 > 5  SR N 0-1 20 NR - 

Dennison et al. (1987) SG Veg 2 12 < 1  Inorg Y 0-10 NR ↑ - 

Williams (1987) SG Veg 1 8 < 1  SR Y 0-5 140 ↑ 209-352 

Powell et al. (1989) SG Veg 5 5 < 1  Org N 0 NR ↑ - 

Short et al. (1990) SG Veg 1 6 < 1  SR N 20-25 NR NR - 

Williams (1990) SG Veg 1 4 < 1  SR Y 0-5 604 ↑ 0.19-5.6 

Perez et al. (1991) SG Veg 1 1 < 1  SR N 0-1 2150 NR - 

Bulthuis et al. (1992) SG Veg 5 15 > 5  SR Y 10 100 ↑ 1.0-52.6 

Flothmann and Werner (1992) EU Un-veg 1 6 < 1 Inorg Y 8 NR ↑ - 

Kenworthy and Fonseca (1992) SG Veg 3 9 1-5 SR Y ? 3.2-53 NR - 

Murray et al. (1992) SG Veg 1 ?  < 1  Inorg Y 15 100-200 ↑ 1.3-2.0 

Williams and Ruckelshaus (1993) SG Veg 1 7 < 1  Inorg Y 0-5 54 ↑ 5.0-9.3 

Erftemeijer et al. (1994) SG Veg 3 18 > 5  SR N 10-15 4.9 ↑ 1.2 

Fonseca et al. (1994) SG Veg 2 2 > 5  SR Y 7.6 694 NR - 

Feller (1995) M Veg 1 3 < 1  SR Y 0-10 30-135 ↑ 6.8-61.0 

McGlathery (1995) SG Veg 2 2 1-5 SR Y ? NR ? - 

Pedersen (1995) A+SG Veg 1 1 < 1  Inorg N ? NR NR - 

Posey et al. (1995) EU+FW Un-veg 1 15 < 1  SR/Inorg Y 0, 0-7.5 2.3 NR - 

van Lent et al. (1995) SG Veg 2 8 > 5  SR N 10 190 ↑ 1.4-3.0 

Vetter (1996) EU Un-veg 1 4 < 1  Org N 0 NR ? - 

Ceccherelli and Cinelli (1997) EU+A+SG Veg 1 6 < 1  SR Y 1-6 10.4 NS 10.5 

Udy and Dennison (1997) SG Veg 1 3 < 1  SR N 0.5-1.0 88 ↑ 139 

Posey et al. (1999) EU Un-veg 2 14 > 5  SR Y 0-7.5 69 NR - 
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  Experimental design Fertiliser application Pore water enrichment  

Source 
Purpose of 

study 
Substrate Sites 

Treatment 
replicates 

Spatial 
scale (km) 

Type 
Diffuser 
device 

Depth 
(cm) 

Rate         
(g N m-2) 

Effect 
detected 

Effect size 

Piceno and Lovell (2000)  EU, B Veg 1 1 < 1  Inorg N 0 16.3 NS 0.74-1.44 

Worm et al. (2000) Method review Un-veg 1 8 < 1  SR N 0-10 150 ↑ 17.5 

Posey et al. (2002)  EU, FW Un-veg 2 14 > 5  SR Y 0-7.5  NR ↑ - 

Morris and Keough (2003a)  EU Un-veg 1 8 < 1  SR Y 0-1 1579-3158 NS - 

Morris and Keough (2003b)  EU Un-veg 2 12 > 5  SR Y 1-2 123-2467 ↑ - 

Ferdie and Fourqurean (2004)  SG Veg 6 24 > 5  SR N 0 NR NR - 

Armitage et al. (2005) SG, FW Veg 6 36 > 5  SR N 0  NR NR - 

Lever and Valiela (2005) EU Un-veg 3 15 1-5 SR Y 1 196 ↑ 20.4-34.6 

Armitage et al. (2006) EU Veg 4 24 > 5  SR N 0  NR NR - 

Gil et al. (2006) EU Veg 2 12 > 5  SR N 0-1  NR NR - 

Posey et al. (2006) EU, FW Un-veg 4 36 > 5  SR Y 0-7.5 NR NR 2.2 

Stutes et al. (2006) EU Un-veg 2 20 1-5 QR Y 10 3.2-4.5 ↑ 1.3-100 

O'Brien et al. (2009) EU Un-veg 1 24 < 1  SR N 4 389 ↑ 14.9-51.9 

Santos et al. (2009) EU Un-veg 1 6 < 1  QR N 0 NR  NS - 

O'Brien et al. (2010) EU Veg + Un-veg 1 5 > 5  SR N 5 750 ↑ 7.0-16.0 

Olsen and Valiela (2010) SG Veg 1 6 < 1  SR N 0-20 306 ↑ 289 

Piehler et al. (2010) EU Un-veg 1 4 < 1  Inorg N 0 NR NS - 

Cebrian et al. (2012) EU Un-veg 2 20 1-5 QR Y 10 NR ↑ - 

Fitch and Crowe (2012) EU Un-veg 1 8 < 1  SR Y 0-6 10-20 ↑ 4.8-7.6 

O'Gorman et al. (2012) EU Un-veg 1 8 < 1  SR Y 0-6 10-20 NR - 

Botter-Carvalho et al. (2014) EU Un-veg 1 6 < 1  QR N 0 1200-2400 NR - 

Guevara et al. (2014) EU, B Veg 6 36 > 5  SR N 0 NR  NR - 

Current study   Veg + Un-veg 1 28 < 1 SR N 0-15 150 & 600 ↑ 1-580 

Abbreviations: Purpose of study: EU; eutrophication/nutrient effects, SG; seagrass growth and nutrient limitation, FW; foodweb/community structure, M; mangrove growth, A; macroalgae 
growth, B; bacterial community response.  Fertiliser type: SR; slow release, QR; quick release, Inorg; inorganic salts or solutes, Org; organic nutrients. Rate: NR; application rate not reported, 

or not reported in a comparable way.  Pore water enrichment: ↑; pore water nutrient concentration increase, NS; no significant increase in pore water nutrient concentration detected, NR; 
pore water concentration not reported, or not reported in a comparable way. Effect size: treatment concentration/ambient concentration. 
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Appendix 2 

Location of study site on Tapora Bank, Kaipara Harbour, 36° 39’ S, 174° 29’ E (Chapters 2 & 4).  
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Appendix 3 

Examples of sediment pore water NH4
+ concentrations from estuaries with developed (anthropogenically 

modified) catchments sampled from a range of sediment depths (0-100 cm), compared to those observed 
during this study (Chapter 2). 

Source Estuary Country NH4
+ (µM)  

Santos et al. (2014) Tauranga New Zealand 6-52 

Cabrita and Brotas (2000) Tagus Estuary Portugal 18-40 

Percuoco et al. (2015) Great Bay Estuary USA 50-1400 

De Vittor et al. (2012) Marano-Grado Lagoon Italy 52-900 

Zhang et al. (2013) Pearl River Estuary China 64-321 

Vidal and Morgui (1995) Alfacs Bay Spain 100-600 

Magni et al. (2014) Shinkawa-Kasugawa Estuary Japan 200-500 

Lohrer et al. (2010) Mahurangi Estuary New Zealand 257-1542 

Pérez-Villalona et al. (2015) San Juan Bay Estuary Puerto Rico 461-572 

Cook et al. (2004b) Huon Estuary Australia 500 

Clavero et al. (2000) Palmones River Estuary Spain 500-3500 

Bally et al. (2004) Seine Estuary France 1940 

Gonçalves et al. (2012) Santos-Cubatao Estuarine System Brazil 2495-4989 

This study Application rate 150 g N m-2 

Application rate 600 g N m-2 

 64-10275 

11-18842 
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Appendix 4 

Tuapiro Estuary, Tauranga Harbour (37° 29’ S 175° 57' E) showing (A) locations of survey sites (1-5, 
Chapter 5), and experimental site (white box, Chapter 3), and (B) Locations of 12 sites across a 
sedimentary gradient within the experimental site (Chapter 3). 
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Appendix 5 Pearson’s correlation coefficients between environmental and community variables, and ecosystem functions for control plots (n=24) (Chapter 3). 
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NO3
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NH4
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Dark NH4
+ flux 0.62 0.72 -0.45 0.19 0.52 -0.47 -0.34 -0.12 -0.21 0.16 -0.17 0.26 -0.14 0.05 -0.12 -0.43 
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Appendix 6 Pearson’s correlation coefficients between environmental and community variables, and ecosystem functions for enrichment plots (n=24) (Chapter 3). 
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NO2
- -0.42 -0.28 0.28 -0.43 -0.39 0.06 -0.05          

NO3
- -0.73 -0.66 0.53 -0.56 -0.67 0.12 -0.01 0.74         

NH4
+ -0.25 -0.16 0.14 -0.50 -0.26 0.06 -0.18 0.73 0.40        

S 0.18 0.09 -0.34 0.60 0.28 -0.13 0.58 -0.08 -0.26 -0.11       

N 0.52 0.46 -0.64 0.47 0.52 0.00 0.31 -0.17 -0.41 -0.05 0.70      

A. stu (<10 mm) -0.39 -0.42 0.26 -0.20 -0.38 0.42 -0.07 0.03 0.14 -0.09 0.13 0.00     

A. stu (≥10 mm) 0.37 0.24 -0.35 0.39 0.34 0.07 0.06 -0.32 -0.30 -0.20 0.23 0.43 -0.15    

M. lil (<10 mm) 0.34 0.20 -0.46 0.59 0.39 -0.01 0.30 -0.36 -0.48 -0.25 0.59 0.41 0.17 0.09   

M. lil (≥10 mm) -0.15 -0.04 -0.05 0.13 0.02 0.07 0.20 0.14 -0.03 0.10 0.55 0.36 0.40 -0.17 0.53  

GPP -0.25 -0.31 0.08 0.12 -0.16 -0.05 0.43 0.16 0.15 0.07 0.36 0.12 0.31 0.03 0.47 0.55 

GPPChl a -0.75 -0.60 0.63 -0.81 -0.70 -0.01 -0.21 0.51 0.67 0.52 -0.37 -0.44 0.20 -0.35 -0.36 0.19 

SOC 0.29 0.16 -0.18 0.28 0.32 -0.34 0.03 -0.45 -0.56 -0.17 0.20 0.27 -0.15 0.51 0.38 0.19 

Dark NH4
+ flux -0.48 -0.42 0.56 -0.28 -0.53 0.26 0.04 0.00 0.13 -0.02 -0.06 -0.36 0.26 -0.04 -0.17 -0.15 

DEA 0.59 0.41 -0.63 0.61 0.60 -0.12 0.08 -0.48 -0.50 -0.38 0.40 0.60 -0.05 0.51 0.43 0.20 
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Abbreviations (Appendices 5-6): Sediment organic content (OC), sediment mud content (Mud), Grain size 
median (GSM), Chlorophyll a content (Chl a), phaeophytin content (Phaeo), apparent Redox Potential 
Discontinuity (aRPD), pore water concentrations of nitrite, nitrate and ammonium (NO2

-, NO3
- and NH4

+), 
macrofaunal taxonomic richness (S), macrofaunal abundance (N), juvenile A. stutchburyi (A. stu (<10 mm)), adult 
A. stutchburyi (A. stu (≥10 mm)), juvenile M. liliana (M. lil (<10 mm)), adult M. liliana (M. lil (≥10 mm)), gross 
primary productivity (GPP), gross primary productivity normalised to chlorophyll a biomass (GPPChl a), sediment 
oxygen consumption (SOC), nutrient regeneration (Dark NH4

+ flux), and denitrification enzyme activity (DEA). 
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Appendix 7 Site locations and raw data (Chapter 4). 
 Location   Sediment properties Microphytobenthic biomass Pore water NH4

+ Macrofaunal community  

Site Latitude Longitude Treatment DFS Seagrass OC Mud GSM Chl a Phaeo 0-2 cm 5-7 cm S N A. stutchburyi M. liliana DEA 

               < 10 mm ≥ 10 mm < 10 mm ≥ 10 mm  

 NZTM NZTM g N m-2 m % cover % % µm µg g-1 µg g-1 µM µM n core-1 n core-1 n core-1 n core-1 n core-1 n core-1 µmol N m-2 h-1 

1 1715904 5971943 0 100 56 1.89 10.04 210 13.16 9.67 0.59 5.28 13 83 10 12 2 2 50.6 

   150  75 1.62 8.40 226 17.40 8.98 5.27 22.12 17 38 1 5 5 2 41.2 

   600  23 1.29 9.76 210 12.07 9.11 173.50 125.89 11 38 7 9 1 0 10.9 

2 1715908 5971771 0 270 17 0.86 0 216 12.74 1.59 0.17 4.56 11 57 18 6 18 2 3.6 

   150  0 0.71 0 220 8.82 3.60 1.86 1.78 9 39 14 6 11 1 1.6 

   600  12 0.76 0 218 9.76 4.43 67.39 83.92 10 30 8 7 7 2 1.6 

3 1715908 5971577 0 463 48 1.65 7.25 207 14.63 11.25 0.57 0.00 13 147 91 22 3 1 134.7 

   150  77 1.83 7.24 211 16.30 4.30 8.65 152.29 13 185 99 14 1 2 16.2 

   600  41 1.77 8.61 203 31.91 9.87 71.33 166.86 14 118 64 21 2 2 65.3 

4 1715904 5971494 0 546 84 1.48 1.07 209 12.47 9.34 1.29 4.15 11 32 0 1 1 0 189.0 

   150  92 1.53 1.92 196 8.72 21.52 4.20 6.02 16 35 1 1 1 0 72.0 

   600  72 1.55 4.53 201 25.84 7.74 8.23 57.08 16 34 2 1 1 0 181.7 

5 1715921 5971296 0 743 0 1.21 9.86 187 5.96 5.20 1.67 3.10 18 140 1 0 3 1 116.8 

   150  0 1.27 3.84 190 5.52 9.21 n.d. 76.57 18 160 1 0 2 2 113.4 

   600  0 1.19 4.09 194 6.22 3.98 6.68 36.56 21 133 1 0 4 1 177.2 

6 1715921 5971196 0 843 19 1.54 4.93 191 7.85 6.38 2.35 5.80 16 108 9 0 11 3 198.8 

   150  47 1.38 2.73 209 6.75 3.57 2.99 10.80 16 52 13 1 11 1 27.9 

   600  32 1.62 3.35 220 8.81 3.43 21.25 10.20 17 48 7 0 7 2 2.4 

7 1715922 5971171 0 868 0 0.55 0 237 6.09 1.47 0.43 0.91 10 25 1 0 1 0 4.1 

   150  0 0.59 0 229 5.66 1.58 6.60 53.01 9 21 3 0 2 1 3.1 

   600  0 0.64 0 237 5.60 1.83 174.24 111.48 8 10 2 0 1 0 1.2 

8 1715923 5971091 0 946 19 0.82 0 223 5.50 2.11 1.28 1.47 13 49 7 1 4 3 6.3 

   150  0 0.59 0 240 5.28 1.61 4.30 23.54 9 28 4 0 0 1 6.6 

   600  21 0.64 0 250 4.63 1.68 9.22 38.40 9 12 3 1 1 0 2.4 

9 1715922 5971015 0 1021 47 1.05 13.58 196 7.00 4.87 0.24 0.80 20 87 9 1 8 4 14.0 

   150  48 0.95 1.24 233 5.87 6.37 15.01 9.40 16 77 3 0 9 3 27.3 

   600  32 0.88 0.84 213 9.93 3.30 65.35 196.91 14 34 12 1 2 2 17.9 

10 1716025 5970999 0 1023 48 1.14 8.66 195 23.24 16.88 3.30 1.14 17 249 1 0 3 2 38.8 
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 Location   Sediment properties Microphytobenthic biomass Pore water NH4
+ Macrofaunal community  

Site Latitude Longitude Treatment DFS Seagrass OC Mud GSM Chl a Phaeo 0-2 cm 5-7 cm S N A. stutchburyi M. liliana DEA 

               < 10 mm ≥ 10 mm < 10 mm ≥ 10 mm  

 NZTM NZTM g N m-2 m % cover % % µm µg g-1 µg g-1 µM µM n core-1 n core-1 n core-1 n core-1 n core-1 n core-1 µmol N m-2 h-1 

   150  72 1.05 8.16 201 16.77 21.61 2.92 9.52 17 155 0 0 1 2 27.2 

   600  25 1.12 8.39 193 31.18 12.11 7.90 147.92 21 301 1 2 3 1 223.9 

11 1716004 5971315 0 711 4 1.01 4.13 218 3.57 3.84 2.65 0.90 16 376 1 0 14 1 27.6 

   150  20 1.05 7.89 210 9.59 10.29 2.44 9.18 18 519 1 0 2 3 39.9 

   600  32 1.12 7.88 206 9.33 8.32 2.00 17.71 16 59 1 0 4 0 163.7 

12 1715991 5971518 0 515 40 1.24 4.09 211 7.83 5.81 1.51 1.27 11 53 14 5 1 1 37.7 

   150  70 1.49 2.15 221 9.93 7.65 9.82 10.27 14 96 32 3 6 0 36.3 

   600  75 1.66 4.31 221 9.22 7.67 45.26 82.22 18 101 30 13 1 2 70.5 

13 1715985 5971672 0 367 0 0.81 0 223 9.79 4.88 0.27 1.47 13 66 10 9 14 3 9.9 

   150  0 0.79 0 215 15.46 18.39 6.08 9.50 10 39 9 5 9 2 4.4 

   600  0 0.78 0 227 14.93 4.82 n.d. n.d. 11 24 6 2 5 1 6.9 

14 1715978 5971755 0 284 0 0.77 0 225 12.15 3.83 3.58 0.28 9 30 6 5 5 1 6.0 

   150  0 0.73 0 225 13.95 4.51 2.70 5.85 7 23 6 4 4 2 3.2 

   600  0 0.70 0 221 11.04 3.16 184.70 254.04 6 14 4 4 0 1 2.2 

15 1715977 5971813 0 226 0 0.79 0 216 11.66 3.24 1.54 2.10 9 61 8 13 14 0 6.5 

   150  0 0.71 0 213 13.08 3.18 21.52 226.58 8 16 2 4 3 1 1.4 

   600  0 0.71 0 219 10.10 2.86 158.27 167.46 5 13 4 2 1 0 0.0 

16 1716072 5971935 0 91 0 0.66 0 241 5.34 2.20 0.37 20.32 7 60 2 1 24 3 6.5 

   150  0 0.73 0 242 6.86 2.57 39.87 80.56 10 44 1 0 8 1 6.8 

   600  0 0.68 0 235 4.85 2.67 14.56 200.15 9 34 1 0 9 1 2.4 

17 1716072 5971835 0 188 0 0.76 3.48 227 8.57 3.18 0.32 1.44 8 53 0 4 5 1 3.5 

   150  9 0.74 0 223 9.01 3.90 100.35 185.34 7 33 1 2 1 0 3.0 

   600  0 0.72 0 239 9.66 3.04 99.71 225.41 4 17 1 1 1 1 2.5 

18 1716075 5971656 0 364 9 0.77 0 214 10.33 3.76 0.30 8.73 11 61 11 3 25 3 6.1 

   150  19 0.70 0 231 9.38 10.65 81.18 156.81 11 45 15 3 14 2 23.2 

   600  0 1.03 0 221 25.88 3.12 n.d. n.d. 9 18 4 1 4 0 4.4 

19 1716079 5971559 0 460 8 0.73 0 223 5.93 2.15 0.37 2.57 9 45 6 2 24 1 9.9 

   150  12 0.68 0 225 28.32 3.05 3.74 13.39 13 25 4 1 6 3 9.0 

   600  15 0.70 0 218 5.02 1.84 69.91 229.67 10 13 1 0 0 1 2.9 
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 Location   Sediment properties Microphytobenthic biomass Pore water NH4
+ Macrofaunal community  

Site Latitude Longitude Treatment DFS Seagrass OC Mud GSM Chl a Phaeo 0-2 cm 5-7 cm S N A. stutchburyi M. liliana DEA 

               < 10 mm ≥ 10 mm < 10 mm ≥ 10 mm  

 NZTM NZTM g N m-2 m % cover % % µm µg g-1 µg g-1 µM µM n core-1 n core-1 n core-1 n core-1 n core-1 n core-1 µmol N m-2 h-1 

20 1716111 5971224 0 794 47 1.74 14.50 177 14.50 13.72 0.29 0.84 14 60 0 0 2 3 224.9 

   150  97 2.06 5.22 200 12.10 14.33 2.66 15.82 18 132 0 0 3 1 374.1 

   600  53 1.67 8.81 194 16.37 12.53 27.11 45.95 20 204 1 0 3 3 149.6 

21 1716120 5971055 0 963 29 1.20 2.49 189 7.16 4.37 0.37 16.22 17 78 6 0 9 2 138.1 

   150  39 1.43 7.04 194 9.27 10.82 21.01 52.55 18 147 3 0 6 1 276.7 

   600  23 1.29 2.19 190 14.21 9.85 144.31 105.45 14 106 1 0 4 4 162.2 

22 1716225 5971094 0 928 29 1.62 9.19 194 13.72 17.90 1.84 1.33 13 61 0 0 4 2 208.5 

   150  21 1.42 13.17 182 12.23 10.59 12.85 45.00 15 49 1 0 3 1 176.5 

   600  45 1.50 6.69 195 11.31 9.92 4.28 29.09 15 118 0 0 2 2 134.4 

23 1716216 5971177 0 845 32 2.04 12.20 195 12.85 15.25 1.92 0.64 17 124 0 0 5 2 372.9 

   150  29 1.43 13.91 194 15.00 20.16 3.87 28.67 14 40 0 0 1 1 154.9 

   600  36 1.84 12.03 190 12.79 18.75 14.61 65.25 18 69 1 1 6 6 216.2 

24 1716205 5971253 0 768 43 1.36 4.50 182 20.90 17.47 0.05 0.47 17 56 0 0 3 3 72.6 

   150  87 1.49 2.86 200 10.12 12.82 1.15 6.06 15 23 0 0 6 2 96.3 

   600  49 1.32 5.44 191 18.08 6.92 17.15 36.40 13 23 0 0 4 3 22.6 

25 1716172 5971446 0 573 15 0.67 0 222 5.68 2.28 0.29 0.42 13 73 14 2 21 3 9.7 

   150  27 0.63 0 230 5.68 2.01 5.41 35.90 13 52 13 5 6 1 3.5 

   600  20 0.73 0 230 5.82 1.86 18.91 40.72 7 15 7 1 1 1 3.9 

26 1716167 5971463 0 556 0 0.60 0 227 4.17 2.22 0.00 6.61 9 30 6 3 4 3 4.8 

   150  3 0.64 0 226 8.47 2.37 3.20 21.80 10 19 4 2 2 1 4.2 

   600  0 0.59 0 224 7.13 1.06 39.59 n.d. 5 16 5 4 1 0 1.6 

27 1716143 5971774 0 244 8 0.69 0 232 9.64 1.99 0.00 0.26 7 38 3 0 10 1 3.9 

   150  11 0.65 0 232 8.77 3.96 13.64 10.23 7 31 2 1 5 1 4.2 

   600  1 0.69 0 232 8.19 2.87 6.18 148.90 4 16 2 2 2 1 1.9 

28 1716127 5971955 0 63 0 0.70 0 239 8.89 2.33 0.03 0.50 8 15 1 1 3 0 20.1 

   150  0 0.72 0 231 10.77 3.03 4.83 35.24 5 12 0 0 4 0 25.0 

   600  0 0.83 0 230 11.25 2.41 61.59 n.d. 5 7 0 1 2 0 38.5 

Abbreviations (Appendices 7-11): DFS = Distance from Shore, OC = sediment organic content, Mud = sediment mud content, GSM = Grain size median, Chl-a = chlorophyll a content, Phaeo = phaeophytin content, 
S = number functional group species, N = number of functional group individuals, AS = A. stutchburyi, ML = M. liliana, DEA = denitrification enzyme activity. 
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Appendix 8 

Pearson’s correlation coefficients (r) between control and treatment plot DEA and measures of macrofauna community diversity. Significance levels are *p ≤ 0.05, and 
**p ≤ 0.01 (Chapter 4). 

 

Control  
(0 g N m-2) 

 
 Community A. stutchburyi M. liliana 

 
DEA S N Juvenile (<10 mm) Adult (≥ 10 mm) Juvenile (<10 mm) Adult (≥ 10 mm) 

Medium  
(150 g N m-2) 

0.69** 0.79** 0.89** 0.97** 0.91** 0.65** 0.30 

High  
(600 g N m-2) 

0.67** 0.75** 0.48 0.94** 0.80** 0.37 0.23 
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Appendix 9. Pearson’s correlation coefficient matrix for control plots (n= 28) (Chapter 4). 
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Mud 0.77               
GSM -0.75 -0.75              
Seagrass 0.72 0.53 -0.58             
Chl a 0.48 0.36 -0.49 0.55            
Phaeophytin 0.79 0.68 -0.72 0.65 0.79           
DFS 0.33 0.48 -0.64 0.34 0.10 0.44          
NH4

+ (5-7 cm) -0.11 -0.23 0.09 -0.11 -0.27 -0.24 -0.15         
NH4

+ (0-2 cm) 0.25 0.20 -0.23 0.06 0.22 0.30 0.30 -0.21        
S 0.56 0.69 -0.80 0.43 0.23 0.51 0.76 -0.12 0.27       
N 0.24 0.36 -0.28 0.08 0.08 0.25 0.33 -0.11 0.53 0.53      
AS juvenile 0.19 0.05 -0.01 0.20 0.13 0.05 -0.12 -0.11 -0.13 0.01 0.11     
AS adult 0.15 -0.03 0.12 0.10 0.19 0.00 -0.45 -0.13 -0.09 -0.18 -0.01 0.79    
ML juvenile -0.46 -0.44 0.32 -0.44 -0.33 -0.46 -0.32 0.41 -0.22 -0.23 0.03 0.00 -0.02   
ML adult 0.00 0.21 -0.26 0.05 -0.07 0.08 0.35 0.30 -0.18 0.41 0.02 -0.11 -0.28 0.32  
DEA 0.84 0.61 -0.67 0.48 0.29 0.67 0.44 -0.04 0.25 0.46 0.12 0.02 -0.14 -0.36 0.00 
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Appendix 10. Pearson’s correlation coefficient matrix for medium treatment plots (n= 28) (Chapter 4). 
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Mud 0.67                 

GSM -0.68 -0.70                

Seagrass 0.82 0.41 -0.41               

Chl a 0.17 0.27 -0.15 0.16              

Phaeophytin 0.51 0.55 -0.66 0.52 0.24             

DFS 0.31 0.45 -0.49 0.30 -0.19 0.34            

NH4
+ (5-7 cm) -0.12 -0.11 0.06 -0.22 -0.03 -0.25 -0.33           

NH4
+ (0-2 cm) -0.25 -0.22 0.26 -0.20 -0.15 -0.13 -0.33 0.68          

S 0.72 0.63 -0.63 0.66 0.07 0.54 0.61 -0.30 -0.31         

N 0.28 0.41 -0.29 0.17 -0.03 0.20 0.28 -0.07 -0.14 0.53        

AS juvenile 0.31 0.08 0.03 0.26 0.15 -0.18 -0.10 0.29 -0.02 -0.01 0.17       

AS adult 0.14 -0.02 0.12 0.11 0.25 -0.20 -0.40 0.34 -0.01 -0.17 0.01 0.83      

ML juvenile -0.19 -0.35 0.29 -0.10 -0.09 -0.14 -0.22 -0.08 0.22 -0.04 -0.20 -0.01 0.07     

ML adult -0.04 0.10 -0.01 -0.02 0.33 0.12 0.15 -0.17 -0.15 0.35 0.48 0.04 0.10 0.23    

DEA 0.69 0.55 -0.66 0.43 0.02 0.45 0.45 -0.14 -0.13 0.57 0.19 -0.17 -0.30 -0.15 -0.09   

DEACN -0.05 -0.07 0.15 0.02 -0.18 0.08 0.10 0.11 0.47 0.13 0.15 -0.19 -0.33 0.41 0.30 0.26  

Control DEA 0.74 0.73 -0.74 0.45 0.09 0.54 0.44 -0.12 -0.23 0.53 0.08 0.06 -0.12 -0.24 -0.21 0.69 0.16 
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Appendix 11 Pearson’s correlation coefficient matrix for high treatment plots (n= 28) (Chapter 4). 
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Mud 0.82                 

GSM -0.72 -0.75                

Seagrass 0.79 0.62 -0.53               

Chl a 0.49 0.46 -0.51 0.36              

Phaeophytin 0.80 0.90 -0.77 0.59 0.50             

DFS 0.37 0.35 -0.45 0.43 0.10 0.37            

NH4
+ (5-7 cm) -0.49 -0.39 0.32 -0.49 0.01 -0.30 -0.51           

NH4
+ (0-2 cm) -0.27 -0.24 0.17 -0.37 -0.09 -0.18 -0.32 0.54          

S 0.78 0.73 -0.75 0.66 0.37 0.69 0.63 -0.52 -0.42         

N 0.53 0.63 -0.63 0.38 0.50 0.65 0.48 -0.18 -0.28 0.75        

AS juvenile 0.36 0.21 -0.04 0.31 0.38 0.13 -0.09 0.14 0.07 0.13 0.13       

AS adult 0.31 0.26 -0.03 0.26 0.34 0.17 -0.28 0.19 0.21 0.04 0.12 0.92      

ML juvenile 0.22 0.16 -0.19 -0.05 0.06 0.25 0.03 -0.27 -0.37 0.33 0.13 -0.10 -0.15     

ML adult 0.59 0.46 -0.56 0.37 0.07 0.67 0.42 -0.18 -0.11 0.46 0.28 0.03 -0.04 0.41    

DEA 0.63 0.71 -0.77 0.49 0.41 0.79 0.52 -0.40 -0.38 0.78 0.73 -0.09 -0.11 0.16 0.44   

DEACN 0.10 0.35 -0.29 0.16 0.29 0.31 0.28 -0.14 -0.30 0.43 0.54 -0.09 -0.08 0.05 -0.14 0.58  

Control DEA 0.83 0.71 -0.67 0.56 0.27 0.77 0.44 -0.48 -0.30 0.64 0.40 0.03 -0.05 0.30 0.74 0.67 -0.08 
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Appendix 12 Site information and raw data (Chapter 5). 

    Location Sediment properties 
Microphytobenthic 

biomass 
Macrofaunal community  

Estuary study Site Plot Sample date Latitude Longitude 
Water 
depth 

OC Mud GSM Chl a Phaeo S N LB DEA 

   dd/mm/yyyy NZTM NZTM m % % µm µg g-1 µg g-1 n core-1 n core-1 n core-1 µmol N m-2 h-1 

                

Waikareao survey 1 Q1 13/01/2013 5823722 1878093 Intertidal 4.3 29.3 149 27.7 19.2 7 513 0 1073.9 

 1 Q2 13/01/2013 5823722 1878093 Intertidal 4.4 22.4 208 21.8 4.0 12 540 0 1212.4 

 1 Q3 13/01/2013 5823722 1878093 Intertidal 4.4 26.2 176 37.2 7.3 11 557 0 1231.5 

 1 Q4 13/01/2013 5823722 1878093 Intertidal 4.2 27.1 167 34.9 12.9 9 305 0 1048.8 

 1 Q5 13/01/2013 5823722 1878093 Intertidal 4.3 33.9 130 34.2 8.8 6 432 0 1094.3 

 2 Q1 13/01/2013 5824126 1878123 Intertidal 2.9 10.4 149 10.7 4.2 19 141 3 365.8 

 2 Q2 13/01/2013 5824126 1878123 Intertidal 2.8 12.0 208 6.0 5.3 17 115 5 365.3 

 2 Q3 13/01/2013 5824126 1878123 Intertidal 2.9 11.2 176 12.6 6.4 14 100 3 266.4 

 2 Q4 13/01/2013 5824126 1878123 Intertidal 2.8 14.6 167 11.6 7.0 19 138 4 352.6 

 2 Q5 13/01/2013 5824126 1878123 Intertidal 2.9 11.1 130 10.5 6.3 19 102 5 193.7 

 3 Q1 13/01/2013 5824432 1877789 Intertidal 3.0 15.1 157 25.7 5.7 7 364 0 394.7 

 3 Q2 13/01/2013 5824432 1877789 Intertidal 2.9 13.3 181 25.7 8.1 11 299 0 280.8 

 3 Q3 13/01/2013 5824432 1877789 Intertidal 3.0 12.8 188 22.8 9.1 7 374 0 421.1 

 3 Q4 13/01/2013 5824432 1877789 Intertidal 2.9 12.2 188 26.4 8.4 12 457 1 270.2 

 3 Q5 13/01/2013 5824432 1877789 Intertidal 2.9 12.5 186 26.3 7.8 7 386 0 256.6 

 4 Q1 13/01/2013 5824939 1878310 Intertidal 3.5 12.3 238 17.1 11.1 22 296 19 612.3 

 4 Q2 13/01/2013 5824939 1878310 Intertidal 3.5 9.4 273 19.3 6.2 19 228 24 504.5 

 4 Q3 13/01/2013 5824939 1878310 Intertidal 3.7 16.4 203 17.8 7.2 21 260 27 571.2 

 4 Q4 13/01/2013 5824939 1878310 Intertidal 3.4 11.9 259 14.8 12.5 24 267 17 348.7 

 4 Q5 13/01/2013 5824939 1878310 Intertidal 3.6 13.4 236 21.7 10.1 19 306 21 416.4 

 5 Q1 13/01/2013 5824771 1878741 Intertidal 2.0 4.0 445 11.4 4.8 22 400 69 195.7 

 5 Q2 13/01/2013 5824771 1878741 Intertidal 2.0 3.8 392 13.6 6.1 26 411 43 159.3 

 5 Q3 13/01/2013 5824771 1878741 Intertidal 2.1 3.9 393 12.6 7.9 27 394 86 145.1 

 5 Q4 13/01/2013 5824771 1878741 Intertidal 1.9 5.2 385 13.8 4.5 24 252 63 216.0 

 5 Q5 13/01/2013 5824771 1878741 Intertidal 2.1 3.7 404 17.1 8.0 22 374 66 191.5 

Tuapiro survey 1 Q1 11/02/2013 5846357 1859717 Intertidal 5.2 5.8 391 7.9 2.8 20 103 0 82.7 
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    Location Sediment properties 
Microphytobenthic 

biomass 
Macrofaunal community  

Estuary study Site Plot Sample date Latitude Longitude 
Water 
depth 

OC Mud GSM Chl a Phaeo S N LB DEA 

   dd/mm/yyyy NZTM NZTM m % % µm µg g-1 µg g-1 n core-1 n core-1 n core-1 µmol N m-2 h-1 

                

Tuapiro survey 1 Q2 11/02/2013 5846357 1859717 Intertidal 5.1 6.8 370 7.8 3.5 15 93 0 80.0 

 1 Q3 11/02/2013 5846357 1859717 Intertidal 5.2 5.4 379 6.7 3.6 12 55 0 75.5 

 1 Q4 11/02/2013 5846357 1859717 Intertidal 5.0 12.9 310 7.1 3.2 13 103 0 70.2 

 1 Q5 11/02/2013 5846357 1859717 Intertidal 5.6 9.9 358 7.9 3.6 16 76 0 54.1 

 2 Q1 11/02/2013 5846597 1860032 Intertidal 4.4 9.5 242 6.4 2.9 17 165 0 29.2 

 2 Q2 11/02/2013 5846597 1860032 Intertidal 4.0 7.8 305 9.3 4.7 22 188 0 25.6 

 2 Q3 11/02/2013 5846597 1860032 Intertidal 3.9 8.9 254 8.7 3.0 15 134 0 39.6 

 2 Q4 11/02/2013 5846597 1860032 Intertidal 4.4 9.7 251 9.7 4.0 18 141 0 34.4 

 2 Q5 11/02/2013 5846597 1860032 Intertidal 3.9 10.1 266 9.5 2.9 13 149 0 20.2 

 3 Q1 11/02/2013 5846485 1860748 Intertidal 3.0 7.7 201 10.2 7.1 29 351 10 25.9 

 3 Q2 11/02/2013 5846485 1860748 Intertidal 2.8 6.3 202 11.2 5.2 27 293 10 39.1 

 3 Q3 11/02/2013 5846485 1860748 Intertidal 2.6 7.6 196 12.1 4.5 23 242 0 66.1 

 3 Q4 11/02/2013 5846485 1860748 Intertidal 2.7 6.4 204 11.2 4.0 26 343 9 28.2 

 3 Q5 11/02/2013 5846485 1860748 Intertidal 2.7 12.0 207 12.4 5.8 22 267 17 18.0 

 4 Q1 11/02/2013 5847046 1860495 Intertidal 3.7 7.0 435 14.7 6.5 15 239 105 358.8 

 4 Q2 11/02/2013 5847046 1860495 Intertidal 4.3 11.7 415 15.7 8.1 13 294 110 308.3 

 4 Q3 11/02/2013 5847046 1860495 Intertidal 3.4 9.0 414 13.8 5.2 22 303 134 608.9 

 4 Q4 11/02/2013 5847046 1860495 Intertidal 3.8 4.9 462 16.5 9.7 15 283 95 500.7 

 4 Q5 11/02/2013 5847046 1860495 Intertidal 3.6 6.3 416 16.1 5.8 20 599 44 489.6 

 5 Q1 11/02/2013 5847350 1860678 Intertidal 1.9 4.5 268 8.8 3.3 14 119 12 213.4 

 5 Q2 11/02/2013 5847350 1860678 Intertidal 1.6 4.3 269 8.5 3.1 16 158 6 169.5 

 5 Q3 11/02/2013 5847350 1860678 Intertidal 2.2 4.5 272 10.7 4.0 17 176 18 93.6 

 5 Q4 11/02/2013 5847350 1860678 Intertidal 2.0 3.5 278 10.0 3.3 16 131 20 263.8 

 5 Q5 11/02/2013 5847350 1860678 Intertidal 2.0 4.1 269 10.7 3.9 17 198 15 59.7 

Tuapiro experiment 1 2 27/11/2014 5846678 1860839 Intertidal 1.5 0.8 243 9.1 1.7 20 91 28 40.1 

 1 4 27/11/2014 5846678 1860839 Intertidal 1.6 0.0 223 9.0 1.6 21 122 33 46.9 

 2 6 27/11/2014 5846660 1860848 Intertidal 1.7 1.2 214 6.1 2.1 16 115 20 43.2 

 2 8 27/11/2014 5846660 1860848 Intertidal 1.8 1.3 212 6.6 2.2 18 131 28 24.7 
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    Location Sediment properties 
Microphytobenthic 

biomass 
Macrofaunal community  

Estuary study Site Plot Sample date Latitude Longitude 
Water 
depth 

OC Mud GSM Chl a Phaeo S N LB DEA 

   dd/mm/yyyy NZTM NZTM m % % µm µg g-1 µg g-1 n core-1 n core-1 n core-1 µmol N m-2 h-1 

                

Tuapiro experiment 3 10 27/11/2014 5846620 1860828 Intertidal 3.0 3.1 161 20.3 3.8 21 118 35 192.6 

 3 12 27/11/2014 5846620 1860828 Intertidal 3.0 3.9 158 21.1 5.3 14 76 28 223.7 

 4 14 27/11/2014 5846603 1860818 Intertidal 2.8 1.8 156 14.8 4.2 23 135 26 267.2 

 4 16 27/11/2014 5846603 1860818 Intertidal 2.9 1.9 154 16.1 4.2 23 111 31 360.6 

 5 18 27/11/2014 5846589 1860812 Intertidal 3.4 3.7 147 14.3 3.6 17 137 27 406.4 

 5 20 27/11/2014 5846589 1860812 Intertidal 3.4 3.3 150 13.0 3.3 14 79 21 345.0 

 6 22 27/11/2014 5846578 1860808 Intertidal 3.6 7.3 138 15.6 5.1 22 202 38 366.1 

 6 24 27/11/2014 5846578 1860808 Intertidal 3.9 6.8 140 16.5 5.0 14 134 24 424.2 

 7 26 27/11/2014 5846609 1860800 Intertidal 1.5 0.0 177 6.0 1.6 16 53 16 78.7 

 7 28 27/11/2014 5846609 1860800 Intertidal 1.7 0.0 175 7.4 1.7 18 75 21 78.5 

 8 30 27/11/2014 5846631 1860811 Intertidal 1.7 1.2 191 6.7 1.7 21 114 34 114.5 

 8 32 27/11/2014 5846631 1860811 Intertidal 1.8 1.3 196 11.0 2.1 20 124 66 114.8 

 9 34 27/11/2014 5846560 1860817 Intertidal 3.8 10.3 132 14.2 5.4 20 208 22 342.1 

 9 36 27/11/2014 5846560 1860817 Intertidal 4.7 12.0 130 17.4 5.8 17 134 15 387.0 

 10 38 27/11/2014 5846549 1860828 Intertidal 5.1 14.5 125 18.1 8.3 18 142 26 528.2 

 10 40 27/11/2014 5846549 1860828 Intertidal 4.6 12.3 130 15.3 5.7 16 154 21 434.9 

 11 42 27/11/2014 5846538 1860828 Intertidal 5.4 21.6 112 20.0 8.5 19 100 14 601.3 

 11 44 27/11/2014 5846538 1860828 Intertidal 5.5 20.2 114 19.8 8.2 15 123 15 519.1 

 12 46 27/11/2014 5846536 1860850 Intertidal 3.9 15.2 142 12.9 6.5 21 149 27 410.7 

 12 48 27/11/2014 5846536 1860850 Intertidal 4.1 12.7 148 13.3 5.6 18 164 19 466.8 

Kaipara 1 C 17/03/2014 5971943 1715904 Intertidal 1.9 10.0 210 13.2 9.7 29 225 25 50.6 

 2 C 17/03/2014 5971771 1715908 Intertidal 0.9 0.0 216 12.7 1.6 19 92 42.5 3.6 

 3 C 17/03/2014 5971577 1715908 Intertidal 1.7 7.3 207 14.6 11.2 26 332 116 134.7 

 4 C 17/03/2014 5971494 1715904 Intertidal 1.5 1.1 209 12.5 9.3 19 107 1 189.0 

 5 C 17/03/2014 5971296 1715921 Intertidal 1.2 9.9 187 6.0 5.2 29 174 4.5 116.8 

 6 C 17/03/2014 5971196 1715921 Intertidal 1.5 4.9 191 7.9 6.4 22 137 21.5 198.8 

 7 C 17/03/2014 5971171 1715922 Intertidal 0.6 0.0 237 6.1 1.5 13 47 2 4.1 

 8 C 17/03/2014 5971091 1715923 Intertidal 0.8 0.0 223 5.5 2.1 19 72 14.5 6.3 
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    Location Sediment properties 
Microphytobenthic 

biomass 
Macrofaunal community  

Estuary study Site Plot Sample date Latitude Longitude 
Water 
depth 

OC Mud GSM Chl a Phaeo S N LB DEA 

   dd/mm/yyyy NZTM NZTM m % % µm µg g-1 µg g-1 n core-1 n core-1 n core-1 µmol N m-2 h-1 

                

Kaipara 9 C 17/03/2014 5971015 1715922 Intertidal 1.0 13.6 196 7.0 4.9 26 130 21.5 14.0 

 10 C 17/03/2014 5970999 1716025 Intertidal 1.1 8.7 195 23.2 16.9 28 340 5.5 38.8 

 11 C 17/03/2014 5971315 1716004 Intertidal 1.0 4.1 218 3.6 3.8 24 419 15.5 27.6 

 12 C 17/03/2014 5971518 1715991 Intertidal 1.2 4.1 211 7.8 5.8 18 126 20 37.7 

 13 C 17/03/2014 5971672 1715985 Intertidal 0.8 0.0 223 9.8 4.9 19 111 35 9.9 

 14 C 17/03/2014 5971755 1715978 Intertidal 0.8 0.0 225 12.1 3.8 14 53 16 6.0 

 15 C 17/03/2014 5971813 1715977 Intertidal 0.8 0.0 216 11.7 3.2 14 90 34 6.5 

 16 C 17/03/2014 5971935 1716072 Intertidal 0.7 0.0 241 5.3 2.2 10 79 28.5 6.5 

 17 C 17/03/2014 5971835 1716072 Intertidal 0.8 3.5 227 8.6 3.2 17 127 9.5 3.5 

 18 C 17/03/2014 5971656 1716075 Intertidal 0.8 0.0 214 10.3 3.8 17 87 41 6.1 

 19 C 17/03/2014 5971559 1716079 Intertidal 0.7 0.0 223 5.9 2.2 14 54 32 9.9 

 20 C 17/03/2014 5971224 1716111 Intertidal 1.7 14.5 177 14.5 13.7 25 108 4.5 224.9 

 21 C 17/03/2014 5971055 1716120 Intertidal 1.2 2.5 189 7.2 4.4 28 142 16.5 138.1 

 22 C 17/03/2014 5971094 1716225 Intertidal 1.6 9.2 194 13.7 17.9 24 136 5.5 208.5 

 23 C 17/03/2014 5971177 1716216 Intertidal 2.0 12.2 195 12.8 15.2 27 203 6.5 372.9 

 24 C 17/03/2014 5971253 1716205 Intertidal 1.4 4.5 182 20.9 17.5 25 88 5.5 72.6 

 25 C 17/03/2014 5971446 1716172 Intertidal 0.7 0.0 222 5.7 2.3 17 95 38.5 9.7 

 26 C 17/03/2014 5971463 1716167 Intertidal 0.6 0.0 227 4.2 2.2 12 38 15.5 4.8 

 27 C 17/03/2014 5971774 1716143 Intertidal 0.7 0.0 232 9.6 2.0 11 50 13 3.9 

 28 C 17/03/2014 5971955 1716127 Intertidal 0.7 0.0 239 8.9 2.3 9 19 4 20.1 

Mahurangi 1 A 5/03/2015 5958958 1755223 4.9 5.7 37.2 103 6.6 2.4 8 50 0 877.0 

 1 B 5/03/2015 5958958 1755223 4.9 5.2 35.0 104 7.1 1.8 12 58 0 995.1 

 1 C 5/03/2015 5958958 1755223 4.9 5.4 40.6 83 2.6 1.6 4 53 0 844.4 

 1 D 5/03/2015 5958958 1755223 4.9 5.7 37.5 87 6.8 4.7 7 82 0 956.5 

 1 E 5/03/2015 5958958 1755223 4.9 5.9 42.0 80      1164.5 

 1 F 5/03/2015 5958958 1755223 4.9 5.3 39.8 84      791.3 

 1 G 5/03/2015 5958958 1755223 4.9 5.2 41.1 82      988.3 

 1 H 5/03/2015 5958958 1755223 4.9 5.4 42.6 79      900.3 
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    Location Sediment properties 
Microphytobenthic 

biomass 
Macrofaunal community  

Estuary study Site Plot Sample date Latitude Longitude 
Water 
depth 

OC Mud GSM Chl a Phaeo S N LB DEA 

   dd/mm/yyyy NZTM NZTM m % % µm µg g-1 µg g-1 n core-1 n core-1 n core-1 µmol N m-2 h-1 

                

Mahurangi 2 A 5/03/2015 5960410 1754366 5.3 4.4 52.2 65 8.3 3.3 19 184 0 594.5 

 2 B 5/03/2015 5960410 1754366 5.3 4.9 42.7 111 7.8 2.1 14 226 0 603.7 

 2 C 5/03/2015 5960410 1754366 5.3 4.5 38.0 151 6.0 1.3 15 195 0 701.4 

 2 D 5/03/2015 5960410 1754366 5.3 4.8 42.5 88 4.3 2.1 24 263 0 649.6 

 2 E 5/03/2015 5960410 1754366 5.3 4.8 43.4 120      730.6 

 2 F 5/03/2015 5960410 1754366 5.3 4.7 47.3 71      658.1 

 2 G 5/03/2015 5960410 1754366 5.3 4.9 34.1 126      715.7 

 2 H 5/03/2015 5960410 1754366 5.3 4.7 44.1 109      602.9 

 3 A 5/03/2015 5962275 1754645 4.5 3.7 19.5 115 6.7 1.8 11 164 0 971.7 

 3 B 5/03/2015 5962275 1754645 4.5 3.8 25.7 103 7.4 2.8 16 147 2 698.4 

 3 C 5/03/2015 5962275 1754645 4.5 3.8 27.2 99 7.5 2.2 19 186 0 798.4 

 3 D 5/03/2015 5962275 1754645 4.5 3.8 25.9 100 6.5 1.4 17 184 0 1027.0 

 3 E 5/03/2015 5962275 1754645 4.5 3.5 23.4 107      964.0 

 3 F 5/03/2015 5962275 1754645 4.5 3.5 17.6 116      797.2 

 3 G 5/03/2015 5962275 1754645 4.5 3.7 24.5 105      886.4 

 3 H 5/03/2015 5962275 1754645 4.5 3.4 23.0 108      893.3 

 4 A 5/03/2015 5964378 1753855 3.8 4.1 20.6 127 9.9 2.1 17 148 0 752.3 

 4 B 5/03/2015 5964378 1753855 3.8 4.2 24.9 118 9.2 2.0 18 151 0 715.5 

 4 C 5/03/2015 5964378 1753855 3.8 4.5 24.7 118 9.8 1.8 11 138 0 831.5 

 4 D 5/03/2015 5964378 1753855 3.8 3.9 16.7 133 8.2 1.4 17 146 0 963.4 

 4 E 5/03/2015 5964378 1753855 3.8 4.0 27.7 115      551.9 

 4 F 5/03/2015 5964378 1753855 3.8 3.6 15.7 133      504.2 

 4 G 5/03/2015 5964378 1753855 3.8 3.8 24.1 120      735.3 

 4 H 5/03/2015 5964378 1753855 3.8 3.8 17.3 132      688.7 

 

Abbreviations: OC: sediment organic content, Mud: sediment mud content, GSM: grain size median, Chl-a: chlorophyll a content, Phaeo: phaeophytin content, S: number of species, 
N: number of individuals, LB: number of large bivalves A. stutchburyi and M. liliana, DEA: denitrification enzyme activity. 
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Appendix 13 Locations of survey sites in (A) Waikareao Estuary, Tauranga Harbour (37° 41’ S 176° 9’E), 

and (B) Mahurangi Estuary (36° 27' S 174° 43' E) (Chapter 5). 
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