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Abstract 
 

Our understanding of when Polynesian colonists first arrived in New Zealand, how the landscape 

was altered, and the pace of anthropogenic modification has been primarily sourced from 

archaeological evidence and environmental histories collected from the South Island. Research 

from the South Island suggests that once humans arrived in New Zealand around 1300 AD they 

quickly and dramatically impacted the environment. Though more research has been undertaken 

on the North Island recently, the north remains under-researched compared to the south regarding 

these issues. The variety of subsistence practices available in this sub-tropical microclimate and the 

wetter, less combustible forests may have led to different land use practices and pace of landscape 

alteration compared to the drier, cooler climate of the South Island.  

For this project two lacustrine systems proximal to archaeological sites in Northland, New Zealand 

were cored, and a multi-proxy approach was undertaken to create a high-resolution chronology of 

anthropogenic environmental change. The age-model was used to identify the timing of human 

arrival and develop a catchment specific environmental history to determine the speed and 

duration of land use in this area to compare to records from the south. Thorough testing was 

performed to identify reliable radiocarbon targets to provide confidence in the precision for the 

chronology. Elemental and isotopic carbon and nitrogen measurement, C:N ratios and X-ray 

fluorescence (XRF) measurements were performed on the lake sediments to create catchment 

specific proxy data. These data, supported by the age-depth model and pollen and charcoal records, 

were used to determine the pace and intensity of local land use through time.  

The results of the research indicate that pollen concentrated from post-human impact sediment 

produced unreliably old 14C ages and could not be used to develop the lake chronologies through 

those time-depths. However, terrestrial macrofossils appear to have returned accurate ages for 

deposition and can be used in cultural landscapes to build chronologies. The age-depth model 

projects human arrival for the Far North District between 1164-1277cal AD, suggesting that this 

area was colonized early in New Zealand’s settlement history. The isotopic and elemental data for 

both lakes show evidence of human modification of the environment but raise the possibility that 

different processes were occurring in each lake. The pace of human modification of the landscape 

appears to be longer in duration compared to environmental records from the south but indicate 

that shortly after Polynesian arrival the study area was completely altered by anthropogenic 

modification. 
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1.  A Multi-Proxy Approach 
 

1.1 Introduction 
 

One of the longest-running debates in New Zealand archaeology has been when Polynesian 

settlement of New Zealand occurred. Though a consensus age of approximately 1300 AD is now 

generally agreed upon for human arrival (Anderson, 2002; Higham and Jones, 2004; Jacomb et al., 

2014; Wilmshurst et al., 2008; Wilmshurst et al., 2011), the timing of regional settlement within 

New Zealand is less certain. Much of the archaeological evidence of early settlement has been 

found on the South Island (Anderson et al., 1996; Jacomb et al., 2014; McWethy et al., 2010). 

Environmental reconstructions from the south support early arrival to the region and immediate 

and intense environmental impact occurring directly after arrival (McWethy et al., 2010; McWethy 

et al., 2009). Less research has been published from the North Island, though several important and 

early sites have been identified there. In Northland, one such site, Houhora, has provided 

archaeological and some radiocarbon evidence suggesting this region was colonized early in New 

Zealand’s settlement history (Anderson and Wallace, 1993; Furey, 2002; Petchey, 2000; Shawcross 

and Roe, 1966). Northland may have been selected specifically for its subtropical climate favouring 

all six of the Polynesian cultigens that the first settlers established successfully in New Zealand 

(Barber, 2004; Chappel, 2013). The quickness and severity of landscape change after arrival, as 

identified from the South Island, has also been observed in some of the environmental histories on 

the North Island (Elliot et al., 1997; Striewski et al., 2009). However, some researchers have 

suggested that the forests of the wetter northern regions may have been less combustible than the 

drier south (McGlone, 1983; McWethy et al., 2010; Perry et al., 2014). Recent research on lake 

sediments near Auckland suggests that the pace of initial anthropogenic landscape change in that 

region may have been less acute upon initial human occupation than recorded on the South Island 

(Newnham et al., 2018) which could in part be caused by reduced combustibility of the forests.  

While the archaeological history of Northland indicates that this region may have been colonized 

early, the pace, intensity and initial timing of anthropogenic landscape alteration in this warm, wet 

climate remain poorly understood. Environmental reconstructions from this area could provide 

valuable information about the scope and chronology of human impact in a region that has not yet 

been thoroughly studied. However, modern pastoralism has affected many of the archaeological 

sites in northern New Zealand (Barber, 2001), which can make the sites difficult to accurately date 

and assess. Nevertheless, direct research on archaeological features is not the only way to learn 

about human settlement and land use. Human environmental modification can also be 
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distinguished in sediment records by fluctuations in the abundance of charcoal and alterations to 

pollen assemblages (McGlone, 1983; McGlone and Wilmshurst, 1999; McWethy et al., 2010). 

Archaeological features can be used to indicate where and to some degree how people were using 

the land. However, accurately determining the time of their erection or duration of use can be 

difficult due to the use of materials with inbuilt age in their construction or modern disturbance 

(Goff and McFadgen, 2001; Horrocks et al., 2007).  

Lacustrine sediments serve as archives of environmental and anthropogenic change (Elliot et al., 

1995; McGlone and Wilmshurst, 1999; Meyers and Ishiwatari, 1993; Sutton, 1987) and should 

contain continuous histories compared to many terrestrial archaeological deposits. Sediments 

extracted from lakes neighbouring archaeological sites can be used as a proxy and utilized to 

determine the timing of human settlement as well as the severity and length of landscape impact 

(Elliot et al., 1995; Lane et al., 2004). This has been traditionally achieved by recording the shifts in 

abundance of different pollen types and charcoal from both natural and man-made fires to create 

vegetation and fire histories from lacustrine sediments (McWethy et al., 2009; Newnham, 1999). 

These records have often been placed in time with a low-resolution radiocarbon chronology (Elliot 

et al., 1997; Elliot et al., 1995), which cannot be used to accurately date human arrival. Additionally, 

the environmental reconstructions created through this technique are regional in scope, since 

pollen can travel considerable distance on the wind (Close et al., 1978; McGlone et al., 2005). 

Alternatively, geochemical and elemental measurement of lake sediments can be used to identify 

catchment specific information about erosion and alterations of the organic and mineralogical 

components deposited into the lake. These proxies can be used to identify the onset of human 

arrival and reconstruct how the catchment environment was transformed after settlement (Cohen, 

2003; Mees et al., 2003; Meyers and Lallier-Vergès, 1999). The timing and duration of these 

changes can be derived through the construction of a high-resolution chronology built from organic 

materials contained within the lacustrine sediments (Hajdas et al., 2006; McWethy et al., 2009).  

Two lakes on the Aupouri Peninsula near several archaeological sites were selected for this study 

with the goal of determining the timing of human arrival in the region and to develop a better 

understanding of the severity and duration of human impact to the area through time. The first 

step to achieve this is to identify the most reliable target material for 14C measurement. After these 

fractions are determined they will be measured to generate a high-resolution chronology using 

Bayesian statistics. The age-depth model will determine when the region was first 

anthropogenically altered. The results will be compared to pollen and charcoal records produced 

for the lakes as part of the larger study. Lastly, an environmental reconstruction will be produced 

from carbon and nitrogen and geochemical measurements. These proxies are catchment specific 
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and will provide site-specific data towards the research goals of determining when humans arrived 

in the region and the pace of land use after arrival.  

 

1.2 Thesis Structure  
 

The thesis is structured into research chapters because the outcomes of the first research objective, 

identification of a reliable 14C target, directly informed the direction undertaken to achieve the 

second objective. The second research goal, development of a high-resolution chronology, was 

required to create the environmental reconstruction for the region, which is the third research 

objective. Each research chapter contains a brief introduction, methods, results, and interpretation 

of each outcome.  

Chapter Two provides the historical and theoretical framework for the project’s research questions. 

Included is an overview of the debates regarding the timing of human settlement, duration of 

landscape modification and subsistence practices in New Zealand. The second part of Chapter Two 

covers Polynesian horticultural practices and the Polynesian cultivar suite. The third part presents 

a brief archaeological history of Northland and the traditional methods used to develop vegetation 

histories, fire regimes and identify anthropogenic impact in sediment records in New Zealand. 

Lastly, the research questions are presented for the project.  

The study area is described in Chapter Three. Climate, geology and the vegetation histories of the 

study area are given. Details for the lakes selected for the research and their catchments are also 

covered in this chapter along with the archaeological sites currently identified near the lakes.   

Chapter Four examines the reliability of pollen concentrates created from anthropogenically 

impacted lake sediments as 14C dating targets. Sample preparation, 14C methods and the results of 

the experiment are reported. The most reliable radiocarbon target within the sediments is 

identified and possible reasons for offsets in ages explored. The results were used to inform the 

selection of materials to produce an accurate age-depth model for the research. 

The age-depth model is presented in Chapter Five where the timing of settlement for the study 

area is interpreted. This research chapter briefly explains how Bayesian statistics were used to build 

and evaluate the model. Lastly, the date of human arrival derived from the chronology is compared 

to previous dates from the nearby Houhora archaeological site. 

Chapter Six is the final research chapter and begins with a brief explanation of how the isotopic and 

elemental proxies will be used to determine human impact and the pace of landscape change for 
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the area. The methods used to prepare samples and the measurement results are then provided. 

The isotopic and elemental data are modelled into the research chronology to be compared to 

other records of land use and timing of human occupation in Northland. 

A discussion of the research outcomes within the broader New Zealand environmental and 

archaeological context is examined in Chapter Seven. The timing of human arrival and the speed of 

landscape alteration identified for the region are compared to working theories in New Zealand 

regarding locations and timing of settlement, the subsistence methods employed and the pace of 

anthropogenic landscape alteration after arrival. 

Finally, Chapter Eight summaries the main findings and results of the project.  
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2. Colonization and Environmental Impact 
 

2.1 Introduction 
 

Isolated deep in the southern oceans, New Zealand was the last major land mass to be discovered 

and settled by humans (McGlone et al., 1994). Transported along with the Polynesian colonists 

were their socio-cultural perspectives as well as tools, animals, cultivars and the knowledge and 

techniques for growing these crops (Anderson, 2018; McGlone et al., 1994). However, the timing 

of human settlement of New Zealand has been intensely debated and several colonization models 

have been proposed.  

 
One such New Zealand settlement model has become known as the early or long prehistory model 

(McGlone and Wilmshurst, 1999). This settlement theory proposes that the first arrivals to New 

Zealand may have consisted of a small population practicing traditional horticultural methods, 

particularly in the warmer Far North (defined as the North Cape and consolidated dunes of the 

Aupouri Peninsula) (Newnham, 1999), with no obvious archaeological sites remaining to identify 

their presence (Sutton, 1987, 1994; Sutton et al., 2008). Sutton (1987) reported environmental 

research from the Bay of Islands created by Chester (1986) which identified changes in proxies of 

human settlement and land use. Human occupation was identified by increased charcoal 

abundance in conjunction with a rise of Pteridium esculentum (bracken fern) spores as a proxy for 

forest clearance (Sutton, 1987). This settlement model projected a colonization period of 0-500 

A.D. (Sutton, 1987; Sutton et al., 2008) with 14C dates on bone collagen from a Polynesian 

commensal, Rattus exulans, supporting a relatively long settlement chronology (Holdaway, 1996).   

This model has been criticized because the context of the environmental interpretations was not 

archaeological and non-anthropogenic fire episodes in New Zealand’s prehistory could be 

misidentified (McGlone and Wilmshurst, 1999). The accuracy of the dates used to build this model 

was also questioned, with in-washed old carbon being a possible reason for why older dates were 

obtained (McGlone and Wilmshurst, 1999; McGlone et al., 2005; Sutton, 1987; Wilmshurst, 1997). 

To address this, the full suite of dates used to support the long prehistory model was culled of 

measurements on materials which may have produced inaccurate results along with single dates 

and outliers (Spriggs, 1989; Spriggs and Anderson, 1993). The bone collagen dates were also 

reviewed. Wilmshurst (2008) has suggested that prior treatment methods to measure the collagen 

were inadequate or the diet of R. exulans contained 14C depleted materials which affected 

radiocarbon measurement (Beavan and Sparks, 1997; Wilmshurst et al., 2008). Seeds with the 
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diagnostic tooth marks of R. exulans were radiocarbon dated instead and yielded no calibrated age 

ranges earlier than the 13th century (Wilmshurst and Higham, 2004). This combined research lead 

to a short or late prehistory model with a post-1200 AD settlement date for New Zealand 

(Anderson, 1991; McGlone and Wilmshurst, 1999; Wilmshurst et al., 2011). The late settlement 

model is the current consensus model for colonization of New Zealand. However, Sutton et al. 

(1994, 2008) have argued that the late settlement model leaves little time to accommodate the 

array of environmental and cultural changes seen in the archaeological and environmental records. 

Anderson and others (Anderson, 2018; Anderson and Wallace, 1993; Jacomb et al., 2014) have 

suggested that some archaeological sites do not show evidence of long occupation and that the 

time depth allotted by the long settlement model for landscape modification and cultural 

development is not required. Sutton et al. (2008) also argued that the late settlement model is 

comprised of too few dates from the northern part of the North Island, where early colonization 

possibly occurred (Davidson, 1982; McGlone, 1983; Sutton, 1994). In this argument, data of greater 

antiquity may have been selected against and the limited surviving dates have biased the record 

towards the late model (Sutton et al., 2008). 

In addition to the settlement history, the speed and intensity of impact to the landscape after 

human arrival and the subsistence methods the settlers used to establish themselves in the New 

Zealand landscape have also been debated (McGlone et al., 1994; Newnham et al., 2018; Sutton, 

1994). A number of researchers have proposed that the New Zealand landscape was swiftly 

transformed by fire in a single pulse when humans first arrived (Anderson, 2002; McGlone et al., 

1994; McWethy et al., 2010; McWethy et al., 2009; McWethy et al., 2014; Perry et al., 2012; 

Wilmshurst et al., 2011). However, much of the evidence for late settlement and rapid modification 

comes from the South Island (Perry et al., 2014). Significant environmental differences between 

the South and North Islands may have promoted different settlement patterns, pace, and intensity 

of landscape modification (Newnham et al., 2018) and subsistence practices. Newnham et al. 

(2018) have recently found evidence of a two-step anthropogenic impact history in sediments from 

Lake Pupuke near Auckland. Their environmental reconstruction, supported by tephrochronology, 

shows that at this northern location there was early (~1350 AD) human occupation and associated 

environmental effects, but that the initial alteration to the environment was minor compared to 

the large-scale anthropogenic impact seen shortly after the Rangitoto tephra around 1450 AD when 

the forests were quickly cleared by fire (Newnham et al., 2018). This two-phase history of 

anthropogenic impact at Lake Pupuke does not mirror those recorded on the South Island. 

Newnham suggests that the damper, less combustible environments in the northern and western 

regions of New Zealand may explain the different rates of human impact and land use (Newnham 
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et al., 2018). Newnham et al. also propose that the second phase of more intense environmental 

impact may be in response to the cooling temperatures of the Little Ice Age (LIA). Anderson (2016) 

and others have argued that the LIA could have caused horticultural intensification in warmer, 

fertile regions, as marginal growing areas in the south were abandoned (Anderson, 2016; Leach, 

1984). As Newnham’s work is based on only one lake record, the broader applicability of this model 

is not yet clear. Additional records from the north are needed to confirm regional differences in the 

timing and pace of occupation. These will provide a deeper understanding of how the warmer and 

wetter environments in the north may have affected human settlement. 

A possible reason the northern regions may have experienced different rates of anthropogenic 

landscape change may relate to subsistence practices. New Zealand’s climate is colder and more 

varied than tropical Polynesia (Alloway et al., 2007; Leach, 1984; McGlone, 1989; Newnham, 1999). 

The landscape is also more diverse and includes a larger range of biota than found elsewhere in 

Polynesia (McGlone et al., 1994). The first arrivals to New Zealand may have taken advantage of 

the large number of animals, unused to predation, that could be easily hunted (McGlone et al., 

1994) rather than focusing on the labour intensive practice of horticulture. Additionally, the climate 

of much of New Zealand, specifically in the deep south, would not have been conducive for the 

growth of tropical plants cultivated by Polynesians (Furey, 2006). Accordingly, one subsistence 

model for the colonization of New Zealand focuses on the importance of hunting and wild foods to 

the settlers (Anderson, 1997; McGlone et al., 1994). There is archaeological evidence that early 

settlements on the South Island were large sites located at the mouths of rivers near a variety of 

animal protein sources, primarily seals and the large flightless birds Aves Dinornithiformes or moa, 

which were prevalent on the South Island (Anderson, 1997; Anderson et al., 1996; Higham et al., 

1999; McGlone et al., 1994; Walter et al., 2017). Habitation sites were occupied for relatively short 

time frames as big game hunting reduced at the location (Higham et al., 1999; Jacomb et al., 2014). 

Landscape clearance by fire was undertaken to clear paths for travel and to promote hunting 

resources and the growth of bracken fern (McGlone et al., 1994; McWethy et al., 2010). In this 

model, the rhizome of bracken fern was the primary source of carbohydrate for the settlers 

(Anderson, 1997; McGlone et al., 1994).  

An alternative subsistence paradigm is a horticulture focused model which rests in comparative 

Polynesian sociocultural economic drivers (Kirch, 1989, 2000). This model emphasizes widespread 

archaeological and contact history indications of horticulture in New Zealand to the very margins 

of production possibility (Barber, 2004, 2010, 2013, 2017; Furey, 2006). Although New Zealand’s 

temperate climate was unsuited for most of the tropical Polynesian crops, several were successfully 

transferred, as established in the archaeological and historical records, especially the hardy sweet 
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potato Ipomoea batatas (Barber, 2004; Furey, 2006; Leach, 1984). The horticultural model looks at 

the value of these crops to the Polynesian settlers, both as a food source and as a cultural or 

religious connection to their Polynesian homeland, within the unique environment of New Zealand 

(Barber, 2004). Northland is where the widest variety of Polynesian cultivars could be grown and 

where horticulture practices would climatically have been the easiest to establish (Barber, 2004; 

Furey, 2006; Sutton, 1994). For these reasons, this region may have been selected for occupation 

early in New Zealand’s settlement history.  

The Far North is an ideal location for further research to address the limited colonization data from 

the North Island and understand more about the possible role that climate had on settlement 

patterns, intensity and speed of landscape modification and subsistence practices. The challenge, 

as mentioned earlier, is that the Far North, like much of New Zealand, has experienced intensive 

historical landscape modification, which makes accurate chronologies and environmental 

reconstructions difficult to build. A viable option to achieve these goals is to use lake sediment 

records, like Newnham and others, to develop an age-depth model and an environmental history 

for the region. A robustly dated chronology from this area would increase the currently limited 

information about the timing of settlement and length of human impact to the environment. An 

environmental reconstruction of these sediment records could then be used to shed light on the 

speed and intensity with which the colonists modified the landscape in the Far North and compared 

to Newnham’s results from the Auckland region and the environmental histories of human impact 

from the South Island.  

 

2.2 Background of Horticultural Practices 
 
Horticulture is practiced throughout Polynesia, and tropical cultigens were brought with the 

settlers to New Zealand. As mentioned above, adherence to different subsistence practices may 

have impacted the selection of settlement locations upon arrival and possibly the pace of landscape 

modification. The warmest microclimate in New Zealand is found in the Far North, making this 

region the most attractive for growing tropical crops. To provide a background for how the 

landscape of this area might have been modified for horticultural practices the following section 

provides a brief overview of Polynesian horticultural methods, cultivars and some of the 

archaeological and historical records pertaining to horticultural practices in New Zealand. 

The entire Polynesian cultigen suite consisted of eleven tree and eight root crops. As the islands of 

the Pacific were colonized, some portion of these nineteen plants were transplanted and grown on 
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each island (Furey, 2006). Although New Zealand’s temperate climate was unsuited for many 

tropical crops such as breadfruit, several were successfully transferred. Six Polynesian cultivars, 

which are discussed later, are known to have been grown in New Zealand at the time of European 

arrival (Furey, 2006). Other plants were likely trialled upon arrival but abandoned as they failed in 

the temperate climate (Furey, 2006). 

Historical documents and collections of oral histories from the late 18thto the early 19th century, 

including reports from Cook’s expeditions, provide some clues to the range and intensity of 

horticulture in New Zealand at that time. European depictions of Maori horticulture were of neat, 

weed-free gardens. The components and layout of crop production were also described by several 

early explorers (Beaglehole, 1963; Best, 1925; Leach, 1976). Included in these are descriptions of 

the range of traditional horticultural practices and the considerable landscape modification needed 

to grow them (Best, 1925; Colenso, 1880; Furey, 2006; Leach, 1984). The scale of garden 

construction that was witnessed and identified in the archaeological record may have involved 

considerable human effort and landscape alteration. Borrow pits were sometimes dug to add 

gravels and sands to mulch or lighten the gardens soils (Anderson, 2016; Barber, 2004; Gumbley et 

al., 2004; McFadgen, 1980). Gumbley et al. (2004) have estimated that to prepare one hectare of 

land for gardening would involve digging, moving (in flax baskets), and spreading of 1300 m³ of 

sand and gravel. After the garden was established other elements such as stone mounding or walls 

may have also required construction (Leach, 1984). Some historical reports record soil mounding 

around sweet potatoes, (Beaglehole, 1963, 1968; Best, 1925; Leach, 2005) which is also evidenced 

in the archaeological record (Higham and Gumbley, 2001). Ample archaeological evidence exists to 

support the descriptions of garden constructions in the forms of stone structures, terraces, borrow 

pits and modified soils along with ditches and trenches. Examples of these structures and 

modifications have been recorded throughout the North Island as well as along the northern and 

east coasts of the South Island (Barber, 1989, 2004, 2010; Furey, 2006). The widespread distribution 

of seasonal storage pits to preserve tubers and seeds suggests that horticulture was important to 

the settlers of New Zealand across most of the land (Barber, 2004, 2010, 2013; Bassett et al., 2004; 

Leach, 1984).  

Maori horticultural practices were noted by Europeans in many parts of New Zealand but many of 

the accounts come from Northland. McNab (1914) observed ditch features near the North Cape, 

which have been interpreted to have been used for water carriage (Barber, 1989). Gourds, sweet 

potatoes, and other root crops, possibly yams, were described as being cultivated in Northland by 

members of the ship St. Jean Baptiste (De Surville, 1982). The landscape and climate of the Far 
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North have provided a suitable environment to grow many of the Polynesian plants and employ 

traditional cultivation practices.  

 

2.2.1 Horticultural Systems 
 

Three types of agricultural systems are recorded in Polynesia: arboriculture, permanent dryland 

systems, and wetland systems, which controlled water for taro cultivation (Kirch, 1994). Only the 

first two types were observed in New Zealand by early Europeans (Furey, 2006). The research of 

Barber and Horrocks (2005) on relic ditch systems on the Aupouri Peninsula suggests that wetland 

horticulture may have been practiced in this region as well (Barber, 1989, 2001; Horrocks and 

Barber, 2005; Horrocks et al., 2007; Jones, 1994).  

These various systems allow different types of land to be cultivated, which may increase yields and 

support intensification (Furey, 2006; Kirch, 1994; Ladefoged et al., 2009; Leach, 1976). There are 

advantages to both wetland and dryland horticulture depending on the environment provided by 

the island. Wetland systems allow for the use of fertile, already damp or swampy land to be utilized 

for the cultivation of wetland taro. The amount of effort needed to create wetland garden plots is 

initially quite high. However, once built these plots require minimal physical maintenance (Allen, 

1971; McCoy et al., 2013) to achieve wetland taro’s need for water reticulation to avoid rot in 

stagnant water (Allen, 1971). Yields from wetland fields are considered to be fairly reliable and in 

many parts of Polynesia this was a very successful horticultural technique (Kirch, 1994). The energy 

necessary to drain the land for dryland crops and maintain the plot would be considerably higher 

than wetland systems in many places (Vitousek et al., 2004) but does allow the use of more 

marginal land for production which can be important when socio-cultural or population demands 

in an area increase to the point that crop yields must also increase (Allen, 2004; Cauchois, 2002; 

Kirch, 1994; Stevenson et al., 2015). Dryland systems are ideal in areas that are naturally less 

swampy and for the growth of certain dry Polynesian cultivars like sweet potato, which require 

rainfall but will rot if the soil remains too damp (Furey, 2006). Light, well-draining soils have the 

disadvantage of also having lower fertility, which can affect growth rates and yields. This could be 

improved upon by burning the nearby forest, which would release phosphates, carbon and other 

nutrients into the soil (Elliot et al., 1997; Elliot et al., 1995; McWethy et al., 2010). However, these 

nutrients would quickly be depleted by the root crops and fallow periods as long as 25 years might 

have been required to improve the soil for productive gardening again in New Zealand’s temperate 

climate (Leach, 1984). 
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2.2.2 Polynesian Cultivars in New Zealand 
 

Horticulture in New Zealand was primarily built around the cultivation of Polynesian root crops 

(Jones, 1994). In addition to the root crops, Lagenaria siceraria  (bottle gourd) and two tree crops, 

Cordyline esculentum (tī pore) and Broussonetia papyrifera (paper mulberry) were successfully 

transferred (Barber, 2004). The bark of the paper mulberry tree was utilized only for textiles (Furey, 

2006). The taproot of tī pore was eaten as a carbohydrate but was only grown in Northland (Furey, 

2006). The fruit of young bottle gourd was eaten, and mature fruits were dried and used as 

containers. The root crops were grown primarily as carbohydrate sources and in some cases, the 

leafy parts of the plants were used for greens (Barber, 2004; Horrocks et al., 2004b).  

Of the three root crops, imported sweet potato was the most successful cultigen in New Zealand 

(Burtenshaw et al., 2003). Though not a dominant crop in the rest of Polynesia (Leach, 1984), sweet 

potatoes were the most important food plant in New Zealand because they had the greatest 

tolerance for the widest range of environmental conditions and matured sooner than the other 

root crops (Furey, 2006; Jones, 1994). Sweet potatoes require at least 50 cm of rainfall during the 

growth season (Burtenshaw et al., 2003) and are sensitive to hard frosts so soil temperature is 

important for propagation. Sweet potatoes prefer soils between 15-35°C and will fail in conditions 

below 10°C (Burtenshaw et al., 2003). The best yields are achieved in well aerated porous soils that 

drain easily, heat up early in the season and stay warm. Excess yields were placed in storehouses. 

Some sweet potato storage structures were above ground (whata or pataka) while others were 

semi-subterranean pits, which are seen in the archaeological record (Furey, 2006). The short 

growing period as well as the plant’s ability to tolerate dry, cool conditions allowed sweet potato 

to be grown from Northland to as far south as Banks Peninsula (Bassett et al., 2004; Leach, 1984). 

However, the plants do not flower in New Zealand’s climate, so cannot be identified in a pollen 

record (Harberle and Atkin, 2005; Horrocks et al., 2004a).  

Colocasia esculentum (taro) also made the transition from the tropics into New Zealand’s 

temperate climate. This plant was a staple crop throughout Polynesia and was grown both in 

dryland and wetland environments (Kirch, 1994). Taro requires more moisture and warmer 

weather than sweet potato and also reaches maturity slower (Furey, 2006). A minimum of 100mm 

of monthly rainfall and temperatures above 20°C are ideal for taro (Leach, 1979). Light alluvial soils 

near a water source are favourable to maintain soil moisture (Colenso, 1880:8). Provided these 

conditions are met, taro can be self-reliant and is found growing unattended in some swampy areas 

in New Zealand (Matthews, 1985). Unlike sweet potato, mature taro could either remain in the 

ground or survive stored in the open (Colenso, 1880:15) which made excess yields easier to 



[12] 
 

maintain but harder to see in the archaeological record. Taro’s environmental requirements for 

growth meant that the crop was probably not as successful in the cooler and drier regions of New 

Zealand. Early European reports record taro as having been grown extensively on the North Island 

(Colenso, 1880), most predominately on the northernmost half of the North Island to the northern 

end of the South Island (Leach, 1984; Matthews, 2014).  

The role of Dioscorea spp. (yam or uwhi) to the New Zealand settlers is not well understood. Yam 

was quickly replaced by the post-contact potato in the 19th century due to the new crop’s tolerance 

to a wider range of conditions and higher yields (Leach, 1984), which may be evidence of the 

difficulties in growing yam in New Zealand. Yams were cultivated for their starchy tubers but 

required roughly eight months to reach maturity (Leach, 1984). Yam prefers temperatures above 

20°C and rainfall in excess of 100mm a month during the growth season (Leach, 1979). Mature 

tubers could be stored for three to four months in warm conditions (Leach, 1984). Yams were 

documented as being grown only on the North Island (Furey, 2006). The microscopic remains of 

yam starch granules identified in soil samples from Motutangi on the Aupouri Peninsula (Horrocks 

and Barber, 2005) tie their cultivation to this area. 

In addition to the Polynesia crops relocated in New Zealand, three native plants, Cordyline australis 

(tī kōuka), Corynocarpus laevigatus (karaka) and bracken fern were cultivated or managed by the 

settlers as additional food sources. The lower stems and taproot of the tī kōuka tree were 

processed into a type of toffee (Anderson, 2018). Maori managed existing stands of karaka and 

trees were planted near some settlements for their edible fruit. The karaka fruit kernel was also 

eaten after thorough processing to remove toxins (Leach and Stowe, 2005; Maxwell et al., 2016). 

Bracken fern rhizomes were a carbohydrate staple for Maori (McGlone et al., 1994; McGlone et al., 

2005) and the growth of bracken fern was encouraged by recurrent burning the landscape 

(McGlone et al., 1994; McWethy et al., 2009). Bracken fern colonizes land quickly after forest 

clearance and can withstand repeated burning, although soil fertility and temperature determine 

rhizome starch quality. Consequently, food-quality bracken rhizomes were encouraged in more 

arable soils (McGlone et al., 2005). 

 

2.3 Archaeological History of Northland 
 

For the Polynesian settlers, Northland’s mild climate would have been the most suitable region in 

New Zealand to attempt to establish their crops (Davidson, 1982; Sutton, 1994; Walter et al., 2017). 

The relatively flat terrain, good harbors, and coastal fauna may have added to the appeal, as these 
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attributes were also valued by the European immigrants who opted to settle Northland first (King, 

2003). Continued land use and natural phenomenon may have destroyed some of the pre-contact 

archaeological evidence in Northland (Coster, 1989), however many sites and artefacts have been 

recorded in the region (Fig.1).  

A complex archaeological site located around the entrance to Houhora Harbour at Mount Camel 

(N3/59) is one of the most important sites in the Far North (Anderson and Wallace, 1993; Furey, 

2002). Occupation of the area was recorded by members of Cook’s ship Endeavour, among other 

explorers, who saw settlements and garden plots in this area (Beaglehole, 1955; Dieffenbach, 

1843). Early archaeological excavations at the site unearthed several artefacts that are stylistically 

similar to early East Polynesian assemblages (Anderson and Wallace, 1993; Furey, 2002). Midden 

contents from the site also contained remains of moa and other now-extinct animals (Anderson 

and Wallace, 1993). The artefacts and midden objects suggest that Houhora was occupied early in 

New Zealand settlement history (Furey, 2002). The first radiocarbon measurements from the site 

generally supported a late 13th to early 14th century occupation (Shawcross and Roe, 1966). More 

recent radiocarbon measurements on charcoal, shell, and fish bones from the site have reproduced 

similar ages for site habitation (Anderson and Wallace, 1993; Furey, 2002; Petchey, 2000). The 

dates measured on the original charcoal and moa bones recovered from Houhora are discussed in 

Chapter 5 more completely. Calibrations of these results with the 2013 Southern Hemisphere curve 

(Hogg et al., 2013) are also provided in that chapter and appendices. 

Early Maori artefacts and similar midden contents were also uncovered at the Twilight Beach site 

(N1&2/976) (Taylor, 1984), which may suggest that this site was contemporaneous with Houhora  

(Taylor, 1984). The site has a single 14C date obtained from a shell sample that returned a 13th 

century age (Coster, 1989), but it is unclear if a ΔR was applied to the measurement result. 

Excavation of sites at Tauroa Point (N5/301 and 302), located at the southern end of Aupouri 

Peninsula, also produced artefacts and radiocarbon ages from cultural layers indicating habitation 

of the area early in the settlement history of New Zealand. Radiocarbon dates from shell and more 

recently charcoal from these sites imply that occupation of the area occurred during the early 14th 

century (Allen, 2005, 2006; Phillipps et al., 2016).  

The investigation of relic ditch systems at Motutangi (N03/639), located roughly 5km from 

Houhora, suggest that horticulture was practiced in the warm, fertile soils near the harbour. 

Comparable systems from the base of the Aupouri Peninsula were characterized as 'ancient drains' 

when the area was drained for pastorium in the 1920s (Barber, 1989, 2001; Wilson, 1921). A debate 

followed as to whether the features were constructed to drain the land for eel and bird trapping or 
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for cultivation (Barber, 2001; Horrocks and Barber, 2005). The systems are extensive covering 

~100ha with the highest feature concentrations near the mouth of the Awanui river (Barber, 1989, 

2001; Horrocks and Barber, 2005). The movement of water through these linked ditches may have 

facilitated irrigation and provided drainage during flooding, (Barber, 2001) possibly allowing for 

mixed crop production with taro grown in the wetter areas and other crops grown on the drier 

edges (Barber, 1989, 2001). Microbotanical analysis of sediment sampled from the Motutangi ditch 

systems (E1613411 N6141980) produced xylem and starch granules from taro and yam that were 

possibly propagated by both wet and dry cultivation respectively (Horrocks and Barber, 2005; 

Horrocks et al., 2007). If used for wetland taro cultivation, these ditches are significant because 

they would represent a unique adaptation of tropical wet taro horticultural technologies at the 

coldest and southernmost borders of production (Barber, 2001; Jones, 1994). Radiocarbon 

measurement on likely, but not definitive, short-lived plant materials produced a ca. 16th century 

range for use of the Motutangi ditch system (Barber, 1989). Otherwise, these ditches are difficult 

to reliably date because of extreme mixing of sedimentary horizons from decades of intensive land 

use (Horrocks and Barber, 2005). 

Additionally, defensive Māori earthworks or pā sites (ca. 1500 AD to European settlement) 

(Schmidt, 1996) have been documented densely throughout Northland, sometimes associated with 

horticulture features or located near prime horticultural areas (Anderson, 2018; Davidson, 1982; 

Jones, 1994; Kirch, 1989). In the Far North, pā sites have also been recorded in the dune fields of 

the west coast sometimes near lakes. Also found among the west coast sand dunes on the Aupouri 

Peninsula are nearly continuous middens of various and unknown ages (Coster, 1989; Jones, 1994). 

The archaeological evidence of the Far North suggests that once the area was settled the land 

remained in use, but what is not as clear is when occupation first began or the duration of each 

occupation phase. 
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Figure 1. Map of select archaeological sites on the Aupouri Peninsula 

 

2.4 Natural vs Anthropogenic Signals in Sediment Records  
 

Though several archaeological sites have been identified in the Far North, directly dating these sites 

may not be the best way to determine when settlement occurred or for how long the landscape 

was used after construction. To identify initial human colonization of the region and create an 

accurate chronology for the pace and intensity of anthropogenic land use, lake sediments from the 

region provide an important research source alongside archaeology. Lakes are natural sediment 

traps that record both eroded and transported materials from the catchment from environmental 
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and anthropogenic drivers (Striewski et al., 2009). Lake sediment cores have been successfully used 

to create paleoenvironmental and time-depth models to establish human presence and land use 

to answer similar questions about the timing of human arrival and intensity of human impact in 

northern environments (Elliot et al., 1995; Horrocks et al., 2005; Newnham et al., 2018; Newnham 

et al., 1998a; Striewski et al., 2009). 

The main indicators of anthropogenic impact in sediment records are alterations of the pollen 

assemblages and charcoal abundance (McGlone and Wilmshurst, 1999). Due to the lack of specific 

anthropogenic markers, such as pollen from the Polynesian cultivars in New Zealand (McGlone and 

Wilmshurst, 1999), sediment research has become an important method for understanding  human 

impact of an area to develop erosion, fire, vegetation and environmental histories for the research 

sites (McGlone and Wilmshurst, 1999). The difficulty of these methods is being able to distinguish 

natural from human-driven phenomenon. Currently, the most accepted method for identifying 

human impact in sediment records is to determine when in time the intersection of several specific 

changes to the environment occurred. The first proxy for human impact is fire. 

Upon arrival, the Polynesian settlers burnt New Zealand’s thick forests to improve travel and 

hunting as well as clear land for settlements and horticulture and assist in the growth of bracken 

fern (McGlone, 1983; McWethy et al., 2010). Both natural and anthropogenic fires are identified 

by charcoal within sediment records. In New Zealand large magnitude natural fires are rarer in the 

moister climates of the western coasts of both the North and South Islands, however soil charcoal, 

which indicates reoccurring natural fires took place, is found throughout both of the main islands 

(McGlone et al., 1997; McWethy et al., 2014; Perry et al., 2012; Wilmshurst, 1997). Therefore, 

evidence of significant fire in thickly forested or wetter regions (precipitation >1000mm yr-1) is 

more likely human in origin (McGlone and Wilmshurst, 1999). Charcoal evidence of regularly 

reoccurring local fires is also probably anthropogenic (McGlone and Wilmshurst, 1999), and is 

commonly seen as evidence of anthropogenic land management. Local burn events can be 

identified in lake sediments by charcoal pieces >50 µm, which indicate that fire occurred near the 

catchment. Smaller charcoal fragments may represent regional fires (Clark and Royall, 1995). 

Human land management is generally identified by a sweeping change in the charcoal abundance 

with evidence of continued local burn events (McGlone and Wilmshurst, 1999; McWethy et al., 

2014; Perry et al., 2012). 

In addition to the charcoal records, several native plants in New Zealand appear to re-establish 

quickly after burn events. The frequency of burn events can be seen in the pollen record by a 

continued representation of palynomorphs from plants that re-populate rapidly after fire such as 
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bracken fern, shrubs, and grasses in lieu of pollen from tall tree taxa (McGlone and Wilmshurst, 

1999). Increases of bracken fern spores, in particular, have been used in many research projects to 

identify human impact because of the added subsistence benefit this plant provided (McWethy et 

al., 2014; Sutton et al., 2008).  

The third line of evidence used to determine natural vs. anthropogenic impact is the sediment itself. 

Changes in the climate or vegetation around the lake may increase or limit the severity of soil 

erosion in the catchment (McGlone and Wilmshurst, 1999). Anthropogenic alteration such as forest 

burning also removes vegetation from an area and increases soil mobility (McGlone, 1989). All of 

these events may produce increased deposition of catchment soils in lake sediments along with 

changes in the texture, grain size and the geochemistry of the sediment (Elliot et al., 1997; Elliot et 

al., 1995; Striewski et al., 2009). 

To avoid misidentification of the driver of landscape change these three proxies are often used 

jointly to differentiate human from natural environmental alteration. A decline in tall tree pollen in 

tandem with a rise in bracken fern spores and charcoal that persists through the core along with 

an increase in sediment deposition is used to mark the onset of human settlement and land use of 

an area (McGlone, 1983; McGlone, 1989; Newnham et al., 1998a). Collectively these proxies can 

then be modelled into a 14C chronology to establish environmental and vegetative histories for an 

area and determine the time-scale of human arrival and land use for the area.  

The disadvantages of these techniques are that they are time-consuming and require palynological 

expertise. Pollen and charcoal records derived from lake sediments also represent regional as well 

as site-specific information, which can make it hard to differentiate between signals of local and 

regional change. Additionally, lake systems can be subject to in-washing of both younger or older 

carbon than sediment deposition, impacting the usefulness of the sediment to build accurate age-

depth models. Open lake systems specifically can suffer from material additions from fluvial 

sources (Howarth et al., 2013; Kilian et al., 2002). However, this issue could be avoided by selecting 

closed lake systems which should not experience this problem (Chester and Prior, 2004). Analytical 

techniques that require minimal material and treatment, produce results quickly, and are site-

specific would be beneficial for research in the biological, anthropological and environmental 

sciences.  

This research project is focused on developing a settlement and land use history for the Far North 

region. The timing of human settlement, the speed, and intensity of landscape modification post-

human arrival and the possible subsistence methods that were employed will be investigated.  A 

high-resolution 14C chronology will be built which incorporates the established methods of 
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identifying human impact and land use in sediment records. A multi-proxy approach will be 

undertaken to increase the resolution of the regional signal from pollen and charcoal records to a 

local signal by isotopic and geochemical measurement. To utilize the existing archaeological 

knowledge from the Far North but avoid some of the issues associated with modern alteration of 

the landscape, lake sediments near recorded archaeological sites will be studied. The chronology 

will be used firstly to provide a reliable date for human arrival in the Far North and secondly to 

determine the lengths of catchment specific events observed in the organic and geochemical proxy 

datasets. The dearth of well-dated records of Polynesian landscape modification and the potential 

variability between northern and southern records highlights the need for further work in the 

north.   

 

2.5 Research Questions 
 

The aim of the research is to use lacustrine sediment records to determine the timing of Polynesian 

settlement in the Far North to establish the timing and pace anthropogenic landscape modification 

in a lacustrine environment. 

To address this aim, I will specifically ask: 

-Which organic materials from a lacustrine system will provide the most robust 14C dates 

to build a reliable age-depth model to determine the timing of human settlement for the 

region? 

-When did Polynesian colonization of the Far North occur? 

-Can the intensity of Polynesian settlement and duration of land use be identified in lake 

sediments by looking at the isotopic and geochemical signals from these catchments? 

In order to answer these questions, I will combine high-resolution radiocarbon chronologies with 

geochemical and isotopic proxies to determine the timing and intensity of local changes that 

occurred to the environment, compared to the regional records created by charcoal and pollen 

histories.  



[19] 
 

3. Study Area 
 

3.1 Physical Environment and Climate of Northland 
 

Northland is the northernmost region in New Zealand sitting between latitudes 34-36°South. The 

region is a peninsula roughly 300km long and 100km wide at its maximum with topographic relief 

ranging from sea level up to >600m above sea level (a.s.l.) within the volcanic ranges (Newnham, 

1999) (Fig 2). Northland was not glaciated which allowed some soils to develop in the warm and 

humid climate since the Miocene, however, some soils have also been leached by heavy rain which 

created thin topsoils (Newnham, 1999). 

Summers in the Northland region are warm and humid, and the winters are mild. The region is 

affected more so than the rest of New Zealand by the subtropical high-pressure belt (Chappel, 

2013). Northland’s climate is also moderated by the ocean so few temperature extremes are seen 

(Newnham, 1999). Only a few light frosts are typically recorded each year and are generally not 

strong enough to affect vegetation (Newnham, 1999). 

 

Figure 2. Geological map of the Far North District with placement of study lakes 
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The endemic vegetation of Northland during the Holocene consisted mainly of a dense podocarp 

forest. Agathis australis (kauri) dominated some areas, while steeper sections developed conifer 

forests and the lower and more fertile slopes contained more angiosperm vegetation such as 

Beilschmiedia tarairi (taraire). Swamp forests with Dacrycarpus dacrydioides (kahikatea) were 

common in moister areas and within alluvial floodplains. However, by European colonization, much 

of the lower elevations were occupied by Leptospermum scoparium (manuka) and bracken fern 

(Horrocks et al., 2007; Newnham, 1999) both of which regenerate quickly on cleared land (McGlone 

and Wilmshurst, 1999). Modern land use and pastoralism have currently limited forests mainly to 

steeper areas in Northland (Newnham, 1999). 

 

3.2 Description of Study Area 
 

For this study, lacustrine systems located on the Aupouri Peninsula in the Far North District of 

Northland (Fig. 2) were targeted. The Aupouri Peninsula is a narrow sand tombolo formed by 

several rock outcrops and connected to the mainland by Pleistocene and Holocene sands (Furey, 

2002). The peninsula has low elevation and is only 10-60km wide. Situated on the west side of the 

peninsula at 35°S, only a few kilometres inland from the sea, Lakes Ngatu and Rotoroa were 

selected for the research project.  

The area around the lakes can experience quite strong winds, primarily in exposed coastal areas, 

often associated with tropical storms. However, sunshine hours are also relatively high with parts 

of the Aupouri Peninsula getting over 2100 hours annually (Chappel, 2013). Likewise, the study area 

receives ample rainfall with 30-40% of the rain falling between June to August and a median of 

1200mm rainfall per year (Chappel, 2013). Air temperatures recorded at Kaitaia Observatory 

ranged annually from the low single digits to the upper 20s degrees Celsius. Soil temperatures 

recorded at 9 am at 10cm depth varied from 10°-21°C annually. Ground frosts are very rare within 

the study area (Chappel, 2013).  

Lakes Ngatu and Rotoroa are freshwater dune lakes located about 20km north of Kaitaia. Lake 

Ngatu sits at an elevation of about 32m a.s.l. and has a catchment size of roughly 1.73km2 with the 

surrounding catchment ranging from 32m to greater than 80m a.s.l. Lake Rotoroa sits at 

approximately 28m a.s.l. with a steeper catchment of 1.15km2 (Fig.3). The surrounding landscape 

ranges from 50-60m a.s.l. and includes a small pā (N04/7) recorded on a hill on the southwestern 

shore, overlooking the lake. 
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Figure 3. Basic elevation and catchment map for Lakes Ngatu and Rotoroa 

 

3.3 Geology and Vegetation of Study Area 
 

The soils surrounding Lake Ngatu and Lake Rotoroa are categorized as part of the Parabolic Dune 

sequence in the Karioitahi soil group (Isaac, 1996). The 1996 QMAP shows Lake Ngatu’s catchment 

composed entirely within the soil category of Early Quaternary dunes (eQd), which is described as 

uncemented to weakly cemented or partly consolidated sand that could include muds, peats, and 

clay-rich sandy soils. Lake Rotoroa is also mapped within this soil unit along with a short section 

mapped in Late Quaternary dune (lQd) soil along the western shore. lQd is termed loose to poorly 

consolidated sand with possible additions of mud and peat from swamp or lake deposits (Isaac, 

1996). The right third of Figure 2 shows the geological catchment soils of the lakes. 

Prior to settlement, a mixed coastal broadleaf forest grew in the study area. The forest consisted 

of angiosperm and podocarp trees such as rimu (Dacrydium cupressium), kauri (Agathis australis) 

and beech (Nothofagus) amongst others (Horrocks et al., 2007; Newnham et al., 2004; Maxwell, 

2017 personal communication). Kauri tree remnants can still be found submerged in Lake Rotoroa. 

Grasses and ferns increased after settlement due to burning. Manuka and bracken fern scrub 

dominated the low-lying areas in the early 1800s when initial European settlement began (Elliot et 

al., 1997). Today the area around the lakes primarily supports shrubs such as manuka and exotic 

European species along with many wetland plants. 
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3.4 Archaeology Recorded in the Study Area 
  

There are many archaeological sites currently recorded within a few kilometre radius of Lakes 

Ngatu and Rotoroa. Sites were located using ArchSite, a GIS-based inventory of the New Zealand 

Archaeological Association (NZAA) Site Recording Scheme. The number and type of sites catalogued 

excludes historical sites and is based solely on what was available in the ArchSite record system 

and will not represent unreported or undiscovered archaeological sites at the time of publication. 

Particularly in the case of these lakes, archaeological data may have been lost either to 

environmental or historical modification of the environment (Allen, 2006; Coster, 1989; Horrocks 

and Barber, 2005). The types of sites recorded in the vicinity of the lakes can be broken broadly 

into four groups. The first are middens and ovens, the second is taro, the third are pits and terraces 

and lastly, the fourth is pā. Additionally, an extensive ditch system is recorded within a few 

kilometres of the lakes. 

Clustered along the coast, west of Lake Rotoroa, many midden and, oven sites have been 

documented, suggesting this stretch of coast was popularly used to process marine foods. Curiously 

though, there are no midden sites listed as located along the coast north of Lake Rotoroa. A few 

other middens were also distributed inland north of Lake Ngatu (Fig. 4). Though none of the midden 

or oven sites near the lakes have been dated or appear to have contained items that could be linked 

back to a specific period, the evidence indicates that the colonists were utilizing aquatic protein in 

their diets and processing this food locally either at a certain point or through time. 

In addition to the evidence that marine sourced foods were utilized by the colonists, the ditch 

system recorded to the northeast of the lakes (N04/237) and the three separate taro plant records 

(O04/455-7), also imply that horticultural practices were regionally employed. The taro plants were 

growing at the time of recording and could be relics of historic plantings (Matthews, 2014). Many 

of the pits and terraces documented near the lakes may also support the view that horticulture 

was practiced in the area. The pits were likely used to store surplus harvests (Best, 1916) and the 

terraces possibly to grow crops upon. Some of these features are also associated with pā sites. 

Many of the pā near the lakes have limited information recorded about them, making it difficult to 

assign them to a specific time period, however, a few of the pā (O04/198, 207 and 549) were noted 

as being large and well-fortified, sometimes including structures and pits within their boundaries. 

Sites O04/516 and 517 consist of pits and terraces located outside of the pā proper but appear 

associated with a pā. The pits and terraces recorded at site O04/198, which cover an extensive area 

of ~1000m2, are recorded as belonging with pā O04/198, though these features are a short distance 

from the limits of the pā. O04/486 was recorded as a large pā with a historic European grave and 
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associated orchard nearby as well as a taro plant (O04/455). These four pā and related features 

could suggest that they are somewhat younger than some of the other smaller, less fortified pā 

recorded in the area and were constructed for defensive purposes for a larger group of people. 

Additionally, as previously mentioned, along the southwestern shore of Lake Rotoroa a pā was 

recorded (N04/7) (Fig.4). 

 

Figure 4. Archaeological sites recorded at the time of this study in the vicinity of the Lakes Ngatu and Rotoroa 

 

This pā is possibly even younger in construction, or re-purposed, as the site records suggest that 

this pā might contain ‘musket features’. This implies that the pā was a functioning site after 

European contact. A copy of the site form for N04/7 is available in the appendices.  Comparatively, 

pā sites O04/992, 988 and 632 are recorded as being located near garden systems in the area but 

are not described as large or heavily fortified. O04/489 is listed as a small swamp pā with pits, which 

may have been used by a small group of people (Jones, 1994). The remaining pā recorded in the 
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area (O04/460, 485, 134, 135, 515, 520) have site forms that contain very limited information but 

are frequently described as having been already modified or partly destroyed when documented. 

These pā are recorded as being built prior to 1769 AD, but it is difficult to say how or when they 

were used since the sites may simply not have been built as large defensive structures or that 

portions of the sites have been destroyed over time. 

However, these sites (Fig.4) imply that the landscape was utilized for a variety of purposes through 

time. Archaeological evidence (Anderson and Wallace, 1993; Furey, 2002; Petchey, 2000) from 

Houhora suggests that the Far North was occupied early in the settlement history of New Zealand 

and the pā and other archaeological features recorded in the vicinity of the lakes indicate that area 

was not only utilized during the early years of settlement but that human occupation and land use 

continued through time.  
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4. Radiocarbon Materials Experiment 
 

4.1 Introduction 
 

To obtain an accurate age range for initial human impact in the Far North and develop a precise 

chronology of anthropogenic land use for the area, the materials selected to build the age-depth 

model must precisely represent sediment deposition. Before samples were selected to construct 

the age-depth model, a dating experiment was undertaken to ensure that the most robust 

materials were later chosen for radiocarbon measurement. The background for and design of the 

experiment is presented in section 4.2. The methods used to prepare materials for the investigation 

are explained in section 4.3. The results from the test are provided in section 4.4 with 

interpretations of the outcomes following in section 4.5. A brief summary of the experiment in 

section 4.6 advises how the results impacted sample selection for construction of the age-depth 

model. 

 

4.2. Background to the Experiment 
 

A common technique for constructing age-depth models in lacustrine environments involves the 

radiocarbon measurement of organic materials preserved throughout lake sediment cores 

(McWethy et al., 2014; Meyers and Lallier-Vergès, 1999; Newnham et al., 2004). Radiocarbon was 

selected to build the catchment chronologies for the Lake Ngatu and Rotoroa sediment cores 

because they were expected to contain organic materials and sediment deposition should be in 

stratigraphic order. Lastly, high-resolution radiocarbon measurement combined with age-depth 

modelling generally provides results with greater precision than many other chrono-methods 

through the last 1000 years, which is the time depth of the research question. 

Short-lived terrestrial plant macrofossils are considered ideal targets for radiocarbon measurement 

to develop age-depth models in lacustrine environments (Howarth et al., 2013; Turney et al., 2000). 

These materials should produce reliable 14C ages for sediment deposition because they originate 

from outside of the lake and are fragile, thus lowering the probability of their being reworked from 

catchment soils into lake basins (Birks, 2001) or having reservoir ages like aquatic plants (Turney et 

al., 2000). 14C ages from discrete macrofossils can also yield tightly defined dates unlike bulk 

sediment, which contains a mixture of organic content (Vandergoes and Prior, 2003). Leaf and twig 

macrofossils also represent a short lifespan, unlike larger pieces of wood or charcoal which may 
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suffer from inbuilt age (Gavin, 2001; Wilmshurst et al., 2011). Though macrofossils can provide 

useful results they can be quite rare, and some lake sediments lack enough of these materials to 

build high-resolution chronologies (Kilian et al., 2002; Li et al., 2014). When the quantity of dating 

targets required to build a high-resolution age-depth model is not matched in number by identified 

macrofossils other reliable dating materials must be sought. 

Pollen concentrated from lake sediments can be radiocarbon dated to assist in building an age-

depth model when macrofossils are limited (Chester and Prior, 2004; Howarth et al., 2013; Moy et 

al., 2011; Newnham et al., 2007). Pollen is considered a reliable dating material because it generally 

originates from terrestrial sources and settles into the lake sediment with regularity through 

constant pollen rain, making pollen fairly abundant in lake sediments even when macrofossils are 

scarce (Vandergoes and Prior, 2003). Previous research has found that ages obtained from well-

purified pollen concentrates were concurrent with lake sedimentation (Brown et al., 1989; 

Vandergoes et al., 2005; Vandergoes and Prior, 2003). An additional benefit of using pollen 

concentrates to develop the age model is that pollen and charcoal have traditionally been used to 

reconstruct regional vegetation and fire histories from lake sediments (Chester and Prior, 2004; 

Newnham et al., 1998a; Vandergoes et al., 2005). Transitions of these materials may denote 

environmental shifts or human modification associated with additions of exotic taxa or forest 

clearance (McGlone et al., 1994; McGlone and Wilmshurst, 1999; McWethy et al., 2010; 

Wilmshurst, 1997). Utilizing palynological concentrates as dating targets allow for a direct match 

between the material used for dating and the interpreted environmental events (Chester and Prior, 

2004). Pollen, however, can suffer from re-working; particularly in lake systems, by transportation 

of catchment soils yielding potentially older ages than actual sediment deposition (Kilian et al., 

2002; Mensing and Southon, 1999). Fluvial processes have been proposed as the main mechanism 

for fossil pollen to enter a lake basin (Mensing and Southon, 1999). Pollen concentrate dates from 

lakes with fluvial systems have produced ages that are consistently older than expected compared 

to independent age markers (Howarth et al., 2013; Kilian et al., 2002). Sediments from closed lake 

systems should not suffer from this type of re-working and pollen concentrates measured from 

closed lakes have overall produced reliable 14C ages (Chester and Prior, 2004). However, 

anthropogenic drivers could initiate soil movement or erosion in closed lake basins (McGlone and 

Wilmshurst, 1999). Currently no research has investigated the specific effect of human-instigated 

erosion on the 14C content of pollen in closed lake systems. 
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4.2.1 Experimental Design and Pollen Records 
 

The sediment cores obtained from Lakes Ngatu and Rotoroa did not contain a great number of 

identifiable terrestrial macrofossils through all depths. However, pollen concentrates could be 

produced at regular intervals to provide more continuous data for construction of the age-depth 

model. Since Lakes Ngatu and Rotoroa are not impacted by fluvial systems, these lakes should 

provide good testing grounds to determine if anthropogenic landscape modification of the 

catchments eroded fossil pollen into the lake basins. If this proved to be the case, then pollen 

concentrates, at least after human impact, would produce inaccurate ages and should not be used 

to build the model. 

 
Palynomorph and charcoal analysis are the traditional methods for determining anthropomorphic 

alteration of the landscape and environmental change (McWethy et al., 2014). These records were 

created and used to identify pre- and post-initial human modification depths in the lake sediments 

for sample selection for the dating experiment. This analysis was performed by Dr. Justin Maxwell 

(University of Otago and International Archaeology LLC) as part of the larger project with the full 

results of those analyses to be published separately. Figure 5 provides abridged pollen and charcoal 

records for the lakes. The pollen analysis is presented as concentration data.  Values on the x-axis 

for key taxa are presented as the number of grains per cubic centimetre. Human arrival was 

identified at approximately 27cm depth in Lake Ngatu and 38cm in Lake Rotoroa (Fig. 5). 
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Figure 5. Simplified pollen, spore and charcoal identification for the 2017 Lakes Ngatu and Rotoroa sediment 
cores (unpublished data supplied by J. Maxwell). Tall and small tree pollen is represented entirely by New 
Zealand indigenous taxa. X axes are pollen concentration values. 

 

For the test, both identifiable terrestrial macrofossils were radiocarbon dated along with 

concentrated pollen from the same depth. Sample sets were obtained from both above and below 

sediment markers of initial human alteration of the landscape in both lakes (see section 2.4 for a 

discussion of how human impact is identified in sediment records). Six sample sets in total were 

selected, three from each lake and at least one sample from above and one from below human 

impact in each lake. Samples from before initial human impact will henceforth be called ‘pre-

impact’ and samples isolated after initial human impact will be called ‘post-impact’ throughout the 

rest of the thesis.  

Additionally, the purity of the pollen concentrate was judged, allowing the contamination within 

the pollen concentrate to be corrected for. Isolating pollen away from extraneous substances 

within the sediment for measurement can be challenging and very time-consuming. Lithic, algae 

and fine cellular plant materials are also present in the sediment but can be separated from 

palynomorph grains through multiple sieving and density separation steps. Provided that the 

abundance of pollen is not too low, it is possible to produce a concentrate that is ≥ 80% 

palynomorph with enough mass for measurement by accelerator mass spectrometer (AMS) from 

½ cm (~2g) of cored sediment. 
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 The purity of the pollen concentrate is important because it may affect the accuracy of 

measurement. Prior research indicates that pollen concentrates containing larger amounts of 

contaminating material produce ages which are older than deposition (Chester and Prior, 2004; 

Kilian et al., 2002). The incorporation of algae and other aquatic materials is of particular concern 

because these organisms photosynthesize sub-aqueously and may be depleted in 14C (MacDonald 

et al., 1987; Vandergoes and Prior, 2003). Cellular material observed in the final measurement 

concentrations could also derive from aquatic sources and suffer from similar 14C depletion. Since 

the residual contaminate materials might impact the 14C age of the concentrates, great care was 

taken to produce pollen concentrates with the highest ratio of pollen possible. However, to be able 

to distinguish between the effects of the included contaminating materials in the pollen 

concentrates from the possible effects from human modification of the environment, algae and 

cellular materials from matching depths were also concentrated and measured. 

Measurement of the contaminating fractions allowed for a mixing model to be built that could then 

provide age ranges for the pollen concentrates without the 14C activities of the contaminates 

included. Separating the contamination values from the pollen helps to distinguish not only how 

the incorporation of these materials affected the 14C age of the concentrated pollen but also if 

reworked pollen was entering the lake basin either before or after human impact. 

 

4.3 Methods 
 

4.3.1 Fieldwork and Core Recovery 
 

Coring was undertaken at Lakes Ngatu and Rotoroa in March 2016 with a modified Livingston corer 

operated from an inflatable cataraft equipped with a small working platform. The depocentres of 

the lakes were cored to avoid the effects of wind-induced mixing of the sediment-water interface. 

Coring pipe was percussion-pounded into the lake sediment until no more depth could be achieved, 

with one complete core obtained per lake. PVC pipe 3m long and 70mm in diameter was used for 

coring and the core total length ranged from 3m to 5m. An overlap of ½ metre depth was taken 

when a second 3m length of core was needed for comparative and continuous records. Gravity 

cores were also taken from each lake in May 2017 to a depth of 60cm to accurately preserve the 

sediment-water interface. 
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The 2016 cores were cut into 1 ½ m sections and housed in refrigerated storage at the University 

of Otago, Dunedin and GNS Science, Avalon. One gram of sediment was sampled at 1 cm 

increments throughout the lake cores for pollen and charcoal analysis.  

 

4.3.2. Core Sampling and Sample Preparation for 14C Dating 
 

After splitting and imaging, the cores were sampled continuously at ½ cm and one cm resolution 

for Lake Ngatu and Rotoroa respectively. Approximately 2-3mm of sediment that was in contact 

with the coring pipe was removed and discarded to eliminate the chances of contamination by 

vertical travel. Each sampled depth (n=>500) was sieved to 90µm and a small number of terrestrial 

macrofossils were isolated. Of these, six were selected, three from each lake at varying depths, for 

the experiment. Processing of paired pollen, algae, and cellular concentrates began after the six 

macrofossils were selected for dating.  

 

4.3.3 Macrofossil Pre-treatment 
 

Isolated terrestrial macrofossils were prepared for 14C dating by mechanically cleaning the sample 

followed by the standard Rafter Radiocarbon Lab protocol for acid-alkali-acid (A-A-A) treatment. 

This treatment removes calcium carbonate, humic and other mobile carbon contaminants from the 

macrofossil. The last acid step breaks any bonds the sample has created with atmospheric CO2 

during the alkali step. Chemical treatment was individualized for each sample based on fragility and 

sample mass by adjusting the molarity, temperature or length of treatment to avoid sample mass 

loss.  

 

4.3.4 Microbotanic Concentration 
 

Pollen concentrates were created using a modified method developed by Newnham et al. (2007) 

and Howarth et al. (2013). Pollen was isolated using a combination of sieving and density separation 

with sodium polytungstate (SPT) along with chemical treatment to remove organic and inorganic 

contaminants (Fig. 6). During each sieving and density separation step both the greater and less 

than sample fractions were checked under magnification for pollen abundance. All samples 

underwent identical treatment up to density separation at 1.3 ≥ X ≥1.17 specific gravity (s.g.). At 

this step, each sample was individually checked for sample mass and pollen abundance. Further 
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separation at decreasing densities and/or oxidation was performed if sample mass allowed with 

the aim of preparing concentrates with higher ratios of pollen relative to non-pollen materials. Final 

pollen concentration was calculated individually for each sample before measurement. A slide was 

made from a subsample of the final fraction and concentration was determined by counting grains 

of pollen, cellular, algae, and other materials to 300 particles under magnification along a transect 

on that slide. 

 

Figure 6. Flow diagram describing concentration of pollen. Method modified from Howarth et al. (2013). 

 

Algae concentrates were created from the 1.8 > X > 1.4s.g. sample fractions. Further sieving and 

hand picking with tweezers were often required to remove larger cellular materials. Palynomorphs 

had already been removed from this fraction during pollen concentration. The concentrated algae 

had undergone chemical treatment during pollen concentration so an additional acid wash to 

remove any physically introduced contaminates was the only chemical treatment required. The 

algae Botryococcus braunii dominated the two lakes and composed the bulk of the concentrated 

algae for measurement. Botryococcus grows as a colony and has a flexible structure which can 

make microscopic counting for concentration percentage difficult. However, the percentage of 

isolated algae was in all cases >95% in each algal concentrate. 
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Cellular concentrates came from sample materials that were >90µm. This sample fraction was often 

contaminated with algae, so further sieving and hand picking was required. Cellular concentrates 

were a mixture of thin, translucent cellular sheets, seed fragments, and casing along with small 

flakes of unidentified organic detritus. These materials had not yet received chemical treatment so 

cellular concentrates underwent A-A-A treatment to remove environmental contamination. 

Cellular concentrates were well sieved and picked through so concentrations were quite pure, 

ranging from >95-100% (Fig. 7).  

 

Figure 7. Images of final pollen, algae, and cellular material concentrates  

 

4.3.5 CO2 Extraction, Graphitization, Measurement and Calibration  
 

Samples prepared for 14C measurement were loaded into quartz tubes and carbon dioxide was 

generated by sealed tube combustion and converted to graphite by reduction with hydrogen over 

an iron catalyst (Turnbull et al., 2015). δ 13C was measured offline on samples with sufficient mass 

using a continuous flow isotope-ratio mass spectrometer (EA-IRMS) in the Stable Isotope 

Laboratory at GNS Science. Radiocarbon dating was performed at Rafter Radiocarbon Laboratory, 

GNS Science on the 0.5 MV XCAMS AMS. Results were produced using the measurement of all three 

carbon isotopes provided by XCAMS which corrects for any mass-dependent fractionation that may 

have occurred before or during measurement (Zondervan et al., 2015). Results were normalized 

against the NIST standard Oxalic Acid I. Blank correction was applied to the results using a process 

blank target of matching mass which was included in measurement with the experimental samples 

and normalized to δ13C of -25‰ (Donahue et al., 1990). Radiocarbon results are reported as 14C 

ages (yr BP) with a 1-sigma error. Samples were calibrated using OxCal calibration program version 

4.3 with the SHCal13 calibration curve (Bronk Ramsey, 2008; Hogg et al., 2013).  
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4.3.6 14C Correction for Pollen Concentrates 
 

For the purposes of the experiment, the conventional radiocarbon age (CRA) of all six pollen 

concentrates were corrected with the formula below. This was used to remove the 14C activities of 

the contaminating materials from that of the pollen, which then supplied a 14C age for each pollen 

concentrate as if the sample were pure pollen. 

(𝑃஼ோ஺ − 𝐴஼ோ஺ × 𝐴% − 𝐶𝑀஼ோ஺ × 𝐶𝑀%) ÷ 𝑃% = 100%𝑃஼ோ஺  

In this formula, ‘P’ stands for pollen, ‘A’ for algae and ‘CM’ for cellular material. ‘CRA’ represents 

the measured CRA of each fraction. ‘%’ values stand for the percent of each material type in a single 

pollen concentration. The calibrated age ranges subsequently produced from this model can be 

seen in Figure 8. 

 

4.3.7 Chi-Squared and Pseudo-Bayesian Tests 
 

The age distribution for the different target fractions was compared with that of the macrofossil 

for the same depth horizon using the combine function in OxCal. The combine function performs a 

two-phase test, first, a chi-squared test is performed which tests the statistical difference between 

the age probability density functions (PDFs). Secondly, a pseudo-Bayesian test provides an 

agreement index which is a measure of how much the two age distributions agree (Bronk Ramsey, 

1995). The agreement index is tested by comparison to the critical value which is produced by using 

the formula, 1/√(2n) (Table 2).  

 

4.4 Results 
 

In both lakes, the results from below initial human impact were distinctly different from the 

samples isolated above human modification. Pre-impact pollen concentrates all returned 

calibrated age ranges that were close to or statistically contemporaneous in age with the associated 

macrofossil. In comparison, pollen concentrates isolated after human impact returned ages that 

were hundreds to a thousand years older than the associated macrofossil.  The 14C results for the 

six sample sets are provided in Table 1 along with the percentage counts of pollen, algae and 

cellular materials for each sample.  
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The algae and cellular concentrates for all samples returned, to varying degrees, 14C ages that were 

older than the macrofossils, showing that these materials are partly 14C depleted. Therefore, the 
14C values of the pollen concentrates were influenced by the radiocarbon ages of these 

contaminating materials. A mixing model was used to understand how the inclusion of algae and 

cellular materials affected the14C ages of the pollen concentrates and how the corrected pollen 

concentrate calibrated ages would appear compared to the macrofossil without these effects. 
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Table 1. Radiocarbon results, calibrated age ranges, and microbotanical concentrations.       
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4.4.1 Mixing Model 
 

Two distinct patterns appear again following correction in samples sets before and after initial 

human impact. The calibrated age ranges of the corrected pre-impact pollen concentrates from 

Rotoroa both shift slightly more towards those of the terrestrial macrofossils, while the 43.5cm 

sample from Ngatu remains statistically unchanged by correction. In comparison, the corrected 14C 

age distributions for all corrected post-impact pollen concentrates moved further away from those 

of the matching macrofossils by thousands of years (Fig. 8). 

A. Ngatu 5.5cm, B. Ngatu 10 and 9.5-10cm, C. Ngatu 43.5cm, D. Rotoroa 27,28 and 26-29cm, E. Rotoroa 
48cm, F. Rotoroa 59 and 59.5cm. Images created with OxCal V4.32 Bronk Ramsey (2017); r:5 SHCal13 
atmospheric curve (Hogg et al., 2013). 

 

 

 

Figure 8. Calibration plots for all sample sets- before and after correction 
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All three pre-impact corrected pollen samples were tested using the combine function in OxCal. 

The results of the chi-squared test and agreement index produced from this function show that 

after correction for contamination the PDFs of the pollen concentrates from the samples at Lake 

Ngatu 43.5cm and Lake Rotoroa 48cm produced a statistical overlap with their respective 

macrofossils (see T and A values in Table 2). The results of the test for the sample from 59cm in 

Lake Rotoroa shows that there is a statistical difference the age distributions. These tests were not 

undertaken on corrected post-impact samples because the calibrated ranges did not show any 

statistical overlap to evaluate. 

 

Table 2. Results of the combine function test in OxCal showing the statistical fit between corrected pre-
impact pollen concentrates and their matching macrofossils. 

  

 

4.5 Interpretation of Results 
 

4.5.1 Comparison of Macrofossil and Measured Pollen Concentrate Results 
 

The calibrated age ranges for all six of the macrofossils measured are stratigraphically consistent 

with each other and fit within the consensus New Zealand settlement chronology, with an 

approximate 1300 AD settlement date (Anderson, 2002; Wilmshurst et al., 2008; Wilmshurst et al., 

2011). This suggests that the macrofossils did not suffer from any serious reworking and that these 

materials should produce accurate ages for sediment deposition for the chronology and can be 

used to analyse the pollen concentrates measured at depths matching them.  

Palynomorph concentrates isolated from before human impact returned calibrated age ranges 

within (Ngatu 43.5cm) or near to those of the associated macrofossils and also fit the consensus 

chronology. However, the three pollen samples created from post-impact sediments were 

significantly older than the paired macrofossils. The two post-impact pollen concentrates isolated 

from Lake Ngatu were hundreds to a thousand years older than the matching macrofossils with 

calibrated age ranges spanning from the earliest timeframe of expected settlement of New Zealand 

to several hundreds of years before settlement is considered to have occurred. The age ranges of 

Lake depth 
(cm)

Corrected 
CRA

X2 test T 
value

T critical 
value

A combined 
value

A critical 
value

Calibrated ranges (BC) at 2 sigma 

Ngatu 43.5 3505 ± 21 2.061 3.841 61.10% 50% 1880 to 1685 (95.4%)
Rotoroa 48 2319 ± 21 1.557 3.841 81.80% 50% 392-350 (43%), 300-23 (52.4%)
Rotoroa 59 2424 ± 21 14.258 3.841 7.40% 50% 464-459 (0.6%), 454-447 (0.9%), (428-392 (93.9%)

degrees of freedom=1
alpha level =0.5%
CRA error= 1 sigma
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these two post-impact pollen samples, even without the macrofossil date to compare to, are 

noticeability off-target. The calibrated age ranges of these samples fall nearer to those expected 

from pre-impact depths rather than post-impact.   

However, this was not the case for the post-impact pollen concentrate isolated from Lake Rotoroa. 

This sample also returned an age that was a few hundred years older than the associated 

macrofossil, but for this sample, the calibrated age ranges fall within the consensus age range for 

human settlement of New Zealand. This suggests that radiocarbon dates on post-impact pollen in 

Lake Rotoroa could produce ages that are older than deposition, but not so substantially that the 

erroneous ages would be obvious without other lines of evidence to support or reject the 

palynomorph age. This implies that pollen concentrated from post-impact sediment could be a 

problematic dating target to use to build an age-depth model, but that inaccuracies may not be 

obvious upon first inspection. 

 

4.5.2 Measurement of Aquatic Sources of Contamination within the Pollen Concentrate 
 

The algal and cellular concentrates showed evidence of being 14C depleted compared to the 

macrofossils measured at the same depth. Correction of the 14C values for the pre-impact pollen 

concentrate samples calculated through the mixing models suggests that the inclusion of these 

contaminants did influence the radiocarbon ages of the pollen concentrates, particularly in Lake 

Rotoroa. The pre-impact pollen samples contained the highest abundance of pollen in the series, 

with extraneous materials making up < 20% of the sample matrix. Despite the relative purity of 

these concentrates, the algal and cellular materials contained within them still appear to account 

for a portion of the offset between the reported results for the macrofossil and the pre-human 

settlement pollen (Fig. 8). This supports prior research which has suggested that the purity of the 

pollen sample can significantly alter the reported age of the sample (Chester and Prior, 2004; Kilian 

et al., 2002).  

Though the incorporation of these materials has affected the accuracy of the Lake Rotoroa pre-

impact pollen samples it doesn’t appear to be the sole cause of the erroneously older measured 

ages in Rotoroa 59cm. This sample still showed isotopic evidence of containing 14C depleted 

materials after correction, and the results of the chi-square test did not show significant statistical 

overlap with the calibrated age ranges of the macrofossil after correction either. Possible reasons 

for this offset are discussed further below. 
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The post-impact sample series shift in the opposite direction when corrected with the mixing 

model. These three samples suffered the most from the inclusion of contaminants due to the low 

abundance of pollen at these depths. The limited pollen was likely due to increases of clastic 

material entering the basin in tandem with reduced vegetation around the catchment after a series 

of burn events when anthropogenic impact occurred. Despite these samples having the greatest 

abundance of contaminating material contained within them, after the 14C activities of the 

contaminating materials were removed, the two post-impact pollen samples from Lake Ngatu show 

increased differences of +~1000 yrs between their corrected calibrated age ranges and the 

matching macrofossil. The post-impact pollen concentrate from Lake Rotoroa was affected in the 

same way after correction, but not as severely. This sample only shifted ~100 years further away 

from the age ranges of the macrofossil. This occurred to these three samples because though the 

aquatic materials measured at the same depths were 14C depleted, the algae and cellular material 

concentrates had younger ages than the associated pollen concentrates did. When the isotopic 

effects of the contaminate materials were removed from the post-impact pollen concentrates the 

corrected age ranges ‘aged’ several hundred years. The post-impact pollen sample from Lake 

Rotoroa doesn’t suffer as much aging after correction because the aquatic samples from that depth 

returned similar ages to the uncorrected pollen (Fig. 8). Increased deployment of fossil pollen into 

the lake basin is a possible reason for the post-impact pollen concentrates to diverge from the age 

ranges of their associated macrofossils. Fossil pollen could be derived from catchment soils being 

stripped by wave actions, heightened aeolian transport due to increased dune mobility following 

deforestation, or possibly human-induced erosion of the catchment soils with land use. 

 

4.5.3 Contamination Estimation for Corrected Pollen Sample- Rotoroa 59cm 
 

Rotoroa 59cm was the only pre-impact sample set that did not show statistical overlap in the age 

distributions of the corrected pollen concentrate and macrofossil after correction for aquatic 

contamination. To estimate how much entirely 14C depleted material would be required to be 

contained within this pollen sample to account for the continued offset, calculations for 14C dead 

contamination were made. The formula for correction is below. 

%𝑑𝑒𝑎𝑑 𝐶ଵସ 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

= ൬𝑒
ቀ

஼ோ஺಴ 
ି଼଴ଷଷൗ ቁ

− 𝑒
 ቀ

஼ோ஺೅ 
ି଼଴ଷଷൗ ቁ

൰ ÷ ൬𝑒൫ହ଴଴଴଴
ି଼଴ଷଷൗ ൯ − 𝑒

ቀ
஼ோ஺೅ 

ି଼଴ൗ ቁ
൰ × 100 
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CRAc is the corrected conventional radiocarbon age of the sample and CRAT is the true age of the 

sample, based on the CRA of the macrofossil. 50000 is the value used for completely radiocarbon 

depleted material. The remaining functions and values in the formula for calculating conventional 

radiocarbon ages are derived from Stuiver and Polach (1977). Corrected CRA for the sample is 

reported in Table 2. 

The result of the calculation suggests that only 1.70% (mean) of totally 14C depleted material within 

the pollen concentrate would be required to explain the offset between the corrected CRA of the 

pollen- 2424±21 yrBP from that of the matching macrofossil- 2299±21 yrBP (1-sigma). This 

calculation only provides an estimate of the minimum amount of possible contaminating materials. 

If the included materials were not entirely radiocarbon depleted more mass would be required to 

achieve the observed offset. However, Rotoroa’s catchment soils were formed during the 

Pleistocene to late Holocene (Isaac, 1996; Petty, 1981), so any re-worked palynomorphs could have 

low 14C values, and the amount of contaminating old carbon required for the offset could be quite 

small (Caughley, 1988).   

One possible reason for this offset is that prior to human impact a small amount of fossil pollen 

was irregularly mobilized into the lake basin through natural processes like wave action. A second 

possibility could be related to biases in the ratios developed for each pollen concentrate. The 

percentages for each material were obtained by counting grains, not by individual material mass. 

This could have led to misrepresentations of how much mass of each material type existed in the 

sample compared to the total number of grains of that sample type. Uncertainties in the 

normalisations of the ratios of the materials represented in the pollen concentrates are likely 

similarly small in value. Since the amount of 14C depleted carbon needed to explain the offset is 

probably similar to the error in ratio calculations it is not possible to distinguish which of these 

scenarios is the more plausible explanation for the offsets. However, despite the uncertainties, the 

analysis demonstrates that small quantities 14C depleted pollen can significantly influence the 

radiocarbon ages. 

 

4.5.4 Anthropogenic Impact of the Catchment 
 

Prior studies have suggested that the selection of a closed lake and care in achieving pure pollen 

concentrates should produce 14C ages that are accurate for sediment deposition (Chester and Prior, 

2004; Vandergoes and Prior, 2003). This test indicates that the purity of the pollen concentrate may 

not affect the age of the sample as much as the historical and environmental context of when 
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deposition occurred. The offset observed in this experiment between pollen and macrofossil 

sample sets can’t be explained by contamination from 14C depleted aquatic materials or through 

fluvial processes. Since the significant differences in sample arrays occur after human landscape 

modification the results suggest that the offsets between the post-impact pollen concentrate dates 

and macrofossils ages are caused by mobilization of fossil pollen, especially of peats within the 

catchment soils, primarily by human modification of the landscape. Consequently, pollen 

concentrates isolated after anthropogenic landscape modification could produce 14C ages that are 

much older than sediment deposition. Prior to anthropogenic land use pollen concentrates might 

be an appropriate dating target when macrofossils are not available. Similar impacts may be seen 

in lake settings where other types of significant landscape disturbances affect the lake margin 

environment. These results may have broader implications for other types of research and 

concentrated pollens from closed lakes impacted by earthquakes, natural loss of forest due to 

lightning strike, blowdown or substantial vegetation loss from storms may cause similar issues. The 

outcomes of the test suggest that palynomorphs utilized for dating from lake deposits formed 

during periods of either natural or anthropogenic landscape disturbance should be used with 

caution. These issues may only be apparent after experimental validation, such as those 

undertaken as part of this project, to identify the materials that could reliably be used to build the 

age-depth model. 

 
4.6 Summary 
 

A dating test was undertaken to determine which organic materials from two closed lake systems 

in the Far North would produce the most reliable ages for sediment deposition. Since the focus of 

the research project is to identify the timing of human settlement for the region and develop a 

duration record of land use, it was important to build a very precise chronology from sediments 

which had been affected by anthropogenic modification over time. With concerns that human 

alteration of the environment could cause the mobilization of fossil pollen (McGlone and 

Wilmshurst, 1999; Newnham et al., 1998b), three macrofossils from each lake were radiocarbon 

dated along with pollen, algal, and cellular material concentrates from the same depth. This was 

done to determine if pollen concentrates would return reliable ages for deposition and could be 

used as materials to build the age-depth model and if the contaminating materials were responsible 

for any offsets seen.  

The test found that prior to human occupation concentrated pollen produced radiocarbon ages 

that were comparable to those of the matching macrofossil. Contamination correction improved 
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these results. On the other hand, post-impact pollen concentrates produced 14C calibrated ages 

that were hundreds of years older than terrestrial macrofossils from the same depths. The offset 

between the pollen concentrates and macrofossil samples could not be explained by the inclusions 

of 14C depleted materials from aquatic sources within the pollen concentrates, which were found 

to be younger in age than the matching pollen concentrates. The old carbon contamination within 

the post-impact pollen concentrates was likely derived from fossil pollen transported from 

catchment soils into the lake basins. This was probably due to increased local erosion after 

deforestation by Polynesian settlers to New Zealand (McGlone and Wilmshurst, 1999; McWethy et 

al., 2010; McWethy et al., 2014; Perry et al., 2012). The pollen concentrates isolated from depths 

above obvious signs of intense alteration to a landscape produced spurious radiocarbon ages that 

were significantly older than deposition and could not be used to develop the age-depth model for 

the research project. 
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5. Developing a Chronology for Human Settlement and Land-use 
 

5.1 Introduction 
 

To constrain when human settlement first occurred in the Far North it is necessary to create a 

precise chronology. To generate a high-resolution chronology, a dense series of samples would 

need to be obtained for measurement from a master sequence of the sediment cores. The results 

of the experiment, discussed in Chapter 4, informed the selection of the most appropriate samples 

to build the model. Section 5.2 introduces core imaging, Bayesian modelling and the methods used 

to build the age-depth model. The chronology for the lakes and the accuracy of the age-depth 

model are presented in 5.3. This is followed by a discussion on the timing of human arrival in the 

Far North as determined by the model and then compared to previous 14C dates from Houhora in 

5.4. Finally, section 5.5 summarizes the outcomes of the model. 

 

5.2 Methods 
 

The dark-coloured and homogenous nature of the sediment in all the cores rendered any features 

or changes in sediment density visually indiscernible. CT scanning is rapidly becoming an 

indispensable tool for sediment core assessment (Boyle 2000). Figure 9 shows a visual comparison 

of the cores as imaged by a line scanner and CT. Instead of visually correlating the 2016 and 2017 

cores for each lake, CT data in conjunction with palynomorph and charcoal records were used to 

identify coring related issues and create a master sequence for each lake. CT imaging is a non-

destructive technique that reveals the internal structure of the scanned object (Mees et al., 2003) 

and produces bulk density values for that object. CT values of the cores were plotted against each 

other and correlated by patterns in the CT numbers. Pollen and charcoal records were also 

correlated between the 2016 and 2017 cores for both lakes by common changes in the abundance 

of various pollen taxa and charcoal to build the master sequence. It was critical to establish a master 

sequence for each lake because radiocarbon and other proxy materials would be isolated from all 

core materials. Therefore, the sampling depths between the separate cores needed to be fitted 

together to construct an accurate chronology. 
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5.2.1 Imaging 
 

Line scanning and X-ray computed tomography (CT) were used to identify physical properties 

within the cores. CT imaging was performed on a GE BrightSpeed medical CT scanner set to 120 kV, 

250 mA, pitch of 0.625 mm and a 100 cm2 window. CT tomography data were analysed with Imagej 

software to produce sagittal slice images and down-core Hounsfield/CT number values. Denser 

areas with higher CT values appeared lighter and lower density areas with smaller values were 

darker. CT images can be rendered in either 2-D or 3-D, allowing features and structures within the 

sediment cores to be observed that would not be seen through visual core logging (Fig. 9).  

 

Figure 9. Lake core images by line scanner and CT 

 

5.2.2 Radiocarbon sample selection  
 

To build the age-depth model twelve identifiable terrestrial macrofossils with enough mass for 

measurement were isolated from the Lake Rotoroa master sequence (three of which were included 

in the dating experiment). Of these twelve, nine were situated after or just at human arrival 

according to the CT data and pollen records, with three samples located below evidence of human 

arrival (Fig. 10). In Lake Ngatu however, only four dateable macrofossils were recovered, with only 

one sample identified as coming from pre-settlement depths. Four samples are not enough to 
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create a high-resolution 14C chronology and the targets available were not evenly distributed 

between pre- and post-impact sediments. The results of the dating test suggested that pollen 

isolated in this lake from depths prior to human impact or other disturbances were suitable, though 

not ideal dating targets (see Chapter 4). To increase the distribution of radiocarbon dates in Lake 

Ngatu and to create a better bridge between the post-settlement and the single pre-settlement 

target, four pre-settlement pollen concentrates from Lake Ngatu were also processed and 

measured. Radiocarbon sample treatment and measurement details are provided in Chapter 4 

section 3. 

 

5.2.3 Bayesian Modelling 
 

Following AMS measurement, radiocarbon dates were calibrated using the SHCal1 13 and Bomb 

13SH3 calibration curves (Hogg et al., 2013; Hua et al., 2013). The Southern Calibration Curve 2013 

(SHCal1 13) suffers from plateaus during the late Holocene, the timeframe of the research (Hogg 

et al., 2013), which can render wide probability distributions on individual radiocarbon dates. 

Bayesian statistics were used to integrate numerical ages from 14C dating and biostratigraphy in 

conjunction with stratigraphy to better constrain the ages of sediment deposition (Bronk Ramsey, 

2008, 2009). There are three components to a Bayesian age-depth model based on Bayes theorem- 

the prior, likelihood and posterior. The prior is additional data for the model outside of the 

observed data (depth/stratigraphic order), the likelihood is the observed data within the 

parameters of the model (e.g.-pine pollen, tephra or 14C ages) and the posterior is the given 

probability of all observations including the prior (Bronk Ramsey, 2008, 2009). 

OxCal 4.3 software was used to run a P_Sequence prior model which combines the prior and 

likelihood probability distributions using a Markov Chain Monte Carlo (MCMC) algorithm to test all 

outcomes possible with the given prior and likelihood probabilities (Bronk Ramsey, 2008; Howarth 

et al., 2013).  The P_Sequence prior uses a Poisson counting process with the assumption that the 

accumulation of layers in the model are random and distributes events according to depth (z). 

Increments within the model correspond proportionally to the variability of actual deposition using 

a parameter (k) to estimate the number of accumulation events over depth (Bronk Ramsey, 2008).  

A flexible or variable k value was employed for this project which allowed the model to average 

over different k values and find the most appropriate value for k with depth (Bronk Ramsey and 

Lee, 2013). This is useful because it limits the number of defined assumptions in the model (Bronk 

Ramsey and Lee, 2013). 
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Boundaries were placed into the model for human impact observed at 27cm in the 2016 Lake Ngatu 

sediment record and at 38.5cm in Lake Rotoroa and European establishment of pine plantations 

was entered as likelihood parameters into both models at 1920±20 (1-sigma) to coincide with the 

first European pine plantations in the region (Roche, 1990; Thode, 1983). The tops of the sediment 

cores were given the calendar year of 2017±3 (1-sigma) as additional likelihoods to identify when 

collection occurred and finally, to complete the model the bases of the cores were prescribed a 

depth ½ cm below the last likelihood distribution measured in each lake. The models for the two 

lakes were cross-referenced together by initial Polynesian impact, the exotic pine pollen age, and 

core top likelihood parameters. These marker beds, which represent coeval regional signals, were 

built into the model prior which allows the two chronologies to inform each other and thus 

strengthen both chronologies.  

The fit of the age-depth model to the posterior and likelihood data were assessed to determine if 

the model produced accurate results. An agreement index (AI) was calculated for the overall fit of 

how well the posterior model agrees with the prior distribution. Indices were created for the model 

as well as for all observational data individually. It is important to test the fit because it is easy to 

build a model which deviates from the likelihood data and does not accurately represent the 

observational record (Bronk Ramsey, 2009). The results of the OxCal model were used to establish 

the timing of human impact. The chronology that was developed was used with the elemental and 

isotopic data to develop duration rates for the area. 

 
5.3 Results 
 
5.3.1 Identification of Coring Problems 
  
The CT data showed that the 2016 Lake Ngatu long core experienced an issue which produced 

sediment sucking through 30-50cm, possibly caused by a jammed piston during percussion coring 

(Fig. 10). Approximately 5cm of the sediment to water interface was identified as missing from the 

Ngatu long core by the lack of exotic plant species in the pollen record despite European plants 

currently growing near the lake. The 2016 Lake Rotoroa long core also suffered from coring issues 

and was disturbed during storage, which caused sediment mixing and expansion, rendering the top 

40cm of the core unusable. The 2017 Rotoroa pollen record identified that the top 15cm was absent 

in the 2016 Rotoroa core. These issues were not apparent during coring, splitting or visual 

inspection but were only observed in the palynomorph and CT data.  
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5.3.2 Master Sequence 
 

Master sequences were successfully constructed from the 2016 and 2017 cores for both lakes (Fig. 

11) and provide a single continuous sediment record for the proxy data to be placed against.  Coring 

related issues and impacted depths were avoided in the construction of the master sequence. The 

master sequence for Lake Ngatu was constructed from seven tie points identified in the CT images 

and values as well as matching abundances in the pollen and charcoal records (Fig 10). The Ngatu 

master sequence contains depths 0-5cm from the 2017 core and continues with depths 0-50cm 

from the 2016 core. In Lake Rotoroa three tie points identified in the CT data were used to correlate 

sediment depths along with the pollen and charcoal records. The Rotoroa master sequence was 

composed of 0-59cm from the 2017 core and then 60-100cm from the 2016 core. 
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Figure 10. CT images and correlation of sediment depths from Lakes Ngatu and Rotoroa 

Higher CT values indicate denser sediments and smaller values represent lower densities. Position of 
radiocarbon samples selected for measurement as well as demarcation of Polynesian settlement based on 
pollen and charcoal analysis. 

 

5.3.3 Radiocarbon and Modelling Results 
 

Radiocarbon measurement on 20 total targets was used to develop the age-depth model. Table 3 

provides the non-modelled radiocarbon results and associated calibration age ranges for the 

samples. The model had an AI index of 78.4%; above the 60% required to measure an agreement 

between the model and the observational data (Bronk Ramsey, 2008). This indicates that the model 
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had a good fit between the posterior and the likelihood distributions. Additionally, no inverted 

dates or outliers were identified in the model. The age-depth model for the lakes is presented in 

Figure 12.  

The Ngatu portion of the age-depth model from the bottom of the core up to human impact (purple 

section of Fig. 12) was built from six likelihoods. The core bottom at 70.1cm has a modelled 

calibrated age range of 1948 to 1439 BC (average 1704±140 BC) (all errors are reported at 1-sigma). 

At the top of this section was NZA 63954 at 33cm with a modelled age range of 263-428 AD (average 

385±29 AD). These six likelihoods had an average modelled standard deviation of 70 years. This 

value is poor primarily due to the lack of constraint in the model between NZA 64141 at 70cm and 

NZA 61666 at 46cm which alone has an average standard deviation of 80 years. This explains the 

wider probability bands seen between the bottom of the Ngatu core and NZA 61666 (Fig.12). 

 The Ngatu section from initial human impact to prior to European arrival was built from four 

likelihoods. Modelled human impact was from 1164-1278 AD (average 1231±34 AD) at 27cm. The 

top of this section was constrained by NZA 63828 at 5.5cm with a modelled age of 1835-1940 AD 

(average 1880±28 AD) (teal section of Fig. 12). The average modelled standard deviation of 

likelihoods from this section showed a good fit with a value of 39 years. The final section from 

European arrival to the top of the core was built from only two likelihoods. The first was the 

European marker bed at 5cm with a modelled calibrated age of 1875-1937 AD (average 1904± 17 

AD). The core top at 0cm was the last with a modelled range of 2011 to 2023 AD (average 2016±3). 

The average standard deviation for likelihood data from this section was 10 years. 

The construction of the Rotoroa age-model from core bottom to before human impact was built 

from four likelihoods. The bottom of the core at 70cm had a modelled age between 419 BC and 

253 BC (average 367±48 BC), while at the top of the section NZA 64147 at 45.5cm had a modelled 

age range of 773 AD to 966 AD (average 873±53 AD). The average standard deviation of this section 

is 42 years (dark blue portion of Fig. 12). The upper part of this section suffers from poorer 

constraint and plateaus in the calibration curve between NZA 63022 at 62.5cm and NZA 64147 at 

45.5cm. The average standard deviation between these two samples was 42.5 years. The modelled 

section from human impact to before European arrival in Rotoroa was built from nine likelihoods. 

This section starts at 38.5cm with the modelled age range for human arrival, which is the same here 

for Rotoroa as reported above for Ngatu, and ends with NZA 63829 at 19cm. Sample 63829 has a 

modelled calibration range of 1624-1793 AD (average 1657±32 AD). This section was well 

constrained with an average standard deviation of 29 years for all likelihood data (green section of 

Fig. 12). The final section from European arrival to the top of the core was composed of three 



[51] 
 

likelihoods. This section spans from the marker bed for European arrival at 12cm, with the same 

modelled calibrated ages reported above for Ngatu, to the core top at 0cm with a modelled range 

for 2010-2022 AD (average 2016±3). This final section has an average standard deviation of 7 years 

on all likelihood results. 

 

 

Figure 11. Master sequence sediment core depths for Lake Ngatu and Rotoroa 
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Table 3. Radiocarbon results and calibrated age ranges. 
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Figure 12. Calendar year age model built from 14C measured pollen concentrates and macrofossils isolated 
from Lakes Ngatu and Rotoroa 
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5.3.4 Modelled Timing of Initial Human Impact in the Region 
 

The calibrated age range for initial anthropogenic impact of the study (Fig. 13) supplied by the 

model falls between 1164-1277 cal. AD (95.4%). Probability distribution function (PDF) for all 

likelihood data supplied by the model are reported in the appendices. 

 

Figure 13. Calibration age range of human impact produced by the P_Sequence model 

 
5.4 Interpretation- Timing of Human Settlement to the Far North 
 

 
5.4.1 Establishment Human Impact in the Age-Depth Model 
 

The high-resolution of likelihood data through the period of interest (Polynesian arrival and 

settlement) in the model provides good constraint for determining the timing of events and the 

duration of those events. The modelled age-range of initial human impact of the study region 

suggests that anthropogenic modification of the area began early in the settlement history of New 

Zealand. This result is directly supported by several 14C measurements and the CT, pollen, and 

charcoal records. 

Depths 27cm and 38.5cm in Lakes Ngatu and Rotoroa, where the human impact marker beds are 

situated in the model, are tightly bound by radiocarbon dates, particularly in Rotorua. A small and 
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very fragile piece of charcoal at 38cm in Lake Rotoroa (NZA 63959) (Fig. 14), identified as having 

come from a monocot twig was measured to help accurately constrain the timing of human impact 

to the area. The delicate nature of this target, obtained from lake sediments that showed no 

evidence of mixing, makes this sample highly unlikely to have been reworked. The charcoal sample 

was identified as having come from a short-lived lake margin plant (Maxwell, 2017 personal 

communication).  

 

Figure 14. Photograph of charred monocot plant macrofossil from Lake Rotoroa 38cm 

 

The modelled calibration range for NZA 63959 is 1210-1274 AD (94.5%) (Fig.15). Since this sample 

was obtained just 0.5cm above the Rotoroa human impact marker bed in the model, the statistical 

overlap in the age range between this sample and the modelled range for human arrival is 

significant for testing the validity of the modelled age initial human impact.  

The accuracy is further supported by samples measured both above and below NZA 63959. Samples 

below 38cm showed no signs of charring, however, two of the samples measured directly above 

NZA 63959 at 34.5 and 31.5cm were also burnt. This suggests that the fire history of the area had 

altered at these depths and that continued burning of the area occurred. This pattern was also 

observed in the charcoal record. The modelled calibrated age range of NZA 63959 at 38.5cm was 

1210-1275 AD. The modelled calibrated age distributions for the macrofossil at 34.5cm (NZA 63831) 

were between 1271-1320 and 1350-1387 AD and the sample at 45.5cm (NZA 64147) had calibrated 

age ranges between 773- 820, 833-903 and 922-966 AD (probability for all calibrations reported is 

95.4%).  
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With support from the regional and local charcoal records, the samples have supplied not only 

reliable radiocarbon dates, which help confirm the accuracy of the modelled date for initial human 

impact, but the sample condition (burnt/unburnt) also provide archaeological context to the 

chronology. The results of the age-depth model suggest that initial human impact of the area is 

earlier than the chronology of any other dated archaeological site on the Aupouri Peninsula (Coster, 

1989; Furey, 2002). 

 

 

 

Figure 15. Calibration distribution of NZA 6959 on a piece of monocot charcoal derived from the P_ 
Sequence Model. Unmodelled calibration for sample available in Table 3 

 
5.4.2 Comparison of Modelled Timeframe of Human Settlement to Previous Radiocarbon 
Measurements from Houhora 
 

To determine how the outcomes of the age-depth model compare to the earliest dated 

archaeological site in the region, earlier measurements from Houhora were re-assessed. Shawcross 

and Roe submitted three charcoal pieces for radiocarbon measurement from archaeological 

investigations of Houhora in the 1960s (NZ 914, 915 and 916)(Furey, 2002; Roe, 1967). At that time 
14C measurement by AMS was not available, therefore these dates were produced by traditional 

gas counting. The amount of sample material required for gas-counting was significantly larger than 
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the mass needed for AMS measurement. For example, approximately 180-255g of materials was 

submitted per originally submitted charcoal date compared to the ~1mg of material used for NZA 

63959. The large mass of these charcoals could mean that either the pieces were quite large or that 

the mass incorporated a wide variety of materials. The historical sample submission documents 

reviewed did not identify this or the type of plant the charcoal came from. The lack of identification 

and the large mass of these samples increases the probability that they suffer from inbuilt age 

(Petchey, 2000; Wilmshurst et al., 2011), potentially affecting their accuracy. Also, according to the 

submission information for these samples, the dates produced an inverted age compared to the 

site stratigraphic information, casting further doubts on the reliability of the ages. Moa bones 

collected from this site were also dated in the early 1980s (NZ 5007 and 5008). The submission 

information for these samples suggests that they should be contemporaneous with the previously 

dated charcoal. To assess these previous dates against those from the current research project the 

original raw gas counting measurements were re-calculated against the standard material Oxalic 

Acid I and reported as a Conventional Radiocarbon Age (CRA) with 1 sigma error (Stuiver and 

Polach, 1977). The samples were then re-calibrated with the most recent Southern Hemisphere 

calibration curve (Hogg et al., 2013) (Table 3).  

Additionally, dates for Houhora which were procured from rubber latex pulls taken from the 

original excavation and remaining bagged materials from excavation were dated in the early 1990s. 

These materials were identified as charcoal from short-lived plants and dateable marine shells. The 

researchers could not provenance the pulls to the original excavation maps and there was a small 

possibility that the samples selected might not be in situ but were from sections re-touched in the 

pulls to complete the pulls for display (Anderson and Wallace, 1993). Four of these samples (NZA 

2391, 2436-8) were measured by AMS, but two samples (NZ 7920-1) were measured by gas 

counting. The geographic ΔR correction for shells  NZA 2391 and 7920 was set to -30 ± 13 as given 

in Anderson and Wallace (1993) and calibrated with the Marine13 calibration curve (Reimer et al., 

2013; Stuiver et al., 1986) and presented in Table 4. Calibration was also attempted with no ΔR 

correction for these two samples which produced and exact same calibrated age-ranges for the 

shell samples.  The local ΔR would be required to accurately evaluate the shell results. 
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Table 4. Calibrated age-ranges for the 5 original and 6 more recent samples measured from Houhora. 

 

 

Most recently four gelatine samples (Wk-4920,4921, 4968 and 4969), two shell samples (Wk- 5034-

5) and one charcoal sample (Wk-5484) were measured from remaining contents of the Houhora 

excavations. All samples produced calibrated age ranges from late 1200 to early 1400 AD (Petchey, 

2000). 

Though materials dated earlier from Houhora have associated problems and their accuracy cannot 

be entirely relied upon, the Polynesian style of some of the material culture found at the site and 

the moa content incorporated in site middens (Furey, 2002) suggests that early site settlement is 

not inconsistent with initial landscape alteration or occupation of the region between 1164-1277cal 

AD (95.4%), as modelled in this research. This is backed up as well by more recent 14C 

measurements on twig charcoal, shell, and bone from the site which should not suffer from inbuilt 

age. The age-range produced by the model is probably the most accurate estimate for the timing 

of human-induced alteration of the environment in the Far North currently available owing to the 

large number of samples measured and modelled and the care taken to measure short-lived 

materials which had been tested to produce accurate ages for deposition. 

 

5.5 Summary 
 

The CT data and pollen and charcoal records were invaluable tools to correlate the lake cores, 

identify coring issues and for building a master sequence for the cores. These data sets were also 

used to build the age-depth model and determine when human settlement of the region began. 

The dating targets themselves contributed to the anthropogenic signal, seen also in the charcoal 

records, which supports the timing of anthropogenic burning in the chronology. Finally, the 

P_Sequence model used to develop the 14C chronologies for the lakes has provided one of the 

NZ Material CRA CRA Calibrated age ranges NZ Material CRA CRA Calibrated age ranges
yBP error cal BC/AD (95.4%) yBP error cal BC/AD (95.4%)

914 Charcoal 698 49 1276-1400 7920 Marine Shell 812 37 1430-1580
915 Charcoal 563 61 1300-1464 (95.1%) 7921 Charcoal 300 54 1477-1683 (78.2%)

1472-1476 (0.3%) 1730-1803 (17.2%)
916 Charcoal 775 61 1185-1326 (77.3%) NZA

1341-1390 (18.1%) 2391 Marine Shell 675 80 1470-1820
5007 Moa Bone 563 56 1305-1362 (19.3%) 2436 Charcoal 632 85 1238-1241 (0.2%)

1377-1460 (76.1%) 1266-1458 (95.2%)
5008 Moa Bone 586 46 1311-1360 (26.2%) 2437 Charcoal 774 85 1072-1076 (0.3%)

1379-1449 (69.2%) 1149-1406 (95.1%)
2438 Charcoal 727 85 1189-1419
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highest-resolution models for anthropogenic impact in the Far North of New Zealand and suggests 

that human occupation of the area occurred between 1164-1277 cal. AD, as early if not earlier than 

anywhere else in New Zealand.  
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6. Environmental Reconstruction 

 

6.1 Introduction 
 

The construction of a robust age-depth model allows for the carbon, nitrogen and XRF proxy data 

from the lake sediments to be placed in time and utilized to determine the timing and duration of 

landscape use through time. The first part of this chapter discusses how organic matter influences 

sediment formation and how carbon, nitrogen and XRF measurement will be used to examine the 

organic and geochemical make up the sediment. Section 6.3 covers the preparation and 

measurement of samples for C:N and XRF analysis. In section 6.4 the proxy results are described 

against time and C:N results for the modern analogue samples are given. 6.5 begins with a section 

that explains the impact that the algae concentrate results had on the wider interpretation. An 

interpretation of all proxy results broken into four temporal zones follows. Lastly, a summary of the 

environmental reconstruction is presented in section 6.6. 

 

6.2 Overview of Selected Proxies 
 

6.2.1 Carbon and Nitrogen 
 

Organic matter plays a critical role in the formation of lake sediments and is primarily sourced from 

the remnants of plants within the lake and the catchment (Chepstow-Lusty et al., 2009). Organic 

materials may experience many processes during sediment formation such as diagenesis and 

degradation which affect the geochemical makeup of the sedimentary materials. However, 

elemental and stable isotope measurement of bulk organic lake sediments can be used as a proxy 

for landscape modification of that system (Li et al., 2006; Meyers, 1994). Measurement of the 

isotopic ratios of carbon and nitrogen can be used to understand the paleoenvironment histories 

of lacustrine environments and identify the effects humans have had on the watershed (Meyers 

and Lallier-Vergès, 1999). Changes in the origin of the carbon being deposited into the lake can be 

used to reconstruct lake productivity and environmental fluxes around the catchment (Meyers, 

1994). Human alterations to catchments have been identified in shifts in the C:N ratios in lake 

sediments (Kaushal and Binford, 1999; O'Reilly et al., 2005; Schmidt et al., 2002).  

Carbon and nitrogen measurement were selected for the research project because the lake 

sediments were rich in organic material and may show significant changes in these values through 
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time. Additionally, since the organic material in lake sediment is largely derived from within the 

lake and catchment, these measurements provide catchment specific information about both 

environmental and anthropogenic change. These results were compared with the regional pollen 

and charcoal records and used to identify the drivers of environmental change and estimate the 

duration of these changes. 

In addition to carbon and nitrogen measurement on the lake sediment, modern analogue samples 

were also collected and measured. C:N analysis of the modern materials provided the isotopic 

signatures from different carbon sources in and around the lake prior to deposition. The results 

from the modern materials were used to help interpret the sediment results. 

 

6.2.2 XRF Data 
 

XRF measurement was performed on the lake sediments in this study to provide a rapid, inorganic 

and catchment specific proxy for human settlement and land-use for the area to help establish the 

duration of change the sediments underwent. X-ray fluorescence (XRF) is a technique that can be 

used to record changes in the elemental and chemical composition of a material by measuring the 

fluorescent (secondary) X-rays emitted from a sample when it is bombarded by a primary X-ray 

source. Each element present in a sample produces a set of unique fluorescent X-rays specific to 

that element. XRF measurement is a non-destructive technique (Boyle, 2000), providing total 

concentrations values for important environmental elements such as silicon (Si), titanium (Ti), 

calcium (Ca), potassium (K), iron (Fe), manganese (Mn), phosphorus (P), and zirconium (Zr), among 

others, in soils and sediments and can be used in combination with other proxies (Boyle, 2000). 

Many elements have multiple potential sources. Calcium has been used to identify carbonate 

precipitation, changes in evaporative concentration and calcium input from lithic sources into lake 

sediments (Brown et al., 2007; Mueller et al., 2009). Silicon can also enter the lake system from 

quartz or autochthonous diatom production (Balascio et al., 2011; Brown et al., 2007). To better 

determine the origins of Ca and Si these two elements can be compared to corresponding titanium 

values over time. Ti is a conservative element and should be indicative of primary mineral inputs 

(Davies et al., 2015). If transitions in Ca and Si correlate with an erosional elemental proxy such as 

Ti, this would suggest a minerogenic origin of these elements (Boyle, 2002). If not, they might be 

more related to, in case of Ca, increased evaporative concentration, and increased Si might be 

related to biogenic silica production or a mix of biogenic and lithic input (Brown et al., 2007; Davies 

et al., 2015).  
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Iron can enter lakes as ferrous Fe in detrital sediment or as dissolved ferric iron depending on redox 

condition (Boyle, 2002; Mackereth, 1966). Fe to Mn ratios can be used to help identify redox 

conditions (Burn and Palmer, 2014; Davison, 1993; Haberzettl et al., 2007). In reducing conditions 

Fe and Mn become soluble, but manganese is more affected, so higher Fe/Mn ratios may suggest 

that an anaerobic environment existed (Boyle, 2002; Davies et al., 2015). Ti/Zr ratios are a grain 

size proxy (Shala et al., 2014). Titanium generally represents finer grains like clay, and zirconium is 

more common in silts and fine sand grains (Cuven et al., 2010).  

Additionally, a rise in elemental potassium has been used to signify increased detrital input in 

sediment records (Aufgebauer et al., 2012; Elliot et al., 1997; Moreno et al., 2011) while increased 

phosphorus has been used to identify periods of nutrient enrichment (Corella et al., 2012). Ratios 

of the above elements and elemental curves for K and P will be created and examined to aid in 

interpreting these elements in through the core. 

 

6.3 Methods 
 

6.3.1 Sampling for Stable Isotope Measurement 
 

Sediment samples for carbon and nitrogen isotopic and elemental measurement were cut from the 

master sequences of the cores from selected depths at ½cm resolution for Lake Ngatu and 1cm for 

Lake Rotoroa. Samples were freeze-dried then sieved to 425µm to remove larger lithic materials 

and isolate any macrofossils contained within the material. The <425µm fraction was ground by 

mortar and pestle to homogenise and powder the sediment for measurement.  

Modern sample materials were collected from in and around the lake margins. Included in these 

samples were soils under leaf litter from less disturbed Northland podocarp forests outside of the 

catchment. These were obtained to measure soils with compositions more akin to those that could 

have been transported into the lake in the 12-13th centuries and prior to human arrival. Catchment 

soil samples were also taken from soil horizons dug from shorts pits near the lakes. One lake margin 

plant per lake and two charophyte plant specimens were collected for Lake Ngatu. Algae samples 

were extracted and concentrated for both lakes. Three algae concentrates were created per lake 

from sediments horizons that were from before human impact, after initial human impact and from 

the tops of the sediment cores. 
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6.3.2 Sample Treatment for Elemental and Stable Isotope Measurement 
 

Both chemically treated and untreated sediments were analysed. Acidification is recommended for 

lake sediments before %C and δ13C measurement to remove inorganic carbon derived from calcium 

carbonate in the sediment without eliminating the organic carbon within the sample matrix 

(Komada et al., 2008; Lane et al., 2008). Between 5-10mg of sediment was weighed out into 5 X 

9mm Ag capsules, depending on the carbon content of the sediment. A repeat treated sample from 

the same depth every 3-5cm was also measured to test material homogeneity and machine 

linearity. Treated samples were acidified using modified methods from Verardo et al. (1990) and 

Komada et al. (2008) (Fig. 16). Treatment was as follows: samples were wetted with 2μL of 

deionized water before acidification by 2μl of 10% hydrochloric acid (HCl), then dried at 40°. Once 

dry 10μl of acid was added and again and the samples were dried down. This was continued twice 

more with the amount of acid increasing to 60μl in the final step (Komada et al., 2008). Once 

acidification was complete and the samples were dry the Ag capsules were folded down, placed 

into Sn capsules and rolled up for combustion. 

Modern analogue samples taken from catchment soils and leaf litters in podocarp forests were 

prepared by freeze drying and sieving to <425µm. Once sieved the soil was powdered and prepared 

for combustion and measurement as described for the untreated lake sediments. Treatment with 

acid was not required as carbonate was unlikely to have contaminated the sample material. 

Modern analogue flora samples were identified to genus or species, photographed, subsampled 

and cleaned with DI water and sonification if required. Clean subsamples were then dried in a 

vacuum oven and prepared for measurement like the untreated sediments described above.  
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Figure 16. Preparation and treatment of sediment for carbon and nitrogen isotopic measurement 

 

Untreated sediments from the same depths were also weighed out to similar masses as treated 

counterparts into 5 X 9mm Sn capsules to be run for %TC, %N, total carbon δ13C, and δ15N. 

Acidification has been shown to affect the reliable measurement of %N and δ15N (Brodie et al., 

2011) therefore, the C:N ratios were derived from the treated %C to the untreated %N value to 

avoid offsets in the ratio by carbonate contamination in the carbon and acid poisoning of nitrogen 

(Komada et al., 2008).  

 

6.3.3 EA-Mass Spectrometer Measurement 
 

Elemental and stable isotope measurements were run at GNS Science Stable Isotope Laboratory on 

a continuous flow GVI Isoprime mass spectrometer. Samples were measured along with pre-

weighted internal standards on an EA-IRMS (Elemental Analyser isotope ratio mass spectrometry). 

The EA is a combustion device used for solid samples that converts organic matter into CO2. 

Unwanted bioproducts and gases created during combustion are removed as they pass through a 

reduction tube and water trap while the carbon and nitrogen flow into a mass spectrometer for 

isotopic analysis. Combustion takes place in a He atmosphere inside a quartz reactor at a 

temperature of 1010 °C. Results were corrected to internationally established values for VPDB 

(Vienna Pee Dee Belemnite) and Air N-2 (atmospheric nitrogen) with a machine error of 0.2and 

0.3‰ respectively. 
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6.3.4 Preparation and XRF Measurement 
 

Sampling for XRF measurement was done at 1cm resolution from each master sequence. Samples 

were freeze-dried, sieved to <425µm to screen for large organics or stones, and then ground with 

a mortar and pestle to homogenize grain size. A minimum of one gram of sediment per sample was 

transferred into vials with 5µm polypropylene thin film covers for measurement. 

 XRF analysis of the sediments was undertaken at the Victoria University of Wellington by a 

handheld Olympus Vanta M series XRF analyser. Heavy elements were measured for 30 seconds at 

40 keV and light elements were measured for one minute at 10 keV. Results were corrected against 

international standards measured along with the lake sediments. Since total organic carbon was 

not measured for each sample, the data were normalized to the lightest element measured, 

aluminium, to correct for the organic component within the sediments which can dampen the 

accuracy of measurement (Boyle, 2000; Löwemark et al., 2011). Aluminium will be reported in parts 

per million (ppm) in this study. All other elements are reported as a ratio to aluminium (Löwemark 

et al., 2011) (Appendix D). 

 

6.3.5 Proxy Record Zoning and Calculation of Zoned Duration in OxCal 
 

All proxy data were plotted against time and then broken into different zones based on concurrent 

changes in the proxy values. The pollen and charcoal data were primarily used to identify 

boundaries for Polynesian and European arrival. Subzones were primarily derived from the 

geochemical results.  Temporal ranges were calculated for each identified zone in OxCal with the 

duration function which provides a probability distribution that represents the difference in age 

between the first and last core depths identified in each zone (Bronk Ramsey, 1995). 

 
6.4 Results 
 

6.4.1 Proxy Data Relative to Time 
 

The following section describes the pollen, charcoal, CT, carbon, nitrogen and geochemical proxy 

data relative to time in each lake. The results are broken into four temporal zones per lake based 
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on alterations in the proxy data. Carbon and nitrogen results plotted against depth are shown in 

Appendix C and XRF results against depth are presented in Appendix D. 

 

Lake Ngatu 
 

Zone 1 – 1000 BC to 1100 AD  

This zone stretches from 70cm to 27cm depths. Tall and small tree pollen abundance is high and 

variable through this time, while bracken fern spores are limited and >50µm charcoal particles are 

absent. Overall, elemental and isotopic carbon and nitrogen are steady through this period though 

carbon increases from 20% to nearly 30% from 0 to 1100 AD. The C:N ratio is high with values of 

19-20. The CT values are low and constant. Ti/Zr and Si/Ti show variability through the high end of 

their measured range through this time. Elemental trends for P and K as well as Ca/Ti and Fe/Mn 

are stable and low (Fig. 23). 

 

Zone 2 – 1100 to 1500 AD  

 

Figure 17. Duration PDF of Zone 2 Ngatu 

 

This zone ranges from 27 to 13.5cm depths and the modelled duration of the zone is 339-581 years 

(Fig.17). This zone sees a sharp decline in tall and small tree pollen and an increase of over 400% in 

the abundance of bracken fern spores. Charcoal first appears at about 1300 AD. Elemental carbon 

drops to just 5% while isotopic carbon becomes ~9‰ heavier. Nitrogen lowers for the first time to 

below 1% and δ15N become ~3‰ lighter. CT units increase also roughly at 1300 AD along with a 

strong shift to low Ti/Zr, and Si/Ti values. K values increase at this time while P slightly decreases. 
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The Ca/Ti ratio lowers then begins to increase again around 1500 AD. The Fe/Mn results show a 

strong, sharp increase between 1250-1400 AD (Fig. 23).  

 

Zone 3 – 1500 to 1750 AD  

 

Figure 18. Duration PDF of Zone 3 Ngatu 

 

This zone is from depths 13.5cm to 3.5cm and has a modelled duration of 116 to 356 years (Fig.18). 

Tree pollen abundance remains low during this time while a second increase in bracken fern spores 

is seen between 1600-1700 AD. Charcoal abundance also increases slightly. The percentage 

concentration of carbon and nitrogen in this zone are in phase which is reflected in steady, low C:N 

ratios of between 10-11. Isotopic carbon slightly shifts towards heavier values while 15N becomes 

slightly lighter by 1750 AD. The CT values are low for a brief period from 1500-1600 AD followed 

again by high values from 1600-1750 AD. Ti/Zr and K values vary through this zone but remain low. 

P and Ca/Ti increase rapidly through this zone, while Si/Ti results are erratic but also increased to 

values similar to those in Zone 1. The Fe/Mn ratio drops below detection limits during this period. 
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Zone 4 – 1800 AD to present 

 

Figure 19. Duration PDF of Zone 4 Ngatu 

 

This zone is from 3.5cm depth to the top of the core and primarily represents the post-contact 

timeframe, as evidenced by the pine pollen observed in the record. The duration of this zone is 

modelled as lasting 17-135 years (Fig. 19). There is limited proxy data for this period, but the CT 

data continues to show high values. Tree pollen makes a very modest recovery during this period 

and charcoal is at its highest abundance. The C:N ratio drops to its lowest value (10) (Fig. 23) and 

elemental carbon and nitrogen return to or pass pre-impact concentrations. Isotopically carbon 

remains similar to zone 3 while nitrogen becomes heavier. All geochemical data in this period 

returned low values. 

 

Lake Rotoroa 
 

Zone 1 - 1000 BC to 1100 AD  

This zone starts at 70cm and ends at 38.5cm. CT values in Lake Rotoroa during this time show more 

variability and higher values than Zone 1 Ngatu. Pollen records begin at ~800 AD and show that tall 

and small tree pollen is well represented until about 1100 AD while abundance of bracken fern and 

large charcoal particles are minimal. Elemental and isotopic results are overall steady during this 

period except for a significant event represented by a drop in most values from 500 BC to 250 AD. 

The geochemical data show variable but high Ti/Zr and Ca/Ti values. The Fe/Mn ratio and elemental 

K were low and constant while the Si/Ti ratio displayed the greatest variability. P shifted from high 

to low values slowly but consistently through this time. 
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Zone 2 - 1100 to 1500 AD 

 

Figure 20. Duration PDF of Zone 2 Rotoroa 

 

The zone ranges from 38.5cm to 23.5 cm depth and modelled duration is 272 to 435 years (Fig.20). 

Tree pollen dramatically declines through this period, but bracken fern increases by over 500 

counts with its highest recorded values reached by about 1400 AD. Carbon, nitrogen and the C:N 

ratio drop to their lowest recorded values by 1300 AD. The value of the δ13C became 5‰ heavier 

and δ15N dropped to its lightest recorded value of -0.5‰. CT units increase by 300 (Fig. 23) in Lake 

Rotoroa from 1100 to 1500 AD while Ti/Zr decreases. The ratios Ca/Ti and Si/Ti both drop to lower 

values during this period. K remains steady in a mid-range value for the element while P significantly 

increases from 1100 to 1300 AD. The Fe/Mn ratio is low and static. 

 

Zone 3 - 1500 to 1800 AD 

 

Figure 21. Duration PDF of Zone 3 Rotoroa 
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This zone ranges from 23.5cm to 10cm and has modelled duration of 229-385 years (Fig. 21). This 

zone sees both tree pollen and bracken fern spore abundance decrease. Charcoal reaches its 

maximum recorded values and the CT numbers fall to a low, steady value. K increases while Ti/Zr 

remains low and steady. The δ13C lightened from -18 to -22‰ (Fig. 23) while the other elemental 

and isotopic data remained relatively constant, with a low C:N and about 18-19% elemental carbon. 

Phosphorus and Si/Ti values are erratic over Zone 3 but are overall low. Ca/Ti increases over this 

time as does Fe/Mn. 

 

Zone 4 - 1800 AD to present 

 

Figure 22. Duration PDF Zone 4 Rotoroa 

 

This zone is from 10cm depth to the top of the core and has a modelled duration of 74 to 137 years 

(Fig. 22). This final zone also has limited data, but during this time the CT numbers again increase, 

and tree pollen makes a small recovery. Pine pollen becomes very abundant while charcoal reduces 

to nearly Zone 1 levels. Elemental and isotopic carbon values and δ15N began to shift back towards 

basal values while nitrogen increases further away from lower core values and reaches its 

maximum of 2% (Fig. 23). The Ti/Zr results are low and static and K drops to basal levels. Elemental 

P continues to increase as does Ca/Ti while Si/Ti remains low and steady. The Fe/Mn ratio returns 

to pre-impact values. 
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Figure 23. Proxy data reported against time 

Calibrated age range for human settlement of the area determined by age-depth mode represented by orange band  

IBP represented by blue band. Error bands around all indices are 2 sigma from calibrated age of datum
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6.4.2 Isotopic and Elemental Results of Modern Analogues 
 

Algae 

Concentrated algae from the top of the Lake Ngatu core and from the post-impact sediment 

produced very similar delta 13C results of around -19.5‰ and small C:N ratios of around 11. 

Elemental carbon was low in the post-impact algae sample but was higher (19%) at the top of the 

core. The algae concentrate from sediments prior to human arrival had a higher C:N ratio of around 

18, but elemental carbon was lower than the other two algae samples and δ13 C was lighter at -

28.5‰ (Fig. 24). 

The concentrated algae in Rotoroa produced similar results to those in Lake Ngatu, with the 

samples from the top of the core and post-impact generating results that were different from that 

of the pre-impact sample. The pre-impact sample had only 9% elemental carbon compared to the 

17-20% of the other two Rotoroa algae samples. 

Soils 

The modern catchment soils from Lake Ngatu produced a wide range of elemental carbon and 

isotopic values from 0.5-22% and -20 to -40 ‰ respectively. C:N values plotted between 15 to 26, 

while elemental nitrogen was generally low at ~0.1-1%. 

The modern catchment soils in Lake Rotoroa are overall lighter in carbon and nitrogen than the 

Ngatu soils but have higher C:N ratios (Table 5). Delta 13 C values ranged from -19 to -30‰. 

The results from the forest soils ranged from having as low as 3% elemental carbon to as high as 

46%, while C:N values shifted from 25 to 31. Delta 13 C values were similar between the four samples 

at about -28‰ (Fig. 24). 

Flora 

The charophytes measured from Lake Ngatu were carbon and nitrogen-rich at ~38% and ~3% 

respectively. The δ13 C values ranged between those measured on the three algae samples. These 

samples had smaller C:N values of  11-17. 

The Eleocharis sphacelata (kuta) sample from Lake Ngatu had a high C:N ratio (25) and was also 

high in carbon (42%). The δ13 C was in the range of some of the catchment and forest soils, but 

heavier than the pre-impact algae sample and lighter than the other two algae samples at -26.5‰ 

(Fig. 24). The kuta sample from Lake Rotoroa had a similar amount of carbon as the Ngatu sample 
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but produced a very high C:N ratio of 57. Measurement on this sample material was repeated to 

double check the results, which were replicated in the second measurement. Table 5 provides the 

mean values and standard error for all modern sample sets that had more than one sample in the 

series. 

 
Table 5. Mean values and standard errors on elemental and isotopic values for modern analogue samples. 

 

 

Lake Ngatu Modern Analogue Samples (n=>1)

Charophyte %C δ13C %N δ15N C:N ratio
Mean 38.32 -23.24 2.90 -6.50 13.82
Standard Error 0.41 2.25 0.45 1.33 1.98
Catchment Soils
Mean 7.14 -26.83 0.34 0.48 19.88
Standard Error 4.07 3.17 0.18 0.91 2.24

Lake Rotoroa Modern Analogue Samples (n=>1)

Catchment Soils %C δ13C %N δ15N C:N ratio
Mean 3.01 -23.35 0.17 1.11 22.28
Stardard Error 1.02 1.98 0.06 0.67 9.15

Podocarp Forest Soils (compared to catchment soils in both lakes)
Mean 27.61 -28.38 0.93 0.28 28.30
Standard Error 9.19 0.45 0.30 1.06 1.44
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Figure 24. C:N ratios, elemental percentages and isotope data for modern analogue samples plotted with 
value fields 

 
6.5 Interpretation 
 
6.5.1 Geochemical Results from the Algae Concentrates and the Impact on Interpretation of the C:N 
Sediment Data 
 

The elemental and isotopic results from the six concentrated algae samples directly affect the 

interpretation of the carbon and nitrogen results of the lake sediments. Algae normally have a C:N 

ratio of between 4-10 while terrestrial materials should exhibit ratios of >20 (Meyers and Lallier-

Vergès, 1999), with values between 10 and 20 considered a mixture of the two sources. Prior to 

human settlement the C:N ratios (avg. 19 in Ngatu and 25 in Rotoroa) of the lake sediments suggest 

that their organic composition was heavily influenced by allochthonous sources (Fig. 25). Terrestrial 

pollen and other organic materials such as macrofossils identified in these sediments support the 

C:N ratios and show that some terrestrial material was contained within the matrix of these 

sediments. However, the C:N ratios (18 in Ngatu and 27 in Rotoroa) and isotopic values of the pre-

impact sediment and algae concentrated also from this time are analogous. Additionally, after 

impact, when the C:N ratios of the lake sediments became smaller and the δ13 C values heavier, so 
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did the those of the post-impact and core top algae samples in both lakes. This suggests that algae 

were a major organic contributor to sediment formation in both lakes through time and that the 

C:N and isotopic values of the algae can change with time and also produce C:N results that would 

be expected for terrestrial materials. 

There is, however, a significant difference in the results of the pre-impact sediments and algae 

compared to the post-impact samples. The carbon content of the pre-impact algae is low (2.3% in 

Ngatu and 9.4% in Rotoroa) compared to the average carbon content percentages from pre-impact 

sediments (22% in Ngatu and 26.7% in Rotoroa). Carbon percentages of post-impact sediments are 

much closer to those measured on post-impact and core top algae (Fig. 25). The high carbon 

percentages measured on the pre-impact sediments must contain non-algae material to have 

achieved these results, and therefore must contain more allochthonous carbon compared to 

sediments post-impact.  

The algae Botryococcus braunii was the primary organism isolated for measurement and was 

observed in large quantities throughout both lake cores. B. braunii has the ability to produce 

hydrocarbons (Maxwell et al., 1968); which in turn can create C:N ratios as high as ~36. However, 

this algae is also easily impacted by environmental change (Huang et al., 1999; Smittenberg et al., 

2005) and can adjust its composition and carbon uptake to cope with environmental change (Huang 

et al., 1999; Street-Perrott et al., 2004). These adjustments impact the elemental and isotopic 

composition of the organism and C:N ratios ranging between 10-27 and periods of enriched δ13C 

(~-15‰) from a lake containing B. braunii have been documented (Huang et al., 1999; Street-

Perrott et al., 2004). These authors attribute the high isotopic values to regular landscape burns 

and reduced terrestrial input which lead to limited carbon entering in the lake. Consequently, this 

promoted the utilization of HCO3  (bicarbonate), which B. braunii can process (Street-Perrott et al., 

2004), enriching the δ13C values (Huang et al., 1999) with the uptake of this carbon source. Results 

from these studies suggest that this is a possible reason for the elemental and isotopic values that 

were obtained from the Lake Ngatu and Rotoroa sediments and algae samples. 

Since B. braunii was ubiquitous through the sediment cores and can produce a wide range of C:N 

ratios and δ13C concentrations, it is difficult to determine if the alterations observed in the sediment 

samples were driven by changes in the sources of carbon input. However, the sensitivity of the 

algae to environmental change and its isotopic flexibility to adjust to these changes allows the algae 

to be used as a proxy for environmental change. The interpretation of the C:N ratios and isotopic 

values of the sediments will be viewed with these results in mind. 
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Figure 25. Lake sediment elemental and isotopic results by zone and modern analogue samples 

 

6.5.2 Interpretation of the Proxy Data Through Time 
 

Zone 1 – 1000 BC to 1100 AD - Pre-Impact 
 

Tall and small tree pollen abundance in this zone indicates that established forests with limited 

bracken fern were growing in the region. The small amount of >50µm charcoal in the sediment 

records also implies that natural fires were rare and that the forests may have continually grown in 

the region during this period (Newnham, 1999). 

Elemental and isotopic carbon, nitrogen and the C:N ratios from each lake differ slightly but both 

indicate that, with the exception of an occasional environmental disruption event, lake productivity 

was steady, and few drastic or long-term changes occurred in the organic input into the lakes 

through this time. The high C:N ratios prior to human settlement in Lakes Ngatu and Rotoroa are 

probably derived from a combination of terrestrial sourced carbon and B. braunii when the 

organisms were synthesising hydrocarbons (Maxwell et al., 1968) which are produced when 

specific nitrogen, sunlight and temperature conditions for growth are achieved (Qin, 2010). As 

indicated above, additions of terrestrial carbon explain the differences observed between the 
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carbon depleted concentrated algae compared to the more carbon-rich lake sediments in this zone 

(Fig 25). 

The CT and geochemical data are distinctly different in each lake. The CT values, which are a proxy 

for bulk density and therefore allochthonous flux, show that transport of clastic materials was low 

and steady into each basin except for an occasional minor environmental event in both lakes from 

1000 BC to 1100 AD. This is also evident in the geochemical data. These events are likely related to 

storm activity rather than natural burn events due to the lack of accompanying charcoal in the 

record. The larger amount of variation in the Lake Rotoroa CT data compared to Lake Ngatu in this 

zone suggest that prior to impact the catchments behaved differently which is probably due to the 

steeper catchment morphology of Lake Rotoroa. The Ti/Zr values for both lakes support this with 

results from Lake Rotoroa showing significantly more variability and higher amplitude in that 

variability than Lake Ngatu. However, overall the high Ti/Zr ratios from both lakes indicate that 

finer grained materials were entering the lakes, which were likely derived from clays in the 

catchment soils. 

Elemental K and P in Ngatu show minimal change through this zone, which supports the carbon 

and nitrogen and CT results, and indicate that only minor alterations in nutrient and detrital inputs 

occurred. Again, there is more variability in Rotoroa with potassium shifting from steady values to 

increasing values around 800 AD. Phosphorus in Rotoroa on the other hand, reduces slowly through 

time, reaching its second lowest recorded value around 1000 AD.  

Ca/Ti and Si/Ti in Ngatu show overall high, stable values with only minor variation through time, 

which also suggests minimal erosion. The minor variation may imply that the source of Ca and Si 

alternated slightly between more detrital and in-lake production or changes in the detrital sources 

of these elements through this time (Balascio et al., 2011; Haberzettl et al., 2007). The larger 

amplitude of change seen in Ca/Ti and Si/Ti in Rotoroa through this period implies that this lake 

was reacting to the same environmental drivers differently (Fig. 23). 

To understand why the two lakes were reacting differently, the carbon and nitrogen results from 

sediments in both lakes from this zone were compared to the modern analogue soil samples from 

the catchments and the podocarp forest (Fig. 25). Lake Ngatu sediments correlate better to the 

values measured on the modern catchment soils than to the podocarp forest. Conversely, in Lake 

Rotoroa the heavier C:N ratios and lighter isotopic values in Zone 1 are more similar to those of the 

podocarp forest soils rather than the modern catchment soils. The differences between the two 

lakes could be related to catchment morphology and soil types. Rotoroa may have been more 

affected by hillslope erosion of its catchment soils due to its steeper western bank, e.g. (Gilbert, 
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1909), while Ngatu was less impacted with its shallower slopes. This theory is supported by the CT 

data in Rotoroa, which indicates more erosional events occurred in Rotoroa than Ngatu over this 

time. This is also suggested in the higher sedimentation rates in Rotoroa, based on the age-depth 

model (Fig.12). Ngatu’s flatter catchment and associated wetlands are also limited to eQd soils 

while Rotoroa’s slightly steeper catchment additionally contains lQd soils which are richer in peats 

and organics than the sandier eQd soils. While they were not measured, it is possible that the lQd 

soils are more akin to the forest soils. If this is the case, then the lQd soil type was likely naturally 

entering the basin through surface erosion prior to settlement in Rotoroa. This interpretation is 

supported by the findings from Chapter 4 which showed that fossil pollen at 59cm depth was 

entering Lake Rotoroa in greater abundance compared to Zone 1 pollen concentrates from Ngatu. 

Differences of soil type and amount of detrital input into the lakes likely contributed to the 

differences observed in the isotopic and geochemical data between the lakes through Zone 1. This 

interpretation highlights that, although the lakes neighbour each other and their regional pollen 

and charcoal records are similar, catchment specific proxies such as carbon and nitrogen 

measurement can identify local signals of change. 

 
Zone 2 - 1100-1500 AD – Initial Burn Period -Human Arrival and Anthropogenic Alteration of the 
Landscape 
 

This zone is marked by a change in nearly all indices. Within the modelled age-range for human 

settlement (1160-1280 AD) both lakes show distinct alterations in their proxy datasets. The 

patterns of these changes show that this zone contains the initial burn period for these lakes. The 

period of the IBP was identified by the reduction of tree pollen with increased bracken spores and 

charcoal along with concurrent changes in all other proxy data. More refinement of this period may 

be produced with the complete pollen and charcoal based environmental reconstructions, but for 

this project, the modelled duration of the IBP is 339-581 years in length in Ngatu and 116-356 years 

in Rotoroa at the 95.4% confidence interval. There are significant differences in the proxy values 

between the lakes in this zone so each lake will be described separately below for clarity.  

Lake Ngatu  
From 1100-1500 AD in Lake Ngatu the tree pollen, bracken fern spore, and charcoal data show that 

the original forest was removed by fire and that bracken fern instead began to grow in the area. 

The carbon and nitrogen data in Zone 2 suggest that there was a considerable reduction in organic 

input which is supported by the pollen records. The loss of catchment vegetation lowered the levels 

of elemental carbon and C:N while the  δ13C values became heavier from 1100 to 1500 AD. Reduced 

carbon content could also be the result of dilution from increased sediment flux with erosion 
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(Fisher et al., 2003), but overall low CT values at the start of this zone don’t support dilution. A 

change in the origin of the carbon entering the lake can also be observed when comparing the 

carbon and nitrogen results of the Zone 2 sediments to the post-impact algae sample. The carbon 

content of the post-impact algae sample matches those of the Zone 2 sediments. This shows that 

the Zone 2 sediments are more dominantly composed of algae (Fig.25) compared to sediments 

from Zone 1, which had more terrestrial carbon content. As mentioned above, the sensitivity of the 

algae to environmental change indicates that these catchments experienced an alteration to the 

quantities of nutrients entering the lakes at this time, probably through forest clearance, which 

altered the elemental and isotopic values of the algae and consequently, the sediment (Huang et 

al., 1999; Street-Perrott et al., 2004).  

CT values do not dramatically change until 1400-1450 AD, then quickly increase to a high value of 

nearly 500 (Fig. 23). This suggests there was a delay in clastic input into the lake despite the pollen, 

charcoal, and C:N data showing environmental change earlier. Elemental K supports the timing of 

this with increased abundance from 1300-1400 AD, suggesting that soil was washed into the lake 

at this time (Aufgebauer et al., 2012; Elliot et al., 1997; Moreno et al., 2011). Concurrent lower Si/Ti 

and Ca/Ti values also indicate that erosion increased (Haberzettl et al., 2007). Ti/Zr values change 

more immediately and show a dramatic increase of course materials entering the lake from the 

start of this zone.  

The Fe/Mn results suggest that the lake experienced reducing conditions from ~1250-1350 AD. 

Reduced conditions may be driven by eutrophication and redox processes due to increased surface 

runoff from the mobilization of soils through anthropogenic land use (Corella et al., 2012; Davies 

et al., 2015; Haberzettl et al., 2007). In reducing conditions phosphorus can be released from the 

sediment and enter the water column (Søndergaard et al., 2003) which may result in lower P values 

in the sediment. In Ngatu during this time phosphorus at first slightly drops in Zone 2, then quickly 

increases from about 1400-1500 AD, when reducing conditions in the lake end. Likely, 

anthropogenic alteration of the catchment introduced more P into the lake during all of Zone 2, 

but this is only observable in the sediment when the lake is not anoxic. Increased levels of 

phosphorus would change the nutrient supply in the lake and might have contributed to the 

alteration of the carbon and nitrogen values observed in the algae and also the sediments (Qin, 

2010).  
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Lake Rotoroa 
The pollen and charcoal records for Lake Rotoroa through this zone also show that the native forest 

was removed by fire. The carbon and nitrogen results follow the patterns observed in Ngatu which 

support that the catchments were cleared of vegetation which in turn increased erosion. This is 

seen in lower C:N values and heavier isotopes, however, these trends appear to have begun prior 

to impact, at around 750 AD. The changes in these proxies also do not appear as intense as those 

recorded in Ngatu. In spite of differing initiation times, the C:N and carbon content of the sediment 

between the two lakes is quite similar through this zone.  

The CT data show a slow but steady increase of denser materials starting at 1100 AD, peaking at 

1400-1450 AD, but reaching only a Hounsfield value range of 300-350, compared to the ~500 seen 

in Ngatu. The Ti/Zr results follow the trend in the CT data and show a gradual but persistent shift 

to more coarse-grained materials entering the lake. The sandier eQd catchment soils may have 

been mobilized at this time due to dune activation after forest clearance. The Ca/Ti and Si/Ti ratios 

also slowly shift towards low values and support increased detrital input over this time.  

Elemental K is steady in this zone, unlike Ngatu, which might suggest that less soil was being 

mobilized into Rotoroa comparatively (Aufgebauer et al., 2012). On the other hand, there is a 

strong, immediate increase of P in this zone compared to Ngatu Zone 2. This suggests that 

anthropogenic impact increased the abundance of phosphorus in the lake. The additions might be 

related to detrital input or organic content such as the large amount of charcoal that entered the 

lake at this time (McColl and Grigal, 1975). In oxidizing conditions, when Fe/Mn values are low, 

phosphorus may become bound to sediment (Søndergaard et al., 2003) producing higher P values 

in the sediment. The Fe/Mn values in this zone support this and suggest that the lake had higher 

oxygen levels compared to Ngatu, and therefore more of the introduced P became bound to the 

sediment. 

Overall, during Zone 2 the CT and geochemical data imply soil transport probably occurred more 

intensely in Lake Ngatu than Lake Rotoroa with larger Hounsfield values and a strong, linear 

reduction in the Ti/Zr ratio and increased elemental potassium. However, the impact of this change 

was not immediate and the geochemical and CT data show more evidence of sustained soil erosion 

around 1400 AD. The CT, Ti/Zr and other geochemical proxy data in Rotoroa shows overall a more 

immediate but milder signal of increased erosion in Zone 2 compared to Ngatu. The Zone 1 histories 

of the lakes, which showed more detrital input into Rotoroa compared to Ngatu, appear to have 

altered in Zone 2. The pattern observed in Zone 2 may suggest that the lakes have different land 

use histories.  
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One potential explanation for Lake Rotoroa to have a lower CT and elemental response in Zone 2 

is that the steeper catchment made this lake initially less desirable to the Polynesian settlers to 

attempt horticulture practices than the flatter topography and extensive wetlands afforded by 

nearby Lake Ngatu. As mentioned in Chapter 2 regarding wetland horticulture, existing damp 

locations were utilized throughout Polynesia to grow wetland taro (Allen, 1971; Kirch, 1994). As 

Barber (1989, 2001, 2004) and Horrocks and Barber (2005) have located possible evidence of 

wetland horticultural practices from ditch systems on the Aupouri Peninsula, horticultural utility 

provides a theoretical explanation for the differences observed in these measurements and 

potentially in the differences in the timing of these changes between the lakes.  

In summary, the geochemical proxy data support the modelled human arrival age range from 1160 

to 1280 AD and suggest that from 1100 to 1500 AD the landscape around both lakes was drastically 

altered. Soil erosion increased as a result of forest removal by fire and possibly other land 

management. In Rotoroa this change was more immediate, but impact overall appears milder 

compared to Ngatu. In Ngatu the effects of landscape change were delayed but more intense 

compared to Rotoroa. The CT, elemental and geochemical differences between the two lakes, 

despite their proximity and similar pollen and charcoal histories, suggest the that either the 

topography of Lake Ngatu was more prone to erosion, which does not follow the environmental 

histories of Zone 1 and seems unlikely since the catchment is flatter, or that Ngatu’s catchment was 

considered a more viable location to trial Polynesian horticultural practices compared to Lake 

Rotoroa.  

 
Zone 3 - 1500 to 1750-1800 AD- Continued Land Use  
 

Lake Ngatu 
The proxy data in this zone again suggest that different responses to change occurred in each lake. 

In Ngatu, after a decrease in bracken fern spores around 1400 AD there is another strong pulse of 

spores around 1600 AD suggesting that fire had again cleared the landscape (McGlone et al., 2005). 

Bracken fern spores travel easily on the wind and the increase observed here is probably a regional 

signal (McGlone et al., 2005). Charcoal abundance slightly increases as well, suggesting that this 

secondary burn period primarily eliminated second growth vegetation, which does not produce as 

much charcoal (McWethy et al., 2014; Perry et al., 2014). This pattern has also been observed in 

environmental reconstructions on the South Island (McWethy et al., 2014) which recorded limited 

charcoal from burn events after the IBP.  
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The C:N ratio remains steady and low in this zone while the other elemental and isotopic values 

vary, but no longer experience the sweeping changes in their concentrations. After the increase in 

bracken at roughly 1600 AD there is a slight decrease in elemental carbon and the δ13C values 

become a little heavier. These changes were seen in Zone 2 with anthropogenic environmental 

modification and may support the theory that renewed activity occurred at this time along with 

the increase in bracken spores and charcoal. 

The CT data show some fluctuation but overall has high values, indicating continued and sustained 

erosion. Ti/Zr values remain lower than those measured in Zone 1 and stabilize, suggesting that 

course-grained soils continued to be deposited during this zone. The Ti/Zr values in Zone 3 are 

slightly larger than some of Zone 2, which might imply that some finer clays were also entering the 

lake during this period. However, elemental K also produced low values, in keeping with results for 

this element from Zone 1, which suggests that well-developed soils were no longer eroding into 

the lake. Ca/Ti increases in this zone suggesting that Ca delivery during this period was less related 

to erosional processes and driven more by carbonate production (Haberzettl et al., 2007). However, 

both treated and untreated δ13C results for these sediments (see section 6.3.2) showed no evidence 

of containing carbonate materials (Meyers, 1994). The oscillation of Ca/Ti through Zone 3 appears 

then to be correlated to Ti/Zr and may suggest that increased Ca was driven by changes in the 

abundance of detrital calcium now eroding into the lake (Balascio et al., 2011). These proxies 

together may imply that after removal of the native forests in Zone 2 much of the organic-rich 

catchment soil had already eroded into the lake and that in Zone 3 sand or larger grained catchment 

soils containing detrital calcium were now the primary sources of clastic input. We know that older 

soils were still entering the lake during this time from the outcomes of the dating experiment (see 

Chapter 4), which implies that it wasn’t just newly formed soils that were now being mobilized. 

Fe/Mn decreases in Zone 3 suggesting that the lake had higher oxygen content. Phosphorous 

increases during this time which suggests that more P was being bound to the sediment 

(Søndergaard et al., 2003). The Si/Ti ratio returns to Zone 1 values, which might suggest increased 

diatom productivity (Balascio et al., 2011), possibly related to oxygen-rich lake conditions and a 

nutrient supply. 

Lake Rotoroa 
The second phase of increased bracken fern spores observed in Ngatu was not recorded in Rotoroa. 

Large charcoal particle abundance reduced from 1500-1600 AD then increased again to Zone 2 

values from 1600-1700 AD, suggesting that the area continued to be burnt during this time. This 

increase of Rotoroa charcoal occurs at roughly the same time that bracken fern spore abundance 

increases at Ngatu. Further reductions of tall tree pollen support continued fire activity during this 
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zone. The carbon and nitrogen indices suggest a period of relative uniformity compared to Zone 2. 

Over this period these values remain low and almost constant except for δ13C which continues to 

become heavier. This suggests that after the removal of the native forest in Zone 2, the landscape 

did not recover and was likely burned repeatedly. 

The CT values in this zone drop back to almost pre-impact levels and the Ti/Zr remains fairly low, 

implying slow, steady erosion of primarily larger-grained materials (Davies et al., 2015). Elemental 

K increases a little through this zone which is likely related to some increased soil input, but the 

steady overall values still suggest minimal erosion. Ca/Ti and Si/Ti generally appear to be in phase 

with Ti/Zr, suggesting that increased abundance of Ca and Si are probably mostly from detrital 

sources. These proxies may also indicate that after landscape clearance in Zone 2, sand and older 

catchment soils higher in calcium comprised much of the materials that were eroded into Zone 3. 

The Fe/Mn ratio suggests a minor reducing period in the lake around 1750 AD, however, the ratio 

reaches a value of only 800 compared to the 20,000 seen in Zone 2 Ngatu. As seen elsewhere in 

the cores, phosphorus abundance in the sediment reduces around the same time Fe/Mn increases, 

as P will release or stay in suspension in the water during reducing conditions.  

A synthesis of the proxy data implies that both catchments were still being impacted by 

anthropogenic land use during this period, but that continued modification affected the lakes 

differently. The Lake Ngatu carbon, nitrogen and bracken fern record indicate a possible second 

phase of land use during this period. The CT and geochemical data support this and show sustained 

erosion.  

In Rotoroa, the pollen records and elemental data do not suggest that a second phase of intensive 

landscape modification was attempted, however, charcoal abundance is high, indicating that the 

local landscape continued to be burnt. The CT data, K, and Ti/Zr results imply that erosion continued 

but much more limitedly, with CT values now as low as those recorded in Zone 1, but even less 

sporadic. Wilmshurst (1997) has found that soil erosion can be limited after initial human impact 

by the root structure of bracken fern forests that replaced the original forests and that this could 

be maintained even with repeat burning, which might be the case at Rotoroa. 

The different erosional proxies and environmental histories between the lakes through this period 

could be related to preferential use of Ngatu’s catchment to practice horticulture. This could be 

explained by an effort to intensify horticulture around Ngatu during this time which drove 

continued erosion of catchment soils. This interpretation is supported by the findings of Wilmshurst 

(1997) and suggest that Ngatu’s catchment was not protected from erosion by bracken fern root 

structure. The steadiness of the CT data in Rotoroa, even compared to pre-anthropogenic impact 
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depths, suggest that erosion was quite limited through this zone. Since this catchment is steeper, 

it should suffer more from natural erosion, as seen in the Zone 1 data. The differences observed in 

the proxy data between the two lakes is more easily explained by widespread bracken fern growth 

at Lake Rotoroa rather than by crop production at Lake Ngatu. 

 
Zone 4- European Settlement - 1800 to present 
 

This final period in the catchment histories of Lakes Ngatu and Rotoroa is not composed of many 

data but European influence on the landscape can be seen in the strong elemental shifts in both 

lakes, particularly in nitrogen. Additions of nitrogen from fertilization for modern agriculture and 

pastoralism are possible causes for this enrichment (Fenn et al., 2003; Wolfe et al., 2001). The CT 

data suggest erosion occurred, but weathered catchment soils were likely already removed, so the 

erosional signal inferred from the CT data around 1850-1900 may indicate mobilization of the sand 

dunes. Too few geochemical measurements were made to identify any significant trends, but both 

lakes generally show potential erosional signals. The biggest change is that during Zone 4 the tall 

tree pollen begins to slowly recover, and pine appears. 

 
6.6 Summary 
 

The environmental proxy records generated for lakes Ngatu and Rotoroa successfully identified 

when human modification of the landscape occurred and the intensity of landscape alteration in 

the lake catchments. These methods cannot definitively inform whether these catchments and the 

surrounding landscape were specifically modified to develop horticultural spaces, but theoretically, 

landscape alteration to practice horticulture seems likely given the archaeological evidence that 

cultivation was practiced widely in the region, including lake catchments. Durations of 

anthropogenic land use were derived for the catchments and the initial burn period identified in 

each lake. The multi-proxy results suggest that the lakes behaved differently to each other prior to 

human arrival and reacted to anthropogenic modification differently. The differences in the 

environmental records between the lakes are interpreted as showing that Ngatu’s catchment was 

selected to practice horticulture, while Rotoroa’s steeper catchment was not primarily used for 

cultivation. 
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7. Synthesis of Multi-Proxy Results 
 

7.1 Introduction 
 

The first part of this chapter briefly reviews the key results in the context of the research questions. 

Section 7.3 compares the timing of Polynesian arrival derived from the model to a lacustrine record 

from the Far North and then to a couple of important early archaeological sites in New Zealand. 

Section 7.4 provides a discussion of how the rates and intensity of landscape modification recorded 

in the environmental proxies from Lakes Ngatu and Rotoroa compare to other environmental 

reconstructions from both the North and South Islands. 

 

7.2 Summary of Research Findings 
 

The dating experiment was undertaken to determine which lacustrine organic materials provide 

the most robust 14C dates. When compared to macrofossils, ages from post-human arrival pollen 

concentrates were significantly older. This demonstrated that human landscape modification can 

impact pollen concentrate ages, probably caused by anthropogenic mobilization of fossil pollen in 

catchment soils. Additionally, separate algal and cellular material concentrates showed that, while 

these contaminates did affect the accuracy of the pollen concentrates, they were not responsible 

for the post-human arrival offsets. This result supports the theory that the offsets between the 

post-impact pollen concentrates and matching macrofossils were anthropogenically driven. An 

important implication of this finding is that even closed lake systems could be affected significantly 

enough, either by humans, or large scale or long-term environmental events, to render pollen 

unsuitable for accurate measurement. Other research has suggested the possibility that human 

landscape alteration could affect closed lakes in this manner (Chester and Prior, 2004), but this 

experiment has tested and shown that human modification can directly impact closed lakes. The 

outcomes of this experiment guided sample selection for construction of the age-depth model. 

An age-depth model was successfully constructed for the lakes to determine when Polynesian 

colonization began in the Far North. The model contains a high-resolution of likelihood data 

through the period of human arrival to present, which allowed the period of interest, Polynesian 

arrival, and settlement, to be precisely modelled. The modelled age range of 1165-1280 AD for 

human arrival is well supported by a radiocarbon measurement on a piece of charcoal just above 

where human arrival was identified by the pollen and charcoal records in the sediment cores. This 
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sample returned both an unmodeled and modelled 13th century calibrated age range. The age-

depth model is robust with an agreement index of >78% to the likelihood data and contained no 

outliers or inverted dates.  

Finally, the isotopic and geochemical signals successfully indicated land use duration and intensity 

in the Far North. Furthermore, when compared to the regional pollen and charcoal records, 

catchment specific elemental, isotopic and geochemical measurements overall indicate 

environmental alteration at similar depths and times. This comparison suggests that both regional 

and local anthropogenic alteration to the landscape occurred nearly simultaneously. The elemental 

and isotopic data showed change through time which allowed for zoning of land use intensity and 

duration to be described. However, the lakes showed distinct differences to each other in the proxy 

data through time, illustrating the utility of catchment specific proxy data to understand the local 

signals of human impact as well as the regional signals. 

The implications of these key research results for the overarching aim of using a lacustrine record 

in the Far North to identify initial Polynesian settlement and anthropogenic landscape modification 

are discussed below. 

 

7.3 Comparison of the Chronology to Other Research 
 

The modelled age range of 1165-1280 cal. AD this research produced for human arrival to the Far 

North is early in the human settlement history of New Zealand (Anderson, 2018; Higham and Jones, 

2004; Wilmshurst et al., 2011). This result is supported by the independent geochemical and 

isotopic proxy data which show evidence of environmental disturbance occurring through this time 

period with increased erosion and alterations in lake chemistry. The accuracy of the chronology is 

further supported by the dating experiment so that the most robust targets were chosen to 

construct the age model. With the precision of the chronology established, how does the modelled 

age-range of human arrival compare to other well-dated early sites in New Zealand?  

Ideally, the age-depth model would be compared to previous research from the Far North looking 

into the timing of human occupation. The Far North, however, has not been well dated and limited 

data exists from the region for comparison. As discussed in Chapter 5, the radiocarbon dates from 

the nearby archaeological site Houhora support the early modelled date for Polynesian arrival to 

the region. However, to compare Ngatu and Rotoroa’s age-depth model to a more similar 

environment, a lacustrine chronology from Lake Taumatawhana in the Far North is considered. 

Elliot et al. (1995) produced a low-resolution model for the lake from just eight radiocarbon dates 
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on bulk sediment through the timeframe of the late Holocene through to Polynesian arrival. Age 

reversals were seen at the top of the core through suspected pre-European to European depths. 

The poor quality of the chronology did not allow for an accurate human arrival age to be derived, 

but Elliot and colleagues projected a rough 1150 AD date for initial anthropogenic impact (Elliot et 

al., 1995). This settlement date would suggest that the modelled timing of human arrival at Lakes 

Ngatu and Rotoroa is a little young. However, while the pollen records and other proxy data 

measured from Lake Taumatawhana sediments do show evidence supporting anthropogenic 

landscape modification, the materials used to construct the model and the chronological issues 

with ¼ of the samples make the chronology unreliable and the timing of arrival uncertain. 

Additionally, the results of the dating experiment (see Chapter 4) also suggest that the accuracy of 

bulk sediments dates used for the Taumatawhana chronology were likely compromised by 

inclusions of algae, cellular material and possibly fossil pollen. These materials could have depleted 

the 14C activities of the sediment and inaccurately aged the chronology. This may also account for 

the age reversal in the upper sediment.  

To compare the modelled results instead to early archaeological complexes that have been well 

dated we look first at Shag River Mouth. This South Island occupation and moa butchery site has 

high-resolution dates on robust targets like shell, flax, charcoal and moa eggshell excavated from 

the site. Results from these have produced an early 14th century site occupation age (Anderson et 

al., 1996) which showed evidence that habitation lasted for only a short duration of ~200 years 

(Anderson and Smith, 1996). However, the earliest major archaeological site for comparison is 

Wairau Bar at the northern end of the South Island. Artefact assemblages, biological and isotopic 

indicators, and radiocarbon measurement all support this site being from the earliest part of New 

Zealand’s settlement history (Anderson, 2018; Davidson et al., 2011; Montgomery, 2010; Walter et 

al., 2017). The most recent estimation of site occupation (1320-1350 AD) was produced from 

measurement on nine moa eggshells from a single use cooking event (Jacomb et al., 2014).  
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Figure 26. Modelled timing of human arrival in the Far North plotted with Wairau Bar eggshell dates using 
combine function in OxCal 

 

These results are supported by a previous site chronology constructed by Higham et al. (1999) 

which also suggested site occupation from the late 13th to early 14th century (Higham et al., 1999; 

Walter et al., 2017). When the modelled age-range of human impact from Lakes Ngatu and Rotoroa 

is compared to the combined pdfs from this well dated site it appears that human arrival to the Far 

North was earlier than the occupation of Wairau Bar (Fig. 26), and that anthropogenic modification 

of the Far North began in the earliest period of New Zealand’s settlement history. 

To conclude, though the chronology and proxy data generated for this project were not obtained 

from a complex archaeological site, the results of these datasets provide a reliable fingerprint of 

human arrival early in the North. The outcomes of the age-depth model suggest that settlement of 

the Far North occurred as early in the settlement history of New Zealand as in the south. The high-

resolution model and identification of when human arrival occurred in this research project provide 

one of the most robust chronologies for Polynesian settlement and landscape modification 

developed for the Far North thus far.  

 

 



[89] 
 

7.4 Comparison of Environmental Impact to Other Research 
 

The intensity of anthropogenic impact and the length of the IBP has been found to vary between 

regions in New Zealand based on precipitation, combustibility of the forests, elevation and other 

environmental factors (McWethy et al., 2010; McWethy et al., 2009; McWethy et al., 2014; 

Newnham et al., 2018; Perry et al., 2012; Wilmshurst et al., 2004). This has been studied more 

thoroughly on the South Island and research has found that the IBP began shortly after human 

arrival, but results were diachronous and fell between c. 1280-1600 AD (McWethy et al., 2010; 

McWethy et al., 2009). 

To determine the length of the IBP on the South Island, McWethy et al. (2014) compared two lakes 

from the Otago District; Lake Kirkpatrick, with a lower elevation (570m a.s.l.) and annual 

precipitation (1077mm/yr) to Dukes Tarn with higher elevation (830m a.s.l.) and annual 

precipitation (1340mm/yr). High-resolution chronologies were created by radiocarbon dating of 

macrofossils for these lakes which allowed the IBP to be accurately identified through time in the 

pollen and CHAR analysis from the charcoal records that were created. The modelled results from 

this research showed that the length of the IBP was only 17 (SD-7) years at the dry site (Lake 

Kirkpatrick), and 48 (SD-19) years at the wetter site (Dukes Tarn) (McWethy et al., 2014). Minor 

differences in the intensity of impact and forest recovery were also observed between several 

southern lakes, but in all cases, the IBP found to be of short duration (McWethy et al., 2010; 

McWethy et al., 2009).  

On the North Island, around coastal Taranaki, Wilmshurst et al. (2004) observed that anthropogenic 

landscape modification first occurred significantly later (mid-17th century) compared to much of 

the south and that in this wet environment, with annual rainfall reported as 2000mm/yr, the 

intensity of human landscape modification was not as pronounced. The chronologies for these sites 

are poorly constrained but the IBP appears to be roughly a few decades in length. Wilmshurst et al. 

suggest that landscape clearance was more limited and later in the region because the occupants 

were clearing land primarily for swidden horticulture rather than travel which required less 

modification and that the landscape was also harder to burn clear than drier regions (Wilmshurst 

et al., 2004).  

On the East Coast of the North Island, Wilmshurst (1997), like McWethy et al. (2014), compared 

the environmental records from two lakes proximal to each other with different climate conditions. 

One lake, Tutira, received a mean annual rainfall of 1400mm while the other lake, Rotonuiaha saw 

2000mm/yr. The chronologies are at poor-resolution, relying on a few tephra due to difficulties 
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with radiocarbon measurement at these sites, but Wilmshurst suggests that deforestation began 

in the mid-15th century and that the IBP took roughly 59 years at Tutira, the drier site, and 153 years 

at Rotonuiaha, the wetter site (Wilmshurst, 1997).  

More recently in the Auckland region, Newham et al. (2018) have developed an environmental 

reconstruction at Lake Pupuke supported by a more robust tephrochronology. The site area is 

humid and receives ~1240mm of annual rainfall. The research found that the IBP began around 

1350 AD in this area, but that this event caused only minor environmental impact until 1400-1450 

AD. This was followed by a second phase of intense landscape modification that rapidly removed 

the native forests by fire (Newnham et al., 2018). Newham et al. (2018) have attributed this second 

phase of higher intensity impact possibly to horticultural intensification of warmer climates 

following the effects of the Little Ice Age (LIA). Anderson (2016, 2018) has suggested that the LIA 

shifted the growing limits of sweet potato and other crops further north and that horticultural 

intensification began in the north around 1500 AD in response to this. 

Further north, the environmental impact patterns observed from Lake Taumatawhana in the Far 

North appear similar to those recorded on the South Island with a single rapid and intense 

landscape transformation pulse shortly after human arrival (Elliot et al., 1995). The sampling 

resolution (10cm intervals) may have contributed to these observations and, as mentioned 

previously, the chronology is low-resolution and imprecise over the time interval that these impact 

signals occurred. The poor quality of the chronology does not allow for a meaningful estimation of 

the IBP at this site, however, this area probably receives a similar amount of annual precipitation 

as Lakes Ngatu and Rotoroa which is estimated at 1200mm/yr. 

In addition to low sampling resolution, another reason that the Lake Taumatawhana environmental 

reconstruction might appear similar to southern records could be related to soil types and 

microclimates. Elliot et al. (1995) have indicated that the late Holocene environment in Northland 

prior to human arrival is not as well understood as the South Island. Elliot and colleagues do, 

however, suggest that there is some evidence for drier, windier conditions in the Far North prior to 

human arrival, which has also been observed by other researchers (Dodson et al., 1988; Enright et 

al., 1988; Newnham, 1999; Newnham et al., 2004). Elliot interprets the oscillation in the abundance 

of kauri in the site’s pollen record as showing signs of drought prior to settlement since these trees 

require between 1000 and 2500mm of rainfall annually (Ecroyd, 1982). These effects might have 

been exacerbated at this site since sand dunes are especially sensitive to moisture loss (Elliot et al., 

1995). If this is the case, the environment of the Far North, particularly the sand dunes, may have 
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been slightly drier and the vegetation more combustible during the modelled time of human arrival 

than in Auckland and Taranaki.  

In comparison to the research above the results from Ngatu and Rotoroa appear to come from a 

drier, rather than a wetter location, which implies that the IBP should be of short duration. The 

possible drier conditions of the region through the period of Polynesian settlement, particularly as 

related to the sand dunes, as identified above by Elliot et al. (1995) could explain why tall and small 

tree pollen around Lakes Ngatu and Rotoroa recede quickly after human arrival. This might also be 

a reason why tall tree pollen abundance varied through Zone 1. The quick reduction in tree pollen 

in Zone 2 is supported by the carbon and nitrogen results in this zone which also suggest that a 

rapid transition in lake chemistry occurred shortly after initial anthropogenic impact. 

However, the modelled durations of the IBP for these lakes are much longer (339-581 years in 

Ngatu and 272-435 years in Rotoroa) than those recorded in the other sites. Overall, the length of 

the IBP at Ngatu and Rotoroa most resembles the total length of the IBP as recorded in two-steps 

in Lake Pupuke by Newham et al. (2018), which appears to last as long as 150-200 years. Some 

refinement of the length of the IBP for Lakes Ngatu and Rotoroa could come out of the more 

thorough pollen and charcoal environmental reconstruction that will be created separately as part 

of the larger project, but the length should not drastically change. The simplified records used here 

are still indicative of the timing of tall and small tree pollen reduction and charcoal particle and 

bracken fern spore increase within the chronology. This leaves the question of why the IBP might 

be longer in duration at Lakes Ngatu and Rotoroa? 

The duration of the IBP at the research lakes could partly be related to environmental factors and 

the reasons the landscape was altered. Early land use on the South Island included clearing to 

create access to valuable lithic resources (Walter et al., 2017), hunt moa and encourage bracken 

fern and tī kōuka growth (Anderson, 1989; McGlone et al., 1994; McWethy et al., 2010; McWethy 

et al., 2009).  

The work presented here suggests that Polynesian settlers with tropical crops were likely modifying 

the landscape in the sub-tropical Far North soon after arrival. Initial and continued modification of 

the landscape was probably not done to improve travel to stone sources or to hunt moa as in the 

south, but more likely to take advantage of the warm climate to practice horticulture and possibly 

also for bracken fern growth. As discussed in Chapter 2, some of the Polynesian cultivars such as tī 

pore could only be grown in Northland, and this region was the only area in New Zealand to have 

the environmental conditions to support all of the Polynesian cultigen suite that was successfully 

transferred to New Zealand (Furey, 2006). Yams for instance, which did not generally grow well in 
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New Zealand, were identified by starch granules in the horticultural soils at Motutangi on the 

Aupouri Peninsula (Horrocks and Barber, 2005). 

The differences in the environmental reconstructions between the two lakes lend support to this 

theory. The increased erosion signals after human arrival suggest that Ngatu’s flatter catchment 

and wetlands were developed for horticulture, perhaps even wetland horticulture, since 

archaeological evidence of this practice has been suggested to have occurred in the region (Barber, 

1989, 2001; Horrocks and Barber, 2005).  Ngatu’s environmental history might also lend support to 

the work of Newham et al. (2018) and show evidence of land use intensification after 1500 AD, 

which could also be related to increased land use in the north once the impact the LIA began in the 

south. 

Landscape modification might have also needed to be undertaken at a different pace to maintain 

productive gardens. Root crops are known to deplete the soils of nutrients (Leach, 1984) which 

could be improved by mulching or burning nearby forests to release phosphates and other 

nutrients into the soil (Elliot et al., 1997; Elliot et al., 1995; McWethy et al., 2010). These 

requirements may have produced longer initial burn periods at both Ngatu and Rotoroa than 

recorded at other sites. However, Rotoroa’s steeper catchment might have been less suitable for 

cultivation, at least for wetland practices, and the catchment appears to have not been modified 

directly for this purpose, but its nearness to Ngatu meant that the timing and regional 

environmental signals of impact were also recorded in this lake. Rotoroa’s erosional stability after 

1500 AD is consistent with Wilmshurst (1997), and suggests that once the native forest was 

removed, Rotoroa’s catchment was chiefly left for bracken fern growth or other landscape uses 

which limited erosion. 

In conclusion, the reasons for landscape alteration differed regionally and possibly even locally, and 

this may have had as much impact on the pace and intensity of change in the environmental records 

as differences in forest combustibility, and regional climate. The longer duration of the modelled 

IBP at Lakes Ngatu and Rotoroa compared to many other sites may indicate that, within the sandy 

soils and warm climate of the Aupouri Peninsula, early settlement and land use were probably tied 

to horticultural practices and that landscape modification for these practices required continued 

landscape modification. The differences between the proxy data in these two lakes, which have the 

same climate and experienced human arrival and landscape modification at the same time 

illustrate first, the utility of catchment specific environmental proxies, which allow for local changes 

to be identified and compared to the regional pollen and charcoal signals. Lastly, these results show 
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the power in using multiple sites to develop land use histories since each lake may behave 

differently, highlighting potential variability in land use. 
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8. Conclusions 
 

The aim of this research was to provide an accurate age for Polynesian settlement in the Far North 

of New Zealand and to increase our understanding regarding the impact that land use practices had 

on the region. Though the Far North may have been colonized early in New Zealand’s settlement 

history and utilized for horticultural practices due to the warm, mild climate, it has not been as 

extensively researched or as well dated compared to some other areas in New Zealand.  

To establish the timing of arrival and to determine the effects that anthropogenic landscape 

alteration had on the research area a high-resolution chronology was required. Lake sediments 

from two lakes near archaeological features were cored and organic materials were isolated to 

build radiocarbon chronologies. To verify that the most precise targets were selected to build the 

chronologies macrofossils and pollen concentrates were tested against each other for accuracy. 

Prior to human impact macrofossils and pollen concentrates provide similar ages for sediment 

deposition, especially once the 14C activities of the contaminating material were removed from the 

pollen’s age, while after anthropogenic landscape modification in a closed lake system pollen 

concentrates may produce ages significantly older than macrofossils from the same depth. The 

offset in ages between the two materials could not be explained by the inclusion of 14C depleted 

materials, such as algae. The experiment provides the first outcome of the research project and 

demonstrates that human landscape modification can significantly increase the mobilization of 

fossil pollen within catchment soils and that post-anthropogenic pollen concentrates either should 

not be utilized or should only be used with great caution to build age-depth models. The results of 

these tests could have implications on the outcomes of prior research and could affect the research 

strategies of future projects. 

The results of the dating experiment informed the construction of the age-depth model. 

Macrofossils were specifically isolated along with four select pre-impact pollen concentrate dates 

from Lake Ngatu, which appears to have had minimal pre-impact fossil carbon contamination based 

on the experimental work. Bayesian modelling of these radiocarbon dates and other likelihood 

information suggest that initial human impact to the catchments occurred between 1165 and 1280 

AD. Though this age range is early in New Zealand’s settlement history, prior radiocarbon dates and 

material culture uncovered from archaeological sites in the region also indicate that the area was 

occupied since the very beginning of human colonization of New Zealand. This high-resolution 

chronology is one of the most accurate models for human influence for the region and is the second 

outcome of the research project.  
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The robust chronology allowed the elemental, isotopic and geochemical proxies to be precisely 

placed in time. These catchment specific proxies were used to derive durations of land use and 

determine the intensity of alteration compared to regional scale pollen and charcoal records from 

the lakes. The results from these measurements indicate that human arrival and sustained 

landscape impacts were observable in the data sets. Increased erosion and loss of vegetation 

resulting from anthropogenic burning of the landscape around the catchments affected both lakes 

as seen in lower C:N ratios and higher detrital inputs into the lake basins as evidenced by elemental 

titanium and zirconium in lake sediments. The speed of landscape alteration observed in the proxy 

data is slower than southern model but the intensity of landscape change is similar (McWethy et 

al., 2010; McWethy et al., 2009; McWethy et al., 2014). Previous environmental research from sites 

on the North Island have suggested that more minor or stepped impact occurred in these wetter, 

less combustible regions (Newnham et al., 2018; Wilmshurst et al., 2004). The outcomes of this 

research support a slower IBP in the north and imply that different subsistence practices and 

regional environmental conditions may affect the pace of landscape transformation. 

In summary, this research provides a high-resolution age-model for an area that is not well dated. 

The chronology is robust due to thorough testing of sample materials and age modelling with 

Bayesian statistics. The model has produced a settlement date that is early in the New Zealand 

settlement history which suggests that Polynesians began modifying the Far North shortly after 

arrival. The geochemical and isotopic proxy data suggest that the landscape was continuously used 

and never fully abandoned. Based on climate, regional archaeological features, and historical 

documents, local crop production and other subsistence practices are likely reasons for initial early 

settlement and continued land use in this region. The rates of landscape change provided by the 

proxy data show slow but intense initial landscape modification. Though the traditional pollen and 

charcoal data and catchment specific isotopic and geochemical proxies show that change occurred 

over the same time periods, the intensity of these changes can be quite different and be site 

specific. These results illustrate how regional factors and environmental conditions should be 

considered when developing settlement models in New Zealand. 
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Appendies 
 

 Appendix A 

A.1 Location Images  

 

 

Figure A.1  Lake Ngatu, looking west.                                                             Photo supplied by DOC 

 

Figure A.2  1950s aerial survey photos of Lake Ngatu 
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Figure A.3 Lake Rotoroa, looking southwest to pā site 

 

Figure A.4 Lake Rotoroa, eastern bank 
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Figure A.5  1950s aerial survey photos of Lake Rotoroa 

 

 

 

 

 

 

 

 

 

 

 

 



[115] 
 

A.2 Archaeological Site Record 

        

       Figure A.6 NZAA Site Record for pā site N9/149 
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A.3 PDFs of samples from Houhora calibrated with SHCal13 
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Figure A.7 Calibrations of previously measured samples from Houhora with SHCal13 (Hogg et al., 
2013) 
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Appendix B. 

 
B.1 Probability Density Functions for Likelihoods 

 

 



[123] 
 

 

 

 

 

 



[124] 
 

 

 

 

 



[125] 
 

 

 

 

 

 

 



[126] 
 

 

 

 

 

 

 



[127] 
 

 

 

 

 

 

 



[128] 
 

 

 

 

 

 



[129] 
 

 

 

 

 

 



[130] 
 

 

 

 

 



[131] 
 

 

 

 

 

 

 



[132] 
 

 

 

 

 

 

 

 



[133] 
 

 

 

 

 

 

 



[134] 
 

 

 

 

 

 

 

 



[135] 
 

 

 

 

 

 



[136] 
 

 

 

 

 

 

 



[137] 
 

 

 

 

 

Figure B.1 PDFs of individual samples and other likelihoods from the age-depth model 

 



[138] 
 

 

B.2 OxCal Code for age-depth model  

 

Options() 
 { 
  Curve="ShCal13.14c"; 
 }; 
 Plot() 
 { 
  P_Sequence("Roto17", 1, 2, U(-2,2)) 
  { 
   Boundary("Bottom") 
   { 
   z=70.1; 
   }; 
   R_Date("61839", 2299, 21) 
   { 
    z=70; 
   }; 
   R_Date("63022", 2265, 21) 
   { 
    z=62.5; 
   }; 
   R_Date("64147", 1215, 21) 
   { 
   z=45.5; 
   }; 
   Boundary("human impact") 
   { 
    z=38.5; 
   }; 
   R_Date("63959", 845, 21) 
   { 
    z=38; 
   }; 
   R_Date("63831", 738, 30) 
   { 
    z=34.5; 
   }; 
   R_Date("63830", 441, 50) 
   { 
    z=31.5; 
   }; 
   R_Date("64143", 281, 29) 
   { 
    z=29; 
   }; 
   R_Date("64142", 339, 20) 
   { 
    z=25; 
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   }; 
   R_Date("63960", 327, 21) 
   { 
    z=23; 
   }; 
   R_Date("63457", 324, 20) 
   { 
    z=20; 
   }; 
   R_Date("63829", 270, 34) 
   { 
    z=19; 
   }; 
   Date("European", N(1920, 20)) 
   { 
    z=12; 
   }; 
   C_Date("63458", 1955.5, 0.5) 
   { 
    z=1.0; 
   }; 
   C_Date("Core top", 2017, 3) 
   { 
    z=0; 
   }; 
   Boundary("Top"); 
  }; 
  P_Sequence("Ngatu", 1, 2, U(-2,2)) 
  { 
   Boundary("Bottom") 
   { 
    z=70.1; 
   }; 
   R_Date("64141", 3344, 102) 
   { 
    z=70; 
   }; 
   R_Date("61666", 2783, 24) 
   { 
    z=46; 
   }; 
   R_Date("63955", 2418, 22) 
   { 
    z=40; 
   }; 
   R_Date("61665", 2100, 23) 
   { 
    z=36; 
   }; 
   R_Date("63954", 1703, 21) 
   { 
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    z=33; 
   }; 
   Boundary("=human impact") 
   { 
    z=27; 
   }; 
   R_Date("62587", 253, 47) 
   { 
    z=16; 
   }; 
   R_Date("62585", 207, 19) 
   { 
    z=11; 
   }; 
   R_Date("63828", 157 28) 
   { 
    z=5.5; 
   }; 
   Date("=European", N(1920, 20)) 
   { 
    z=5; 
   }; 
   C_Date("Core top", 2017, 3) 
   { 
    z=0; 
   }; 
   Boundary("Top"); 
  }; 
 }; 
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Appendix C  
 

Elemental and Isotopic Data 

 

Table C.1 Elemental and isotopic carbon and nitrogen results for all samples measured  
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Description of Elemental and Isotopic Results by Depth 

 

The δ13C values of the treated and untreated sediment from corresponding depths were statistically 

the same, indicating that overall there was very limited to no carbonate material in the sediments. 

The inclusion of carbonate would be evidenced by heavier δ13C values associated with carbonate 

matter in the untreated sediments compared to the treated. The uniformity of the values suggests 

that acidification to remove calcium carbonate from the sediments was not required, therefore, 

the untreated C:N ratios and percent carbon are used for the archaeological and environmental 

interpretations of the lake basins. 

Elemental and isotopic data through the cores in each lake was similar with both carbon and 

nitrogen values shifting from higher elemental percentages deep in the core to much lower values 

at mid-core depths. This transition is also marked by the δ13C values becoming ~10‰ (-28‰ to -

18‰) heavier through roughly 5cm of depth while the δ15N values lighten by 2-3‰ in both lakes. 

After the mid-core decline in elemental carbon and nitrogen, the values fluctuate but remain lower 

than pre-impact through several centimetres of depth while in the top centimetres of the cores the 

carbon percentages begin to return to basal values (>20%). In both lakes the nitrogen values from 

the tops of the cores are even higher than those measured in pre-impact sediments, 2 to 2.5% 

compared to 1.3 to 1.5%. Largely the elemental carbon and nitrogen values show a positive 

correlation, and the isotopic data a negative correlation. 

Both lakes experienced a step change of a ~10‰ decline in their C:N ratios through just 5-10cm of 

depth the lowest C:N ratios corresponding to the heaviest δ13C values recorded in both lakes. C:N 

ratios in Lake Ngatu range between 20 and 10 while values from Lake Rotoroa drift from 24 at the 

base of the core to 10 near the top. Neither lake has yet returned to the C:N values measured from 

sediments prior to impact. 
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Figure C.1. Elemental and isotopic data next to pollen and charcoal identifications for Lakes Ngatu and 

Rotoroa by depth 
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Appendix D.  

XRF Data 

Table D.1 Ngatu XRF results 

 

 

Sample ID
Al 

corrected Si corrected Si:Al
P 

corrected P:Al
S 

corrected S:Al 
K 

corrected K:Al 
Ca 

corrected Ca:Al
Ngatu 4.0cm 62133.4 186098.7 2.995 676.0 0.011 16550.0 0.266 9479.3 0.153 10603.2 0.171
Ngatu 5.0cm 61615.3 166380.1 2.700 715.3 0.012 18845.0 0.306 8827.9 0.143 9079.5 0.147
Ngatu 6.0cm 62596.9 164004.0 2.620 606.2 0.010 19893.0 0.318 8583.0 0.137 8919.2 0.142
Ngatu 7.0cm 60701.3 162579.8 2.678 744.4 0.012 22546.0 0.371 8475.9 0.140 9001.9 0.148
Ngatu 8.0cm 61004.8 162673.6 2.667 680.4 0.011 23161.0 0.380 8830.8 0.145 8259.7 0.135
Ngatu 9.0cm 59777.2 190544.7 3.188 545.1 0.009 18276.0 0.306 9869.6 0.165 9807.6 0.164

Ngatu 10.0cm 60136.1 187405.2 3.116 847.7 0.014 20245.0 0.337 9947.1 0.165 9832.8 0.164
Ngatu 11.0cm 61116.7 173172.9 2.833 1157.6 0.019 22223.0 0.364 9495.6 0.155 9369.9 0.153
Ngatu 12.0cm 58024.1 180224.1 3.106 1007.7 0.017 18993.0 0.327 9401.9 0.162 9707.8 0.167
Ngatu 13.0cm 57710.5 148029.9 2.565 1368.5 0.024 24680.0 0.428 8130.5 0.141 8202.2 0.142
Ngatu 14.0cm 55801.1 157117.4 2.816 1032.5 0.019 21238.0 0.381 8467.3 0.152 8970.6 0.161
Ngatu 15.0cm 55304.3 146872.0 2.656 1161.9 0.021 21182.0 0.383 8320.9 0.150 8273.8 0.150
Ngatu 16.0cm 52306.1 131635.6 2.517 1294.3 0.025 20221.0 0.387 7971.7 0.152 7973.3 0.152
Ngatu 17.0cm 56641.1 164386.2 2.902 1356.9 0.024 21209.0 0.374 9363.6 0.165 9763.2 0.172
Ngatu 18.0cm 55731.7 150658.1 2.703 1541.6 0.028 22527.0 0.404 8614.6 0.155 9588.8 0.172
Ngatu 19.0cm 63041.9 192411.2 3.052 1710.4 0.027 21144.0 0.335 10464.6 0.166 14014.6 0.222
Ngatu 21.0cm 59693.0 164384.4 2.754 1163.4 0.019 22542.0 0.378 9107.2 0.153 7697.0 0.129
Ngatu 22.0cm 57466.3 199126.2 3.465 630.9 0.011 17960.0 0.313 10340.3 0.180 7969.3 0.139
Ngatu 23.0cm 58040.8 218843.9 3.771 335.6 0.006 15623.0 0.269 11901.5 0.205 9473.8 0.163
Ngatu 24.0cm 55180.4 184503.8 3.344 513.1 0.009 17417.0 0.316 9769.2 0.177 6299.4 0.114
Ngatu 25.0cm 55617.0 167654.8 3.014 591.7 0.011 17747.0 0.319 9503.3 0.171 7016.3 0.126
Ngatu 26.0cm 55080.4 158301.0 2.874 587.3 0.011 19078.0 0.346 9147.4 0.166 6970.0 0.127
Ngatu 27.0cm 55446.8 150908.4 2.722 475.3 0.009 19219.0 0.347 9236.4 0.167 6904.4 0.125
Ngatu 28.0cm 56975.0 158750.4 2.786 465.1 0.008 19393.0 0.340 9542.5 0.167 7184.7 0.126
Ngatu 29.0cm 56022.2 154965.2 2.766 462.2 0.008 16168.0 0.289 9309.1 0.166 5576.3 0.100
Ngatu 30.0cm 57904.8 162888.6 2.813 524.7 0.009 16396.0 0.283 9704.1 0.168 6322.6 0.109
Ngatu 31.0cm 56968.6 160295.8 2.814 585.8 0.010 11499.0 0.202 9434.4 0.166 5736.7 0.101
Ngatu 32.0cm 67142.8 205827.0 3.066 948.1 0.014 14739.0 0.220 11877.5 0.177 9083.6 0.135
Ngatu 33.0cm 61087.1 177662.3 2.908 581.5 0.010 11425.0 0.187 10429.3 0.171 7497.3 0.123
Ngatu 34.0cm 60711.5 170323.6 2.805 817.2 0.013 12173.0 0.201 10249.4 0.169 6807.6 0.112
Ngatu 35.0cm 62095.5 173019.0 2.786 655.7 0.011 11693.0 0.188 10056.2 0.162 6721.9 0.108
Ngatu 36.0cm 61023.3 165330.0 2.709 665.9 0.011 12740.0 0.209 9706.1 0.159 6691.6 0.110
Ngatu 37.0cm 60713.4 158937.0 2.618 683.3 0.011 12818.0 0.211 9387.5 0.155 6865.1 0.113
Ngatu 38.0cm 60801.3 160590.4 2.641 840.4 0.014 13276.0 0.218 9329.2 0.153 6987.1 0.115
Ngatu 39.0cm 60480.2 165386.7 2.735 818.6 0.014 13330.0 0.220 9192.4 0.152 6837.8 0.113
Ngatu 40.0cm 59563.5 166597.7 2.797 775.0 0.013 14085.0 0.236 9262.2 0.156 7708.1 0.129
Ngatu 41.0cm 59332.2 148708.4 2.506 648.4 0.011 16453.0 0.277 8512.2 0.143 6406.3 0.108
Ngatu 42.0cm 58897.4 145653.9 2.473 769.1 0.013 18470.0 0.314 8580.1 0.146 7054.7 0.120
Ngatu 43.0cm 58521.8 144213.8 2.464 734.2 0.013 17380.0 0.297 8533.3 0.146 6925.6 0.118
Ngatu 44.0cm 56173.0 133281.9 2.373 460.7 0.008 15562.0 0.277 7721.1 0.137 6405.2 0.114
Ngatu 45.0cm 57111.0 143702.5 2.516 604.8 0.011 16119.0 0.282 8130.5 0.142 6909.4 0.121
Ngatu 46.0cm 57015.7 149390.4 2.620 649.9 0.011 15728.0 0.276 8194.6 0.144 6802.6 0.119
Ngatu 47.0cm 55758.5 147572.6 2.647 657.1 0.012 16478.0 0.296 8432.8 0.151 5515.8 0.099
Ngatu 48.0cm 58906.7 154384.9 2.621 712.4 0.012 15745.0 0.267 8695.9 0.148 6408.3 0.109
Ngatu 49.0cm 51251.5 134721.1 2.629 537.8 0.010 13881.0 0.271 7856.0 0.153 5361.6 0.105
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Table D.1 Ngatu XRF results continued 

 

 

 

 

 

 

Sample ID
Ti 

Corrected Ti:Al
Fe 

corrected Fe:Al
Mn 

corrected Mn:Al
Zr 

corrected Zr: Al Ca/Ti Fe/Mn Si/Ti Ti/Zr
Ngatu 4.0cm 4169.2 0.067 23645.5 0.381 373.48 0.0060 236.93 0.00381 2.543 63.311 44.637 17.597
Ngatu 5.0cm 3949.7 0.064 24724.1 0.401 267.13 0.0043 257.70 0.00418 2.299 92.556 42.124 15.327
Ngatu 6.0cm 3712.8 0.059 25422.6 0.406 304.86 0.0049 242.35 0.00387 2.402 83.390 44.173 15.320
Ngatu 7.0cm 3848.8 0.063 26011.4 0.429 327.74 0.0054 248.67 0.00410 2.339 79.367 42.242 15.477
Ngatu 8.0cm 3219.3 0.053 25501.0 0.418 177.92 0.0029 159.25 0.00261 2.566 143.325 50.531 20.215
Ngatu 9.0cm 3770.5 0.063 25131.7 0.420 284.28 0.0048 159.25 0.00266 2.601 88.405 50.536 23.676

Ngatu 10.0cm 3325.4 0.055 23279.1 0.387 272.84 0.0045 175.51 0.00292 2.957 85.320 56.355 18.947
Ngatu 11.0cm 3034.9 0.050 23586.7 0.386 256.83 0.0042 162.87 0.00266 3.087 91.837 57.060 18.634
Ngatu 12.0cm 3731.3 0.064 22907.8 0.395 260.26 0.0045 158.35 0.00273 2.602 88.017 48.300 23.564
Ngatu 13.0cm 2776.3 0.048 22118.1 0.383 131.04 0.0023 133.06 0.00231 2.954 168.793 53.319 20.865
Ngatu 14.0cm 2644.5 0.047 21353.0 0.383 136.76 0.0025 159.25 0.00285 3.392 156.140 59.414 16.605
Ngatu 15.0cm 3052.4 0.055 21191.3 0.383 144.76 0.0026 121.32 0.00219 2.711 146.389 48.117 25.160
Ngatu 16.0cm 3041.1 0.058 20491.8 0.392 131.04 0.0025 114.09 0.00218 2.622 156.382 43.286 26.654
Ngatu 17.0cm 3041.1 0.054 20062.7 0.354 197.37 0.0035 162.87 0.00288 3.210 101.652 54.055 18.672
Ngatu 18.0cm 3200.8 0.057 20174.4 0.362 206.51 0.0037 132.16 0.00237 2.996 97.690 47.069 24.219
Ngatu 19.0cm 4907.8 0.078 25170.9 0.399 437.52 0.0069 218.86 0.00347 2.856 57.531 39.205 22.424
Ngatu 21.0cm 3491.3 0.058 21191.3 0.355 193.94 0.0032 224.28 0.00376 2.205 109.270 47.084 15.566
Ngatu 22.0cm 4038.3 0.070 21984.9 0.383 306.01 0.0053 220.67 0.00384 1.973 71.844 49.309 18.300
Ngatu 23.0cm 4175.3 0.072 22445.3 0.387 347.18 0.0060 247.77 0.00427 2.269 64.651 52.413 16.852
Ngatu 24.0cm 3770.5 0.068 20198.9 0.366 164.20 0.0030 175.51 0.00318 1.671 123.013 48.934 21.483
Ngatu 25.0cm 2974.1 0.053 17620.3 0.317 95.59 0.0017 141.19 0.00254 2.359 184.341 56.371 21.065
Ngatu 26.0cm 2845.3 0.052 16042.0 0.291 40.69 0.0007 108.67 0.00197 2.450 394.222 55.635 26.182
Ngatu 27.0cm 2806.2 0.051 14421.6 0.260 0.67 0.0000 103.25 0.00186 2.460 21628.062 53.777 27.177
Ngatu 28.0cm 2910.3 0.051 13731.9 0.241 2.95 0.0001 89.71 0.00157 2.469 4648.573 54.549 32.442
Ngatu 29.0cm 2800.0 0.050 12433.8 0.222 0.00 0.0000 91.51 0.00163 1.992 0.000 55.344 30.597
Ngatu 30.0cm 2923.6 0.050 14043.4 0.243 0.00 0.0000 91.51 0.00158 2.163 0.000 55.714 31.948
Ngatu 31.0cm 2971.0 0.052 12646.4 0.222 1.81 0.0000 96.93 0.00170 1.931 6985.404 53.953 30.651
Ngatu 32.0cm 4307.2 0.064 17185.3 0.256 135.61 0.0020 124.03 0.00185 2.109 126.725 47.787 34.728
Ngatu 33.0cm 3257.4 0.053 13996.4 0.229 68.14 0.0011 123.13 0.00202 2.302 205.409 54.541 26.456
Ngatu 34.0cm 3285.2 0.054 15329.8 0.253 169.92 0.0028 134.87 0.00222 2.072 90.218 51.845 24.359
Ngatu 35.0cm 3084.4 0.050 13975.8 0.225 38.41 0.0006 117.71 0.00190 2.179 363.901 56.096 26.204
Ngatu 36.0cm 2876.3 0.047 13586.9 0.223 0.00 0.0000 96.93 0.00159 2.327 0.000 57.481 29.673
Ngatu 37.0cm 2817.5 0.046 13271.4 0.219 0.00 0.0000 96.93 0.00160 2.437 0.000 56.410 29.067
Ngatu 38.0cm 3019.5 0.050 13933.7 0.229 23.54 0.0004 95.13 0.00156 2.314 591.946 53.185 31.742
Ngatu 39.0cm 2600.2 0.043 13926.8 0.230 32.69 0.0005 107.77 0.00178 2.630 426.059 63.606 24.127
Ngatu 40.0cm 2839.2 0.048 14627.3 0.246 54.42 0.0009 109.58 0.00184 2.715 268.806 58.678 25.910
Ngatu 41.0cm 2641.4 0.045 16189.0 0.273 12.10 0.0002 93.32 0.00157 2.425 1337.622 56.300 28.305
Ngatu 42.0cm 2638.3 0.045 17268.6 0.293 16.68 0.0003 87.90 0.00149 2.674 1035.462 55.208 30.014
Ngatu 43.0cm 2774.3 0.047 16540.7 0.283 13.25 0.0002 84.29 0.00144 2.496 1248.693 51.983 32.914
Ngatu 44.0cm 2359.1 0.042 13944.5 0.248 0.00 0.0000 75.26 0.00134 2.715 0.000 56.497 31.348
Ngatu 45.0cm 2358.1 0.041 13659.4 0.239 0.00 0.0000 81.58 0.00143 2.930 0.000 60.941 28.906
Ngatu 46.0cm 2301.4 0.040 13568.3 0.238 0.00 0.0000 80.67 0.00141 2.956 0.000 64.913 28.527
Ngatu 47.0cm 2635.2 0.047 14662.6 0.263 0.00 0.0000 77.06 0.00138 2.093 0.000 56.001 34.196
Ngatu 48.0cm 2768.1 0.047 14727.3 0.250 4.10 0.0001 88.80 0.00151 2.315 3594.118 55.773 31.171
Ngatu 49.0cm 2470.4 0.048 12977.5 0.253 0.00 0.0000 72.55 0.00142 2.170 0.000 54.535 34.052
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Table D.2 Rotoroa XRF Results 

 

Sample ID
Al 

corrected
Si 

corrected Si:Al
P 

corrected P:Al
S 

corrected S:Al
K 

corrected K:Al
Ca 

Corrected Ca:Al
ROTO17-2cm 47806.18 94448.02 1.97564 3648.738 0.07632 15521 0.32467 7709.63 0.1613 16008.734 0.3349
ROTO17-3cm 53954.96 109041.8 2.02098 3044.785 0.05643 15594 0.28902 8261.796 0.1531 15644.102 0.2899
ROTO17-4cm 53603.57 121761.6 2.27152 2468.078 0.04604 14065 0.26239 8763.765 0.1635 15217.065 0.2839
ROTO17-5cm 54651.26 121427.1 2.22185 2374.987 0.04346 15236 0.27879 8496.048 0.1555 15279.469 0.2796
ROTO17-6cm 55316.19 182388.7 3.29720 1319.205 0.02385 13519 0.24439 9990.371 0.1806 14872.01 0.2689
ROTO17-7cm 53178.66 157085.2 2.95391 1732.436 0.03258 14922 0.28060 8958.117 0.1685 15381.028 0.2892
ROTO17-8cm 47662.38 147549.4 3.09572 2016.248 0.04230 14957 0.31381 8564.264 0.1797 15310.059 0.3212
ROTO17-9cm 45533.5 132323.7 2.90607 2774.595 0.06094 15310 0.33624 8998.017 0.1976 16368.473 0.3595

ROTO17-10cm 45954.08 149813.2 3.26006 1836.879 0.03997 14875 0.32369 9741.961 0.2120 15520.518 0.3377
ROTO17-11cm 37347.73 112164.6 3.00325 1419.107 0.03800 14902 0.39901 7928.437 0.2123 14189.241 0.3799
ROTO17-12cm 36567.11 101481.4 2.77521 1478.14 0.04042 18265 0.49949 7681.314 0.2101 14371.558 0.3930
ROTO17-13cm 34652.3 110348.3 3.18445 1353.262 0.03905 16531 0.47705 7878.24 0.2274 14214.937 0.4102
ROTO17-14cm 36899.03 115656.5 3.13441 2059.388 0.05581 17048 0.46202 8057.147 0.2184 14841.42 0.4022
ROTO17-15cm 42096.36 154236.8 3.66390 1110.319 0.02638 14847 0.35269 10027.7 0.2382 15204.829 0.3612
ROTO17-16cm 33578.67 103417.6 3.07986 1230.655 0.03665 18074 0.53826 7671.017 0.2284 13423.268 0.3998
ROTO17-17cm 33748.42 102063.8 3.02425 1142.106 0.03384 17135 0.50773 7376.271 0.2186 13398.796 0.3970
ROTO17-18cm 34001.42 101712 2.99141 1412.295 0.04154 16988 0.49963 7022.319 0.2065 13551.746 0.3986
ROTO17-19cm 27879.66 89453.51 3.20856 381.488 0.01368 16317 0.58527 6506.192 0.2334 13658.199 0.4899
ROTO17-20cm 40052.89 132567 3.30980 2104.798 0.05255 21023 0.52488 9390.583 0.2345 14816.948 0.3699
ROTO17-21cm 35445.9 116586 3.28913 1861.854 0.05253 20119 0.56760 7163.9 0.2021 15363.897 0.4334
ROTO17-22cm 30599.96 100513.9 3.28477 1110.319 0.03628 20108 0.65712 6669.653 0.2180 13210.361 0.4317
ROTO17-23cm 41596.85 158186.5 3.80285 1346.451 0.03237 19673 0.47294 8725.152 0.2098 13830.726 0.3325
ROTO17-24cm 38533.81 120730.6 3.13311 1882.289 0.04885 20942 0.54347 7444.487 0.1932 14257.763 0.3700
ROTO17-25cm 41253.03 174913.7 4.24002 667.571 0.01618 12874 0.31207 9515.431 0.2307 12616.915 0.3058
ROTO17-26cm 46342.23 157683.7 3.40259 1830.067 0.03949 17432 0.37616 10541.25 0.2275 15028.631 0.3243
ROTO17-27cm 46835.26 202148.8 4.31617 1171.622 0.02502 11365 0.24266 11126.88 0.2376 12862.859 0.2746
ROTO17-28cm 41764.43 165419.4 3.96077 910.5145 0.02180 12194 0.29197 8977.424 0.2150 12160.512 0.2912
ROTO17-29cm 40997.86 138265 3.37249 1671.132 0.04076 17625 0.42990 8853.862 0.2160 13480.777 0.3288
ROTO17-30cm 44494.46 171187.7 3.84739 1098.966 0.02470 15780 0.35465 9485.828 0.2132 13516.261 0.3038
ROTO17-31cm 40082.09 153243.9 3.82325 1525.82 0.03807 15570 0.38845 7579.633 0.1891 12624.257 0.3150
ROTO17-32cm 36886.06 154608.2 4.19151 1696.108 0.04598 11991 0.32508 7465.081 0.2024 12802.902 0.3471
ROTO17-33cm 39903.69 170006.8 4.26043 1811.903 0.04541 10371 0.25990 7660.72 0.1920 12817.586 0.3212
ROTO17-34cm 41661.72 182543.3 4.38156 2499.865 0.06000 10567 0.25364 7797.153 0.1872 14409.489 0.3459
ROTO17-35cm 38025.64 162350.7 4.26951 2663.341 0.07004 9818 0.25819 7067.367 0.1859 13737.733 0.3613
ROTO17-36cm 34978.82 151415 4.32876 1832.338 0.05238 9154 0.26170 6977.27 0.1995 13625.162 0.3895
ROTO17-37cm 41201.13 180268 4.37532 1805.092 0.04381 7573 0.18381 8040.415 0.1952 14890.364 0.3614
ROTO17-38cm 38953.31 186983.1 4.80018 449.603 0.01154 6449 0.16556 7855.072 0.2017 13880.894 0.3563
ROTO17-39cm 37173.66 192799.8 5.18646 1010.417 0.02718 7712 0.20746 7266.868 0.1955 15691.822 0.4221
ROTO17-40cm 38698.15 177357.3 4.58310 976.359 0.02523 7592 0.19619 7541.02 0.1949 16695.174 0.4314
ROTO17-41cm 36159.49 162552.6 4.49543 1112.589 0.03077 6724 0.18595 7662.007 0.2119 17253.136 0.4771
ROTO17-42cm 34101.97 158946.5 4.66092 565.3985 0.01658 6756 0.19811 6909.054 0.2026 17340.011 0.5085
ROTO17-43cm 37483.96 176302.2 4.70340 1612.099 0.04301 7542 0.20121 7202.513 0.1921 15677.139 0.4182
ROTO17-44cm 30571.85 138517.6 4.53089 1133.024 0.03706 6725 0.21997 5212.656 0.1705 14553.874 0.4761
ROTO17-45cm 36573.59 157554.6 4.30788 1668.862 0.04563 8508 0.23263 5548.589 0.1517 15669.797 0.4284
ROTO17-46cm 33730.04 148224 4.39442 1198.868 0.03554 7352 0.21797 5740.367 0.1702 15126.519 0.4485
ROTO17-47cm 36509.8 143633.2 3.93410 2002.625 0.05485 7978 0.21852 5966.897 0.1634 15730.977 0.4309
ROTO17-48cm 33974.39 147102 4.32979 2272.815 0.06690 7008 0.20627 5647.696 0.1662 15639.207 0.4603
ROTO17-49cm 33506.23 126470.1 3.77452 1916.346 0.05719 6036 0.18015 5213.943 0.1556 16534.882 0.4935
ROTO17-50cm 31419.51 115059.2 3.66203 1882.289 0.05991 5595 0.17807 5013.156 0.1596 15823.971 0.5036
ROTO17-51cm 35645.92 123356.4 3.46060 1909.535 0.05357 6089 0.17082 5803.435 0.1628 16675.596 0.4678
ROTO17-52cm 33840.32 130051.9 3.84311 2443.102 0.07220 6307 0.18638 5179.191 0.1530 17117.316 0.5058
ROTO17-53cm 34148.46 117048.4 3.42763 2250.11 0.06589 6999 0.20496 5229.388 0.1531 17869.83 0.5233
ROTO17-54cm 34499.85 109951.6 3.18702 2297.79 0.06660 6462 0.18731 5156.024 0.1495 17440.346 0.5055
ROTO17-55cm 36258.96 103881.2 2.86498 2020.789 0.05573 5545 0.15293 6001.648 0.1655 17658.147 0.4870
ROTO17-56cm 40033.43 150700 3.76435 2200.159 0.05496 6570 0.16411 6660.644 0.1664 16972.931 0.4240
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Table D.2 Rotoroa XRF Results continued 

 

 

 

Sample ID
Ti 

corrected Ti:Al
Fe 

corrected Fe:Al
Mn 

corrected Mn/Al 
Zr 

corrected Zr:Al Ca/Ti Fe/Mn Si/Ti Ti/Zr
ROTO17-2cm 1512.95 0.0316 19984.54 0.4180 95.5856 0.00200 70.4093 0.0015 10.5811 209.0748 62.4264 21.4879
ROTO17-3cm 2048.052 0.0380 20169.09 0.3738 142.4732 0.00264 99.1128 0.0018 7.6385 141.5641 53.2417 20.6638
ROTO17-4cm 2283.584 0.0426 20145.4 0.3758 169.9196 0.00317 109.7741 0.0020 6.6637 118.5584 53.3204 20.8026
ROTO17-5cm 2297.694 0.0420 24018 0.4395 196.2224 0.00359 95.8324 0.0018 6.6499 122.4019 52.8474 23.9762
ROTO17-6cm 2434.454 0.0440 24771 0.4478 205.3712 0.00371 104.0334 0.0019 6.1090 120.6158 74.9198 23.4007
ROTO17-7cm 3834.62 0.0721 27351.75 0.5143 263.6948 0.00496 130.2766 0.0024 4.0111 103.7250 40.9650 29.4345
ROTO17-8cm 2770.928 0.0581 26596.77 0.5580 193.9352 0.00407 117.9751 0.0025 5.5252 137.1425 53.2491 23.4874
ROTO17-9cm 2623.314 0.0576 23669.62 0.5198 295.7156 0.00649 166.361 0.0037 6.2396 80.0418 50.4414 15.7688

ROTO17-10cm 3183.38 0.0693 23181.11 0.5044 184.7864 0.00402 125.356 0.0027 4.8755 125.4481 47.0610 25.3947
ROTO17-11cm 2381.27 0.0638 25320.71 0.6780 245.3972 0.00657 82.7108 0.0022 5.9587 103.1825 47.1029 28.7903
ROTO17-12cm 1836.399 0.0502 27060.61 0.7400 179.0684 0.00490 95.8324 0.0026 7.8259 151.1188 55.2611 19.1626
ROTO17-13cm 2066.504 0.0596 22369.87 0.6456 182.4992 0.00527 144.2183 0.0042 6.8787 122.5752 53.3986 14.3290
ROTO17-14cm 2511.518 0.0681 21873.46 0.5928 89.8676 0.00244 114.6947 0.0031 5.9093 243.3966 46.0505 21.8974
ROTO17-15cm 2243.424 0.0533 21267.51 0.5052 182.4992 0.00434 90.9118 0.0022 6.7775 116.5348 68.7506 24.6769
ROTO17-16cm 1929.743 0.0575 24678.23 0.7349 201.9404 0.00601 95.0123 0.0028 6.9560 122.2055 53.5914 20.3105
ROTO17-17cm 1542.255 0.0457 26643.15 0.7895 37.262 0.00110 72.8696 0.0022 8.6878 715.0220 66.1782 21.1646
ROTO17-18cm 1734.371 0.0510 25534.86 0.7510 182.4992 0.00537 85.9912 0.0025 7.8136 139.9177 58.6449 20.1692
ROTO17-19cm 1830.972 0.0657 24005.17 0.8610 141.3296 0.00507 103.2133 0.0037 7.4595 169.8524 48.8558 17.7397
ROTO17-20cm 2404.063 0.0600 28140.28 0.7026 285.4232 0.00713 159.8002 0.0040 6.1633 98.5914 55.1429 15.0442
ROTO17-21cm 2267.303 0.0640 28574.51 0.8061 105.878 0.00299 114.6947 0.0032 6.7763 269.8815 51.4206 19.7682
ROTO17-22cm 1829.886 0.0598 29711.42 0.9710 164.2016 0.00537 181.9429 0.0059 7.2192 180.9448 54.9290 10.0575
ROTO17-23cm 2566.873 0.0617 26078.64 0.6269 318.5876 0.00766 140.9379 0.0034 5.3882 81.8571 61.6262 18.2128
ROTO17-24cm 2541.909 0.0660 32357.3 0.8397 251.1152 0.00652 117.155 0.0030 5.6091 128.8544 47.4960 21.6970
ROTO17-25cm 2544.08 0.0617 25578.29 0.6200 298.0028 0.00722 221.3077 0.0054 4.9593 85.8324 68.7532 11.4957
ROTO17-26cm 2368.245 0.0511 27116.86 0.5851 378.0548 0.00816 151.5992 0.0033 6.3459 71.7273 66.5825 15.6217
ROTO17-27cm 2510.432 0.0536 21424.42 0.4574 197.366 0.00421 125.356 0.0027 5.1238 108.5517 80.5235 20.0264
ROTO17-28cm 2781.782 0.0666 23469.28 0.5619 143.6168 0.00344 131.9168 0.0032 4.3715 163.4160 59.4653 21.0874
ROTO17-29cm 3681.579 0.0898 28067.25 0.6846 159.6272 0.00389 140.1178 0.0034 3.6617 175.8300 37.5559 26.2749
ROTO17-30cm 3302.774 0.0742 23553.17 0.5294 164.2016 0.00369 143.3982 0.0032 4.0924 143.4405 51.8315 23.0322
ROTO17-31cm 2383.44 0.0595 23485.07 0.5859 193.9352 0.00484 160.6203 0.0040 5.2967 121.0975 64.2953 14.8390
ROTO17-32cm 2104.493 0.0571 20402 0.5531 143.6168 0.00389 101.5731 0.0028 6.0836 142.0586 73.4658 20.7190
ROTO17-33cm 2361.732 0.0592 18535.77 0.4645 165.3452 0.00414 96.6525 0.0024 5.4272 112.1035 71.9840 24.4353
ROTO17-34cm 2249.936 0.0540 20677.34 0.4963 262.5512 0.00630 83.5309 0.0020 6.4044 78.7555 81.1326 26.9354
ROTO17-35cm 2020.917 0.0531 18740.06 0.4928 99.0164 0.00260 66.3088 0.0017 6.7978 189.2621 80.3352 30.4774
ROTO17-36cm 1645.368 0.0470 17210.36 0.4920 93.2984 0.00267 75.3299 0.0022 8.2809 184.4658 92.0250 21.8422
ROTO17-37cm 1947.11 0.0473 18860.46 0.4578 276.2744 0.00671 85.1711 0.0021 7.6474 68.2671 92.5824 22.8612
ROTO17-38cm 2109.92 0.0542 15904.69 0.4083 134.468 0.00345 58.9279 0.0015 6.5789 118.2786 88.6210 35.8051
ROTO17-39cm 2178.3 0.0586 16955.74 0.4561 148.1912 0.00399 62.2083 0.0017 7.2037 114.4180 88.5093 35.0162
ROTO17-40cm 2129.457 0.0550 15941.21 0.4119 120.7448 0.00312 54.0073 0.0014 7.8401 132.0240 83.2876 39.4291
ROTO17-41cm 2176.129 0.0602 14234.86 0.3937 182.4992 0.00505 60.5681 0.0017 7.9284 77.9996 74.6980 35.9286
ROTO17-42cm 2724.256 0.0799 16787.97 0.4923 221.3816 0.00649 94.1922 0.0028 6.3650 75.8327 58.3449 28.9223
ROTO17-43cm 2849.077 0.0760 16489.92 0.4399 225.956 0.00603 55.6475 0.0015 5.5025 72.9785 61.8804 51.1987
ROTO17-44cm 1974.245 0.0646 17564.66 0.5745 140.186 0.00459 58.9279 0.0019 7.3719 125.2954 70.1623 33.5027
ROTO17-45cm 1792.983 0.0490 18516.03 0.5063 165.3452 0.00452 50.7269 0.0014 8.7395 111.9841 87.8729 35.3458
ROTO17-46cm 1453.253 0.0431 17275.5 0.5122 107.0216 0.00317 47.4465 0.0014 10.4087 161.4207 101.9947 30.6293
ROTO17-47cm 1713.749 0.0469 15122.08 0.4142 141.3296 0.00387 48.2666 0.0013 9.1793 106.9987 83.8123 35.5059
ROTO17-48cm 2159.848 0.0636 18547.61 0.5459 180.212 0.00530 51.547 0.0015 7.2409 102.9211 68.1076 41.9006
ROTO17-49cm 2542.994 0.0759 17768.95 0.5303 228.2432 0.00681 44.9862 0.0013 6.5021 77.8509 49.7327 56.5283
ROTO17-50cm 1988.355 0.0633 16915.28 0.5384 166.4888 0.00530 43.346 0.0014 7.9583 101.6001 57.8665 45.8717
ROTO17-51cm 1744.14 0.0489 15780.34 0.4427 148.1912 0.00416 47.4465 0.0013 9.5609 106.4864 70.7262 36.7601
ROTO17-52cm 2095.809 0.0619 15024.38 0.4440 104.7344 0.00309 40.0656 0.0012 8.1674 143.4522 62.0533 52.3094
ROTO17-53cm 2163.104 0.0633 15008.59 0.4395 92.1548 0.00270 70.4093 0.0021 8.2612 162.8628 54.1113 30.7219
ROTO17-54cm 2113.176 0.0613 16757.37 0.4857 182.4992 0.00529 72.0495 0.0021 8.2531 91.8216 52.0315 29.3295
ROTO17-55cm 3658.785 0.1009 17972.25 0.4957 323.162 0.00891 77.7902 0.0021 4.8262 55.6137 28.3923 47.0340
ROTO17-56cm 2524.542 0.0631 16579.73 0.4141 180.212 0.00450 97.4726 0.0024 6.7232 92.0013 59.6940 25.9000
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Description of Geochemical Results by Depth 

 

Elemental Si, Ti and Zr in Lake Ngatu all notably increase in concentration just above 27cm, with Si 

and Zr peaking at their highest values (3.8 and 0.045) at about 21cm. There is also a rise in Al after 

settlement, but this occurs at about 20 to 15cm and is not as pronounced or enriched as the other 

elements. Elemental P and S also have delayed responses but also increase, particularly P which 

reaches its maximum value (0.025) at ~15cm. Ca and Fe increase above 27cm also, with Fe 

continuing in a positive pattern until the very top of the core where it slightly reduces. The 

abundance of K increases quickly to its maximum (0.2) at around 22cm but then decreases and 

returns to pre-impact values afterward. All elements show continued fluctuation after 27cm 

through to the top of the core.  

Comparatively, the Lake Rotoroa data are noisier, making it harder to identify patterns. Some of 

the elemental signals are also opposite to those from Lake Ngatu. There is a general increase in Zr 

from 38-12cm, with a maximum value of 0.006 at about 22cm. Zr begins to reduce to pre-impact 

values above 12cm. Ti concentration wavers through the whole of the core, with a peak of 0.009 at 

28cm, but there are peaks as large as that below 38cm. Si was increasing in concentration up to 

38cm and then, unlike Lake Ngatu, it decreases up the core. Al increases from 38 to 12cm, peaking 

a 5500ppm at 5cm depth. S and Fe produced nearly identical signals to each other over depth with 

the elements increasing above 38cm remaining high from 25 to 12 cm and decreasing above 12cm. 

Elemental K and P fluctuate markedly above 38cm. Above 12cm, K decreases while P continues to 

oscillate then sharply increase at the top of the core. Ca sharply decreases above 38cm, dropping 

to its lowest value of 0.25 at 26cm. Ca increases again to about 17cm before falling again above 

12cm. 
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Figure D.1 XRF data to depth for Lake Ngatu at the top and Lake Rotoroa below. Demarcation of 

anthropogenic change (orange hashed lies) based on pollen and charcoal records. Samples corrected for 

inclusion of organic material with aluminium values by depth. 

 

Elemental regressions by Zone 

 

Calcium to titanium ratios in Lake Ngatu show an overall separation in values between the Zone 1 

samples to those from Zones 2-4, which are enriched in both calcium and titanium (Fig.D.2 ). None 

of the zones shows a strong statistical correlation. Zone 1 in Rotoroa is also distinct, however, the 

Ca results are the reverse of Ngatu with samples from Zones 2-4 containing less elemental calcium 

than the Zone 1 sediments. The amount of Ti measured is similar through all zones in Rotoroa. 

There is evidence of a strong correlation between Ca and Ti in the Zone 2 samples in Rotoroa with 

an R2 of 0.77. 
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Si/Ti ratios from Lake Ngatu in Zone 1 have a good fit statistically to the line of regression (R2= 0.65), 

with Zone 2 samples coming close with an R2 of 0.44. The Si/Ti values in Lake Rotoroa overlap 

through all four zones, but Zone 4 sediments produced good correlation (R2=0.58). 

The Fe/Mn ratio for Ngatu develops into separate groups, with increased Fe and Mn after Zone 1. 

Rotoroa behaves differently to Ngatu with overlapping Fe/Ti ratios between all zones. The 

detection limits on Mn in Ngatu are likely skewing the Zone 1 results. The Lake Rotoroa Fe/Mn Zone 

4 sediments show correlation with an R2 of 0.50. The detection limits on Mn in Lake Ngatu are likely 

impacting the quality of this dataset. 

The results of the Ti/Zr ratios from both Lakes Ngatu and Rotoroa show increases of Zr (larger 

grains) after Zone 1, however in Ngatu there is evidence that in each zone Zr continues to increase, 

while in Rotoroa the highest abundance of Zr to Ti is seen during Zone 3. 
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Figure D.2. Regression plots and R2 values of selected geochemical data from XRF measurement 

 

   


