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Abstract 

Since the 1940s mangroves have expanded their areal coverage in many estuaries in the 
northern half of the North Island of New Zealand.  The extent of mangrove colonization in 
Waikaraka Estuary, Tauranga Harbour, has been documented using photogrammetric 
analysis, and the impacts of subsequent mangrove removal are analysed.  Surface elevation 
changes in response to mangrove removal are measured using RSETs (Rod Surface 
Elevation Table) and erosion pins, and sediment accumulation rates were calculated from 
sediment trap results.  Temporal changes to surface sediment texture are analysed.  
Mangrove physiognomy is described from analysis of mean plant height, plant density and 
pneumatophore density.  Plant heights reflect the shrubby growth form of mangroves growing 
toward their southern climatic limit, with mean plant heights under 1.5 m.  Mangrove coverage 
has increased from approximately 16,000 m

2
 in 1943 to 115,000 m

2
 in 2003.  Since May 

2005, 9,600 m
2
 of mangrove vegetation has been removed from the estuary.  For the 

monitoring period of March 2006 to March 2007, rates of surface elevation change in cleared 
areas ranged from  - 9 mm to - 38 mm yr

1
 (mean -14 mm yr

-1
).   Conversely, surface elevation 

under mangrove forest varied between sites, ranging from -5 mm to 14 mm yr
-1
 (mean 3 mm 

yr
-1
). Results from RSETs and erosion pins and a coarsening of surface sediment texture at 

the cleared sites, are consistent with sediment release after mangrove removal.    
 

Keywords: estuarine sedimentation rates, sediment traps, RSET. 

Mathematics Subject Classification: 86A99. 

JEL Classification: Q20. 

 



 

 

1 Introduction 

Sedimentation on intertidal flats has been studied extensively (Fan et al. 2004 and references 

therein) with a number of studies, specifically relating to mangroves, elucidating on the 

sedimentation and trapping mechanisms of mangrove vegetation (see for example Cahoon and 

Lynch 1997, Furakawa and Wolanski 1996, Krauss et al. 2003, Rogers et al. 2006, Spencely 

1977).  In contrast, the remobilisation and transport of sediment across intertidal areas as a 

result of mangrove removal has rarely been reported. 

Although active sedimentation is a typical condition of most estuarine environments (Healy et al. 

1996, Nichols & Biggs 1985), studies of sedimentation rates in New Zealand estuaries report 

increased rates of infilling since European settlement (Ellis et al. 2004, Hume and Herdendorf 

1992, Hume and McGlone 1986, Sheffield et al. 1995, Swales et al. 1997).  This has been 

attributed to land use changes, particularly where native forest has been removed for 

agriculture, forestry or urbanization (Hayward et al. 2006, Healy et al. 1996, Hume and McGlone 

1986).  Rapid sedimentation  will not only influence the geomorphology of an estuary, but can 

negatively impact on estuarine ecology through smothering benthic fauna and muddying water 

which can result in lower productivity of benthic and pelagic organisms (Thrush et al. 2003, 

Thrush et al. 2004).  

A number of studies have reported sediment accumulation within mangrove vegetation, both 

overseas (Alongi et al. 2005, Cahoon and Lynch 1997, Van Santen et al. 2006, Victor et al. 

2006, Wolanski et al. 2006) and in New Zealand (Ellis et al. 2004, Young and Harvey 1996).  

The vegetation density increases friction, resulting in a reduction of water flow velocities (Massel 

et al. 1999) and the above-ground root structures act to create micro-turbulence capable of 

maintaining sediment in suspension during flood tides which then settles during periods of slack 

water (Furukawa and Wolanski 1996).  The mangrove root zone also acts to bind sediment 

once it has settled, as noted in  Woodroffe (1992). 

Spatial gradients are often highlighted in studies of mangrove sedimentation, with higher rates 

of accretion recorded in the mangrove fringe (Alongi et al. 2005, Cahoon and Lynch 1997, 

Furukawa and Wolanski 1996, Rogers et al. 2006, Saad et al. 1999).  Other factors such as 

sediment supply (Woodroffe 1992), tidal range (Rogers et al. 2006) and forest root structures 

(Cahoon and Lynch 1997, Krauss et al. 2003, Young and Harvey 1996), have also been found 

to influence sedimentation rates in mangrove vegetation. 

An increase in mangrove coverage over recent decades has been documented in many 

harbours and embayments in the upper North Island of New Zealand (Burns and Ogden 1985, 

de Lange and de Lange 1994, Ellis et al. 2004, Swales et al. 2007, Young and Harvey 1996).  It 

has been suggested that the increase in mangrove coverage is a response to estuarine infilling, 

and may also be linked to periods of calm weather and increased nutrient inputs associated with 

human land-use (Swales et al. 2007).  Waikaraka Estuary is one of a number of embayments 

within Tauranga Harbour where the mono-species stands of Avicenna marina subsp. 



 

 

australasica are expanding their range.  The catchments surrounding Tauranga Harbour have 

been converted to horticultural and agricultural land, with an urban fringe closer to the harbour 

margins. To date, no details of sedimentation rates are available for Tauranga Harbour, 

however it is likely to follow increased sediment run-off trends associated with forest clearance 

around other New Zealand estuaries (e.g. Sheffield et al. 1995). Muddier sediments have been 

reported in the headwaters of other embayments within Tauranga Harbour where mangroves 

are present (Hope 2002, White 1979).   

Mangrove expansion in New Zealand is often viewed negatively by the community, arising from 

the perception that mangrove expansion is choking estuaries, contributing to increased mud 

accumulation, and altering estuarine ecology.  In recent years some local councils and 

community groups have been granted approval to remove fringe mangrove vegetation and any 

propagules that establish on the tidal flats.  At Waikaraka Estuary, the community group 

“Waikaraka Estuary Managers”, commenced mangrove clearance in 2003, but the most 

significant removal has occurred since 2005.  Mangroves were removed using manual, petrol-

fuelled brushcutters.  Only above-ground vegetation was cut (including pneumatophores), put 

into piles on-site, and later incinerated.   

There is little information available pertaining to sedimentation rates under dwarfed mangrove 

vegetation and a greater paucity of information available to predict the effects of mangrove 

removal.  Accordingly, the aim of this paper is to document the dynamics of mangrove 

expansion at Waikaraka Estuary and present preliminary results on the sedimentation rates in 

the presence of mangroves and topographical and sedimentological changes measured after 

mangrove removal.  Description of plant height, plant density and pneumatophore density is 

incorporated to increase our understanding of the mangrove stand dynamics where plants are 

growing near their southern climatic limits. 

 

2 Setting 

Tauranga Harbour is situated within the Bay of Plenty region, on the east coast of the North 

Island of New Zealand (Lat.  37° 40’S, Long. 176° 03’E, Figure 1).    It is a large barrier-

enclosed estuarine lagoon (over 200 km2) with extensive sandy tidal flats, exposed at low tide 

(Healy et al. 1996).    On the landward side of the estuarine lagoon a number of re-entrant bays 

drain local catchments.  The Waikaraka Estuary is bound by a small catchment of just under 10 

km2, and the estuary area itself, including mangroves, is 0.5 km2. The surrounding catchment 

incises ignimbrite geology underlying some Holocene and Late Pleistocene alluvium and 

tephras closer to the harbour margins  (Briggs et al. 1996, Harmsworth 1983).  All native forest 

has been removed from the Waikaraka catchment, which is now dominated by kiwifruit and 

citrus orchards.   



 

 

Freshwater discharge into Waikaraka Estuary is considerably smaller than neighbouring 

embayments.  The main tributary, Minden Creek, contributes a mean annual flow of   

92 ls-1, compared to the neighbouring Te Puna estuary which receives 792 ls-1 (Hope 2002).  

Tides at the entrance of Waikaraka estuary have been measured as meso-tidal, ranging from 

2.1 m at spring tides, to 1.4 m during neap tides, with the tidal range decreasing to 0.6 - 0.7 m in 

the upper estuary (Hope 2002). Mangrove stands in the middle and upper estuary are inundated 

only during the final stage of high tide and the mangrove and cleared plots closer to the estuary 

mouth (Site 4, see Figure 1) are covered 30 to 45 minutes earlier. 

 

3 Methods 

3.1 Mangrove Physiognomy 

Plant height, stem girth at 0.05 m above stratum, and pneumatophore density were measured at 

four sites along the estuary (Figure 1).  At each of these sites, three 4 x 4 m plots were 

randomly selected, marked out, and all trees measured for the above-mentioned parameters.   

Pneumatophores were counted in three separate, randomly selected 1 m2 quadrats within each 

plot.   Mean values reported in Table 2 represent results of the three plots combined for each 

site.   

 

3.2 Sediment characteristics 

In July 2006 (southern hemisphere winter) triplicate sediment samples were collected along 

transects at Sites 2, 3 and 4.  In February 2007 (summer), sites were resampled, with the 

inclusion of Site 1, to provide baseline grain size data in light of potential mangrove removal in 

the future. Two sampling stations were located inside mangrove habitat, and three stations on 

the bare flats (Figure 3f).  Samples were also collected at three locations within cleared plots 1, 

2 and 3, in May 2005 and again in summer 2006 and 2007. 

Sediment samples were treated with 10% H2O2 to remove organic material.  Calgon was then 

added for deflocculation, and samples analysed for grain size distribution using the Malvern 

Mastersizer S Version 2.19.   

Three sediment cores, 1.5 m – 3 m in length, were collected in 70 mm diameter aluminium 

tubes using a vibracorer (Figure 3).  Cores were returned to the lab for stratigraphic logging and 

sub-samples were removed for grain size analysis and color notations, using Maunsell color 

charts.   

It was only possible to collect cores in proximity to the main access point, which is midway along 

the estuary, roughly 25 m South of Site 4 (see Figure 1 for site location). Core (a) represents the 

sediment profile beneath a recently cleared mangrove zone; Core (b) adjacent mudflats within 



 

 

25 m of the cleared mangrove zone, and  Core (c) was collected toward the middle of the 

intertidal flats, approximately 15 m east of the main tidal channel (Figure 6).  A short core (35 

cm deep) was collected within the mangroves in the vicinity of Site 2, in the middle, 

longitudinally, of the mangrove zone.   

 

3.3 Surface elevation changes from erosion pins and RSET 

Surface elevation changes on the mudflat surface were measured with a series of Rod Surface 

Elevation Tables (RSET), as described in  Cahoon et al. (2002) (Figure 3).  Benchmark poles 

were driven 3 m into the substrate with around 50 cm protruding from the estuary floor, then 

further stabilized with cement.   A detachable arm with nine measuring pins attaches to the 

benchmark pole via a rod-collar coupling device, and for this study was rotated 180°, giving a 

total of 18 readings per RSET, which were then averaged after each visit to give a single value 

of surface elevation.  Confidence intervals for the measured height of an individual pin was 

measured at {+/-} 1.3 mm in a mangrove forest (Cahoon et al. 2002).   Each RSET benchmark 

was manually surveyed one month after installation, and again 14 months later to ensure the 

poles had maintained their original position. 

Three transects of four RSETs were positioned in the upper estuary in the vicinity of Sites 2 and 

3 (see Figure 1 for site location and Figure 3f for transect lay-out).  RSETs are a permanent 

fixture in the environment and because of the potential for injury or interference, only three 

transects were installed.  The intertidal RSETs along Transect 1 were positioned in Cleared Plot 

3 (10 m from mangrove fringe) and Cleared Plot 1 (20 m from mangrove fringe) while RSET 

Transects 2 and 3 were positioned within mangroves and on bare tidal flat to assess variation in 

surface elevation changes in the absence of mangrove removal.   

Stainless steel erosion pins were installed at 15 locations within the cleared areas as well as the 

mangrove zones at Sites 1 and 4, the locations of which are displayed in Figure 7.  Erosion pins 

(0.7 m long, 5 mm diameter) were deployed in clusters of seven pins (Figure 3) and driven into 

the substrate with 0.2 m remaining above the sediment surface. The height above substrate of 

the seven pins was averaged to provide a single measurement of elevation change. Erosion 

pins have been used in other mangrove environments (e.g. Spenceley 1977), and though the 

accuracy has not been specified in published surveys, it can be estimated to the nearest 

millimetre (Thomas and Ridd 2004).   

Site 4 was partially cleared of mangroves in mid-March 2006, roughly one year after sections in 

the vicinity of Site 2 and 3.  Cleared Plot 1 (CP1) was cleared on 21 May 2005; CP2 on 13 

August 2005 and CP3 on 30 August 2005 (Figure 2).    

In this study, recorded measurements from RSETs and erosion pins are referred to as ‘surface 

elevation change’.  These devices measure the rise or fall in the substrate, therefore any 



 

 

sediment compaction, shallow subsidence, root decomposition, or root growth are incorporated 

in the result of elevation change (as per Cahoon et al. 2000).    

 

3.4 Sediment traps 

Gross sediment deposition was measured using sediment traps (Figure 3) which were deployed 

for approximately one month in May and June 2006 (winter) and January and February 2007 

(summer).  Transects of sediment traps were installed at the four monitoring sites, with two 

traps inside the mangroves and one on the bare flats (Figure 3f).  Sediment accumulation rates 

of dry sediment are expressed in g m2 mth-1.  A combination of tampering, mishandling and 

growth of filamentous algae over traps, has reduced the final analyses however.  

 

4 Results 

4.1 Mangrove Expansion 

Temporal change of the planimetric distribution of mangrove vegetation in the estuary has been 

mapped using aerial photographs dated 1943, 1982, 1996 and 2003.   Mangrove coverage in 

1943 was approximately 16,000 m2.  In 1982 mangroves had colonized seaward, increasing the 

area of mangrove vegetation to 29,000 m2 and by 1996 mangroves had expanded to cover 

approximately 100,000 m2, including the previously bare sandier areas south-east of the estuary 

mouth (in the vicinity of Site 4, see Figure 2).  Between 1996 and 2003 further colonization 

increased mangrove coverage to 115,000 m2 (Table 1). 

 

4.2 Mangrove Physiognomy 

Average plant heights, measured within each 16 m2 plot, range from 0.68 m (+ 0.11 m) to 1.21 

m (+ 0.18 m).   Standard error around mean plant height was sufficiently low that the three plots 

at each site were grouped together for further analysis.  Mean plant height appears to have no 

correlation with the age of the mangrove stands studied, with the youngest (Site 4) and oldest 

(Site 1) stands displaying similar mean plant heights of 1.03 m and 1.04 m respectively (Table 

2).  Stem density is highest and stem diameter lowest at Site 3, where mean plant height is 

lower than all other stands (0.76 m).   

Average pneumatophore density at Site 4, where shrubs have been growing for less than 20 

years, is 282 per m2, which is less than 50% of the 694 per m2 measured at Site 1.    

 

4.3 Surface Sediment Characteristics 



 

 

The greatest mud (particle size < 63 µm, as defined by Folk (1968), incorporating % clay and % 

silt) content of surface sediments is found within Site 1 (93%), toward the head of the estuary.  

Mud content exceeds 50% for all mangrove and cleared sites, however some spatial variability 

between, and within, mangrove sites is evident.  The undisturbed bare flats at Sites 1, 2 and 3, 

however, possess mud content <40% and therefore contain >60% sand (Table 3).   

An increase in grain size across bare flats of Transect 2 in summer 2007 compared to winter 

2006 is apparent, with the opposite trend occurring at bare flat locations of Transects 3 and 4 

(Figure 4).  No clear seasonal fluctuation is discernible in mangrove habitat due to the range of 

grain sizes recorded. 

 Temporal variation in sediment texture of the cleared plots is displayed in Figure 5.  Results 

exhibit an apparent increase in grain size from winter 2005 to summer 2006, however this is 

obscured by the considerable variation in grain sizes recorded for summer 2006.  In August 

2005, mean grain size collected within cleared plots ranged from 22 µm (+ 3) at Clear Plot 2, to 

53 µm (+ 24) at Clear Plot 3, being medium silt to very fine sand.  In February 2007, mean grain 

size ranged from 82 µm (+ 43) at Clear Plot to 94 µm (+ 27) at Clear Plot 3 (very fine sand) 

(Table 3). 

 

4.4 Sediment Cores 

Sedimentary features of three cores are displayed in Figure 6.  A comparison of the surface 

facies indicates a deeper, finer-grained surface layer in the mangrove zone (Core (a)).   

Mangrove rootlets are most dense in the upper 15 cm of black silty sand.  Shell material is 

absent in Core (a) whereas coarse and fine sands are coupled with shell hash and shell 

material in Cores (b) and (c), indicative of intertidal deposits.   

The most noticeable change to the sedimentary units occurs at depths of around 50-55 cm in all 

cores, where overlying sandy beds are replaced with unconsolidated silts which penetrate to 

depths beyond 1 m in Core (c), 85 cm in Core (b) and just under 1 m in Core (a).    Shell 

material is not present in these lower facies, except for a 4 cm sandy layer with shell hash found 

at 80 cm in Core (b), representative of a tidal channel or intertidal sand-flat environment.  The 

coarse silt found between 55 cm and 95 cm in Core (a) is “soupy” which could indicate 

groundwater penetration, a zone of poor water filtration, or a bed of degrading volcanic 

sediment containing smectite (Harmsworth 1983).  

The short core collected at Site 2 was found to have a surface layer to 8 cm consisting of olive-

black, medium silt (16-22 µm).   Mean grain size then changed to coarse silt and very fine sand 

to a depth of 25 cm, below which was medium and fine sands to 35 cm.  Comparison between 

the short core and Core (a) suggests the finer silt fraction has been removed from the surface of 

Core (a), which was cleared of mangroves three months prior to collection. 



 

 

 

4.5 Surface Elevation Change 

Annual rates of surface elevation change displayed in Figure 7 show a reduction in surface 

elevation ranging from 9 mm yr-1 to 38 mm yr-1 within the zones cleared of mangrove vegetation, 

and mostly an increase in surface elevation within mangrove vegetation, ranging from – 5 mm 

yr-1 to 14 mm yr-1.  Highest rates of surface elevation increase were recorded inside mangrove 

habitat along RSET Transect 2 (6 mm yr-1 and 14 mm yr-1).   

Figure 8 demonstrates the cumulative drop in surface elevation recorded within the areas 

cleared of mangroves.   Cumulative surface elevation change along the RSET transects shows 

an apparent stability of the bare flats in the vicinity of RSET Transect 2, whereas the bare flats 

of the cleared plots (RSET Transect 1) experienced a continual fall in surface elevation.  

Migration of a small channel was observed in the vicinity of RSET Transect 3 and is reflected in 

the fall in surface elevation at the 20 m RSET in March 2007.  Figure 8 also illustrates an overall 

increase in surface elevation measured over time at most mangrove RSET stations, though 

some temporal variation is evident.  

 

4.6 Sediment Accumulation Rates from Sediment Traps 

Sediment trap results exhibit variation in sediment accumulation rates, with the greatest 

accumulation occurring on the bare flats where values ranged from 1,200 to 6,000 g m2 mth-1 

(Figure 9).  Site 4, closer to the estuary mouth, generally shows the highest values of sediment 

accumulation.   

Figure 10 suggests there is no linear relationship between rates of sediment accumulation and 

total rainfall or highest rainfall intensity for the trap deployment periods (rainfall data from NIWA 

Climate Data Centre, Tauranga Aerodrome recording station).   

 

5 Discussion  

The purpose of this study is to report on the mangrove expansion at Waikaraka Estuary and 

investigate the physical changes that occur as a result of mangrove removal.  Photogrammetry 

documented a 23% increase in mangrove coverage over the total estuary area between the 

years 1943 to 2003, with the greatest rate of expansion occurring between 1982 and 1996.  The 

expansion rate has subsequently slowed, possibly as a result of human intervention via physical 

removal of propagules from the estuary. The main driver for mangrove expansion at this site 

can only be speculated.  The Waikaraka Estuary catchment area has experienced considerable 

land clearance since European settlement (approximately 150 - 200 years) and during this time 

sediment loads entering the estuary may have been greater than the present-day.  Prior to the 



 

 

1980s, stock grazing, land reclamation and rubbish dumping were all permissible activities in 

New Zealand estuaries which may have truncated any estuarine vegetation establishment 

during that time.  Recent prohibition of these activities may play some role in the success of 

mangrove expansion.  Other possible factors include increases in nutrient run-off as a result of 

agricultural and horticultural activities, or a reduction in the occurrence of chilling temperatures 

during the establishment phase of mangrove propagules. 

Mangrove shrubs in Waikaraka Estuary display a mean plant height of <1.5 m, in contrast to 

other New Zealand sites where tree heights range between 2 and 6 m in similar physical 

conditions (Alfaro 2005, Ellis et al 2004, May 1999, Morrisey et al. 2003, Osunkoya and Creese 

1997, Young and Harvey 1996).  The study site is located toward the southern limit of mangrove 

distribution in New Zealand, and the limited plant growth can be attributed to climatic stress 

(Beard 2006).  Spatial variation in plant height is commonly found in mangrove habitat (e.g. 

Burns and Ogden 1985, Crisp et al. 1990) and in this study could not be attributed to age. Other 

possible causes such as salinity (Crisp et al. 1990) and nutrient availability (Fry et al. 2000, 

Naidoo 2006) were not measured.  

Pneumatophore densities measured in this study are higher than those reported in other New 

Zealand estuaries (Alfaro 2005, Ellis et al. 2004, Morrisey et al. 2003, Young and Harvey 1996) 

which may be due to the high mud content of surface sediments (Ellis et al. 2004).  The low 

pneumatophore density measured within the youngest stand of mangroves in Waikaraka 

Estuary is consistent with a reported correlation between increasing plant age and higher 

pneumatophore densities (Morrisey et al. 2003).   Pneumatophore density has also been found 

to correlate with increased sediment trapping capability (Young and Harvey 2004).  Sediment 

trapping occurs within the mangrove vegetation at the study site, evidenced by the recorded 

increase in surface elevation.  Surface elevation change averaged 3 mm yr-1 which is less than 

that recorded in other New Zealand estuaries (Ellis et al. 2004, Swales et al. 2007, Swales et al. 

1997) although this is a similar range to values recorded in Florida (Cahoon and Lynch 1997), 

Vietnam (Van Santen et al. 2006) and temperate Australia (Rogers et al. 2005, Rogers et al. 

2006).  

Sedimentation rates are influenced by sediment supply into the estuary and hydrodynamic 

processes (Furukawa et al. 1997), and as Waikaraka Estuary receives a relatively low volume of 

freshwater inflow, it is likely that suspended sediment input will also be relatively low, particularly 

in light of the small catchment area (10 km2).  

The establishment of mangrove vegetation on previously bare tidal flats initiates a substantial 

change in surface sediment characteristics.  Interpretation of core stratigraphy and surface 

sediment analysis suggests that bed material of fine and medium sand representative of the 

bare intertidal flats, is replaced by silt-dominated sediment once mangroves become 

established.  The depth of mud is likely to vary spatially within the estuary, and was found to 

extend to a depth of 8 cm in the vicinity of a well-established mangrove stand located roughly 



 

 

equi-distant between the mouth and head of the estuary.  Interestingly, medium and coarse silts 

were also found at depths of around 55 cm below the surface, suggesting that the study site has 

experienced accumulation of finer-grained material in the past.   

Rates of surface elevation change associated with mangrove vegetation at Waikaraka Estuary 

ranged from -5 mm to 14 mm yr-1.  The rate of surface elevation change is spatially and 

temporally variable with no clear seasonal fluctuations discernible over the monitoring period. A 

relationship between sedimentation and distance from estuary head has been reported in other 

studies (Young and Harvey 1996), but was not evident at this site.  Higher values of surface 

elevation change recorded mid-estuary coincide with lower values along the RSET transects 

either side, suggesting the existence of a narrow depositional zone within this section of the 

estuary.  This could be the result of tidal currents pushing released sediment from neighbouring 

cleared zones into this mangrove zone (approximately 200 m downstream), or may simply be 

due to a topographical/hydrodynamic anomaly favouring deposition at this location.   

Sediment availability (determined from sediment traps) is lower within mangrove habitat than on 

the adjacent bare flats, further demonstrating the trapping capabilities of mangroves at the study 

site, particularly as the higher sediment accumulation rates of the bare flats do not result in a net 

gain in surface elevation.  This trend of decreasing sediment load between the bare tidal flats 

and vegetation zone, coupled with increasing sedimentation into fringing mangrove habitat, has 

been discussed by other authors and is considered to be a function of both the trapping 

capability of high vegetation density (Furukawa and Wolanski 1996) and erosional episodes of 

the less stable sediments on the bare tidal flats (Van Santen et al. 2006).  The monitoring 

undertaken in this study coincided with mangrove clearing activities therefore the sediment 

accumulation rates quoted may not reflect typical, or ambient, sediment availability but is likely 

to reflect the injection of released sediment from cleared zones.  A positive correlation between 

rainfall and sediment accumulation has been reported in other studies (Saad et al. 1999, Van 

Santen et al. 2006), however this trend was not evident during the periods of trap deployment at 

Waikaraka Estuary, possibly due to this remobilisation of sediment. 

Since May 2005 approximately 9,600 m2 of mangrove vegetation has been removed from 

Waikaraka Estuary, resulting in significant changes to surface topography.  Surface elevation 

within cleared areas fell at rates of 9 to 38 mm yr-1 (average 14 mm yr-1).   The decomposition of 

mangrove root material has been found to contribute significantly to falls in surface elevation, 

following a study of mass tree mortality (Cahoon et al. 2003).  Unfortunately, marker horizons 

were unsuccessful in this study and as such it is not possible to separate the processes of 

sediment erosion and root-mass decomposition.  An apparent increase in grain size between 

winter 2005 and summer 2007, mostly of no more than 30 µm, is skewed by a systematic and 

substantial increase in grain size documented for summer 2006, coupled with a considerable 

range of mean values.  Possible explanations for this anomaly are a) a function of spatially 

variable root-mass decomposition resulting in zones of released sediments along with trapped, 



 

 

coarser sediments within areas where root mass is still significant, b) the temporary exposure of 

underlying coarser material, c) the response to a period of increased flow velocities; d) an 

artifact of sample collection.  A fining of surface texture between winter 2006 and summer 2007 

occurred on bare flats adjacent to cleared zones at two of three sampling locations which could 

possibly be due to deposition of silt released from nearby cleared areas. 

 

6 Conclusion 

The distribution and expansion of mangrove habitat in Waikaraka Estuary over the last 60 years 

is reported and the changes in surface topography and surface sediment as a result of 

mangrove removal are documented.  Mangrove coverage has increased from 16,000 m2 in 

1943, to 115,000 m2 in 2003, determined by photogrammetry.  The measured mean tree heights 

of less than 1.5 m are significantly shorter than mangroves growing in warmer regions of New 

Zealand, inferring climatic limitations to growth.   Annual rates of surface elevation change 

within mangrove habitat (using erosion pins and RSETs) averaged 3 mm, which demonstrates 

sediment trapping by mangrove vegetation.  In contrast, after mangrove clearance a reduction 

in surface elevation occurred, ranging from 9 mm to 38 mm yr-1 (mean 14 mm yr-1).  Concurrent 

to this fall in surface elevation is an increase in mean grain size (<53 µm to ~ 78 µm), indicating 

remobilisation of some of the silt fraction as a result of a) the loss of above-ground plant 

architecture which dampens water flow; and b) decomposition of root material which previously 

held sediment.  This study demonstrates that the removal of mangroves results in some 

remobilisation of sediment, mostly in the silt fraction.  It is important to note, however, that 18 

months after mangrove clearing the remaining sediment is still finer than that of the surrounding 

bare flats. 
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Figure 1:  Waikaraka Estuary, a narrow estuary positioned along the western 
margins of Tauranga Harbour.  Sample collection sites and RSET 
locations are labeled.  ‘Estuary area’ represented by hatched line, 
outlined for determination of mangrove coverage as % of estuary area.  
Aerial photograph  (2003) courtesy of Environment Bay of Plenty. 
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Figure 2:  Aerial vertical image of Waikaraka Estuary, 2003.  Mangroves have 
expanded to cover approximately 115,000 m2.  Four plots have been 
cleared of mangrove vegetation since April 2005, totaling 9,600 m2. 
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Figure 3:   Images of instruments used in this field study.  (a) Tripod component of the 
motorised vibracorer used to collect sediment cores; (b) schematic diagram 
of erosion pin cluster, (c) sediment traps installed on bare intertidal flats and 
within mangrove zones; (d) the permanent benchmark of the RSET device; 
(e) conceptual diagram of the portable RSET arm with adjustable measuring 
pins (from Cahoon et al. 2002); (f) spatial lay-out of transects for * RSET 
positions, ** collection of surface sediments, ++ sediment traps. 



 

 

 
Table 1. Area (m2) and percent coverage of total estuarine area of mangrove coverage 

measured from aerial photographs dated 1943, 1982, 1996 and 2003.  

 
Year Area of estuary covered by 

mangroves (m2) 
% of estuary covered 

by mangroves 

1943 16,000 3 
1982 29,000 6 
1996 100,000 20 
2003 115,000 23 

 
 
Table 2.   Plant height, density, stem diameter and pneumatophore density values displayed 

by site (mean + SD) 
 

SITE Mean plant 
density (m2) 

Mean plant 
height (m) 

Mean stem 
diameter (m) 

Mean 
pneumatophore 
density (m2) 

Site 1 1.5 1.04 (0.22) .049 (.032) 694 (99) 

Site 2 0.9 1.10 (0.16) .048 (.030) 470 (86) 

Site 3 2.5 0.76 (0.15) .029 (.020) 535 (202) 

Site 4 1.3 1.03 (0.22) .035 (.026) 282 (33) 

 

 

 

Mangroves Area cleared of mangroves   Undisturbed

intertidal flats

site 

name

%   

clay

%    

silt

% 

sand

mean 

grain 

(µm)

site 

name

%   

clay

%    

silt

% 

sand

mean 

grain 

(µm)

site 

name

%   

clay

%    

silt

% 

sand

mean 

grain 

(µm)

Site 1 TP1-1 17 76 7 22 TP1-3 6 49 45 93 TP1-5  5 31 64 138

TP1-2 15 78 7 21 TP1-4 6 46 48 88

Site 2 TP2-1 14 62 24 55 TP2-3  7 49 43 94 TP2-5 4 22 73 213

TP2-2 10 46 44 114 TP2-4 5 46 49 98

Site 3 TP3-1 9 41 50 173 TP3-3 7 52 41 85 TP3-5 5 33 62 136

TP3-2 14 69 17 39 TP3-4 7 50 43 91

Site 4 TP4-1 0 70 13 32 TP4-3 13 72 15 33 TP4-5 5 47 48 84

TP4-2 15 65 20 47 TP4-4 11 66 23 44

Mean 12 64 23 63 8 54 39 78 5 33 62 143

Std Dev 5 13 16 53 3 10 13 25 1 10 11 53

 

 

Table 3.   Surficial sediment textural analyses for sites under mangroves, cleared of 
mangroves and on undisturbed bare flats in the Waikaraka Estuary.  Samples 
collected February 2007. 



 

 

 

 

 

Figure 4: Seasonal grain size variation measured in winter 2006 and summer 2007 along 
transects at Site 2 (a), Site 3 (b) and Site 4 (c).  Samples collected 20 m (-20 m) 
and 10 m (-10) landward of mangrove fringe and 10, 20 and 40 m seaward of the 
mangrove fringe. 
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Figure 5:   Surface grain size (µm) and standard deviation of the average of 3 samples per 
collection station within Cleared Plot 1 (a), Cleared Plot 2 (b) and Cleared Plot 3 
(c) from samples collected within 3 months of mangrove clearance (winter 2005), 
and the following summer 2006 and summer 2007.   



 

 

 

 

Olive black silty sand 
(129 µm) with dense 
mangrove rootlets and 
roots 

Gray medium sand 
(298 µm) with 
mangrove roots 

Mottled dull yellow very 
fine sand with grey 
patches (72 µm) 

void 

Dull yellow sandy 
silt 

Soupy light yellow 
coarse silt (32 µm) 

Bright yellowish brown 
very fine sand 

a) 

25cm 

50 cm 

1m 

75 cm 

Olive black medium sand   

(347 µm) 

 

Olive black medium 
sand (250 µm) with 

5% shell hash 

Gray fine sand  
(231 µm) 

Gray medium sand 
(320 µm) 

Dark greenish gray coarse 
silt (45 µm) with 2% woody 
fragments, 1mm diameter 

Gray medium sand 
(320 µm) with 10% 
shell hash 

Dark greenish gray  
medium silt (25 µm) 
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Shell layer unbroken ½ 
shells of bivalve Chione 
stutchburyi and shell hash 
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b) 
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Large Chione stuchburyi 
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liliana 

Olive gray fine sand 
(229 µm) and shell hash  

Gray medium silt (24 µm) with 
paler gray mottles (10%) 
sandy lense at 58cm 
1-2% filamentous black 
woody fragments 
 

Woody material 
 
 
Circular root-like 
material 

Mottled gray medium silt 
(18.5 µm) 

c) 

Figure 6:  Core stratigraphy for a site cleared of mangroves 3 months before core 
collection, Core (a); bare flats within 25 m of the cleared mangrove zone, Core 
(b); and 15 m east of the main tidal channel, Core (c). 



 

 

  

 

 

 

 

Figure 7:  Graphic illustration of annual rates of surface elevation change, calculated 
from erosion pin and RSET measurements for the monitoring period 
March/April 2006 to March 2007.  RSET transects are outlined with hatched 
line.    
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Figure 9:  Sediment trap accumulation rates (g m2 mth-1) for June 2006, July 2006, 
January 2007 and February 2007.  Pale grey columns represent trap locations 
within mangrove habitat 10 m from mangrove fringe; dark grey columns 
represent sites 5 m from mangrove fringe, and white columns represent traps 
positioned on bare flats 10 m from the mangrove fringe. 
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Figure 8:  Cumulative surface elevation change within Cleared Plot 1 (a), Cleared Plot 2 (b) 
and Cleared Plot 4 (c); and along RSET Transects 1 (d), RSET Transect 2 (e) and 
RSET Transect 3 (f).  Mangrove locations of RSET transects are represented by 
hatched lines. 
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Figure 10: Sediment trap results of sediment accumulation plotted against rainfall intensity 
and total rainfall for the trap deployment periods June 2006, July 2006, January 
2007 and February 2007.   
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